WorldWideScience

Sample records for burst can monitors

  1. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    OpenAIRE

    Tan, Yunliang; Yin, Yanchun; Gu, Shitan; Tian, Zhiwei

    2015-01-01

    Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits moni...

  2. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    Directory of Open Access Journals (Sweden)

    Yunliang Tan

    2015-01-01

    Full Text Available Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits monitoring was burst region identification method. There were three identifying indexes: silence period in microseismic monitoring, rising period of the intensity, and rising period of pulse count in electromagnetic radiation monitoring. If there is identified burst risk in the workface, drilling bits method was used to ascertain the burst region, and then pressure releasing methods were carried out to eliminate the disaster.

  3. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  4. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  5. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    International Nuclear Information System (INIS)

    Lin Lin; Zhang Shuangnan; Kouveliotou, Chryssa; Baring, Matthew G.; Van der Horst, Alexander J.; Finger, Mark H.; Guiriec, Sylvain; Preece, Robert; Chaplin, Vandiver; Bhat, Narayan; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Von Kienlin, Andreas; Watts, Anna L.; Wijers, Ralph A. M. J.; Gehrels, Neil; Harding, Alice

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T 90 durations of the bursts can be fit with a log-normal distribution with a mean value of ∼123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T 90 values estimated in count space (following a log-normal distribution with a mean value of ∼124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E peak decreases with energy flux (and fluence) to a minimum of ∼30 keV at F = 8.7 x 10 -6 erg cm -2 s -1 , increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L iso , corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 10 40 erg s -1 ).

  6. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  7. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    Science.gov (United States)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  8. Development of a Remote Monitoring System Using Meteor Burst Technology

    International Nuclear Information System (INIS)

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-01-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  9. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  10. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  11. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    International Nuclear Information System (INIS)

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Van der Horst, A. J.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  12. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  13. The Fermi Gamma-ray Burst Monitor Instrument

    International Nuclear Information System (INIS)

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing γ-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view (≥8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  14. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  15. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  16. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    International Nuclear Information System (INIS)

    Burns, Eric; Briggs, Michael S.; Connaughton, Valerie; Zhang, Bin-Bin; Lien, Amy; Goldstein, Adam; Pelassa, Veronique; Troja, Eleonora

    2016-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors

  17. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Eric; Briggs, Michael S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, Valerie [Universities Space Research Association, Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Zhang, Bin-Bin [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Lien, Amy [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goldstein, Adam [NASA Postdoctoral Program, Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pelassa, Veronique [Smithsonian Astrophysical Observatory, P.O. Box 97, Amado, AZ 85645 (United States); Troja, Eleonora, E-mail: eb0016@uah.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.

  18. Development of a Dmt Monitor for Statistical Tracking of Gravitational-Wave Burst Triggers Generated from the Omega Pipeline

    Science.gov (United States)

    Li, Jun-Wei; Cao, Jun-Wei

    2010-04-01

    One challenge in large-scale scientific data analysis is to monitor data in real-time in a distributed environment. For the LIGO (Laser Interferometer Gravitational-wave Observatory) project, a dedicated suit of data monitoring tools (DMT) has been developed, yielding good extensibility to new data type and high flexibility to a distributed environment. Several services are provided, including visualization of data information in various forms and file output of monitoring results. In this work, a DMT monitor, OmegaMon, is developed for tracking statistics of gravitational-wave (OW) burst triggers that are generated from a specific OW burst data analysis pipeline, the Omega Pipeline. Such results can provide diagnostic information as reference of trigger post-processing and interferometer maintenance.

  19. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    Science.gov (United States)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  20. Investigation on the Vibration Effect of Shock Wave in Rock Burst by In Situ Microseismic Monitoring

    Directory of Open Access Journals (Sweden)

    Mingshi Gao

    2018-01-01

    Full Text Available Rock burst is a physical explosion associated with enormous damage at a short time. Due to the complicity of mechanics of rock burst in coal mine roadway, the direct use of traditional investigation method applied in tunnel is inappropriate since the components of surrounding rock are much more complex in underground than that of tunnel. In addition, the reliability of the results obtained through these methods (i.e., physical simulation, theoretical analysis, and monitoring in filed application is still not certain with complex geological conditions. Against this background, present experimental study was first ever conducted at initial site to evaluate the effect of shock wave during the rock burst. TDS-6 microseismic monitoring system was set up in situ to evaluate the propagation of shock wave resulting in microexplosions of roadway surrounding rock. Various parameters including the distance of epicentre and the characteristic of response have been investigated. Detailed test results revealed that (1 the shock wave attenuated exponentially with the increase of the distance to seismic source according to the equation of E=E0e-ηl; particularly, the amplitude decreased significantly after being 20 m apart from explosive resource and then became very weak after being 30 m apart from the seismic source; (2 the response mechanics are characteristic with large scatter based on the real location of surrounding rock despite being at the same section. That is, the surrounding rock of floor experienced serious damage, followed by ribs, the roof, and the humeral angles. This in situ experimental study also demonstrated that microseismic monitoring system can be effectively used in rock burst through careful setup and data investigation. The proposed in situ monitoring method has provided a new way to predict rock burst due to its simple instalment procedure associated with direct and reasonable experimental results.

  1. Detection circuit for gamma-ray burst

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Yamagami, Takamasa; Mori, Kunishiro; Uchiyama, Sadayuki.

    1982-01-01

    A new gamma-ray burst detection system is described. The system was developed as an environmental monitor of an accelerator, and can be used as the burst detection system. The system detects the arrival time of burst. The difference between the arrival times detected at different places will give information on the burst source. The frequency of detecting false burst was estimated, and the detection limit under the estimated frequency of false burst was also calculated. Decision whether the signal is false or true burst was made by the statistical treatment. (Kato, T.)

  2. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  3. Systematic survey for monitor signals to reduce fake burst events in a gravitational-wave detector

    International Nuclear Information System (INIS)

    Ishidoshiro, Koji; Ando, Masaki; Tsubono, Kimio

    2006-01-01

    We present methods and results to reduce fake burst events induced by nonstationary noises. To reduce these fake events, we systematically surveyed monitor signals recorded with a main (or gravitational-wave) signal of a gravitational-wave detector so as to watch the detector. Our survey was to check whether or not there was a coincidence between the main and monitor signals when we found a burst event from the main signal. If there was a coincidence, we rejected this event as a fake event induced by nonstationary noises, regarding the main signal as being dominated by nonstationary noises. As a result, we succeeded to reject about 90% of the burst events of which the SNR values were larger than 10 as fake events, with an accidental probability of about 5% to reject burst-gravitational-wave candidates

  4. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Long duration bursts are particularly expected at very low accretion rates and make possible to study the transition from a hydrogen......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number......-rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could...

  5. Operational experiences with automated acoustic burst classification by neural networks

    International Nuclear Information System (INIS)

    Olma, B.; Ding, Y.; Enders, R.

    1996-01-01

    Monitoring of Loose Parts Monitoring System sensors for signal bursts associated with metallic impacts of loose parts has proved as an useful methodology for on-line assessing the mechanical integrity of components in the primary circuit of nuclear power plants. With the availability of neural networks new powerful possibilities for classification and diagnosis of burst signals can be realized for acoustic monitoring with the online system RAMSES. In order to look for relevant burst signals an automated classification is needed, that means acoustic signature analysis and assessment has to be performed automatically on-line. A back propagation neural network based on five pre-calculated signal parameter values has been set up for identification of different signal types. During a three-month monitoring program of medium-operated check valves burst signals have been measured and classified separately according to their cause. The successful results of the three measurement campaigns with an automated burst type classification are presented. (author)

  6. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  7. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  8. HOW ELSE CAN WE DETECT FAST RADIO BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lorimer, Duncan R., E-mail: lyutikov@purdue.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States)

    2016-06-20

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr{sup −1}, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  9. HOW ELSE CAN WE DETECT FAST RADIO BURSTS?

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-01-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr"−"1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  10. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  11. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...... up to such long bursts. Depending on the composition of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Intermediate long bursts are particularly expected to occur at very...

  12. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto

    2012-01-01

    burning are ejected in the burst expansion wind. We have investigated the possibility of observing with NuSTAR some X-ray bursters selected for their high burst rate and trend to exhibit so-called superexpansion bursts. Our main ambition is to detect the photoionization edges associated with the ejected...

  13. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  14. Periodic lateralized epileptiform discharges can survive anesthesia and result in asymmetric drug-induced burst suppression

    Directory of Open Access Journals (Sweden)

    Edward C. Mader Jr.

    2017-02-01

    Full Text Available Drug-induced burst suppression (DIBS is bihemispheric and bisymmetric in adults and older children. However, asymmetric DIBS may occur if a pathological process is affecting one hemisphere only or both hemispheres disproportionately. The usual suspect is a destructive lesion; an irritative or epileptogenic lesion is usually not invoked to explain DIBS asymmetry. We report the case of a 66-year-old woman with new-onset seizures who was found to have a hemorrhagic cavernoma and periodic lateralized epileptiform discharges (PLEDs in the right temporal region. After levetiracetam and before anesthetic antiepileptic drugs (AEDs were administered, the electroencephalogram (EEG showed continuous PLEDs over the right hemisphere with maximum voltage in the posterior temporal region. Focal electrographic seizures also occurred occasionally in the same location. Propofol resulted in bihemispheric, but not in bisymmetric, DIBS. Remnants or fragments of PLEDs that survived anesthesia increased the amplitude and complexity of the bursts in the right hemisphere leading to asymmetric DIBS. Phenytoin, lacosamide, ketamine, midazolam, and topiramate were administered at various times in the course of EEG monitoring, resulting in suppression of seizures but not of PLEDs. Ketamine and midazolam reduced the rate, amplitude, and complexity of PLEDs but only after producing substantial attenuation of all burst components. When all anesthetics were discontinued, the EEG reverted to the original preanesthesia pattern with continuous non-fragmented PLEDs. The fact that PLEDs can survive anesthesia and affect DIBS symmetry is a testament to the robustness of the neurodynamic processes underlying PLEDs.

  15. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    International Nuclear Information System (INIS)

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Lichti, G. G.; Kienlin, A. von; Steinle, H.; Diehl, R.; Greiner, J.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-01-01

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system

  16. Self-regulation of turbulence bursts and transport barriers

    International Nuclear Information System (INIS)

    Floriani, E; Ciraolo, G; Ghendrih, Ph; Sarazin, Y; Lima, R

    2013-01-01

    The interplay between turbulent bursts and transport barriers is analyzed with a simplified model of interchange turbulence in magnetically confined plasmas. The turbulent bursts spread into the transport barriers and, depending on the competing magnitude of the burst and stopping capability of the barrier, can burn through. Simulations of two models of transport barriers are presented: a hard barrier where interchange turbulence modes are stable in a prescribed region and a soft barrier with external plasma biasing. The response of the transport barriers to the non-linear perturbations of the turbulent bursts, addressed in a predator–prey approach, indicates that the barriers monitor an amplification factor of the turbulent bursts, with amplification smaller than one for most bursts and, in some cases, amplification factors that can significantly exceed unity. The weak barriers in corrugated profiles and magnetic structures, as well as the standard barriers, are characterized by these transmission properties, which then regulate the turbulent burst transport properties. The interplays of barriers and turbulent bursts are modeled as competing stochastic processes. For different classes of the probability density function (PDF) of these processes, one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to the properties of the barriers. The main stochastic variables are the barrier width and the spreading distance of the turbulent bursts within the barrier, together with their level of correlation. One finds that in the case of a barrier with volumetric losses, such as radiation or particle losses as addressed in our present simulations, the stochastic model predicts a leaky behavior with an exponential PDF of escaping turbulent bursts in agreement with the simulation

  17. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  18. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  19. Geomagnetic storm related to intense solar radio burst type II and III ...

    African Journals Online (AJOL)

    The strong energetic particles ejected during sun's activity will propagate towards earth and contribute to solar radio bursts. These solar radio bursts can be detected using CALLISTO system. The open website of the NASA provides us the data including CALLISTO, TESIS, solar monitor, SOHO and space weather. The type ...

  20. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  1. Performance and scientific results of the BeppoSAX Gamma-Ray Burst Monitor

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Cinti, M. N.; Frontera, F.; Dal Fiume, D.; Nicastro, L.; Orlandini, M.; Palazzi, E.; Amati, L.; Zavattini, G.; Coletta, A.

    1998-01-01

    The Italian-Dutch satellite for X-ray Astronomy BeppoSAX is successfully operating on a 600 km equatorial orbit since May 1996. We present here the in-flight performance of the Gamma Ray Burst Monitor (GRBM) experiment during its first year of operation. The GRBM is performing very well, providing an amount of data on GRBs, some of which confirmed by other experiments onboard satellites. It also joined the 3rd Interplanetary Network as a new near-earth node. Important results have been obtained for GRBs (e.g. GRB970228) simultaneously detected in the Wide Field Cameras onboard the same satellite

  2. INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, T. N. [Director' s Postdoctoral Fellow, Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); MacGibbon, J. H. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal' shin, V. D. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W. [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); Kozyrev, A. S. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Yamaoka, K. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 (Japan); Ohno, M. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohmori, N. [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki-shi, Miyazaki 889-2192 (Japan); Feroci, M. [INAF/IAPS-Roma, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Frontera, F., E-mail: tilan@lanl.gov [Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); and others

    2016-07-20

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10{sup 13}–10{sup 18} cm (7–10{sup 5} au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  3. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  4. THE FIVE YEAR FERMI/GBM MAGNETAR BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Collazzi, A. C. [SciTec, Inc., 100 Wall Street, Princeton, NJ 08540 (United States); Kouveliotou, C.; Horst, A. J. van der; Younes, G. A. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Kaneko, Y.; Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Finger, M. H. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Chaplin, V. L. [School of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, TN 37232 (United States); Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Watts, A. L. [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H., E-mail: acollazzi@scitec.com [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2015-05-15

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550–5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  5. BURST AND OUTBURST CHARACTERISTICS OF MAGNETAR 4U 0142+61

    Energy Technology Data Exchange (ETDEWEB)

    Göğüş, Ersin; Chakraborty, Manoneeta; Kaneko, Yuki [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, Lin [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Roberts, Oliver J. [School of Physics, University College Dublin, Stillorgan Road, Belfield, Dublin 4 (Ireland); Gill, Ramandeep; Granot, Jonathan [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ranana 43537 (Israel); Horst, Alexander J. van der; Kouveliotou, Chryssa; Younes, George [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Watts, Anna L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam (Netherlands); Baring, Matthew [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Huppenkothen, Daniela [Center for Data Science, New York University, 726 Broadway, 7th Floor, NY 10003 (United States)

    2017-01-20

    We have compiled the most comprehensive burst sample from magnetar 4U 0142+61, comprising 27 bursts from its three burst-active episodes in 2011, 2012 and the latest one in 2015 observed with Swift /Burst Alert Telescope and Fermi /Gamma-ray Burst Monitor. Bursts from 4U 0142+61 morphologically resemble typical short bursts from other magnetars. However, 4U 0142+61 bursts are less energetic compared to the bulk of magnetar bursts. We uncovered an extended tail emission following a burst on 2015 February 28, with a thermal nature, cooling over a timescale of several minutes. During this tail emission, we also uncovered pulse peak phase aligned X-ray bursts, which could originate from the same underlying mechanism as that of the extended burst tail, or an associated and spatially coincident but different mechanism.

  6. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  7. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; hide

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  8. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  9. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to 7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  10. The Drift Burst Hypothesis

    OpenAIRE

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    2016-01-01

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...

  11. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  12. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to period-7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  13. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  14. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    OpenAIRE

    Liang, Zhengzhao; Liu, Xiangxin; Zhang, Yanbo; Tang, Chunan

    2013-01-01

    To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE) and far infrared (FIR) techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE wa...

  15. Clustering of gamma-ray burst types in the Fermi GBM catalogue: indications of photosphere and synchrotron emissions during the prompt phase

    Science.gov (United States)

    Acuner, Zeynep; Ryde, Felix

    2018-04-01

    Many different physical processes have been suggested to explain the prompt gamma-ray emission in gamma-ray bursts (GRBs). Although there are examples of both bursts with photospheric and synchrotron emission origins, these distinct spectral appearances have not been generalized to large samples of GRBs. Here, we search for signatures of the different emission mechanisms in the full Fermi Gamma-ray Space Telescope/GBM (Gamma-ray Burst Monitor) catalogue. We use Gaussian Mixture Models to cluster bursts according to their parameters from the Band function (α, β, and Epk) as well as their fluence and T90. We find five distinct clusters. We further argue that these clusters can be divided into bursts of photospheric origin (2/3 of all bursts, divided into three clusters) and bursts of synchrotron origin (1/3 of all bursts, divided into two clusters). For instance, the cluster that contains predominantly short bursts is consistent of photospheric emission origin. We discuss several reasons that can determine which cluster a burst belongs to: jet dissipation pattern and/or the jet content, or viewing angle.

  16. Six Years of Gamma Ray Burst Observations with BeppoSAX

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    I give a summary of the prompt X-/gamma-ray detections of Gamma Ray Bursts (GRBs) with the BeppoSAX satellite and discuss some significant results obtained from the study of the prompt emission of these GRBs obtained with the BeppoSAX Gamma Ray Burst Monitor and Wide Field Cameras.

  17. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  18. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  19. Seismic activity and environment protection in rock burst areas

    International Nuclear Information System (INIS)

    Travnicek, L.; Holecko, J.; Knotek, S.

    1993-01-01

    The significance is pointed out of seismic activity caused by mining activities in rock burst areas of the Ostrava-Karvinna district. The need is emphasized of the monitoring of the seismic activity at the Czech-Poland border as needed by the Two-party international committee for exploitation of coal supplies on the common border. The adverse effect of rock burst on the surface is documented by examples provided by the Polish party. The technique is described of investigating the DPB seismic polygon, allowing to evaluate the adverse impact of rock burst on the environment. (author) 1 fig., 8 refs

  20. The Fermi GBM Gamma-Ray Burst Catalog: The First Two Years

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; M. Burgess, J.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered

  1. Random demodulation for structural health monitoring excited by the five-cycle sine burst

    Directory of Open Access Journals (Sweden)

    Li Xing

    2017-01-01

    Full Text Available Nowadays, the Structural Health Monitoring (SHM has been paid more and more attention. The five-cycle sine burst is widely used as the exciting signal in SHM and the sensors’ responded signals are analyzed to research the damage. In the sensor network, there will be many sensors which mean many responded signals will be sampled, restored and sometimes transferred. In the traditional way which is known as Nyquist sampling theorem, the sampling rate must be more than twice the highest rate of the original signal. In this way, the amount of data will be huge. As the result, the costs will be very expensive and the equipment may be huge and heavy, which is especially unaccepted in the aircraft. It is necessary to do some research to compress the signal. The Compressing Sensing (CS theory provides new methods to compress the signals. The Random Demodulation (RD is a specific method which can accomplish the physical implementation of CS theory. In this paper, according to the structure of RD, we chose some chips to build a RD system. And we did some experiments to verify the method through the system. We chose the Orthogonal Matching Pursuit (OMP as the construct algorithm to recover the signal.

  2. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090-GE Amsterdam (Netherlands); Kouveliotou, Chryssa [Office of Science and Technology, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goegues, Ersin [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Granot, Jonathan [The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Vaughan, Simon [X-Ray and Observational Astronomy Group, University of Leicester, Leicester LE1 7RH (United Kingdom); Finger, Mark H., E-mail: D.Huppenkothen@uva.nl [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  3. Burst-suppression is reactive to photic stimulation in comatose children with acquired brain injury

    DEFF Research Database (Denmark)

    Nita, Dragos A.; Moldovan, Mihai; Sharma, Roy

    2016-01-01

    reactivity. We quantified reactivity by measuring the change in the burst ratio (fraction of time in burst) following photic stimulation. Results: Photic stimulation evoked bursts in all patients, resulting in a transient increase in the burst ratio, while the mean heart rate remained unchanged......Objective: Burst-suppression is an electroencephalographic pattern observed during coma. In individuals without known brain pathologies undergoing deep general anesthesia, somatosensory stimulation transiently increases the occurrence of bursts. We investigated the reactivity of burst......-suppression in children with acquired brain injury. Methods: Intensive care unit electroencephalographic monitoring recordings containing burst-suppression were obtained from 5 comatose children with acquired brain injury of various etiologies. Intermittent photic stimulation was performed at 1 Hz for 1 min to assess...

  4. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  5. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  6. Burst Suppression on Processed Electroencephalography as a Predictor of Post-Coma Delirium in Mechanically Ventilated ICU Patients

    Science.gov (United States)

    Andresen, Jennifer M.; Girard, Timothy D.; Pandharipande, Pratik P.; Davidson, Mario A.; Ely, E. Wesley; Watson, Paula L.

    2015-01-01

    Objectives Many patients, due to a combination of illness and sedatives, spend a considerable amount of time in a comatose state that can include time in burst suppression. We sought to determine if burst suppression measured by processed electroencephalography (pEEG) during coma in sedative-exposed patients is a predictor of post-coma delirium during critical illness. Design Observational convenience sample cohort Setting Medical and surgical ICUs in a tertiary care medical center Patients Cohort of 124 mechanically ventilated ICU patients Measurements and Main Results Depth of sedation was monitored twice daily using the Richmond Agitation-Sedation Scale and continuously monitored by pEEG. When non-comatose, patients were assessed for delirium twice daily using Confusion Assessment Method for the ICU (CAM-ICU). Multiple logistic regression and Cox proportional hazards regression were used to assess associations between time in burst suppression and both incidence and time to resolution of delirium, respectively, adjusting for time in deep sedation and a principal component score consisting of APACHE II score and cumulative doses of sedatives while comatose. Of the 124 patients enrolled and monitored, 55 patients either never had coma or never emerged from coma yielding 69 patients for whom we performed these analyses; 42 of these 69 (61%) had post-coma delirium. Most patients had burst-suppression during coma, though often short-lived [ median (intraquartile range) time in burst suppression, 6.4 (1-58) minutes]. After adjusting for covariates, even this short time in burst suppression independently predicted a higher incidence of post-coma delirium [odds ratio 4.16; 95% confidence interval (CI) 1.27-13.62; p=0.02] and a lower likelihood (delayed) resolution of delirium (hazard ratio 0.78; 95% CI 0.53-0.98; p=0.04). Conclusions Time in burst suppression during coma, as measured by processed EEG, was an independent predictor of incidence and time to resolution of

  7. Frequency chirping during a fishbone burst

    International Nuclear Information System (INIS)

    Marchenko, V.S.; Reznik, S.N.

    2011-01-01

    It is shown that frequency chirping during fishbone activity can be attributed to the reactive torque exerted on the plasma during the instability burst, which slows down plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame. Estimates show that the peak value of this torque can exceed the neutral beam torque in modern tokamaks. The simple line-broadened quasilinear burst model (Berk et al 1995 Nucl. Fusion 35 1661), properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (letter)

  8. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  9. Neutrino burst identification in underground detectors

    International Nuclear Information System (INIS)

    Fulgione, W.; Mengotti-Silva, N.; Panaro, L.

    1996-01-01

    We discuss the problem of neutrino burst identification in underground ν-telescopes. First the usual statistical analysis based on the time structure of the events is reviewed, with special attention to the statistical significance of burst candidates. Next, we propose a second level analysis that can provide independent confirmation of burst detection. This exploits the spatial distribution of the single events of a burst candidate, and uses the formalism of the entropy of information. Examples of both techniques are shown, based on the LVD experiment at Gran Sasso. (orig.)

  10. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  11. The γ-ray burst-detection system of SPI

    International Nuclear Information System (INIS)

    Lichti, G.G.; Georgii, R.; Kienlin, A. von; Schoenfelder, V.; Wunderer, C.; Jung, H.-J.; Hurley, K.

    2000-01-01

    The determination of precise locations of γ-ray bursts is a crucial task of γ-ray astronomy. Although γ-ray burst locations can be obtained nowadays from single experiments (BATSE, COMPTEL, BeppoSax) the location of bursts via triangulation using the interplanetary network is still important because not all bursts will be located precisely enough by these single instruments. In order to get location accuracies down to arcseconds via triangulation one needs long baselines. At the beginning of the next decade several spacecrafts which explore the outer planetary system (the Mars-Surveyor-2001 Orbiter and probably Ulysses) will carry γ-ray burst instruments. INTEGRAL as a near-earth spacecraft is the ideal counterpart for these satellites. The massive anticoincidence shield of the INTEGRAL-spectrometer SPI allows the measurement of γ-ray bursts with a high sensitivity. Estimations have shown that with SPI some hundred γ-ray bursts per year on the 5σ level can be measured. This is equivalent to the BATSE sensitivity. We describe the γ-ray burst-detection system of SPI, present its technical features and assess the scientific capabilities

  12. Results of using engineering and technological measures for rock burst prevention. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A P; Nechaev, A V; Khmara, O I

    1980-01-01

    The paper evaluates methods for rock burst forecasting and rock burst prevention used in the Donbass, Kuzbass, Karaganda and Pechora basins. Forecasting methods are based on measuring the initial velocity of gas flow from test boreholes and/or quantity ratio of drillings leaving a test borehole and monitoring seismoacoustic signals. Number of working faces at which each of the methods for rock burst forecasting is used is given. Methods for rock burst prevention are comparatively evaluated: explosive fracturing of rocks in seam roof or seam floor, fluid injection (water and surfactants), drilling destressing boreholes, cutting destressing slots using cutting machines or water jets, mining protective coal seams first for reducing rock burst hazard in protected coal seams, using narrow web coal cutter loaders, remote control of coal cutters at working faces with extremely high rock burst hazard, using mining schemes which reduce rock burst hazards (e.g. long pillar mining system). From 1976 to 1979 number of rock bursts in underground coal mines in the USSR decreased by 5 times in comparison to the period 1961 to 1965. (3 refs.) (In Russian)

  13. X-Ray Bursts from NGC 6652

    Science.gov (United States)

    Morgan, Edward

    The possibly transient X-ray Source in the globular cluster NGC 6652 has been seen by BeppoSax and the ASM on RXTE to undergo X-ray bursts, possibly Type I. Very little is known about this X-ray source, and confirmation of its bursts type-I nature would identify it as a neutron star binary. Type I bursts in 6 other sources have been shown to exhibit intervals of millisecond ocsillation that most likely indicate the neutron star spin period. Radius-expansion bursts can reveal information about the mass and size of the neutron star. We propose to use the ASM to trigger an observation of this source to maximize the probability of catching a burst in the PCA.

  14. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Oya, Hiroshi.

    1987-01-01

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  15. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  16. The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years

    NARCIS (Netherlands)

    von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Byrne, D.; Chaplin, V.; Cleveland, W.; Connaughton, V.; Collazzi, A.C.; Fitzpatrick, G.; Foley, S.; Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kouveliotou, C.; Layden, E.; McBreen, S.; McGlynn, S.; Pelassa, V.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.A.; Xiong, S.; Younes, G.; Yu, H-F.

    2014-01-01

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information

  17. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  18. Swift-BAT: The First Year of Gamma-Ray Burst Detections

    Science.gov (United States)

    Krimm, Hans A.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift has been detecting gamma-ray bursts (GRBs) since Dec. 17,2004 and automated burst alerts have been distributed since Feb. 14,2005. Since commissioning the BAT has triggered on more than 100 GRBs, nearly all of which have been followed up by the narrow-field instruments on Swift through automatic repointing, and by ground and other satellite telescopes after rapid notification. Within seconds of a trigger the BAT produces and relays to the ground a position good to three arc minutes and a four channel light curve. A full ten minutes of event data follows on subsequent ground station passes. The burst archive has allowed us to determine ensemble burst parameters such as fluence, peak flux and duration. An overview of the properties of BAT bursts and BAT'S performance as a burst monitor will be presented in this talk. BAT is a coded aperture imaging system with a wide (approx.2 sr) field of view consisting of a large coded mask located 1 m above a 5200 cm2 array of 32.768 CdZnTe detectors. All electronics and other hardware systems on the BAT have been operating well since commissioning and there is no sign of any degradation on orbit. The flight and ground software have proven similarly robust and allow the real time localization of all bursts and the rapid derivation of burst light curves, spectra and spectral fits on the ground.

  19. Stimulus induced bursts in severe postanoxic encephalopathy.

    Science.gov (United States)

    Tjepkema-Cloostermans, Marleen C; Wijers, Elisabeth T; van Putten, Michel J A M

    2016-11-01

    To report on a distinct effect of auditory and sensory stimuli on the EEG in comatose patients with severe postanoxic encephalopathy. In two comatose patients admitted to the Intensive Care Unit (ICU) with severe postanoxic encephalopathy and burst-suppression EEG, we studied the effect of external stimuli (sound and touch) on the occurrence of bursts. In patient A bursts could be induced by either auditory or sensory stimuli. In patient B bursts could only be induced by touching different facial regions (forehead, nose and chin). When stimuli were presented with relatively long intervals, bursts persistently followed the stimuli, while stimuli with short intervals (encephalopathy can be induced by external stimuli, resulting in stimulus-dependent burst-suppression. Stimulus induced bursts should not be interpreted as prognostic favourable EEG reactivity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Spatial variation in automated burst suppression detection in pharmacologically induced coma.

    Science.gov (United States)

    An, Jingzhi; Jonnalagadda, Durga; Moura, Valdery; Purdon, Patrick L; Brown, Emery N; Westover, M Brandon

    2015-01-01

    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.

  1. Creep Burst Testing of a Woven Inflatable Module

    Science.gov (United States)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  2. Observation of an ionospheric disturbance caused by a gamma-ray burst

    International Nuclear Information System (INIS)

    Fishman, G.J.; Inan, U.S.

    1988-01-01

    We report a first observation of an ionospheric disturbance from a gamma-ray burst. The burst, GB830801, occurred at 22:14:18 UT on 1 August 1983 and was one of the strongest ever observed. The total fluence was 2 x 10 -3 erg cm -2 , most of which occurred in the first 4 s of the burst. Simultaneously, a change was observed in the amplitude of a very-low-frequency (VLF) radio signal from a transmitter in Rugby, England, monitored at Palmer Station, Antarctica, indicative of an ionospheric disturbance. Weaker disturbances were also recorded at the same receiving site on signals from VLF stations in Annapolis, Maryland and Lualualei, Hawaii. The times of the burst and the disturbances are coincident within the 10-s resolution of the VLF recording system. (author)

  3. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  4. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  5. MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  6. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression

    KAUST Repository

    Kuwahara, Hiroyuki

    2015-11-04

    A main source of gene expression noise in prokaryotes is translational bursting. It arises from efficient translation of mRNAs with low copy numbers, which makes the production of protein copies highly variable and pulsatile. To obtain analytical solutions, previous models to capture this noise source had to assume translation to be initiation-limited, representing the burst size by a specific type of a long-tail distribution. However, there is increasing evidence suggesting that the initiation is not the rate-limiting step in certain settings, for example, under stress conditions. Here, to overcome the limitations imposed by the initiation-limited assumption, we present a new analytical approach that can evaluate biological consequences of the protein burst size with a general distribution. Since our new model can capture the contribution of other factors to the translational noise, it can be used to analyze the effects of gene expression noise in more general settings. We used this new model to analytically analyze the connection between the burst size and the stability of gene expression processes in various settings. We found that the burst size with different distributions can lead to quantitatively and qualitatively different stability characteristics of protein abundance and can have non-intuitive effects. By allowing analysis of how the stability of gene expression processes changes based on various distributions of translational noise, our analytical approach is expected to enable deeper insights into the control of cell fate decision-making, the evolution of cryptic genetic variations, and fine-tuning of gene circuits.

  7. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  8. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  9. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  10. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    Science.gov (United States)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  11. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Zhang, Bing, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-03-10

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω {sub b} f {sub IGM}, of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω {sub b} f {sub IGM} to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means.

  12. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    International Nuclear Information System (INIS)

    Deng, Wei; Zhang, Bing

    2014-01-01

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω b f IGM , of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω b f IGM to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means

  13. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  14. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  15. The Fermi-GBM Gamma-Ray Burst Catalogs: The First Six Years

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM has triggered and located on average approximately two gamma-ray bursts (GRBs every three days. Here we present the main results from the latest two catalogs provided by the Fermi-GBM science team, namely the third GBM GRB catalog [1] and the first GBM time-resolved spectral catalog [2]. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected bursts. It comprises 1405 triggers identified as GRBs. For each one, location and main characteristics of the prompt emission, the duration, the peak flux and the fluence are derived. The GBM time-resolved spectral catalog presents high-quality time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in a shorter period than the former catalog, namely four years. It comprises 1491 spectra from 81 bursts. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained.

  16. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  17. Internally consistent gamma ray burst time history phenomenology

    International Nuclear Information System (INIS)

    Cline, T.L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations

  18. On Burst Detection and Prediction in Retweeting Sequence

    Science.gov (United States)

    2015-05-22

    We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina

  19. Flash photoionization of gamma-ray burst environments

    Science.gov (United States)

    Band, David L.; Hartmann, Dieter H.

    1992-01-01

    The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.

  20. A Novel QKD-based Secure Edge Router Architecture Design for Burst Confidentiality in Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-06-01

    The Optical Burst Switching (OBS) is an emergent result to the technology issue that could achieve a viable network in future. They have the ability to meet the bandwidth requisite of those applications that call for intensive bandwidth. The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. The concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution and quality of service (QoS). This paper proposes a framework based on QKD based secure edge router architecture design to provide burst confidentiality. The QKD protocol offers high level of confidentiality as it is indestructible. The design architecture was implemented in FPGA using diverse models and the results were taken. The results show that the proposed model is suitable for real time secure routing applications of the Optical burst switched networks.

  1. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  2. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  3. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  4. Bursts from the very early universe

    International Nuclear Information System (INIS)

    Silk, J.; Stodolsky, L.

    2006-01-01

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of phenomena associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse

  5. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  6. Observational properties of cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Mazets, E.P.

    1986-01-01

    A brief overview of the major observational results obtained in gamma-ray burst studies is presented. Also discussed is to what extent the thermonuclear model, which appears at present to be the most plausible, can account for the observed properties of the bursts. The investigation of gamma-ray bursts should cover observations of the time histories of events, energy spectra, and their variablility, source localization, and inspection of the localization regions during the active and quiescent phases of the source in other wavelengths, as well as, evaluation of the statistical distributions of the data obtained

  7. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  8. A repeating fast radio burst.

    Science.gov (United States)

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  9. Fast Radio Burst/Gamma-Ray Burst Cosmography

    Science.gov (United States)

    Gao, He; Li, Zhuo; Zhang, Bing

    2014-06-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM_{IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value \\lt {DM_IGM} (z)\\gt and luminosity distance (D L(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate \\lt {DM_IGM} (z)\\gt using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  10. Fast radio burst/gamma-ray burst cosmography

    International Nuclear Information System (INIS)

    Gao, He; Zhang, Bing; Li, Zhuo

    2014-01-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM IGM as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D L (z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  11. Fast radio burst/gamma-ray burst cosmography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He; Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Li, Zhuo, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2014-06-20

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM{sub IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D {sub L}(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  12. Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?

    Science.gov (United States)

    Fuller; Pruet; Abazajian

    2000-09-25

    We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.

  13. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Implications of fast radio bursts for superconducting cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, 152 Luoyu Road, Wuhan 430079 (China); Cheng, Kwong-Sang [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Shiu, Gary; Tye, Henry, E-mail: yuyw@phy.ccnu.edu.cn, E-mail: hrspksc@hku.hk, E-mail: shiu@ust.hk, E-mail: iastye@ust.hk [Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  15. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry

    2014-01-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  16. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  17. A photospheric radius-expansion burst observed from XTE J1701-407 by INTEGRAL: an update on distance

    Science.gov (United States)

    Chenevez, J.; Falanga, M.; Brandt, S.; Galloway, D.; Kuulkers, E.; Cumming, A.; Schatz, H.; Lund, N.; Ooestbroek, T.; Ferrigno, C.

    2010-08-01

    On 2010-08-22 00:56:19 the INTEGRAL Burst Alert System (IBAS) triggered on an event ((GCN 11132, Gotz & Ferrigno, 2009) from the known burst source XTE J1701-407 (Falanga et al., A&A 496, 333, 2009; Linares et al., MNRAS 392, L11, 2009) during an observation of the field around SNR RXJ1713.7-3946 (PI R. Terrier). As part of our monitoring of long thermonuclear X-ray bursts with INTEGRAL, we have analysed both the JEM-X and ISGRI data covering this event, and we identify it as another type I (thermonuclear) X-ray burst.

  18. Polarization of a periodic solar microwave burst

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1976-09-01

    No fluctuations in polarization have been found during a 7 GHz solar burst showing 17s periodic pulses in intensity. Polarization effects can be produced by the propagation media in the active centre, which are not affected directly by the burst source, but situated more deeply than the observed heights at that microwave frequency.

  19. A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Zhang, Bing

    2014-01-01

    The physical nature of fast radio bursts (FRBs), a new type of cosmological transient discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here, we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after a GRB trigger

  20. Bursts from the very early universe

    Energy Technology Data Exchange (ETDEWEB)

    Silk, J. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Stodolsky, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: les@mppmu.mpg.de

    2006-07-27

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of pheno associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse.

  1. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  2. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  3. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  4. GRB 090926A AND BRIGHT LATE-TIME FERMI LARGE AREA TELESCOPE GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Swenson, C. A.; Roming, P. W. A.; Vetere, L.; Kennea, J. A.; Maxham, A.; Zhang, B. B.; Zhang, B.; Schady, P.; Holland, S. T.; Kuin, N. P. M.; Oates, S. R.; De Pasquale, M.; Page, K. L.

    2010-01-01

    GRB 090926A was detected by both the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. Swift follow-up observations began ∼13 hr after the initial trigger. The optical afterglow was detected for nearly 23 days post trigger, placing it in the long-lived category. The afterglow is of particular interest due to its brightness at late times, as well as the presence of optical flares at T0+10 5 s and later, which may indicate late-time central engine activity. The LAT has detected a total of 16 gamma-ray bursts; nine of these bursts, including GRB 090926A, also have been observed by Swift. Of the nine Swift-observed LAT bursts, six were detected by UVOT, with five of the bursts having bright, long-lived optical afterglows. In comparison, Swift has been operating for five years and has detected nearly 500 bursts, but has only seen ∼30% of bursts with optical afterglows that live longer than 10 5 s. We have calculated the predicted gamma-ray fluence, as would have been seen by the Burst Alert Telescope (BAT) on board Swift, of the LAT bursts to determine whether this high percentage of long-lived optical afterglows is unique, when compared to BAT-triggered bursts. We find that, with the exception of the short burst GRB 090510A, the predicted BAT fluences indicate that the LAT bursts are more energetic than 88% of all Swift bursts and also have brighter than average X-ray and optical afterglows.

  5. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  6. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of ∼2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (∼6x10 -10 erg cm -2 s -1 ) is ∼>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (∼60,000 s) is ∼30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  7. High-energy emission from bright gamma-ray bursts using Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Bissaldi, Elisabetta

    2010-05-25

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are

  8. High-energy emission from bright gamma-ray bursts using Fermi

    International Nuclear Information System (INIS)

    Bissaldi, Elisabetta

    2010-01-01

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are mainly based

  9. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  10. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University, Auburn, Alabama; Oral, H Sarp [ORNL; Wang, Yandong [Auburn University, Auburn, Alabama; Settlemyer, Bradley W [ORNL; Atchley, Scott [ORNL; Yu, Weikuan [Auburn University, Auburn, Alabama

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  11. Comparison of WATCH and IPN Locations of Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Hurley, K.; Lund, Niels; Brandt, Søren

    1994-01-01

    The WATCH all sky monitors aboard the Granat and EURECA spacecraft have the capability of independently localizing gamma‐ray bursts to error circles whose 3 sigma radii are 1 degree or less. These are the most accurate single‐experiment localizations currently achievable. In those cases where bot...

  12. The many phases of gamma-ray burst afterglows

    NARCIS (Netherlands)

    Leventis, K.

    2013-01-01

    Gamma-ray bursts are the brightest sources in the universe. Their afterglows have been observed for about 15 years now, and their study has greatly advanced our understanding of these, mysterious until recently, events. In a way, gamma-ray bursts can be seen as huge cosmic bombs which convert

  13. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    Science.gov (United States)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  14. Dynamic encoding of natural luminance sequences by LGN bursts.

    Directory of Open Access Journals (Sweden)

    Nicholas A Lesica

    2006-07-01

    Full Text Available In the lateral geniculate nucleus (LGN of the thalamus, visual stimulation produces two distinct types of responses known as tonic and burst. Due to the dynamics of the T-type Ca(2+ channels involved in burst generation, the type of response evoked by a particular stimulus depends on the resting membrane potential, which is controlled by a network of modulatory connections from other brain areas. In this study, we use simulated responses to natural scene movies to describe how modulatory and stimulus-driven changes in LGN membrane potential interact to determine the luminance sequences that trigger burst responses. We find that at low resting potentials, when the T channels are de-inactivated and bursts are relatively frequent, an excitatory stimulus transient alone is sufficient to evoke a burst. However, to evoke a burst at high resting potentials, when the T channels are inactivated and bursts are relatively rare, prolonged inhibitory stimulation followed by an excitatory transient is required. We also observe evidence of these effects in vivo, where analysis of experimental recordings demonstrates that the luminance sequences that trigger bursts can vary dramatically with the overall burst percentage of the response. To characterize the functional consequences of the effects of resting potential on burst generation, we simulate LGN responses to different luminance sequences at a range of resting potentials with and without a mechanism for generating bursts. Using analysis based on signal detection theory, we show that bursts enhance detection of specific luminance sequences, ranging from the onset of excitatory sequences at low resting potentials to the offset of inhibitory sequences at high resting potentials. These results suggest a dynamic role for burst responses during visual processing that may change according to behavioral state.

  15. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  16. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  17. A search for optical bursts from the repeating fast radio burst FRB 121102

    Science.gov (United States)

    Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.

    2017-12-01

    We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.

  18. The first gamma-ray bursts in the universe

    International Nuclear Information System (INIS)

    Mesler, R. A.; Pihlström, Y. M.; Whalen, Daniel J.; Smidt, Joseph; Fryer, Chris L.; Lloyd-Ronning, N. M.

    2014-01-01

    Gamma-ray bursts (GRBs) are the ultimate cosmic lighthouses, capable of illuminating the universe at its earliest epochs. Could such events probe the properties of the first stars at z ∼ 20, the end of the cosmic Dark Ages? Previous studies of Population III (Pop III) GRBs only considered explosions in the diffuse relic H II regions of their progenitors or bursts that are far more energetic than those observed to date. However, the processes that produce GRBs at the highest redshifts likely reset their local environments, creating much more complicated structures than those in which relativistic jets have been modeled so far. These structures can greatly affect the luminosity of the afterglow and hence the redshift at which it can be detected. We have now simulated Pop III GRB afterglows in H II regions, winds, and dense shells ejected by the star during the processes that produce the burst. We find that GRBs with E iso,γ = 10 51 -10 53 erg will be visible at z ≳ 20 to the next generation of near infrared and radio observatories. In many cases, the environment of the burst, and hence progenitor type, can be inferred from the afterglow light curve. Although some Pop III GRBs are visible to Swift and the Very Large Array now, the optimal strategy for their detection will be future missions like the proposed EXIST and JANUS missions with large survey areas and onboard X-ray and infrared telescopes that can track their near-infrared flux from the moment of the burst, thereby identifying their redshifts.

  19. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  20. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  1. Bursting oscillations, bifurcation and synchronization in neuronal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haixia [School of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang Qingyun, E-mail: drwangqy@gmail.com [Department of Dynamics and Control, Beihang University, Beijing 100191 (China); Lu Qishao [Department of Dynamics and Control, Beihang University, Beijing 100191 (China)

    2011-08-15

    Highlights: > We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. > Two types of fast-slow bursters are analyzed in detail. > We show the properties of some crucial bifurcation points. > Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.

  2. Limits of the memory coefficient in measuring correlated bursts

    Science.gov (United States)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  3. The development of a burst criterion for zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rossinger, H.E.

    1980-02-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once the burst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that test conditions in the α-Zr temperature range have no influence on the burst data. (auth)

  4. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    Science.gov (United States)

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P minocycline exerted on innate immune h-PMN cell function.

  5. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  6. The voice conveys specific emotions: evidence from vocal burst displays.

    Science.gov (United States)

    Simon-Thomas, Emiliana R; Keltner, Dacher J; Sauter, Disa; Sinicropi-Yao, Lara; Abramson, Anna

    2009-12-01

    Studies of emotion signaling inform claims about the taxonomic structure, evolutionary origins, and physiological correlates of emotions. Emotion vocalization research has tended to focus on a limited set of emotions: anger, disgust, fear, sadness, surprise, happiness, and for the voice, also tenderness. Here, we examine how well brief vocal bursts can communicate 22 different emotions: 9 negative (Study 1) and 13 positive (Study 2), and whether prototypical vocal bursts convey emotions more reliably than heterogeneous vocal bursts (Study 3). Results show that vocal bursts communicate emotions like anger, fear, and sadness, as well as seldom-studied states like awe, compassion, interest, and embarrassment. Ancillary analyses reveal family-wise patterns of vocal burst expression. Errors in classification were more common within emotion families (e.g., 'self-conscious,' 'pro-social') than between emotion families. The three studies reported highlight the voice as a rich modality for emotion display that can inform fundamental constructs about emotion.

  7. Burst firing enhances neural output correlation

    Directory of Open Access Journals (Sweden)

    Ho Ka eChan

    2016-05-01

    Full Text Available Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.

  8. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  9. Nature of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    Observational evidence suggests that gamma ray bursts have a local galactic origin involving neutron stars. In this light we make a critical review of physics of the thermonuclear runaway model placing emphasis on self-consistency. We further show that some of the proposed models can be observationally excluded in the light of existing data from the Einstein Observatory. The possibility of gamma bursts arising in low mass binaries is finally discussed in the light of evolutionary scenarios leading to low luminosity systems

  10. The development of a burst criterion for Zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rosinger, H.E.

    1980-10-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once that urst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment. It was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that thest conditions in the α-Zr temperature range have no influence on the burst data. (orig.) [de

  11. Solar microwave bursts - A review

    Science.gov (United States)

    Kundu, M. R.; Vlahos, L.

    1982-01-01

    Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.

  12. ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?

    Energy Technology Data Exchange (ETDEWEB)

    Boër, M.; Gendre, B. [CNRS-ARTEMIS, Boulevard de l' Observatoire, CS 34229, 06304 Nice Cedex 4 (France); Stratta, G., E-mail: michel.boer@unice.fr [Università degli Studi di Urbino Carlo Bo, I-61029 Urbino (Italy)

    2015-02-10

    The discovery of a number of gamma-ray bursts (GRBs) with duration exceeding 1000 s has opened the debate on whether these bursts form a new class of sources, the so-called ultra-long GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. Using the long GRB sample detected by Swift, we investigate the statistical properties of long GRBs and compare them with the ultra-long burst properties. We compute the burst duration of long GRBs using the start epoch of the so-called ''steep decay'' phase detected with Swift/XRT. We discuss also the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 s, for which a Wolf-Rayet star progenitor is usually invoked. Together with the presence of a thermal emission component we interpret this result as indication that the usual long GRB progenitor scenario cannot explain the extreme duration of ultra-long GRBs, their energetics, as well as the mass reservoir and size that can feed the central engine for such a long time.

  13. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  14. Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor

    International Nuclear Information System (INIS)

    Gao Hui; Liu Xiaobo; Fan Xiaoqiang

    2013-01-01

    Based on the point reactor model, the program for simulating the burst of reactors, including delay neutron, thermal feedback and reactivity of rod, was developed. The program proves to be suitable to burst reactor by experimental data. The program can describe the process of neutron-intensity change in burst reactors. With the program, the parameters of burst (wave of burst, power of peak and reactivity of reactor) under the condition of dynamic reactivity can be calculated. The calculated result demonstrates that the later the burst is initiated, the greater its power of peak and yield are and that the maximum yield coordinates with the yield under static state. (authors)

  15. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  16. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  17. Classifying LISA gravitational wave burst signals using Bayesian evidence

    International Nuclear Information System (INIS)

    Feroz, Farhan; Graff, Philip; Hobson, Michael P; Lasenby, Anthony; Gair, Jonathan R

    2010-01-01

    We consider the problem of characterization of burst sources detected by the Laser Interferometer Space Antenna (LISA) using the multi-modal nested sampling algorithm, MultiNest. We use MultiNest as a tool to search for modelled bursts from cosmic string cusps, and compute the Bayesian evidence associated with the cosmic string model. As an alternative burst model, we consider sine-Gaussian burst signals, and show how the evidence ratio can be used to choose between these two alternatives. We present results from an application of MultiNest to the last round of the Mock LISA Data Challenge, in which we were able to successfully detect and characterize all three of the cosmic string burst sources present in the release data set. We also present results of independent trials and show that MultiNest can detect cosmic string signals with signal-to-noise ratio (SNR) as low as ∼7 and sine-Gaussian signals with SNR as low as ∼8. In both cases, we show that the threshold at which the sources become detectable coincides with the SNR at which the evidence ratio begins to favour the correct model over the alternative.

  18. VizieR Online Data Catalog: The Fermi-GBM three-year X-ray burst catalog (Jenke+, 2016)

    Science.gov (United States)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2018-03-01

    Gamma-ray Burst Monitor (GBM) is an all-sky monitor whose primary objective is to extend the energy range over which gamma-ray bursts are observed in the Large Area Telescope on Fermi (Meegan et al. 2009ApJ...702..791M). GBM consists of 12 NaI detectors with a diameter of 12.7 cm and a thickness of 1.27 cm and two bismuth germanate (BGO) detectors with a diameter and thickness of 12.7 cm. GBM has three continuous data types: CTIME data with nominal 0.256 s time resolution and 8-channel spectral resolution used for event detection and localization, CSPEC data with nominal 4.096 s time resolution and 128-channel spectral resolution, which are used for spectral modeling, and CTTE (continuous-time tagged event) data with time stamps (2 μs precision) on individual events at full 128-channel spectral resolution, which were made available in 2012 November. The Fermi-GBM X-ray Burst Monitor relies on daily inspection of CTIME channel 1 (12-25 keV) data and began operations on 2010 March 12. (3 data files).

  19. Detection of pseudo gamma-ray bursts of long duration

    International Nuclear Information System (INIS)

    Frontera, F.; Fuligni, F.; Morelli, E.; Pizzichini, G.; Ventura, G.

    1981-01-01

    It is known that the counting rate of both Na I and Cs I hard X-ray detectors can have intense enhancements of brief (< 1 s) duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosphorescence in the detector itself. Unfortunately, this problem is not limited to short bursts. We present here three much longer (up to 80 s) pseudo-gamma-ray bursts observed during a transatlantic balloon flight. We conclude that detections of gamma-ray bursts (and probably also of hard X-ray source flares) based only on a rate increase by a single scintillator should always be confirmed by at least one other instrument. (orig.)

  20. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  1. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  2. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  3. ESTIMATION OF BURSTS LENGTH AND DESIGN OF A FIBER DELAY LINE BASED OBS ROUTER

    Directory of Open Access Journals (Sweden)

    RICHA AWASTHI

    2017-03-01

    Full Text Available The demand for higher bandwidth is increasing day by day and this ever growing demand cannot be catered to with current electronic technology. Thus new communication technology like optical communication needs to be used. In the similar context OBS (optical burst switching is considered as next generation data transfer technology. In OBS information is transmitted in forms of optical bursts of variable lengths. However, contention among the bursts is a major problem in OBS system, and for contention resolution defection routing is mostly preferred. However, deflection routing increases delay. In this paper, it is shown that the arrival of very large bursts is rare event, and for moderate burst length the buffering of contending burst can provide very effective solution. However, in case of arrival of large bursts deflection can be used.

  4. V/V(max) test applied to SMM gamma-ray bursts

    Science.gov (United States)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  5. Interaction function of coupled bursting neurons

    International Nuclear Information System (INIS)

    Shi Xia; Zhang Jiadong

    2016-01-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. (paper)

  6. Leader neurons in population bursts of 2D living neural networks

    International Nuclear Information System (INIS)

    Eckmann, J-P; Zbinden, Cyrille; Jacobi, Shimshon; Moses, Elisha; Marom, Shimon

    2008-01-01

    Eytan and Marom (2006 J. Neurosci. 26 8465-76) recently showed that the spontaneous bursting activity of rat neuron cultures includes 'first-to-fire' cells that consistently fire earlier than others. Here, we analyze the behavior of these neurons in long-term recordings of spontaneous activity of rat hippocampal and rat cortical neuron cultures from three different laboratories. We identify precursor events that may either subside ('aborted bursts') or can lead to a full-blown burst ('pre-bursts'). We find that the activation in the pre-burst typically has a first neuron ('leader'), followed by a localized response in its neighborhood. Locality is diminished in the bursts themselves. The long-term dynamics of the leaders is relatively robust, evolving with a half-life of 23-34 h. Stimulation of the culture alters the leader distribution, but the distribution stabilizes within about 1 h. We show that the leaders carry information about the identity of the burst, as measured by the signature of the number of spikes per neuron in a burst. The number of spikes from leaders in the first few spikes of a precursor event is furthermore shown to be predictive with regard to the transition into a burst (pre-burst versus aborted burst). We conclude that the leaders play a role in the development of the bursts and conjecture that they are part of an underlying sub-network that is excited first and then acts as a nucleation center for the burst

  7. Analysis of historic bursts and burst detection in water supply areas of different size

    NARCIS (Netherlands)

    Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in water distribution networks lead to water losses and a risk of damaging the urban environment. We studied hydraulic data and customer contact records of 44 real bursts for a better understanding of the phenomena. We found that most bursts were reported to the water company shortly

  8. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  9. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    International Nuclear Information System (INIS)

    Bagchi, Manjari

    2017-01-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  10. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in [The Institute of Mathematical Sciences (IMSc-HBNI), 4th Cross Road, CIT Campus, Taramani, Chennai 600113 (India)

    2017-04-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  11. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    Science.gov (United States)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  12. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  13. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  14. Diagnostics from three rising submillimeter bursts

    International Nuclear Information System (INIS)

    Zhou, Ai-Hua; Li, Jian-Ping; Wang, Xin-Dong

    2016-01-01

    In this paper we investigate three novel rising submillimeter (THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz −1 (corresponding to spectral index α of 1.6) for the THz spectral components of the 2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz −1 (α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 MeV, but it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave (MW) source. It is interesting that the THz source radius decreased by 20%–50% during the decay phase for the three events, but the MW source increased by 28% for the 2003 November 2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 10 33 , 3.9 × 10 33 and 3.7 × 10 32 erg for the October 28, November 2 and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 10 31 , 2.1 × 10 31 and 5.2 × 10 31 erg estimated from soft X-ray GOES observations. (paper)

  15. Can past gamma-ray bursts explain both INTEGRAL and ATIC/PAMELA/Fermi anomalies simultaneously?

    International Nuclear Information System (INIS)

    Calvez, Antoine; Kusenko, Alexander

    2010-01-01

    Gamma-ray bursts (GRBs) have been invoked to explain both the 511 keV emission from the Galactic bulge and the high-energy positron excess inferred from the ATIC, PAMELA, and Fermi data. While independent explanations can be responsible for these phenomena, we explore the possibility of their common GRB-related origin by modeling the GRB distribution and estimating the rates. For an expected Milky Way long GRB rate, neither of the two signals is generic; the local excess requires a 2% coincidence while the signal from the Galactic center requires a 20% coincidence with respect to the timing of the latest GRB. The simultaneous explanation requires a 0.4% coincidence. Considering the large number of statistical 'trials' created by multiple searches for new physics, the coincidences of a few percent cannot be dismissed as unlikely. Alternatively, both phenomena can be explained by GRB if the Galactic rate is higher than expected. We also show that a similar result is difficult to obtain assuming a simplified short GRB distribution.

  16. X-ray bursts: Observation versus theory

    Science.gov (United States)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  17. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  18. Frequency Chirping during a Fishbone Burst

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, V.; Reznik, S., E-mail: march@kinr.kiev.ua [Institute for Nuclear Research, Kyiv (Ukraine)

    2012-09-15

    Full text: It is shown that gradual (more than a factor of two, in some cases - down to zero in the lab frame) reduction of the mode frequency (the so called frequency chirping) can be attributed to the reactive torque exerted on the plasma during the fishbone instability burst, which slows down the plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame, while frequency in the plasma frame remains constant. This torque arises due to imbalance between the power transfered to the mode by energeric ions and the power of the mode dissipation by thermal species. Estimates show that the peak value of this torque exceeds the neutral beam torque in modern tokamaks and in ITER. The line-broadened quasilinear burst model, properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (author)

  19. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  20. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  1. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  2. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  3. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  4. NICER Eyes on Bursting Stars

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    , we dont yet understand the impact that these X-ray flashes have on the accretion disk and the environment surrounding the neutron star. In a new study led by Laurens Keek (University of Maryland), a team of scientists now details what NICER has learned on this subject.Extra X-RaysLight curve (top) and hardness ratio (bottom) for the X-ray burst from Aql X-1 captured by NICER on 3 July 2017. [Keek et al. 2018]In addition to thermal emission from the neutron star, NICER revealed an excess of soft X-ray photons below 1 keV during Aql X-1s burst. The authors propose two possible models for this emission:The burst radiation from the neutron stars surface was reprocessed i.e., either scattered or absorbed and re-emitted by the accretion disk.The persistent, usual accretion flow was enhanced as a result of the bursts radiation drag on the disk, briefly bumping up the disks X-ray flux.While we cant yet conclusively statewhich mechanismdominates, NICERs observations do show that bursts have a substantial impact on their accretion environment. And, as there are over 100 such X-ray burster systems in our galaxy, we can expect that NICER will allow us to better explore the effect of X-ray bursts on neutron-star disks and their surroundings inmany different systems in the future.BonusCheck out the awesome gif below, provided by NASA, which shows NICER being extracted fromthe Dragon capsules trunk by a robotic arm.CitationL. Keek et al 2018 ApJL 855 L4. doi:10.3847/2041-8213/aab104

  5. Extragalactic dispersion measures of fast radio bursts

    International Nuclear Information System (INIS)

    Xu, Jun; Han, J. L.

    2015-01-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70°. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm −3 , while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm −3 . Notice, however, that additional dispersion measures of tens to hundreds of pc cm −3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium. (paper)

  6. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    Science.gov (United States)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  7. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  8. Bursting pressure of autofrettaged cylinders with inclined external cracks

    International Nuclear Information System (INIS)

    Seifi, Rahman; Babalhavaeji, Majid

    2012-01-01

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.

  9. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  10. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  11. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  12. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  13. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  14. Analysis of Burst Observations by GLAST's LAT Detector

    International Nuclear Information System (INIS)

    Band, David L.; Digel, Seth W.

    2004-01-01

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously, and thus, the LAT will detect each count from a source at a different detector orientation; each count requires its own response function! The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However, the 20 MeV-300 GeV emission at the time of the ∼ 100 keV burst emission (timescale of ∼ 10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources

  15. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  16. Nanolensed Fast Radio Bursts

    Science.gov (United States)

    Eichler, David

    2017-12-01

    It is suggested that fast radio bursts can probe gravitational lensing by clumpy dark matter objects that range in mass from 10-3 M ⊙-102 M ⊙. They may provide a more sensitive probe than observations of lensings of objects in the Magellanic Clouds, and could find or rule out clumpy dark matter with an extended mass spectrum.

  17. On the possibility of highest energy cosmic rays bursts and their correlation with gamma rays bursts e.g. March 5th, 1979 event

    International Nuclear Information System (INIS)

    Drukier, K.

    1982-01-01

    The avalanche production of magnetic monopoles is possible in neutron stars. Big part of the magnetic field energy can be used to accelerate a pulse of 10 30 monopoles to the energy E > approximately 10 17 eV. Thus the neutron stars may be ''point'' sources of bursts of highest energy Cosmic Rays. The emission of brehmsstrahlung photons by these highly relativistic monopoles would be seen as X and gamma bursts. This ''exotic'' model for March 5th, 1979 event, predicts that it has been followed by burst of highest energy Cosmic Rays coming from the direction of LMC supernovae remanent N49

  18. Damage detection and locating using tone burst and continuous excitation modulation method

    Science.gov (United States)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  19. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  20. Postillumination burst of carbon dioxide in crassalacean Acid metabolism plants.

    Science.gov (United States)

    Crews, C E; Vines, H M; Black, C C

    1975-04-01

    Immediately following exposure to light, a postillumination burst of CO(2) has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO(2) and O(2) concentrations as well as to the light intensity under which plants are grown. We propose that the CO(2) released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O(2) or CO(2) concentration while the second CO(2) evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.In marked contrast to other higher plants, the postillumination burst in Crassulacean acid metabolism plants can be equal to or greater than the rate of photosynthesis. Photosynthesis in pineapple leaves also varies throughout a day. Both photosynthesis and the postillumination burst have a daily variation which apparently is a complex function of degree of leaf acidity, growth light intensity, ambient gas phase, and the time a plant has been exposed to a given gas.

  1. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  2. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem

    2013-04-01

    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  3. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  4. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  5. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Cosmic Ray induced Neutron and Gamma-Ray bursts in a Lead Pile

    International Nuclear Information System (INIS)

    Chapline, G; Hagmann, C; Kerr, P; Snyderman, N J; Wurtz, R

    2007-01-01

    The neutron background is created primarily by cosmic rays interactions. Of particular interest for SNM detection is an understanding of burst events that resemble fission chains. We have been studying the interaction of cosmic rays with a lead pile that is efficient at creating neutron bursts from cosmic ray interactions. The neutron burst size depends on the configuration of the lead. We have found that the largest bursts appear to have been created by primaries of energy over 100 GeV that have had a diffractive interaction with the atmosphere. The large events trigger muon coincidence paddles with very high efficiency, and the resulting interactions with the lead pile can create over 10, 000 neutrons in a burst

  7. Burst Mode ASIC-Based Modem

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  8. Bursting pressure of autofrettaged cylinders with inclined external cracks

    Energy Technology Data Exchange (ETDEWEB)

    Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2012-01-15

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.

  9. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  10. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  11. Fast drift kilometric radio bursts and solar proton events

    Science.gov (United States)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  12. Fast drift kilometric radio bursts and solar proton events

    International Nuclear Information System (INIS)

    Cliver, E.W.; Kahler, S.W.; Cane, H.V.; Mcguire, R.E.; Vonrosenvinge, T.T.; Stone, R.G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times of approx. 20 min (median duration approximately 35 min)

  13. Spiking and bursting patterns of fractional-order Izhikevich model

    Science.gov (United States)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  14. Multi-feature classifiers for burst detection in single EEG channels from preterm infants

    Science.gov (United States)

    Navarro, X.; Porée, F.; Kuchenbuch, M.; Chavez, M.; Beuchée, Alain; Carrault, G.

    2017-08-01

    Objective. The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA  ⩾36 weeks) using multi-feature classification on a single EEG channel. Approach. Five EEG burst detectors relying on different machine learning approaches were compared: logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36-41 weeks PMA. Main results. The most performing classifiers reached about 95% accuracy (kNN, SVM and LR) whereas Th obtained 84%. Compared to human-automatic agreements, LR provided the highest scores (Cohen’s kappa  =  0.71) using only three EEG features. Applying this classifier in an unlabeled database of 21 infants  ⩾36 weeks PMA, we found that long EEG bursts and short inter-burst periods are characteristic of infants with the highest PMA and weights. Significance. In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.

  15. The forecasting method of rock-burst and the application based on overlying multi-strata spatial structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Cun-Wen Wang; Fu-Xing Jiang; Qing-Guo Sun; Chun-Jiang Sun; Ming Zhang; Zhen-Wen Ji; Xiu-Feng Zhang [University of Science and Technology, Beijing, Beijing (China). Civil & Environmental Engineering School

    2009-02-15

    Based on the overlying multi-strata spatial structure theory and mechanical analysis, the paper discusses the relationship between 'S' shape spatial strata structure movement and mining stress distribution. Coal out-burst forecasting based on 'S' shape spatial strata structure movement was studied. Microseismic monitoring in Huafeng Coal Mine in Shandong Province showed that coal out-burst will ocur when the advancing distance of the longwall face is equal to one, two or three times the length of the longwall face respectively. During these periods, the mined areas approach to square shape while the 'S' shape spatial strata structure acts strongly. Based on this, the time and position of coal out-burst in No. 1410 longwall face of Huafeng Coal Mine was predicted. By using large diameter and deep drill holes in the coal seam and deep drill holes with blasting in the roof at those danger areas, the No. 1410 longwall face safely advanced through those danger areas. During those periods the microseismic monitoring system detected very strong mine quakes. 15 refs., 1 fig., 2 tabs.

  16. Detection of intensity bursts using Hawkes processes: An application to high-frequency financial data

    Science.gov (United States)

    Rambaldi, Marcello; Filimonov, Vladimir; Lillo, Fabrizio

    2018-03-01

    Given a stationary point process, an intensity burst is defined as a short time period during which the number of counts is larger than the typical count rate. It might signal a local nonstationarity or the presence of an external perturbation to the system. In this paper we propose a procedure for the detection of intensity bursts within the Hawkes process framework. By using a model selection scheme we show that our procedure can be used to detect intensity bursts when both their occurrence time and their total number is unknown. Moreover, the initial time of the burst can be determined with a precision given by the typical interevent time. We apply our methodology to the midprice change in foreign exchange (FX) markets showing that these bursts are frequent and that only a relatively small fraction is associated with news arrival. We show lead-lag relations in intensity burst occurrence across different FX rates and we discuss their relation with price jumps.

  17. Different Types of X-Ray Bursts from GRS 1915+105 and Their Origin

    Science.gov (United States)

    Yadav, J. S.; Rao, A. R.; Agrawal, P. C.; Paul, B.; Seetha, S.; Kasturirangan, K.

    1999-06-01

    We report X-ray observations of the Galactic X-ray transient source GRS 1915+105 with the pointed proportional counters of the Indian X-ray Astronomy Experiment (IXAE) onboard the Indian satellite IRS-P3, which show remarkable richness in temporal variability. The observations were carried out on 1997 June 12-29 and August 7-10, in the energy range of 2-18 keV and revealed the presence of very intense X-ray bursts. All the observed bursts have a slow exponential rise, a sharp linear decay, and broadly can be put in two classes: irregular and quasi-regular bursts in one class, and regular bursts in the other. The regular bursts are found to have two distinct timescales and to persist over extended durations. There is a strong correlation between the preceding quiescent time and the burst duration for the quasi-regular and irregular bursts. No such correlation is found for the regular bursts. The ratio of average flux during the burst time to the average flux during the quiescent phase is high and variable for the quasi-regular and irregular bursts, while it is low and constant for the regular bursts. We present a comprehensive picture of the various types of bursts observed in GRS 1915+105 in the light of the recent theories of advective accretion disks. We suggest that the peculiar bursts that we have seen are characteristic of the change of state of the source. The source can switch back and forth between the low-hard state and the high-soft state near critical accretion rates in a very short timescale, giving rise to the irregular and quasi-regular bursts. The fast timescale for the transition of the state is explained by invoking the appearance and disappearance of the advective disk in its viscous timescale. The periodicity of the regular bursts is explained by matching the viscous timescale with the cooling timescale of the postshock region. A test of the model is presented using the publicly available 13-60 keV RXTE/PCA data for irregular and regular bursts

  18. TRIO: Burst Buffer Based I/O Orchestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University; Oral, H Sarp [ORNL; Pritchard, Michael [Auburn University; Wang, Bin [Auburn University; Yu, Weikuan [Auburn University

    2015-01-01

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desired to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.

  19. Quantum-Gravity Based Photon Dispersion in Gamma-Ray Bursts: The Detection Problem

    International Nuclear Information System (INIS)

    Norris, Jay P.; Scargle, Jeffrey D.

    2007-01-01

    Gamma-ray bursts at cosmological distances offer a time-varying signal that can be used to search for energy-dependent photon dispersion effects. We show that short bursts with narrow pulse structures at high energies will offer the least ambiguous tests for energy-dependent dispersion effects. We discuss quantitative methods to search for such effects in time-tagged photon data. Utilizing observed gamma-ray burst profiles extrapolated to GeV energies, as may expected to be observed by GLAST, we also demonstrate the extent to which these methods can be used as an empirical exploration of quantum gravity formalisms

  20. Detection of bursts in neuronal spike trains by the mean inter-spike interval method

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Yong Deng; Weihua Luo; Zhen Wang; Shaoqun Zeng

    2009-01-01

    Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with phys-iological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains, without any arbitrary choices or any operator judgrnent. When the mean value of several successive inter-spike intervals is not larger than the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.

  1. X-RAY BURST OSCILLATIONS: FROM FLAME SPREADING TO THE COOLING WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such “cooling wake” models, a “canonical” cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an “asymmetric” model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  2. An effective implementation scheme of just-in-time protocol for optical burst switching networks

    Science.gov (United States)

    Wu, Guiling; Li, Xinwan; Chen, Jian-Ping; Wang, Hui

    2005-02-01

    Optical burst switching (OBS) has been emerging as a promising technology that can effectively support the next generation IP-oriented transportation networks. JIT signaling protocol for OBS is relatively simple and easy to be implemented by hardware. This paper presented an effective scheme to implement the JIT protocol, which not only can effectively implement reservation and release of optical channels based on JIT, but also can process the failure of channel reservation and release due to loss of burst control packets. The scheme includes: (1) a BHP (burst head packet) path table is designed and built at each OBS node. It is used to guarantee the corresponding burst control packet, i.e. BHP, BEP (burst end packet) and BEP_ACK (BEP acknowledgement), to be transmitted in the same path. (2) The timed retransmission of BEP and the reversed deletion of the item in BHP path tables triggered by the corresponding BEP_ACK are combined to solve the problems caused by the loss of the signaling messages in channel reservation and release process. (3) Burst head packets and BEP_ACK are transmitted using "best-effort" method. Related signaling messages and their formats for the proposed scheme are also given.

  3. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  4. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  5. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  6. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  7. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    Science.gov (United States)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  8. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  9. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  10. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  11. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  12. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  13. The InterPlanetary Network Supplement to the Second Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Svinkin, D. S. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Pal’shin, V. D. [Vedeneeva 2-31, St. Petersburg (Russian Federation); Briggs, M. S.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W.; Fellows, C.; Harshman, K. [University of Arizona, Department of Planetary Sciences, Tucson, Arizona 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von, E-mail: khurley@ssl.berkeley.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); and others

    2017-04-01

    InterPlanetary Network (IPN) data are presented for the gamma-ray bursts in the second Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 462 bursts in that catalog between 2010 July 12 and 2012 July 11, 428, or 93%, were observed by at least 1 other instrument in the 9-spacecraft IPN. Of the 428, the localizations of 165 could be improved by triangulation. For these bursts, triangulation gives one or more annuli whose half-widths vary between about 2.′3° and 16°, depending on the peak flux, fluence, time history, arrival direction, and the distance between the spacecraft. We compare the IPN localizations with the GBM 1 σ , 2 σ , and 3 σ error contours and find good agreement between them. The IPN 3 σ error boxes have areas between about 8 square arcminutes and 380 square degrees, and are an average of 2500 times smaller than the corresponding GBM 3 σ localizations. We identify four bursts in the IPN/GBM sample whose origins were given as “uncertain,” but may in fact be cosmic. This leads to an estimate of over 99% completeness for the GBM catalog.

  14. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  15. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    Science.gov (United States)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  16. Bursting synchronization in scale-free networks

    International Nuclear Information System (INIS)

    Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.

    2009-01-01

    Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.

  17. The Gamma-Ray Burst ToolSHED is Open for Business

    Science.gov (United States)

    Giblin, Timothy W.; Hakkila, Jon; Haglin, David J.; Roiger, Richard J.

    2004-09-01

    The GRB ToolSHED, a Gamma-Ray Burst SHell for Expeditions in Data-Mining, is now online and available via a web browser to all in the scientific community. The ToolSHED is an online web utility that contains pre-processed burst attributes of the BATSE catalog and a suite of induction-based machine learning and statistical tools for classification and cluster analysis. Users create their own login account and study burst properties within user-defined multi-dimensional parameter spaces. Although new GRB attributes are periodically added to the database for user selection, the ToolSHED has a feature that allows users to upload their own burst attributes (e.g. spectral parameters, etc.) so that additional parameter spaces can be explored. A data visualization feature using GNUplot and web-based IDL has also been implemented to provide interactive plotting of user-selected session output. In an era in which GRB observations and attributes are becoming increasingly more complex, a utility such as the GRB ToolSHED may play an important role in deciphering GRB classes and understanding intrinsic burst properties.

  18. BATSE/OSSE Rapid Burst Response

    National Research Council Canada - National Science Library

    Matz, S. M; Grove, J. E; Johnson, W. N; Kurfess, J. D; Share, G. H; Fishman, G. J; Meegan, Charles A

    1995-01-01

    ...) slew the OSSE detectors to burst locations determined on-board by BATSE. This enables OSSE to make sensitive searches for prompt and delayed post-burst line and continuum emission above 50 keV...

  19. Comparison of filters for detecting gravitational wave bursts in interferometric detectors

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.; Pradier, Thierry

    2003-01-01

    Filters developed in order to detect short bursts of gravitational waves in interferometric detector outputs are compared according to three main points. Conventional receiver operating characteristics (ROC) are first built for all the considered filters and for three typical burst signals. Optimized ROC are shown for a simple pulse signal in order to estimate the best detection efficiency of the filters in the ideal case, while realistic ones obtained with filters working with several 'templates' show how detection efficiencies can be degraded in a practical implementation. Second, estimations of biases and statistical errors on the reconstruction of the time of arrival of pulse-like signals are then given for each filter. Such results are crucial for future coincidence studies between gravitational wave detectors but also with neutrino or optical detectors. As most of the filters require a pre-whitening of the detector noise, the sensitivity to a nonperfect noise whitening procedure is finally analyzed. For this purpose lines of various frequencies and amplitudes are added to a Gaussian white noise and the outputs of the filters are studied in order to monitor the excess of false alarms induced by the lines. The comparison of the performances of the different filters finally show that they are complementary rather than competitive

  20. Some polarization features of solar microwave bursts

    Energy Technology Data Exchange (ETDEWEB)

    Uralov, A M; Nefed' ev, V P [AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln

    1977-01-01

    Consequences of the thermal microwave burst model proposed earlier have been considered. According to the model the centimeter burst is generated at the heat propagation to the upper atmosphere. The polarization features of the burst are explained: a change of the polarization sign in a frequency range, a rapid change of the polarization sign in the development of a burst at a fixed frequency, a lack of time coincidence of the moments of the burst maximum of the polarization and of the total flux. From the model the consequences are obtained, which are still not confirmed by experiment. An ordinary-type wave prevails in the burst radiation, in the course of which the polarization degree falls on the ascending branch of bursts development. At the change of the polarization sign at the fixed frequency prior to the sign change an ordinary-type wave should be present in excess and later an extreordinary type wave.

  1. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  2. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem

    2010-07-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst retransmission in the OBS domain can improve the TCP throughput by hiding burst loss events from the upper TCP layer, which can effectively reduce the congestion window fluctuation at the expense of introducing additional delay. However, the additional delay may cause performance degradation for delay-based TCP implementations that are sensitive to packet round trip time in estimating the network congestion status. In this paper, a novel implementation of TCP Vegas that adopts a threshold-based mechanism is proposed for identifying the network congestion status in OBS networks. Analytical models are developed to evaluate the throughput of conventional TCP Vegas and threshold-based Vegas over OBS networks with burst retransmission. Simulation is conducted to validate the analytical model and to compare threshold-based Vegas with a number of legacy TCP implementations, such as TCP Sack and TCP Reno. The analytical model can be used to obtain a proper threshold value that results in an optimal steady state TCP throughput.

  3. Ultra-fast flash observatory for detecting the early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Lim, H.; Jeong, S.; Ahn, K.-B.

    ) for the fast measurement of the UV-optical photons from GRBs, and a gamma-ray monitor for energy measurement. The triggering is done by the UFFO burst Alert & Trigger telescope (UBAT) using the hard X-ray from GRBs and the UV/optical Trigger Assistant Telescope (UTAT) using the UV/optical photons from GRBs...

  4. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  5. Bursting star formation and the overabundance of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma fluxes but due to the distance, all of them are beyond the reach of present-day detectors, except probably 30 Dor

  6. Relative clock verifies endogenous bursts of human dynamics

    Science.gov (United States)

    Zhou, Tao; Zhao, Zhi-Dan; Yang, Zimo; Zhou, Changsong

    2012-01-01

    Temporal bursts are widely observed in many human-activated systems, which may result from both endogenous mechanisms like the highest-priority-first protocol and exogenous factors like the seasonality of activities. To distinguish the effects from different mechanisms is thus of theoretical significance. This letter reports a new timing method by using a relative clock, namely the time length between two consecutive events of an agent is counted as the number of other agents' events appeared during this interval. We propose a model, in which agents act either in a constant rate or with a power-law inter-event time distribution, and the global activity either keeps unchanged or varies periodically vs. time. Our analysis shows that the bursts caused by the heterogeneity of global activity can be eliminated by setting the relative clock, yet the bursts from real individual behaviors still exist. We perform extensive experiments on four large-scale systems, the search engine by AOL, a social bookmarking system —Delicious, a short-message communication network, and a microblogging system —Twitter. Seasonality of global activity is observed, yet the bursts cannot be eliminated by using the relative clock.

  7. Hierarchic Analysis Method to Evaluate Rock Burst Risk

    Directory of Open Access Journals (Sweden)

    Ming Ji

    2015-01-01

    Full Text Available In order to reasonably evaluate the risk of rock bursts in mines, the factors impacting rock bursts and the existing grading criterion on the risk of rock bursts were studied. By building a model of hierarchic analysis method, the natural factors, technology factors, and management factors that influence rock bursts were analyzed and researched, which determined the degree of each factor’s influence (i.e., weight and comprehensive index. Then the grade of rock burst risk was assessed. The results showed that the assessment level generated by the model accurately reflected the actual risk degree of rock bursts in mines. The model improved the maneuverability and practicability of existing evaluation criteria and also enhanced the accuracy and science of rock burst risk assessment.

  8. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  9. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  10. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  11. Detection of bursts in extracellular spike trains using hidden semi-Markov point process models.

    Science.gov (United States)

    Tokdar, Surya; Xi, Peiyi; Kelly, Ryan C; Kass, Robert E

    2010-08-01

    Neurons in vitro and in vivo have epochs of bursting or "up state" activity during which firing rates are dramatically elevated. Various methods of detecting bursts in extracellular spike trains have appeared in the literature, the most widely used apparently being Poisson Surprise (PS). A natural description of the phenomenon assumes (1) there are two hidden states, which we label "burst" and "non-burst," (2) the neuron evolves stochastically, switching at random between these two states, and (3) within each state the spike train follows a time-homogeneous point process. If in (2) the transitions from non-burst to burst and burst to non-burst states are memoryless, this becomes a hidden Markov model (HMM). For HMMs, the state transitions follow exponential distributions, and are highly irregular. Because observed bursting may in some cases be fairly regular-exhibiting inter-burst intervals with small variation-we relaxed this assumption. When more general probability distributions are used to describe the state transitions the two-state point process model becomes a hidden semi-Markov model (HSMM). We developed an efficient Bayesian computational scheme to fit HSMMs to spike train data. Numerical simulations indicate the method can perform well, sometimes yielding very different results than those based on PS.

  12. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  13. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    Science.gov (United States)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  14. TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.

    Science.gov (United States)

    Murase, Kohta; Ioka, Kunihito

    2013-09-20

    We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.

  15. VERY HIGH ENERGY OBSERVATIONS OF GAMMA-RAY BURSTS WITH STACEE

    International Nuclear Information System (INIS)

    Jarvis, A.; Ong, R. A.; Ball, J.; Carson, J. E.; Zweerink, J.; Williams, D. A.; Aune, T.; Covault, C. E.; Driscoll, D. D.; Fortin, P.; Mukherjee, R.; Gingrich, D. M.; Hanna, D. S.; Kildea, J.; Lindner, T.; Mueller, C.; Ragan, K.

    2010-01-01

    Gamma-ray bursts (GRBs) are the most powerful explosions known in the universe. Sensitive measurements of the high-energy spectra of GRBs can place important constraints on the burst environments and radiation processes. Until recently, there were no observations during the first few minutes of GRB afterglows in the energy range between 30 GeV and ∼1 TeV. With the launch of the Swift GRB Explorer in late 2004, GRB alerts and localizations within seconds of the bursts became available. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was a ground-based, gamma-ray telescope with an energy threshold of ∼150 GeV for sources at zenith. At the time of Swift's launch, STACEE was in a rare position to provide >150 GeV follow-up observations of GRBs as fast as three minutes after the burst alert. In addition, STACEE performed follow-up observations of several GRBs that were localized by the HETE-2 and INTEGRAL satellites. Between 2002 June and 2007 July, STACEE made follow-up observations of 23 GRBs. Upper limits are placed on the high-energy gamma-ray fluxes from 21 of these bursts.

  16. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  17. Pesticide monitoring in the Netherlands: can it be improved?

    NARCIS (Netherlands)

    Pan, H.; Jiang, L.H.; Kuil, M.E.

    2012-01-01

    In the Netherlands, pesticide monitoring of the surface water is separately managed by different water authorities. These water authorities can decide when, where, and what pesticide will be monitored and at what frequency. To help make the decisions more reasonable and make the monitoring system

  18. Frequency of fast, narrow γ-ray bursts

    International Nuclear Information System (INIS)

    Norris, J.P.; Maryland Univ., College Park; Cline, T.L.; Desai, U.D.; Teegarden, B.J.

    1984-01-01

    The paper describes the existence of two γ-ray burst populations detected by the ISEE-3 experiment. Data from the distribution of 123 Venera 13 and 14 events (60 detected by both spacecraft) also suggests two γ-ray burst populations in each experiment sample, the domains separated with a minimum near 1 or 2 s. The authors point out that the results of the Goddard ISEE-3 γ-ray burst spectrometer actually enhance the appearance of two burst populations suggested in the Venera data. (author)

  19. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  20. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  1. One-dimensional Turbulence Models of Type I X-ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.

  2. One-dimensional Turbulence Models of Type I X-ray Bursts

    International Nuclear Information System (INIS)

    Hou, Chen

    2016-01-01

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12 C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.

  3. A review of gamma ray bursts

    CERN Document Server

    Rees, Martin J

    2000-01-01

    Gamma-ray bursts, an enigma for more than 25 years, are now coming into focus. They involve extraordinary power outputs, and highly relativistic dynamics. The 'trigger' involves stellar-mass compact objects. The most plausible progenitors, ranging from neutron star binary mergers to collapsars (sometimes called 'hypernovae') eventually lead to the formation of a black hole with a torus of hot neutron-density material around it, the extractable energy being up to 10 sup 5 sup 4 ergs. Magnetic fields may exceed 10 sup 1 sup 5 G and particles may be accelerated up to > or approx. 10 sup 2 sup 0 eV. Details of the afterglow may be easier to understand than the initial trigger. Bursts at very high redshift can be astronomically-important as probes of the distant universe.

  4. Burst Transmission and Frame Aggregation for VANET Communications

    Directory of Open Access Journals (Sweden)

    Wei Kuang Lai

    2017-09-01

    Full Text Available In vehicular ad hoc networks (VANETs, due to highly mobile and frequently changing topology, available resources and transmission opportunities are restricted. To address this, we propose a burst transmission and frame aggregation (FAB scheme to enhance transmission opportunity (TXOP efficiency of IEEE 802.11p. Aggregation and TXOP techniques are useful for improving transmission performance. FAB aggregates frames in the relay node and utilizes the TXOP to transmit these frames to the next hop with a burst transmission. Simulation results show that the proposed FAB scheme can significantly improve the performance of inter-vehicle communications.

  5. Burst mode composite photography for dynamic physics demonstrations

    Science.gov (United States)

    Lincoln, James

    2018-05-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital cameras—including the iPhone. Sometimes the images are composited to imply motion from a series of still pictures. By analyzing the time between the photos, students can measure rates of velocity and acceleration of moving objects. Some of these composite photographs have already shown up in the AAPT High School Physics Photo Contest. In this article I discuss some ideas for using burst mode photography in the iPhone and provide a discussion of how to edit these photographs to create a composite image. I also compare the capabilities of the iPhone and GoPro cameras in creating these photographic composites.

  6. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  7. The voice conveys specific emotions: Evidence from vocal burst displays

    OpenAIRE

    Simon-Thomas, E.; Keltner, D.; Sauter, D.; Sinicropi-Yao, L.; Abramson, A.

    2009-01-01

    Studies of emotion signaling inform claims about the taxonomic structure, evolutionary origins, and physiological correlates of emotions. Emotion vocalization research has tended to focus on a limited set of emotions: anger, disgust, fear, sadness, surprise, happiness, and for the voice, also tenderness. Here, we examine how well brief vocal bursts can communicate 22 different emotions: 9 negative (Study 1) and 13 positive (Study 2), and whether prototypical vocal bursts convey emotions more ...

  8. A class of burst-correcting array codes

    NARCIS (Netherlands)

    Blaum, M.; Farrell, P.G.; Tilborg, van H.C.A.

    1986-01-01

    The usual (k_{2} + 1) times (k_{1} + 1) array code, in which the last row and the last column contain redundant bits, can correct any single error. However, if the bits are read diagonally instead of horizontally, the code can correct bursts of errors. It is shown that the(_{k}2 + 1) times (k_{1} +

  9. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Pohl, Martin

    2011-01-01

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10 18 eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10 -3 of the average. Difficulties with these avoidance scenarios are noted.

  10. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  11. Fine structure in fast drift storm bursts

    International Nuclear Information System (INIS)

    McConnell, D.; Ellis, G.R.A.

    1981-01-01

    Recent observations with high time resolution of fast drift storm (FDS) solar bursts are described. A new variety of FDS bursts characterised by intensity maxima regularly placed in the frequency domain is reported. Possible interpretations of this are mentioned and the implications of the short duration of FDS bursts are discussed. (orig.)

  12. A Search for High-Energy Counterparts to Fast Radio Bursts

    Science.gov (United States)

    Cunningham, Virginia A.; Cenko, Bradley

    2018-01-01

    We report on a search for high-energy counterparts to Fast Radio Bursts (FRBs) with the Fermi Gamma-ray Burst Monitor (GBM), Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT). We find no significant associations for any of the 14 FRBs in our sample, but report upper limits to the high-energy fluence for each on timescales of ∼0.1, 1, 10, and 100 s. We report lower limits on the radio to high-energy fluence, fr / fγ, for timescales of ∼0.1 and 100 s. The non-detection of high-energy emission is expected if FRBs are analogous to the giant pulses seen from the Crab pulsar, but the observed radio fluences of FRBs are orders of magnitude larger than even the most extreme giant pulses would be at the implied cosmological distances. It has also been proposed that events similar to magnetar hyperflares produce FRBs; this might be a viable model, but our fr / fγ lower limits are in tension with the fr / fγ upper limit for the 2004 superburst of SGR 1806‑20, for 6 out of the 12 FRBs that we study. This demonstrates the utility of analyses of high-energy data for FRBs in tracking down the nature of these elusive sources.

  13. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    International Nuclear Information System (INIS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M vir ∼10 7 M ⊙ ), rather than being stripped remnants of much larger systems

  14. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  15. Predicting rock bursts in mines

    Science.gov (United States)

    Spall, H.

    1979-01-01

    In terms of lives lost, rock bursts in underground mines can be as hazardous as earthquakes on the surface. So it is not surprising that fo the last 40 years the U.S Bureau of Mines has been using seismic methods for detecting areas in underground mines where there is a high differential stress which could lead to structural instability of the rock mass being excavated.

  16. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  17. Monitoring of 3MJ palsed magnet by AE

    International Nuclear Information System (INIS)

    Nomura, Harehiko; Tateishi, Hiroshi; Komuro, Kazuo; Onishi, Toshitada

    1987-01-01

    According to a pulse operation of SCM, there appears high voltage which makes difficult to distinguish the resistive voltage from inductive and fluctant potential. We have monitored 3MJ SCM by acoustic emission with applying 44 sensors on the magnet. 4 sensors were located symmetrically between each double pancake. Counts and amplitude of acoustic bursts and also the acoustic epicenter were observed. The monitoring of burst counts continuously during the operation has been found effective for getting reliable pulsed SCM, by knowing fatigue properties of the magnet and the preferable duty cycle of the magnet chargings. (author)

  18. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    International Nuclear Information System (INIS)

    Kopač, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-01-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission

  19. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  20. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  1. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    International Nuclear Information System (INIS)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing

    2016-01-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs

  2. Study on cosmic gamma bursts in the ''KONUS'' experiment

    International Nuclear Information System (INIS)

    Mazets, E.P.; Golenetskij, S.V.; Il'inskij, V.N.; Panov, V.N.; Aptekar', R.L.; Gur'yan, Yu.A.; Sokolov, I.A.; Sokolova, Z.Ya.; Kharitonova, T.V.

    1979-01-01

    Made are the investigations of cosmic gamma bursts with the help of the ''Konus'' apparatus, positioned on the ''Venera 11'' and ''Venera 12'' automatic interplanetary stations. 37 gamma bursts have been recorded in the energy range from 50 to 150 keV during the observation period from September to December 1978. Time profiles of bursts on 4, 9 and 24.11.1978 are presented. For the most events the time of burst increase and decrease constitute parts and units of seconds. Differential energy spectra are measured for all recorded bursts. In many cases the spectrum shape is similar to the grade one with the 1.5-2.3 index. In a graphical form built up are the integral distributions of gamma bursts appearence frequency in dependence on their intensity and maximum capacity in the burst peak. Galaxy coordinates of the 17-teen bursts, for which a simple localization is possible, are put on the celestial sphere map. The type of the integral distributions and the source distribution about the celestial sphere show that the gamma burst sources are whithin the Galaxy

  3. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  4. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  5. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hurley, K.; Briggs, M. S.; Kippen, R. M.; Kouveliotou, C.; Fishman, G.; Meegan, C.; Cline, T.; Trombka, J.; McClanahan, T.; Boynton, W.; Starr, R.; McNutt, R.; Boer, M.

    2011-01-01

    We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or t riangulation ) results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 0 , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin 2 , resulting in an average reduction of the BATSE error circle area of a factor of 87.

  6. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  7. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    Science.gov (United States)

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  8. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Directory of Open Access Journals (Sweden)

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  9. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  10. Who can monitor the court interpreter's performance?

    DEFF Research Database (Denmark)

    Martinsen, Bodil

    2009-01-01

    and the conflict about her competence was negotiated. Because of this unusual constellation, combined with a multi-method approach, this single case study can shed some light on the question of the participants' ability to monitor the interpreter's performance. Legal professional users of interpreters tend......  Who can monitor the court interpreter's performance? Results of a case study This paper presents the results of a case study of an unusual interpreting event in a Danish courtroom setting. During the trial, the interpreter's non-normative performance was explicitly criticised by the audience...... are far less transparent for the legal participants than they normally assume. This problem, in turn, stresses the importance of a) the interpreter's competence and self-awareness and b) the use of check interpreters.  ...

  11. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  12. Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A.; Ziv, Noam E.

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited. PMID:22911726

  13. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A; Ziv, Noam E

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  14. Ventricular arrhythmia burst is an independent indicator of larger infarct size even in optimal reperfusion in STEMI

    NARCIS (Netherlands)

    van der Weg, Kirian; Majidi, Mohamed; Haeck, Joost D. E.; Tijssen, Jan G. P.; Green, Cynthia L.; Koch, Karel T.; Kuijt, Wichert J.; Krucoff, Mitchell W.; Gorgels, Anton P. M.; de Winter, Robbert J.

    2016-01-01

    We hypothesized that ventricular arrhythmia (VA) bursts during reperfusion phase are a marker of larger infarct size despite optimal epicardial and microvascular perfusion. 126 STEMI patients were studied with 24h continuous, 12-lead Holter monitoring. Myocardial blush grade (MBG) was determined and

  15. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Roberts, O. J.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Preece, R. D.; Poolakkil, S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Racusin, J.; Canton, T. Dal [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kocevski, D.; Wilson-Hodge, C. A.; Hui, C. M.; Littenberg, T. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Christensen, N.; Broida, J. [Physics and Astronomy, Carleton College, MN 55057 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Blackburn, L., E-mail: Adam.M.Goldstein@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); and others

    2017-10-20

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  16. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  17. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  18. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    Science.gov (United States)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  19. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  20. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  1. A New Clue in the Mystery of Fast Radio Bursts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    .Bassa and collaborators also found that the properties of the host galaxy are consistent with those of a type of galaxy known as extreme emission line galaxies. This provides a tantalizing clue, as these galaxies are known to host both hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts.Linking to the CauseWhat can this tell us about the cause of FRB 121102? The fact that this burst repeats already eliminates cataclysmic events as the origin. But the projected location of FRB 121102 within a star-forming region especially in a host galaxy thats similar to those typically hosting superluminous supernovae and long gamma-ray bursts strongly suggests theres a relation between these events.Artists impression of a gamma-ray burst in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]The authors propose that this observed coincidence, supported by models of magnetized neutron star birth, indicate an evolutionary link between fast radio bursts and neutron stars. In this picture, neutron stars or magnetars are born as long gamma-ray bursts or hydrogen-poor supernovae, and then evolve into fast-radio-burst-emitting sources.This picture may finally explain the cause of fast radio bursts but Bassa and collaborators caution that its also possible that this model applies only to FRB 121102. Since FRB 121102 is unique in being the only burst discovered to repeat, its cause may also be unique. The authors suggest that targeted searches of star-forming regions in galaxies similar to FRB 121102s host may reveal other repeating burst candidates, helping us to unravel the ongoing mystery of fast radio bursts.CitationC. G. Bassa et al 2017 ApJL 843 L8. doi:10.3847/2041-8213/aa7a0c

  2. Thermonuclear burst oscillations: where firestorms meet fundamental physics.

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Neutron stars offer a unique environment in which to develop and test theories of the strong force. Densities in neutron star cores can reach up to ten times the density of a normal atomic nucleus, and the stabilising effect of gravitational confinement permits long-timescale weak interactions. This generates matter that is neutron-rich, and opens up the possibility of stable states of strange matter, something that can only exist in neutron stars. Strong force physics is encoded in the Equation of State (EOS), the pressure-density relation, which links to macroscopic observables such as mass M and radius R via the stellar structure equations. By measuring and inverting the M-R relation we can recover the EOS and diagnose the underlying dense matter physics. One very promising technique for simultaneous measurement of M and R exploits hotspots (burst oscillations) that form on the neutron star surface when material accreted from a companion star undergoes a thermonuclear explosion (a Type I X-ray burst). As ...

  3. Cosmology and the Subgroups of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    A. Mészáros

    2011-01-01

    Full Text Available Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000, Vavrek, R. et al. MNRAS, 391, 1 741 (2008. Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009; Mészáros, A. et al. Baltic Astron., 18, 293 (2009. Here we show that intermediate bursts should be at redshifts up to three.

  4. Type III Radio Burst Duration and SEP Events

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  5. A minimal model of burst-noise induced bistability.

    Directory of Open Access Journals (Sweden)

    Johannes Falk

    Full Text Available We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of the Schlögl model, which is a chemical reaction system with only one type of molecule. The strength of the intrinsic noise is varied without changing the deterministic description by introducing bursts in the autocatalytic production step. We study the transitions between monostable and bistable behavior in this system by evaluating the number of maxima of the stationary probability distribution. We find that changing the size of bursts can destroy and even induce saddle-node bifurcations. This means that a bursty production of molecules can qualitatively change the dynamics of a chemical reaction system even when the deterministic description remains unchanged.

  6. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Taka; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.

  7. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade

  8. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  9. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    Science.gov (United States)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  10. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cadena, Ariel; Agreda, Jesus, E-mail: jaagredab@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Barragan, Daniel [Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin (Colombia)

    2013-12-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce{sup 4+} to Ce{sup 3+} and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  11. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    International Nuclear Information System (INIS)

    Cadena, Ariel; Agreda, Jesus; Barragan, Daniel

    2013-01-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce 4+ to Ce 3+ and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  12. Detection of artifacts from high energy bursts in neonatal EEG.

    Science.gov (United States)

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  13. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  14. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  15. Correlation of near-Earth proton enhancements >100 MeV with parameters of solar microwave bursts

    Science.gov (United States)

    Grechnev, Victor; Kiselev, Valentin; Meshalkina, Nataliya; Chertok, Ilya

    2017-09-01

    We analyze the relations between various combinations of peak fluxes and fluences of solar microwave bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990–2015, and corresponding parameters of proton enhancements with E>100 MeV exceeding 0.1 pfu registered by GOES monitors in near-Earth environment. The highest correlation has been found between the microwave and proton fluences. This fact reflects a dependence of the total number of protons on the total duration of the acceleration process. In the events with strong flares, the correlation coefficients of proton fluences with microwave and soft X-ray fluences are higher than those with speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to acceleration of high-energy protons. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution probably prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux and duration of a microwave burst. This can be used for diagnostics of proton enhancements based on microwave observations.

  16. Neural Network Aided Glitch-Burst Discrimination and Glitch Classification

    Science.gov (United States)

    Rampone, Salvatore; Pierro, Vincenzo; Troiano, Luigi; Pinto, Innocenzo M.

    2013-11-01

    We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored. In order to provide a proof of concept, we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-to-noise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where some intelligence at the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry points.

  17. Emergent synchronous bursting of oxytocin neuronal network.

    Directory of Open Access Journals (Sweden)

    Enrico Rossoni

    2008-07-01

    Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

  18. The Spectral Sharpness Angle of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Hendrik J. van Eerten

    2016-06-01

    Full Text Available We extend the results of Yu et al. (2015b of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

  19. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    Science.gov (United States)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  20. Potential of acoustic monitoring for safety assessment of primary system

    International Nuclear Information System (INIS)

    Olma, B.J.

    1997-01-01

    Safety assessment of the primary system and its components with respect to their mechanical integrity is increasingly supported by acoustic signature analysis during power operation of the plants. Acoustic signals of Loose Parts Monitoring System sensors are continuously monitored by dedicated digital systems for signal bursts associated with metallic impacts. Several years of ISTec/GRS experience and the practical use of its digital systems MEDEA and RAMSES have shown that acoustic monitoring is very successful for detecting component failures at an early stage. Advanced powerful tools for classification and acoustic evaluation of burst signals have recently been realized. The paper presents diagnosis experiences of BWR's and PWR's safety assessment. (author). 7 refs, 8 figs

  1. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  2. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    Science.gov (United States)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  3. Discovery of the short gamma-ray burst GRB 050709.

    Science.gov (United States)

    Villasenor, J S; Lamb, D Q; Ricker, G R; Atteia, J-L; Kawai, N; Butler, N; Nakagawa, Y; Jernigan, J G; Boer, M; Crew, G B; Donaghy, T Q; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Hurley, K; Levine, A; Martel, F; Matsuoka, M; Olive, J-F; Prigozhin, G; Sakamoto, T; Shirasaki, Y; Suzuki, M; Tamagawa, T; Vanderspek, R; Woosley, S E; Yoshida, A; Braga, J; Manchanda, R; Pizzichini, G; Takagishi, K; Yamauchi, M

    2005-10-06

    Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

  4. Neutrino burst of white dwarf being absorbed by a primordial black hole

    CERN Document Server

    Tikhomirov, V V

    2003-01-01

    Primordial black holes (PBHS) of masses M>=5x10 sup 4 g are able to absorb white dwarfs (WD), giving rise to formation of black holes of WD masses. The WD absorption is accomplained by up to 10 sup 5 sup 2 erg neutrino bursts which can be readily detected by modern neutrino detectors. We calculate time characteristics of such a burst in this paper. (authors)

  5. Superconducting cosmic string loops as sources for fast radio bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei

    2018-01-01

    The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.

  6. Decimetric type III radio bursts and associated hard X-ray spikes

    Science.gov (United States)

    Dennis, B. R.; Benz, A. O.; Ranieri, M.; Simnett, G. M.

    1984-01-01

    For a relatively weak solar flare on August 6, 1981, at 10:32 UT, a detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts. The hard X-ray observations are made at energies above 30 keV, and the radio data are obtained in the frequency range from 100 to 1000 MHz. The time resolution for all the data sets is approximately 0.1 s or better. The dynamic radio spectrum exhibits many fast drift type III radio bursts with both normal and reverse slope, whereas the X-ray time profile contains many well resolved short spikes with durations less than or equal to 1 s. Some of the X-ray spikes are seen to be associated in time with reverse-slope bursts, indicating either that the electron beams producing the radio burst contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can induce the acceleration of additional electrons or occur in coincidence with this acceleration. A case is presented in which a normal slope radio burst at approximately 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s.

  7. Electron precipitation burst in the nighttime slot region measured simultaneously from two satellites

    International Nuclear Information System (INIS)

    Imhof, W.L.; Voss, H.D.; Mobilla, J.; Gaines, E.E.; Evans, D.S.

    1987-01-01

    Based on data acquired in 1982 with the Stimulated Emission of Energetic Particles payload on the low-altitude (170--280 km) S81-1 spacecraft and the Space Environment Monitor instrumentation on the NOAA 6 satellite (800--830 km), a study has been made of short-duration nighttime electron precipitation bursts at L = 2.0--35. From 54 passes of each satellite across the slot region simultaneously in time, 21 bursts were observed on the NOAA 6 spacecraft, and 76 on the S81-1 satellite. Five events, probably associated with lightning, were observed simultaneously from the two spacecraft within 1.2 s, providing a measure of the spatial extent of the bursts. This limited sample indicates that the intensity of precipitation events falls off with width in longitude and L shell but individual events extend as much as 5 0 in invariant latitude and 43 0 in longitude. The number of events above a given flux observed in each satellite was found to be approximately inversely proportional to the flux. The time average energy input to the atmosphere over the longitude range 180 0 E to 360 0 E at a local time of 2230 directly from short-duration bursts spanning a wide range of intensity enhancements was estimated to be about 6 x 10/sup -6/ ergs/cm 2 s in the northern hemisphere and about 1.5 x 10/sup -5/ ergs/cm 2 s in the southern hemisphere. In the south, this energy precipitation rate is lower than that from electrons in the drift loss cone by about 2 orders of magnitude. However, on the basis of these data alone we cannot discount weak bursts from being a major contributor to populating the drift loss cone with electrons which ultimately precipitate into the atmosphere. copyrightAmerican Geophysical Union 1987

  8. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bonnell, J.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bouvier, A., E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); and others

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  9. The First FERMI-LAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  10. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bloom, E. D.; Bellazzini, R.; Bregeon, J.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Brandt, T. J.; Bouvier, A.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model

  11. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  12. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  13. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  14. Testing Einstein's Equivalence Principle With Fast Radio Bursts.

    Science.gov (United States)

    Wei, Jun-Jie; Gao, He; Wu, Xue-Feng; Mészáros, Peter

    2015-12-31

    The accuracy of Einstein's equivalence principle (EEP) can be tested with the observed time delays between correlated particles or photons that are emitted from astronomical sources. Assuming as a lower limit that the time delays are caused mainly by the gravitational potential of the Milky Way, we prove that fast radio bursts (FRBs) of cosmological origin can be used to constrain the EEP with high accuracy. Taking FRB 110220 and two possible FRB/gamma-ray burst (GRB) association systems (FRB/GRB 101011A and FRB/GRB 100704A) as examples, we obtain a strict upper limit on the differences of the parametrized post-Newtonian parameter γ values as low as [γ(1.23  GHz)-γ(1.45  GHz)]radio energies, improving by 1 to 2 orders of magnitude the previous results at other energies based on supernova 1987A and GRBs.

  15. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  16. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  17. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  18. Sources of type III solar microwave bursts

    Directory of Open Access Journals (Sweden)

    Zhdanov D.A.

    2016-06-01

    Full Text Available Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies.

  19. No Bursts Detected from FRB121102 in Two 5 hr Observing Campaigns with the Robert C. Byrd Green Bank Telescope

    Science.gov (United States)

    Price, Danny C.; Gajjar, Vishal; Rosenthal, Lee; Hallinan, Gregg; Croft, Steve; DeBoer, David; Hellbourg, Greg; Isaacson, Howard; Lebofsky, Matt; Lynch, Ryan; MacMahon, David H. E.; Men, Yunpeng; Xu, Yonghua; Liu, Zhiyong; Lee, Kejia; Siemion, Andrew

    2018-02-01

    Here, we report non-detection of radio bursts from Fast Radio Burst FRB 121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12, 2018. In addition, we report non-detection during an abutting 10-hour observation with the Kunming 40-m telescope in China, which commenced UTC 10:00 January 12, 2018. These are among the longest published contiguous observations of FRB 121102, and support the notion that FRB 121102 bursts are episodic. These observations were part of a simultaneous optical and radio monitoring campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA) instrument on the Hale 5.1-m telescope.

  20. A composite-flywheel burst-containment study

    Science.gov (United States)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  1. Ballerina - pirouettes in search of gamma bursts

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Lund, Niels; Pedersen, Henrik

    1999-01-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty, Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are propo...... are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX....

  2. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  3. Radiation monitoring by minicomputer

    International Nuclear Information System (INIS)

    Seamons, M.

    1977-01-01

    Radiation monitoring at the Los Alamos Scientific Laboratory (LASL) ranges from measuring the potential build-up of alpha particle radiation in the offices and laboratories of LASL to the detection of radiation leakage from nuclear tests at the Nevada Test Site (NTS). This paper describes PDP-11 based systems to accomplish both types of monitoring. In the first system, filter papers are collected from monitoring stations around LASL. One filter paper is placed under any of 128 photomultiplier (PM) tubes exposing it to alpha radiation. Alpha particle ''hits'' are recorded in a 64-word hardware FIFO, which interrupts and is read by the computer. The FIFO makes it possible to handle short aggregate alpha particle bursts of up to 10 6 hits/s in a computer that can only process 10 4 hits/s. In the second system, up to 100 current measuring radiation probes feed data from the site of the nuclear test(s) to the computer by microwave. The software system can support three tests simultaneously. Both systems offer a high degree of flexibility in configuring for a new test and in real-time control of such things as channel assignment, selective data retrieval, and output formatting

  4. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  5. X-ray bursts from GX 17+2: a new approach

    International Nuclear Information System (INIS)

    Sztajno, M.; Langmeier, A.; Truemper, J.; Pietsch, W.; Paradijs, J. van; Lewin, W.H.G.; Massachusetts Inst. of Tech., Cambridge

    1986-01-01

    The detection of two X-ray bursts from GX 17+2 is reported; a short one (lasting about 10s), and a long one (which lasted about 5 min). These bursts reached a maximum intensity of only about 40 per cent above the persistent flux level. Like previous long bursts observed from GX 17+2 the long burst showed little softening during its decay, and it is difficult at first glance to classify it as either a type 1 or a type 2 burst. Following the recent results of two of the authors a time-dependent spectral analysis of these bursts has been made. (author)

  6. Cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Hurley, K.

    1989-01-01

    This paper reviews the essential aspects of the gamma-ray burst (GRB) phenomenon, with emphasis on the more recent results. GRBs are introduced by their time histories, which provide some evidence for a compact object origin. The energy spectra of bursts are presented and they are seen to demonstrate practically unambiguously that the origin of some GRBs involves neutron stars. Counterpart searches are reviewed briefly and the statistical properties of bursters treated. This paper presents a review of the three known repeating bursters (the Soft Gamma Repeaters). Extragalactic and galactic models are discussed and future prospects are assessed

  7. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    Science.gov (United States)

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies

  8. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    Science.gov (United States)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  9. Power Burst Facility Severe Fuel Damage test series

    International Nuclear Information System (INIS)

    Buescher, B.J.; Osetek, D.J.; Ploger, S.A.

    1982-01-01

    The Severe Fuel Damage (SFD) tests planned for the Power Burst Facility (PBF) are described. Bundles containing 32 zircaloy-clad, PWR-type fuel rods will be subjected to severe overheating transients in a high-pressure, superheated-steam environment. Cladding temperatures are expected to reach 2400 0 K, resulting in cladding ballooning and rupture, severe cladding oxidation, cladding melting, fuel dissolution, fuel rod fragmentation, and possibly, rubble bed formation. An experiment effluent collection system is being installed and the PBF fission product monitoring system is being upgraded to meet the special requirements of the SFD tests. Scoping calculations were performed to evaluate performance of the SFD test design and to establish operational requirements for the PBF loop

  10. Impulsive EUV bursts observed in C IV with OSO-8

    International Nuclear Information System (INIS)

    Grant Athay, R.; White, O.R.; Lites, B.W.

    1980-01-01

    Time sequences of profiles of the lambda 1548 line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness. Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2'' x 20''. Mean burst diameters are estimated to be 3'', or smaller. All but three of the bursts show Doppler shift with velocities sometimes exceeding 75 km s -1 ; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. We interpret the bursts as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer. (orig.)

  11. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Jing; Goldreich, Peter, E-mail: jingluan@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  12. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Luan, Jing; Goldreich, Peter

    2014-01-01

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10 3 pc cm –3 . Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period

  13. IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Shibata, Katsunori M.; Tsuboi, Masato; Fujisawa, Kenta; Kawaguchi, Noriyuki; Imai, Hiroshi; Omodaka, Toshihiro; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-01-01

    In 2011 February, a burst event of the H 2 O maser in Orion KL (Kleinmann-Low object) has started after a 13 year silence. This is the third time such phenomena has been detected in Orion KL, followed by the events in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H 2 O maser features in Orion KL with the VLBI Exploration of Radio Astrometry (VERA), a Japanese very long baseline interferometry network dedicated for astrometry. The total flux of the bursting feature at the local standard of rest (LSR) velocity of 7.58 km s -1 reaches 4.4 x 10 4 Jy in 2011 March. The intensity of the bursting feature is three orders of magnitude larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s -1 in 2011 May, separated by 12 mas north of the 7.58 km s -1 feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilliarcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H 2 O maser burst.

  14. Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    International Nuclear Information System (INIS)

    Covino, S.; Campana, S.; Garczarczyk, M.; Galante, N.; Gaug, M.; Antonelli, A.; Bastieri, D.; Longo, F.; Scapin, V.

    2009-01-01

    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.

  15. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  16. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  17. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  18. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  19. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  20. Fast Radio Bursts with Extended Gamma-Ray Emission?

    International Nuclear Information System (INIS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-01-01

    We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emission of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  1. Gamma Ray Bursts and the Birth of Black Holes

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  2. Electron precipitation induced by VLF noise bursts at the plasmapause and detected at conjugate ground stations

    International Nuclear Information System (INIS)

    Dingle, B.; Carpenter, D.L.

    1981-01-01

    A new type of wave-induced electron precipitation event has been identified. During observations at conjugate stations Siple, Antarctica, and Roberval, Canada (L-4.2), VLF noise bursts were found to be associated on a one-to-one basis with amplitude perturbations of subionispheric radio propagation. The amplitude perturbations are attributed to patches of enhanced ionization that extended below approx.80 km in the nighttime ionosphere and that were produced by precipitating electron bursts. Similar amplitude perturbations seen previously were correlated with whistlers that propagated within the plasmasphere. For the new events the driving waves were structured collections of rising elements that propagated just beyond the plasmapause at roughly 5-min intervals over a several-hour period. These noise bursts were of relatively long duration (approx.10 s) and strong intensity (inferred to be >30 pT at the equator). Triggering of the noise bursts appears to have been mostly by whistlers but changed in character with time. Some later bursts had narrowband precursors at constant frequencies possibly locked to power line harmonic radiation. The burst initiation characteristics suggest the existence of a variable threshold for rapid temporal growth in the magnetosphere controlled by the trapped electron dynamics. The temporal signatures of the amplitude perturbations show that precipitation was maintained over multiple bounces of the trapped magnetospheric electrons. In some cases these signatures include a new undershoot effect during the recovery phase lasting 2--5 min. This effect may have been related to cutoff of background drizzle precipitation. Precipitation effects were observed on both long (approx.10 Mm) and short (approx.1/2 Mm) subionospheric paths and were monitored simultaneously at the conjugate stations. Similarities in the perturbation signatures on long and short paths suggest that the form of the signatures was governed by ionospheric changes

  3. Gravi-Burst: Super-GZK Cosmic Rays from Localized Gravity

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman

    2000-01-01

    The flux of cosmic rays beyond the GZK cutoff (∼ 10 20 eV) may be explained through their production by ultra high energy cosmic neutrinos, annihilating on the relic neutrino background, in the vicinity of our galaxy. This process is mediated through the production of a Z boson at resonance, and is generally known as the Z-Burst mechanism. We show that a similar mechanism can also contribute to the super-GZK spectrum at even higher, ultra-GZK energies, where the particles produced at resonance are the Kaluza-Klein gravitons of weak scale mass and coupling from the Randall-Sundrum (RS) hierarchy model of localized gravity model. We call this mechanism Gravi-Burst. We discuss the parameter space of relevance to Gravi-Bursts, and comment on the possibility of its contribution to the present and future super-GZK cosmic ray data and place bounds on the RS model parameters. Under certain assumptions about the energy spectrum of the primary neutrinos we find that cosmic ray data could be potentially as powerful as the LHC in probing the RS model

  4. Heuristic burst detection method using flow and pressure measurements

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Roer, Van de M.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  5. IGR J17254-3257, a new bursting neutron star

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2007-01-01

    Aims. The study of the observational properties of uncommonly long bursts from low luminosity sources is important when investigating the transition from a hydrogen - rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. On ...

  6. 3-10 keV and 0.1- to 2-MeV observations of four gamma-ray bursts

    International Nuclear Information System (INIS)

    Laros, J.G.; Evans, W.D.; Fenimore, E.E.; Klebesadel, R.W.; Shulman, S.; Fritz, G.

    1983-01-01

    Four catalogued γ-ray bursts that occurred between 79/3/7 and 79/7/31 have been observed over the 3 to 10 keV range by a joint NRL/Los Alamos experiment on the Air Force P78-1 satellite. The bursts were also well observed by members of the interplanetary network. In this paper we present hardness ratios, x-ray/γ-ray luminosity ratios, and time histories. The most significant results presented herein can be summarized as follows: (1) gamma-ray bursters can emit fairly strongly at x-ray energies near the time of the γ burst with L/sub x//L/sub γ/ approx. .02 (L/sub x/ approx. 10 37 ergs s -1 , 3 to 10 keV, assuming a distance of 1 kpc); (2) the centroid of the x-ray emission generally lags the γ-ray centroid, but there is also evidence for one or more types of x-ray precursor activity; (3) the γ-ray hardness ratios were not highly variable for these particular events. However, there is some evidence that the γ-ray spectra softened near the ends of the bursts when the x-ray/γ-ray ratios were high; (4) the x-ray/γ-ray power law number index during times of the strongest γ-ray emission ranged from 0.8 to approx. 1.1 for the four bursts; (5) the x-ray tail of GB790307 probably can be modeled as the cooling of hot plasma generated during the γ-ray burst. Simple versions of this model can be used to estimate various source parameters. These estimates imply a distance of a few hundred to a few thousand pc; (6) gamma-ray bursters probably do not produce events similar to classical x-ray bursts independently of the γ-ray emission

  7. Physics design of fissile mass-flow monitoring system

    International Nuclear Information System (INIS)

    Mattingly, J.K.; March-Leuba, J.; Valentine, T.E.; Mihalczo, J.T.; Uckan, T.

    1997-01-01

    The system measures the flow rate and uranium-235 content in liquid or gas streams; it does not penetrate the process piping. A moderated fission neutron source is used to periodicially introduce a burst of thermal neutrons into the fluid stream to induce fission; delayed gamma emissions from the resulting fission fragments are detected by high-efficiency scintillators downstream of the neutron source. The fluid flow rate is measure from the time between initiation of the thermal neutron burst and detection of the fission product gamma emissions, and the U-235 content is inferred from the intensity of the gamma burst detected. Design of the fissile mass flow monitor requires satisfaction of several competing constraints. Efficient operation of the monitor requires that source-induced fission rate and detection efficiency be maximized while the source-induced background rate is simultaneoulsy minimized. Near optical nuclear design of the system was achieved using numerous Monte Carlo calculations and measurements. This paper addresses calculational aspects of the physics design for the system applied to UF 6 gas

  8. Compact solar UV burst triggered in a magnetic field with a fan-spine topology

    Science.gov (United States)

    Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.

    2017-09-01

    Context. Solar ultraviolet (UV) bursts are small-scale features that exhibit intermittent brightenings that are thought to be due to magnetic reconnection. They are observed abundantly in the chromosphere and transition region, in particular in active regions. Aims: We investigate in detail a UV burst related to a magnetic feature that is advected by the moat flow from a sunspot towards a pore. The moving feature is parasitic in that its magnetic polarity is opposite to that of the spot and the pore. This comparably simple photospheric magnetic field distribution allows for an unambiguous interpretation of the magnetic geometry leading to the onset of the observed UV burst. Methods: We used UV spectroscopic and slit-jaw observations from the Interface Region Imaging Spectrograph (IRIS) to identify and study chromospheric and transition region spectral signatures of said UV burst. To investigate the magnetic topology surrounding the UV burst, we used a two-hour-long time sequence of simultaneous line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) and performed data-driven 3D magnetic field extrapolations by means of a magnetofrictional relaxation technique. We can connect UV burst signatures to the overlying extreme UV (EUV) coronal loops observed by the Atmospheric Imaging Assembly (AIA). Results: The UV burst shows a variety of extremely broad line profiles indicating plasma flows in excess of ±200 km s-1 at times. The whole structure is divided into two spatially distinct zones of predominantly up- and downflows. The magnetic field extrapolations show a persistent fan-spine magnetic topology at the UV burst. The associated 3D magnetic null point exists at a height of about 500 km above the photosphere and evolves co-spatially with the observed UV burst. The EUV emission at the footpoints of coronal loops is correlated with the evolution of the underlying UV burst. Conclusions: The magnetic field around the null point is sheared by

  9. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  10. Evaluation of burst pressure prediction models for line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xian-Kui, E-mail: zhux@battelle.org [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States); Leis, Brian N. [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States)

    2012-01-15

    Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487-492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: Black-Right-Pointing-Pointer This paper evaluates different burst pressure prediction models for line pipes. Black-Right-Pointing-Pointer The existing models are categorized into two major groups of Tresca and von Mises solutions. Black-Right-Pointing-Pointer Prediction quality of each model is assessed statistically using a large full-scale burst test database. Black-Right-Pointing-Pointer The Zhu-Leis solution is identified as the best predictive model.

  11. Evaluation of burst pressure prediction models for line pipes

    International Nuclear Information System (INIS)

    Zhu, Xian-Kui; Leis, Brian N.

    2012-01-01

    Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487–492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: ► This paper evaluates different burst pressure prediction models for line pipes. ► The existing models are categorized into two major groups of Tresca and von Mises solutions. ► Prediction quality of each model is assessed statistically using a large full-scale burst test database. ► The Zhu-Leis solution is identified as the best predictive model.

  12. Recent results of zebra patterns in solar radio bursts

    International Nuclear Information System (INIS)

    Chernov, Gennady P.

    2010-01-01

    This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years. All new properties are considered in light of both what was known earlier and new theoretical models. Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves 'highlight' the levels of double plasma resonance (DPR). A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type III-like bursts. The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts. The additional injection of fast particles filled the loss-cone (breaking the loss-cone distribution), and the generation of the continuum was quenched at these moments. The maximum absorptive effect occurs at the DPR levels. The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source. Thus, the DPR model helps to understand several aspects of unusual elements of ZPs. However, the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field. Three new theories of ZPs are examined. The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism. Two other models (nonlinear periodic space - charge waves and scattering of fast protons on ion-sound harmonics) could happen in large radio bursts. (invited reviews)

  13. Effect of wear on the burst strength of l-80 steel casing

    International Nuclear Information System (INIS)

    Irawan, S; Bharadwaj, A M; Temesgen, B; Karuppanan, S; Abdullah, M Z B

    2015-01-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis. (paper)

  14. Burst strength of tubing and casing based on twin shear unified strength theory.

    Science.gov (United States)

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.

  15. Polarized Emission from Gamma-Ray Burst Jets

    Directory of Open Access Journals (Sweden)

    Shiho Kobayashi

    2017-11-01

    Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.

  16. Explaining fast radio bursts through Dicke's superradiance

    Science.gov (United States)

    Houde, Martin; Mathews, Abhilash; Rajabi, Fereshteh

    2018-03-01

    Fast radio bursts (FRBs), characterized by strong bursts of radiation intensity at radio wavelengths lasting on the order of a millisecond, have yet to be firmly associated with a family, or families, of astronomical sources. It follows that despite the large number of proposed models, no well-defined physical process has been identified to explain this phenomenon. In this paper, we demonstrate how Dicke's superradiance, for which evidence has recently been found in the interstellar medium, can account for the characteristics associated with FRBs. Our analysis and modelling of previously detected FRBs suggest they could originate from regions in many ways similar to those known to harbour masers or megamasers, and result from the coherent radiation emanating from populations of molecules associated with large-scale entangled quantum mechanical states. We estimate this entanglement to involve as many as ˜1030 to ˜1032 molecules over distances spanning 100-1000 au.

  17. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  18. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  19. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  20. Voltage interval mappings for an elliptic bursting model

    OpenAIRE

    Wojcik, Jeremy; Shilnikov, Andrey

    2013-01-01

    We employed Poincar\\'e return mappings for a parameter interval to an exemplary elliptic bursting model, the FitzHugh-Nagumo-Rinzel model. Using the interval mappings, we were able to examine in detail the bifurcations that underlie the complex activity transitions between: tonic spiking and bursting, bursting and mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the FitzHugh-Nagumo-Rinzel model. We illustrate the wealth of information, qualitative and quantitati...

  1. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  2. Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists

    Science.gov (United States)

    Henderson, S.

    2015-12-01

    It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and

  3. Detection of gamma-ray bursts from Andromeda

    International Nuclear Information System (INIS)

    Bulik, Tomasz; Coppi, Paolo S.; Lamb, Donald Q.

    1996-01-01

    If gamma-ray bursts originate in a corona around the Milky Way, it should also be possible to detect them from a similar corona around Andromeda. Adopting a simple model of high velocity neutron star corona, we evaluate the ability of instruments on existing missions to detect an excess of bursts toward Andromeda. We also calculate the optimal properties of an instrument designed to detect such an excess. We find that if the bursts radiate isotropically, an experiment with a sampling distance d max > or approx. 500 kpc could detect a significant excess of bursts in the direction of Andromeda in a few years of observation. If the radiation is beamed along the neutron star's direction of motion, an experiment with d max > or approx. 800 kpc would detect such an excess in a similar amount of time, provided that the width of the beam is greater than 10 deg. Lack of an excess toward Andromeda would therefore be compelling evidence that the bursts are cosmological in origin if made by an instrument at least 50 times more sensitive than BATSE, given current constraints on Galactic corona models. Comparisons with detailed dynamical calculations of the spatial distribution of high velocity neutron stars in the coronae around the Milky Way and Andromeda confirm these conclusions

  4. Scientific Applications Performance Evaluation on Burst Buffer

    KAUST Repository

    Markomanolis, George S.

    2017-10-19

    Parallel I/O is an integral component of modern high performance computing, especially in storing and processing very large datasets, such as the case of seismic imaging, CFD, combustion and weather modeling. The storage hierarchy includes nowadays additional layers, the latest being the usage of SSD-based storage as a Burst Buffer for I/O acceleration. We present an in-depth analysis on how to use Burst Buffer for specific cases and how the internal MPI I/O aggregators operate according to the options that the user provides during his job submission. We analyze the performance of a range of I/O intensive scientific applications, at various scales on a large installation of Lustre parallel file system compared to an SSD-based Burst Buffer. Our results show a performance improvement over Lustre when using Burst Buffer. Moreover, we show results from a data hierarchy library which indicate that the standard I/O approaches are not enough to get the expected performance from this technology. The performance gain on the total execution time of the studied applications is between 1.16 and 3 times compared to Lustre. One of the test cases achieved an impressive I/O throughput of 900 GB/s on Burst Buffer.

  5. A kinetic model for the burst phase of processive cellulases

    DEFF Research Database (Denmark)

    Præstgaard, Eigil; Olsen, Jens Elmerdahl; Murphy, Leigh

    2011-01-01

    . This approach generally accounts well for the initial time course (approximately 1 h) of the hydrolysis. We suggest that the models will be useful in attempts to rationalize the initial kinetics of processive cellulases, and demonstrate their application to some open questions, including the effect of repeated......Cellobiohydrolases (exocellulases) hydrolyze cellulose processively, i.e. by sequential cleaving of soluble sugars from one end of a cellulose strand. Their activity generally shows an initial burst, followed by a pronounced slowdown, even when substrate is abundant and product accumulation...... of the model, which can be solved analytically, shows that the burst and slowdown can be explained by the relative rates of the sequential reactions in the hydrolysis process and the occurrence of obstacles for the processive movement along the cellulose strand. More specifically, the maximum enzyme activity...

  6. A codimension-2 bifurcation controlling endogenous bursting activity and pulse-triggered responses of a neuron model.

    Science.gov (United States)

    Barnett, William H; Cymbalyuk, Gennady S

    2014-01-01

    The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals-the duration of the burst and the duration of latency to spiking-are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of

  7. Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method

    Science.gov (United States)

    Kuuttila, J.; Kajava, J. J. E.; Nättilä, J.; Motta, S. E.; Sánchez-Fernández, C.; Kuulkers, E.; Cumming, A.; Poutanen, J.

    2017-08-01

    The cooling of type-I X-ray bursts can be used to probe the nuclear burning conditions in neutron star envelopes. The flux decay of the bursts has been traditionally modelled with an exponential, even if theoretical considerations predict power-law-like decays. We have analysed a total of 540 type-I X-ray bursts from five low-mass X-ray binaries observed with the Rossi X-ray Timing Explorer. We grouped the bursts according to the source spectral state during which they were observed (hard or soft), flagging those bursts that showed signs of photospheric radius expansion (PRE). The decay phase of all the bursts were then fitted with a dynamic power-law index method. This method provides a new way of probing the chemical composition of the accreted material. Our results show that in the hydrogen-rich sources the power-law decay index is variable during the burst tails and that simple cooling models qualitatively describe the cooling of presumably helium-rich sources 4U 1728-34 and 3A 1820-303. The cooling in the hydrogen-rich sources 4U 1608-52, 4U 1636-536, and GS 1826-24, instead, is clearly different and depends on the spectral states and whether PRE occurred or not. Especially the hard state bursts behave differently than the models predict, exhibiting a peculiar rise in the cooling index at low burst fluxes, which suggests that the cooling in the tail is much faster than expected. Our results indicate that the drivers of the bursting behaviour are not only the accretion rate and chemical composition of the accreted material, but also the cooling that is somehow linked to the spectral states. The latter suggests that the properties of the burning layers deep in the neutron star envelope might be impacted differently depending on the spectral state.

  8. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    Science.gov (United States)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  9. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    International Nuclear Information System (INIS)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  10. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng, E-mail: guwm@xmu.edu.cn [Department of Astronomy, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  11. Physical characterization of the Skua fast burst assembly

    International Nuclear Information System (INIS)

    Paternoster, R.; Bounds, J.; Sanchez, R.; Miko, D.

    1994-01-01

    In this paper we discuss the system design and ongoing efforts to characterize the machine physics and operating properties of the Skua fast burst assembly. The machine is currently operating up to prompt critical while we await approval for super-prompt burst operations. Efforts have centered on characterizing neutron kinetic properties, comparing calculated and measured temperature coefficients and power distributions, improving the burst reproducibility, examining the site-wide dose characteristics, and fitting the machine with cooling and filtration systems

  12. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-09-20

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.

  13. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Zhang, Bing

    2017-01-01

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.

  14. Cosmic radio-noise absorption bursts caused by solar wind shocks

    Directory of Open Access Journals (Sweden)

    A. Osepian

    2004-09-01

    Full Text Available Bursts of cosmic noise absorption observed at times of sudden commencements (SC of geomagnetic storms are examined. About 300SC events in absorption for the period 1967-1990 have been considered. It is found that the response of cosmic radio-noise absorption to the passage of an interplanetary shock depends on the level of the planetary magnetic activity preceding the SC event and on the magnitude of the magnetic field perturbation associated with the SC (as measured in the equatorial magnetosphere. It is shown that for SC events observed against a quiet background (Kp<2, the effects of the SC on absorption can be seen only if the magnitude of the geomagnetic field perturbation caused by the solar wind shock exceeds a threshold value ΔBth. It is further demonstrated that the existence of this threshold value, ΔBth, deduced from experimental data, can be related to the existence of a threshold for exciting and maintaining the whistler cyclotron instability, as predicted by quasi-linear theory. SC events observed against an active background (Kp<2 are accompanied by absorption bursts for all magnetic field perturbations, however small. A quantitative description of absorption bursts associated with SC events is provided by the whistler cyclotron instability theory.

  15. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  16. Snapshot measurements used for systematic studies of the bursting threshold at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Brosi, Miriam; Blomley, Edmund; Bruendermann, Erik; Caselle, Michele; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Steinmann, Johannes L. [KIT, Karlsruhe (Germany)

    2016-07-01

    The ANKA storage ring at the Karlsruhe Institute of Technology (KIT) can generate brilliant coherent synchrotron radiation in the THz range by using a dedicated electron bunch length reducing optic. One challenge in the production of coherent THz radiation at synchrotrons is the high degree of spatial compression in this so-called low-alpha optics. The resulting complex longitudinal dynamics of the electron bunches, called micro-bunching instability, leads to time dependent fluctuations and strong bursts in the radiated THz intensity. This contribution will present a quasi instantaneous method to measure the bursting characteristics by evaluating the information of all bunches in a multi-bunch fill. The reduction of the measurement time from hours down to seconds, allows the measurement of bursting characteristics for various accelerator settings within one fill.

  17. Pattern Recognition of Signals for the Fault-Slip Type of Rock Burst in Coal Mines

    Directory of Open Access Journals (Sweden)

    X. S. Liu

    2015-01-01

    Full Text Available The fault-slip type of rock burst is a major threat to the safety of coal mining, and effectively recognizing its signals patterns is the foundation for the early warning and prevention. At first, a mechanical model of the fault-slip was established and the mechanism of the rock burst induced by the fault-slip was revealed. Then, the patterns of the electromagnetic radiation, acoustic emission (AE, and microseismic signals in the fault-slip type of rock burst were proposed, in that before the rock burst occurs, the electromagnetic radiation intensity near the sliding surface increases rapidly, the AE energy rises exponentially, and the energy released by microseismic events experiences at least one peak and is close to the next peak. At last, in situ investigations were performed at number 1412 coal face in the Huafeng Mine, China. Results showed that the signals patterns proposed are in good agreement with the process of the fault-slip type of rock burst. The pattern recognition can provide a basis for the early warning and the implementation of relief measures of the fault-slip type of rock burst.

  18. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  19. Ion burst event in the earth's dayside magnetosheath

    International Nuclear Information System (INIS)

    Paschalidis, N.P.; Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.; Zanetti, L.J.; Sarris, E.T.; Christon, S.P.

    1991-01-01

    The MEPA instrument on the AMPTE/CCE Spacecraft provided ion angular distributions as rapidly as every 6 sec for H, He, and O at energies of 10 keV to 2 MeV in the dayside magnetosheath within 8.75 R E , the CCE apogee. In this report the authors discuss a burst of energetic particles in the subsolar magnetosheath and its association with rapid changes in the local magnetic field direction in such a way that the magnetic field connected the spacecraft to the magnetopause during the enhancement. They find that magnetosheath angular distributions outside the burst peaked at 90 degree pitch angles, whereas during the burst they exhibited field aligned streaming either parallel or antiparallel to the magnetic field combined with a clear earthward gradient. The clear earthward gradients at E ≥ 10 KeV, the streaming, and the slope change in the burst-time magnetosheath spectrum at ∼10 KeV suggest magnetospheric source for the burst-time ≥ 10 KeV ions and heated solar wind for E < 10 KeV

  20. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  1. Accelerating Science with the NERSC Burst Buffer Early User Program

    Energy Technology Data Exchange (ETDEWEB)

    Bhimji, Wahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Debbie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romanus, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutgers Univ., New Brunswick, NJ (United States); Paul, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ovsyannikov, Andrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bryson, Matt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Correa, Joaquin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lockwood, Glenn K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsulaia, Vakho [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Farrell, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gursoy, Doga [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Daley, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beckner, Vince [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wright, Nicholas J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, none [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burst Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.

  2. The sample of INTEGRAL SPI-ACS gamma-ray bursts

    International Nuclear Information System (INIS)

    Rau, A.; Kienlin, A. von; Licht, G.G.; Hurley, K.

    2005-01-01

    The anti-coincidence system of the spectrometer on board INTEGRAL is operated as a nearly omni directional gamma-ray burst detector above ∼ 75 KeV. During the elapsed mission time 324 burst candidates were detected. As part of the 3rd Interplanetary Network of gamma-ray detectors the cosmic origin of 115 burst was confirmed. Here we present a preliminary analysis of the SPI-ACS gamma-ray burst sample. In particular we discuss the origin of a significant population of short events (duration < 0.2 s) and a possible method for a flux calibration of the data

  3. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  4. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  5. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  6. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  7. Determination of Burst Pressure of API Steel Pipes using Stress Modified Critical Strain Model

    International Nuclear Information System (INIS)

    Alang, N A; Razak, N A; Sulaiman, A S

    2012-01-01

    This paper presents a technique which can be used to determine the burst pressure of defective steel pipes using non-linear finite element (FE) analysis. The technique uses stress modified critical strain (SMCS) failure criterion to study the effect of gouge defects on maximum working pressure of API X65 steel pipes. The procedures in determining the model parameters using 3-D, homogeneous isotropic elastic-plastic material model with large deformation finite element analyses from notched tensile bars were systematically discussed. The relationship between burst pressure and gouge depth was proposed. The burst pressure estimated then was compared to experimental data from the literature for validation showing overall good agreements.

  8. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    Science.gov (United States)

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  9. Burst firing and modulation of functional connectivity in cat striate cortex.

    Science.gov (United States)

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of bursts (of any length) in eliciting a time-related response spike averaged 18.53% across all measurements as compared with the effectiveness of single spikes, which averaged 9.53%. Longer bursts were more effective than shorter ones. Effectiveness was reduced with spatially nonoptimal, as opposed to optimal, stimuli. The effectiveness of both bursts and single spikes decreased by the same amount across measurements with nonoptimal orientations, spatial frequencies and contrasts. At similar firing rates and burst lengths, the decrease was more pronounced for nonoptimal orientations than for lower contrasts, suggesting the existence of a mechanism that reduces effectiveness at nonoptimal orientations. These results support the hypothesis that neural information can be emphasized via instantaneous rate coding that is not preserved over long intervals or over trials. This is consistent with the integrate and fire model, where bursts participate in temporal integration.

  10. Prediction of CMEs and Type II Bursts from Sun to Earth

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  11. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A

    Energy Technology Data Exchange (ETDEWEB)

    Gompertz, B.; Fruchter, A., E-mail: bgompertz@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-04-10

    Supernova 2011kl, associated with the ultra-long gamma-ray burst (ULGRB) 111209A, exhibited a higher-than-normal peak luminosity, placing it in the parameter space between regular supernovae and super-luminous supernovae. Its light curve can only be matched by an abnormally high fraction of {sup 56}Ni that appears inconsistent with the observed spectrum, and as a result it has been suggested that the supernova, and by extension the gamma-ray burst, are powered by the spin-down of a highly magnetized millisecond pulsar, known as a magnetar. We investigate the broadband observations of ULGRB 111209A and find two independent measures that suggest a high density circumburst environment. However, the light curve of the GRB afterglow shows no evidence of a jet break (the steep decline that would be expected as the jet slows due to the resistance of the external medium) out to three weeks after trigger, implying a wide jet. Combined with the high isotropic energy of the burst, this implies that only a magnetar with a spin period of ∼1 ms or faster can provide enough energy to power both ULGRB 111209A and Supernova 2011kl.

  12. Arachidonic acid triggers an oxidative burst in leukocytes

    Directory of Open Access Journals (Sweden)

    Pompeia C.

    2003-01-01

    Full Text Available The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells, Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold, whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

  13. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Directory of Open Access Journals (Sweden)

    S. Capozziello

    2015-11-01

    Full Text Available The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  14. The velocities of type II solar radio bursts

    International Nuclear Information System (INIS)

    Tlamicha, A.; Karlicky, M.

    1976-01-01

    A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)

  15. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  16. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  17. Infrared and X-ray bursts from the rapid burster

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Chitre, S.M.

    1979-01-01

    Studies on sudden bursts from the cosmic X-ray sources are reported. The processes occuring from the rise in luminosity of an x-ray source to its collapse are described. Records of the x-ray burst from the globular cluster NGC 6624 and the 'Rapid Burster' are shown. The Infra-red bursts from the Rapid Burster are also explained. (A.K.)

  18. THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Markwardt, C. B.; Parsons, A. M.; Tueller, J.; Fenimore, E. E.; Palmer, D. M.; Sato, G.; Stamatikos, M.; Ukwatta, T. N.; Zhang, B.

    2011-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T 90 and T 50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E obs peak of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T 90 and the observed spectra with redshifts. The T 90

  19. Neutrino emission from gamma-ray burst fireballs, revised.

    Science.gov (United States)

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  20. Testing Einstein's Equivalence Principle With Fast Radio Bursts

    Science.gov (United States)

    Wei, Jun-Jie; Gao, He; Wu, Xue-Feng; Mészáros, Peter

    2015-12-01

    The accuracy of Einstein's equivalence principle (EEP) can be tested with the observed time delays between correlated particles or photons that are emitted from astronomical sources. Assuming as a lower limit that the time delays are caused mainly by the gravitational potential of the Milky Way, we prove that fast radio bursts (FRBs) of cosmological origin can be used to constrain the EEP with high accuracy. Taking FRB 110220 and two possible FRB/gamma-ray burst (GRB) association systems (FRB/GRB 101011A and FRB/GRB 100704A) as examples, we obtain a strict upper limit on the differences of the parametrized post-Newtonian parameter γ values as low as [γ (1.23 GHz )-γ (1.45 GHz )] <4.36 ×10-9. This provides the most stringent limit up to date on the EEP through the relative differential variations of the γ parameter at radio energies, improving by 1 to 2 orders of magnitude the previous results at other energies based on supernova 1987A and GRBs.

  1. On the Nature of the Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Kyung-Ai Hong

    1987-12-01

    Full Text Available Review of the γ-ray burst phenomena are presented. History of the γ-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  2. Unusual X-ray burst profiles from 4U/MXB 1636-53

    Science.gov (United States)

    Sztajno, M.; Truemper, J.; Pietsch, W.; Van Paradijs, J.; Stollman, G.

    1985-01-01

    During a one day Exosat observation eight X-ray bursts from 4U/MXB 1636-53 are observed. Four of these were very unusual. Their peak fluxes were relatively low, and they showed a distinct double peak in their bolometric flux profiles. These new double-peaked bursts are unexplained by presently available models of X-ray bursts. It is possible that the energy release in these bursts proceeds in two 'steps'. The burst profiles are not the result of an expansion and subsequent contraction of the photosphere of the neutron star. Thus, they are very different from previously observed bursts which do show a double peak in certain energy ranges but not in their bolometric flux profiles; these are satisfactorily explained in terms of photospheric radius expansion and contraction. The anticorrelation between the apparent blackbody radius and blackbody temperature is discussed in terms of the nonPlanckian character of burst spectra and it is concluded that the model calculations reported by London, Taam, and Howard in 1984 give a reasonable first-order description of the observed apparent radius changes in X-ray bursts.

  3. M-Burst: A Framework of SRLG Failure Localization in All-Optical Networks

    KAUST Repository

    Ali, Mohammed L.

    2012-07-27

    Fast and unambiguous failure localization for shared risk link groups (SRLGs) with multiple links is essential for building a fully survivable and functional transparent all-optical mesh network. Monitoring trails (m-trails) have been proposed as an effective approach to achieve this goal. However, each m-trail traverses through each link by constantly taking a wavelength channel, causing a significant amount of resource consumption. In this paper, a novel framework of all-optical monitoring for SRLG failure localization is proposed. We investigate the feasibility of periodically launching optical bursts along each m-trail instead of assigning it a dedicated supervisory lightpath to probe the set of fiber segments along the m-trail, aiming to achieve a graceful compromise between resource consumption and failure localization latency. This paper defines the proposed framework and highlights the relevant issues regarding its feasibility. We provide theoretical justifications of the scheme. As a proof of concept, we formulate the optimal burst scheduling problem via an integer linear program (ILP) and implement the method in networks of all possible SRLGs with up to d=3 links. A heuristic method is also proposed and implemented for multiple-link SRLG failure localization, keeping all the assumptions the same as in the ILP method. Numerical results for small networks show that the scheme is able to localize single-link and multiple-link SRLG failures unambiguously with a very small amount of failure localization latency.

  4. Gamma Ray Bursts as Cosmological Probes with EXIST

    Science.gov (United States)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  5. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  6. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  7. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  8. Characteristics of shock-associated fast-drift kilometric radio bursts

    Science.gov (United States)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  9. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    1991-01-01

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected...... by the distant space probes PVO and ULYSSES and there are, therefore, good prospects for obtaining much improved positions using the burst arrival times. The existence of the almost concurrent Schmidt plates could then become particularly interesting....

  10. THE METHOD OF ASSESSING ROCK BURSTING HAZARD IN MINING

    Directory of Open Access Journals (Sweden)

    Anna MANOWSKA

    2015-04-01

    Full Text Available The article discusses a concept of forecasting accident risk during longwall extraction in crump-risk conditions. In Polish mines rock burst hazard can be described as high compared to other mines around the world. It's related to increase of depth of longwall field operation, preparation works, including drilling of mine face pavements which leads to systematic deterioration of geological and mining conditions. Depletion of coal is also the reason why mines operate in high mining tremor risk conditions. Mines more and more often operate in decks, where there is large number of edges and remains of older decks. Rocks bursts still remain one of the most dangerous natural hazards and therefore are fundamental prob-lem and have the greatest impact on safety in mining industry. The proposed method for forecasting accidents and loss-es in people and goods can contribute to improvement of work organization methods and mine safety management system.

  11. Gamma-ray burst theory after Swift.

    Science.gov (United States)

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  12. Type III bursts in interplanetary space - Fundamental or harmonic?

    Science.gov (United States)

    Dulk, G. A.; Steinberg, J. L.; Hoang, S.

    1984-01-01

    ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.

  13. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Petroff, E.; Kasliwal, M.; Ravi, V.

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm^(−3), a pulse duration of 2.8 ^(+1.2)_(−0.5)ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7 ^(+0.2)_(−0.1) Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found t...

  14. Testing the Isotropic Universe Using the Gamma-Ray Burst Data of Fermi/GBM

    Science.gov (United States)

    Řípa, Jakub; Shafieloo, Arman

    2017-12-01

    The sky distribution of gamma-ray bursts (GRBs) has been intensively studied by various groups for more than two decades. Most of these studies test the isotropy of GRBs based on their sky number density distribution. In this work, we propose an approach to test the isotropy of the universe through inspecting the isotropy of the properties of GRBs such as their duration, fluences, and peak fluxes at various energy bands and different timescales. We apply this method on the Fermi/Gamma-ray Burst Monitor (GBM) data sample containing 1591 GRBs. The most noticeable feature we found is near the Galactic coordinates l≈ 30^\\circ , b≈ 15^\\circ , and radius r≈ 20^\\circ {--}40^\\circ . The inferred probability for the occurrence of such an anisotropic signal (in a random isotropic sample) is derived to be less than a percent in some of the tests while the other tests give results consistent with isotropy. These are based on the comparison of the results from the real data with the randomly shuffled data samples. Considering the large number of statistics we used in this work (some of which are correlated with each other), we can anticipate that the detected feature could be a result of statistical fluctuations. Moreover, we noticed a considerably low number of GRBs in this particular patch, which might be due to some instrumentation or observational effects that can consequently affect our statistics through some systematics. Further investigation is highly desirable in order to clarify this result, e.g., utilizing a larger future Fermi/GBM data sample as well as data samples of other GRB missions and also looking for possible systematics.

  15. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  16. Stress Effects on Stop Bursts in Five Languages

    Directory of Open Access Journals (Sweden)

    Marija Tabain

    2016-11-01

    Full Text Available This study examines the effects of stress on the stop burst in five languages differing in number of places of articulation, as reflected in burst duration, spectral centre of gravity, and ­spectral standard deviation. The languages studied are English (three places of articulation /p t k/, the Indonesian language Makasar (four places /p t c k/, and the Central Australian languages ­Pitjantjatjara, Warlpiri (both five places /p t ʈ c k/, and Arrernte (six places /p t̪ t ʈ c k/. We find that languages differ in how they manifest stress on the consonant, with Makasar not ­showing any effect of stress at all, and Warlpiri showing an effect on burst duration, but not on the ­spectral measures. For the other languages, the velar /k/ has a “darker” quality (i.e., lower spectral centre of gravity, and/or a less diffuse spectrum (i.e., lower standard deviation under stress; while the alveolar /t/ has a “lighter” quality under stress. In addition, the dental /t̪/ has a more diffuse spectrum under stress. We suggest that this involves enhancement of the features [grave] and [diffuse] under stress, with velars being [+grave] and [–diffuse], alveolars being [–grave], and dentals being [+diffuse]. We discuss the various possible spectral effects of enhancement of these features. Finally, in the languages with five or six places of articulation, the stop burst is longer only for the palatal /c/ and the velar /k/, which have intrinsically long burst durations, and not for the anterior coronals /t̪ t ʈ/, which have intrinsically short burst durations. We suggest that in these systems, [burst duration] is a feature that separates these two groups of consonants.

  17. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  18. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    Science.gov (United States)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  19. SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulmer, Craig D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Widener, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System (ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O performance. While these non-volatile memory (NVM) resources provide a new tier in the storage hierarchy, developers must find the right way to incorporate the technology into their applications in order to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these resources can be incorporated into our existing libraries and workflows without burdening our application developers with excessive, platform-specific details. This FY18Q1 milestone summaries our progress in adapting the Sandia Parallel Aerodynamics and Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to use our Kelpie distributed memory library to store/retrieve checkpoints. Team members were successful in generating initial implementation for all four approaches, but were unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred to a single library.

  20. An ARMA prediction model for electromagnetic radiation data preceeding a rock burst

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhen-tang; Liu Xiao-fei; Wang En-yuan [China University of Mining & Technology, Xuzhou (China). School of Safety Engineering

    2009-03-15

    SAS statistical analysis software was used to test the randomness of electromagnetic radiation (EMR) observed during the '1.12 rock burst' of the number 237 working face in the Nanshan coal mine. An auto-regressive-moving-average (ARMA) model was fitted to the EMR data and used to forecast twelve observations into the future. The results show that the rock burst EMR data are non-white noise, stationary and can be fitted with an AR(3) model. Comparing the model EMR values to the real data, the similarity degree is about 66%. An ARMA model can use data preceding an event to describe changes in the EMR trends quantitatively. 10 refs., 4 figs., 4 tabs.

  1. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  2. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    Science.gov (United States)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  3. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    Science.gov (United States)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  4. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  5. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    Science.gov (United States)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  6. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    Science.gov (United States)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  7. A closed-loop anesthetic delivery system for real-time control of burst suppression

    Science.gov (United States)

    Liberman, Max Y.; Ching, ShiNung; Chemali, Jessica; Brown, Emery N.

    2013-08-01

    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably

  8. A polarized fast radio burst at low Galactic latitude

    Science.gov (United States)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  9. Properties of gamma-ray burst time profiles using pulse decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. This pulse decomposition analysis has previously been performed on a small sample of bright long bursts using binned data from BATSE, which comes in several data types, and on a sample of short bursts using the BATSE Time-Tagged Event (TTE) data type. The authors have developed an interactive pulse-fitting program using the phenomenological pulse model of Norris, et. al. and a maximum-likelihood fitting routine. They have used this program to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. They present statistical information on the attributes of pulses comprising these bursts, including relations between pulse characteristics through the course of a burst. They carry out simulations to determine the biases that their procedures may introduce. They find that pulses tend to have shorter rise times than decay times, and tend to be narrower and peak earlier at higher energies. They also find that pulse brightness, pulse width, and pulse hardness ratios do not evolve monotonically within bursts, but that the ratios of pulse rise times to decay times tends to decrease with time within bursts.

  10. Intrinsic and cosmological signatures in gamma-ray burst time profiles: Time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. The authors have used a pulse decomposition procedure to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. The authors obtain amplitude, rise and decay timescales, a pulse shape parameter, and the fluencies of individual pulses in all of the bursts. The authors investigate the correlations between brightness measures (amplitude and fluence) and timescale measures (pulse width and separation) which may result from cosmological time dilation of bursts, or from intrinsic properties of burst sources or from selection effects. The effects of selection biases are evaluated through simulations. The correlations between these parameters among pulses within individual bursts give a measure of the intrinsic effects while the correlations among bursts could result both from intrinsic and cosmological effects. The authors find that timescales tend to be shorter in bursts with higher peak fluxes, as expected from cosmological time dilation effects, but also find that there are non-cosmological effects contributing to this inverse correlation. The authors find that timescales tend to be longer in bursts with higher total fluences, contrary to what is expected from cosmological effects. The authors also find that peak fluxes and total fluences of bursts are uncorrelated, indicating that they cannot both be good distance indicators for bursts.

  11. Transverse mode instabilities in burst operation of high-power fiber laser systems

    Science.gov (United States)

    Jauregui, Cesar; Stihler, Christoph; Tünnermann, Andreas; Limpert, Jens

    2018-02-01

    We propose, to the best of our knowledge, the first mitigation strategy for TMI based on controlling the phase shift between the thermally-induced index grating and the modal intensity pattern. In particular, in this work we present a study of transverse mode instabilities in burst operation in a high-power fiber laser system. It is shown that, with a careful choice of the parameters, this operation regime can potentially lead to the mitigation of TMI by forcing an energy transfer from the higher-order-modes into the fundamental mode during the burst.

  12. Development of a criticality monitoring and alarm system

    International Nuclear Information System (INIS)

    Egey, Julio; Izraelevitch, Federico H.; Matatagui, Emilio

    2009-01-01

    In this work we are presenting the development of a Criticality Monitor and Alarm System (SIMAC). It monitors the burst of radiation produced during such an accident and triggers an alarm for evacuation in case the radiation exceeds a pre-established threshold. It consists of two subsystems, one for gamma rays and the other for neutrons. Each subsystem has three independent detectors modules. Each module is composed of an ion chamber plus its associated electronics, feeding a logic module that in turn would trigger the evacuation alarm. An additional feature is a PC interface for data acquisition. The radiation detectors are ion chambers working in current mode. The electronics associated to each detector can manage a wide signal range using a logarithmic converter. (author)

  13. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  14. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  15. Bursting of a bubble confined in between two plates

    Science.gov (United States)

    Murano, Mayuko; Kimono, Natsuki; Okumura, Ko

    2015-11-01

    Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  16. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  17. Burst mode trigger of STEREO in situ measurements

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  18. A photospheric radius-expansion burst observed from XTE J1701-407 by INTEGRAL: an update on distance

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Maurizio, F.; Brandt, Søren Kristian

    2010-01-01

    On 2010-08-22 00:56:19 the INTEGRAL Burst Alert System (IBAS) triggered on an event ((GCN 11132, Gotz & Ferrigno, 2009) from the known burst source XTE J1701-407 (Falanga et al., A&A 496, 333, 2009; Linares et al., MNRAS 392, L11, 2009) during an observation of the field around SNR RXJ1713.7-3946...... (Falanga et al., 2009). Light curves of the burst can be obtained from the following adress: ftp://ftp.spacecenter.dk/pub/Jerome/Science/XTE_J1701-407/...

  19. All-Sky Monitoring of Variable Sources with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; hide

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  20. An origin for short gamma-ray bursts unassociated with current star formation.

    Science.gov (United States)

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  1. Soudan 2 muons in coincidence with BATSE bursts

    International Nuclear Information System (INIS)

    DeMuth, D.M.; Marshak, M.L.; Wagner, G.L.

    1994-01-01

    We explore the possibilities of statistically significant temporal and spatial coincidences between underground muons at Soudan 2 and Gamma Ray Bursts at the GRO-BATSE detector. Our search uses data from the April 91 to March 92 BATSE burst catalog to seek correlations within a 100 second window of coincidence. Sixteen of 180 BATSE triggers have temporally and spatially coincident muons in the Soudan 2 detector. We estimate the chance probability of each coincidence assuming the null hypothesis on the basis of a study of the multiplicities of spatially coincident muons observed over a two day period centered on the time of burst

  2. Bursting Smoke as an Infrared Countermeasure

    OpenAIRE

    Amarjit Singh; P. J. Kamale; S. A. Joshi; L. K. Bankar

    1998-01-01

    This paper describes the experimental setup for the evaluation of bursting smoke for anti-infrared role using SR-5000 spectroradiometer and a source of IR radiation (8-13 micrometer) using cadmium-mercury-telluride (CMI) detector cooled by liquid nitrogen. The particle size and shape of the powders used in the bursting smokes were determined microscopically using Carl Zeiss Jena Neophot- 21. Highest attenuation of 97 -lOO percent was produced for about 12 s using a mixture of bronze fl...

  3. Polarimetry of the Fast Radio Burst Source FRB121102

    Science.gov (United States)

    Michilli, Daniele; Seymour, Andrew; Hessels, Jason W. T.; Spitler, Laura; Gajjar, Vishal; Archibald, Anne; Bower, Geoffrey C.; Chatterjee, Shami; Cordes, Jim; Gourdji, Kelly; Heald, George; Kaspi, Victoria; Law, Casey; Sobey, Charlotte

    2018-01-01

    Fast radio bursts (FRBs) are millisecond-duration radio flashes of presumably extragalactic origin. FRB121102 is the only FRB known to repeat and the only one with a precise localization. It is co-located with a persistent radio source inside a star-forming region in a dwarf galaxy at z=0.2. While the persistent source is compatible with either a low-luminosity accreting black hole or a very energetic nebula and supernova remnant, the source of the bursts is still a mystery. We present new bursts from FRB121102 detected at relatively high radio frequencies of ~5GHz. These observations allow us to investigate the polarization properties of the bursts, placing new constraints on the environment of FRB121102.

  4. Recent results from the gamma-ray burst studies in the KONUS experiment

    International Nuclear Information System (INIS)

    Mazets, E.P.; Golenetskii, S.V.

    1981-01-01

    Observations of 85 gamma bursts by the KONUS instruments on the Venera 11 and Venera 12 spacecraft in the period September 1978 to May 1979 inclusive have provided proof of a galactic localization of the gamma-burst sources based on an analysis of the log N-log S plot and the revealed anisotropy in the angular distribution of sources over the celestial sphere. Evaluation of the energy released in the sources yields 10 40 -10 41 erg. There apparently exist several types of gamma bursts differing in time profile, duration and shape of their energy spectrum. In some cases, extensive evolution of the energy spectrum is observed during a burst. The discovery of a flaring X-ray pulsar in Dorado has provided the first observational evidence for a connection of gamma bursts with neutron stars. Repeated short bursts from this source have revealed for the first time the recurrent features of this phenomenon. Repeated bursts have been detected from one more source in the short burst class. The data obtained thus far impose a number of restrictions on the applicability of many theoretical suggestions concerning the nature of the gamma bursts. The most plausible model for the gamma-burst source appears to be a binary with a neutron star with strongly non-stationary accretion involving, possibly, non-stationary thermonuclear fusion of matter falling onto the surface of a degenerate star. (orig.)

  5. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F.; Wu, X. F.

    2016-01-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  6. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-09-20

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  7. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem; El-Ferik, Sami; Ho, Pin-Han

    2013-01-01

    congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets

  8. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  9. FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG

    Science.gov (United States)

    2014-06-01

    is normalized to π. The proposed burst-mode architecture is written in VHDL and verified using Modelsim. The VHDL design is implemented on a Xilinx...Document Number: SET 2014-0043 412TW-PA-14298 FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG June 2014 Final Report Test...To) 9/11 -- 8/14 4. TITLE AND SUBTITLE FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG 5a. CONTRACT NUMBER: W900KK-11-C-0032 5b

  10. High sensitivity neutron bursts detecting system

    International Nuclear Information System (INIS)

    Shyam, A.; Kaushik, T.C.; Srinivasan, M.; Kulkarni, L.V.

    1993-01-01

    Technique and instrumentation to detect multiplicity of fast neutrons, emitted in sharp bursts, has been developed. A bank of 16 BF 3 detectors, in an appropriate thermalising assembly, efficiency ∼ 16%, is used to detect neutron bursts. The output from this setup, through appropriate electronics, is divided into two paths. The first is directly connected to a computer controlled scalar. The second is connected to another similar scalar through a delay time unit (DTU). The DTU design is such that once it is triggered by a count pulse than it does not allow any counts to be recorded for a fixed dead time set at ∼ 100 μs. The difference in counts recorded directly and through DTU gives the total number of neutrons produced in bursts. This setup is being used to study lattice cracking, anomalous effects in solid deuterium systems and various reactor physics experiments. (author). 3 refs., 1 fig

  11. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  12. Analyses of resource reservation schemes for optical burst switching networks

    Science.gov (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila

    2017-12-01

    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  13. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses.

    Science.gov (United States)

    Batista, C A S; Viana, R L; Ferrari, F A S; Lopes, S R; Batista, A M; Coninck, J C P

    2013-04-01

    Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-type thermally sensitive neurons with chemical synapses through two different strategies. One is the application of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.

  14. On the Directivity of Low-Frequency Type IV Radio Bursts

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Makela, P.; Yashiro, S.; Cairns, I. H.

    2016-01-01

    An intense type IV radio burst was observed by the STEREO Behind (STB) spacecraft located about 144 deg. behind Earth. The burst was associated with a large solar eruption that occurred on the backside of the Sun (N05E151) close to the disk center in the STB view. The eruption was also observed by the STEREO Ahead (STA) spacecraft (located at 149 deg. ahead of Earth) as an eruption close to the west limb (N05W60) in that view. The type IV burst was complete in STB observations in that the envelope reached the lowest frequency and then receded to higher frequencies. The burst was partial viewed from STA, revealing only the edge coming down to the lowest frequency. The type IV burst was not observed at all near Earth because the source was 61 deg. behind the east limb. The eruption was associated with a low-frequency type II burst observed in all three views, although it was not very intense. Solar energetic particles were also observed at both STEREOs and at SOHO, suggesting that the shock was much extended, consistent with the very high speed of the CME (2048 km/s). These observations suggest that the type IV emission is directed along a narrow cone above the flare site. We confirm this result statistically using the type IV bursts of solar cycle 23.

  15. A study of the temporal and spectral characteristics of gamma ray bursts

    International Nuclear Information System (INIS)

    Norris, J.

    1983-05-01

    Gamma-ray burst data obtained from the ISEE-3 Gamma Ray Burst Spectrometer and the Solar Maximum Mission's Hard X-ray Burst Spectrometer (HXRBS) were analyzed to yield information on burst temporal and spectral characteristics. A Monte Carlo approach was used to simulate the HXRBS response to candidate spectral models. At energies above about 100 keV, the spectra are well fit by exponential forms. At lower energies, 30 keV to 60 keV, depressions below the model continua are apparent in some bursts. The depressions are not instrumental or data-reduction artifacts. The event selection criterion of the ISEE-3 experiment is based on the time to accumulate a present number of photons rather than the photon count per unit time and is consequently independent of event duration for a given burst intensity, unlike most conventional systems. As a result, a significantly greater percentage of fast, narrow events have been detected. The ratio of count rates from two ISEE-3 detectors indicates that bursts with durations or aprox. one second have much softer spectra than longer bursts

  16. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS

    International Nuclear Information System (INIS)

    Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A.; Von Kienlin, Andreas; Greiner, Jochen; Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie; Burgess, J. Michael; Collazzi, Andrew C.; Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M.; Goldstein, Adam M.; Kippen, R. Marc; Kouveliotou, Chryssa

    2016-01-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ -ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50–300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  17. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Von Kienlin, Andreas; Greiner, Jochen [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Burgess, J. Michael [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Collazzi, Andrew C. [SciTec Inc., 100 Wall Street, Princeton NJ, 08540 (United States); Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M. [Jacobs Technology, Inc., Huntsville, Alabama (United States); Goldstein, Adam M. [ZP12 Astrophysics Office, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kippen, R. Marc [Los Alamos National Laboratory, MS B244, P.O. Box 1663, Los Alamos, NM 87545 (United States); Kouveliotou, Chryssa [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); and others

    2016-04-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ -ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50–300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  18. High repetition rate burst-mode spark gap

    International Nuclear Information System (INIS)

    Faltens, A.; Reginato, L.; Hester, R.; Chesterman, A.; Cook, E.; Yokota, T.; Dexter, W.

    1978-01-01

    Results are presented on the design and testing of a pressurized gas blown spark gap switch capable of high repetition rates in a burst mode of operation. The switch parameters which have been achieved are as follows: 220-kV, 42-kA, a five pulse burst at 1-kHz, 12-ns risetime, 2-ns jitter at a pulse width of 50-ns

  19. INTEGRAL detects an X-ray burst from SAX J1747.0-2853 with no detectable persistent emission

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Brandt, Søren Kristian; Kuulkers, Erik

    2009-01-01

    A new season of observations for the INTEGRAL Galactic Bulge monitoring (see ATel #438) has started on 2009 Feb. 21st. During the latest observation between 2009 Feb 25 13:21 and 17:02 (UT) a type I X-ray burst from SAX J1747.0-2853 (1A 1743-288, aka GX .2-0.2) was detected by JEM-X at UT 14:50:5...

  20. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    International Nuclear Information System (INIS)

    Heimpel, Moritz; Aurnou, Jonathan M.

    2012-01-01

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%—roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed ∼1% SKR changes.

  1. Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts

    Science.gov (United States)

    Guha, Anirban; Williams, Earle; Boldi, Robert; Sátori, Gabriella; Nagy, Tamás; Bór, József; Montanyà, Joan; Ortega, Pascal

    2017-12-01

    spectral aliasing can occur even when 12-min spectral integrations are considered. The statistical result shows that for a 12-min spectrum, events above 16 CSD are capable of producing significant frequency aliasing of the modal frequencies, although the intensity aliasing might have a negligible effect unless the events are exceptionally large (∼200 CSD). The spectral CSD methodology may be used to extract the time of arrival of the Q-burst transients. This methodology may be combined with a hyperbolic ranging, thus becoming an effective tool to detect TLEs globally with a modest number of networked observational stations.

  2. Localised Microwave Bursts During ELMs on MAST

    Directory of Open Access Journals (Sweden)

    Freethy Simon

    2015-01-01

    Full Text Available Bursts of microwave emission are observed during ELM events on the Mega Ampère Spherical Tokamak. In agreement with observations on other machines, these bursts are up to 3 orders of magnitude more intense than the thermal background, but are electron cyclotron in nature. The peak in microwave emission is ~20μ before the peak in midplane Dα emission. Using the Synthetic Aperture Microwave Imaging radiometer, we are able to demonstrate that these bursts are often highly spatially localised and preferentially occur at the tokamak midplane. It is hypothesised that the localisation is a result of Doppler resonance broadening for electron Bernstein waves and the high perpendicular electron energies could be the result of pitch angle scattering in high collisionality regions of the plasma.

  3. Smooth Optical Self-similar Emission of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil, E-mail: lipunov2007@gmail.com [Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky prospect, 13, 119992, Moscow (Russian Federation)

    2017-08-10

    We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.

  4. Study of Coal Burst Source Locations in the Velenje Colliery

    Directory of Open Access Journals (Sweden)

    Goran Vižintin

    2016-06-01

    Full Text Available The Velenje coal mine (VCM is situated on the largest Slovenian coal deposit and in one of the thickest layers of coal known in the world. The thickness of the coal layer causes problems for the efficiency of extraction, since the majority of mining operations is within the coal layer. The selected longwall coal mining method with specific geometry, increasing depth of excavations, changes in stress state and naturally given geomechanical properties of rocks induce seismic events. Induced seismic events can be caused by caving processes, blasting or bursts of coal or the surrounding rock. For 2.5D visualization, data of excavations, ash content and calorific value of coal samples, hanging wall and footwall occurrence, subsidence of the surface and coal burst source locations were collected. Data and interpolation methods available in software package Surfer®12 were statistically analyzed and a Kriging (KRG interpolation method was chosen. As a result 2.5D visualizations of coal bursts source locations with geomechanical properties of coal samples taken at different depth in the coal seam in the VCM were made with data-visualization packages Surfer®12 and Voxler®3.

  5. FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS

    International Nuclear Information System (INIS)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Dai, Zi-Gao; Wang, Fa-Yin; Wu, Xue-Feng

    2016-01-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  6. FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Dai, Zi-Gao; Wang, Fa-Yin [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  7. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform

    Science.gov (United States)

    Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo

    2016-09-01

    This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.

  8. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  9. Flavonoids Inhibit the Respiratory Burst of Neutrophils in Mammals

    Directory of Open Access Journals (Sweden)

    Milan Ciz

    2012-01-01

    Full Text Available Neutrophils represent the front-line defence cells in protecting organisms against infection and play an irreplaceable role in the proper performance of the immune system. As early as within the first minutes of stimulation, neutrophilic NADPH oxidase is activated, and cells release large quantities of highly toxic reactive oxygen species (ROS. These oxidants can be highly toxic not only for infectious agents but also for neighboring host tissues. Since flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of ROS production. The present paper summarizes contemporary knowledge on the effects of various flavonoids on the respiratory burst of mammalian neutrophils. It can be summarized that the inhibitory effects of flavonoids on the respiratory burst of phagocytes are mediated via inhibition of enzymes involved in cell signaling as well as via modulation of redox status. However, the effects of flavonoids are even more complex, and several sites of action, depending upon the flavonoid structure and way of application, are included.

  10. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    Science.gov (United States)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  11. Method of separation of celestial gamma-ray bursts from solar flares

    International Nuclear Information System (INIS)

    Chuang, K.W.; White, R.S.; Klebesadel, R.W.; Laros, J.G.

    1991-01-01

    We recently discovered 217 ''new'' celestial gamma-ray burst candidates from the ''new'' burst search of the PVO real time data base. 1 The burst search covered the time period from September 1978 to July 1988. Sixty were confirmed by at lest on other spacecraft, e.g., ISEE-3, V-11, V-12, etc. None triggered the PVO high time resolution memory. In this paper we describe a new algorithm based ont eh relationship between time width T w and hardness ratio HR, to distinguish cosmic gamma-ray bursts from solar flares without knowing the directions of the events. The criteria for identification as a gamma-ray burst candidate are: If T ww ≤a then HR≥bT w , or T w >a then HR>c. Otherwise, the event is a solar flare candidate. Here, a, b, and c are parameter which differ for different gamma-ray burst detectors. For PVO, a=18.8 s, b=(1.38/18.8) s -1 , and c=1.38. This algorithm was tested with 83 triggered and 60 nontriggered confirmed gamma-ray burst and 30 confirmed solar flares from PVO

  12. Short Hard Gamma Ray Bursts And Their Afterglows

    CERN Document Server

    Dado, Shlomo

    2009-01-01

    Long duration gamma ray bursts (GRBs) and X-ray flashes (XRFs) are produced by highly- relativistic jets ejected in core-collapse supernova explosions. The origin of short hard gamma-ray bursts (SHBs) has not been established. They may be produced by highly relativistic jets ejected in various processes: mergers of compact stellar objects; large-mass accretion episodes onto compact stars in close binaries or onto intermediate-mass black holes in dense stellar regions; phase transition of compact stars. Natural environments of such events are the dense cores of globular clusters, superstar clusters and young supernova remnants. We have used the cannonball model of GRBs to analyze all Swift SHBs with a well-sampled X-ray afterglow. We show that their prompt gamma-ray emission can be explained by inverse Compton scattering (ICS) of the progenitor's glory light, and their extended soft emission component by ICS of high density light or synchrotron radiation (SR) in a high density interstellar medium within the cl...

  13. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  14. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  15. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  16. BALLERINA - Pirouettes in search of gamma burst sources

    International Nuclear Information System (INIS)

    Brandt, Soeren; Lund, Niels

    1999-01-01

    The cosmological origin of gamma-ray bursts (GRBs) has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large variability in properties, which have been indicated by the first handful of events. We are proposing BALLERINA, a small satellite to provide accurate gamma burst positions at a rate an order of magnitude larger than from Beppo-SAX. On the experimental side, it remains a challenge to ensure the earliest detection of the X-ray afterglow. The mission proposed here allows for the first time systematic studies of the soft X-ray emission in the time interval from only a few minutes after the onset of the burst to a few hours later. In addition to positions of GRBs with accuracy better than 1'reported to the ground within a few minutes of the burst, essential for follow-up work, BALLERINA will on its own provide observations in an uncharted region of parameter space. Secondary objectives of the BALLERINA mission includes observations of the earliest phases of the outbursts of X-ray novae and other X-ray transients. BALLERINA is one of four missions currently under study for the Danish Small Satellite Program. The selection will be announced in 1999 for a planned launch in 2002-2003

  17. Heating of aluminum by SPR-III burst

    International Nuclear Information System (INIS)

    Judd, S.V.

    1987-01-01

    Real time temperature measurements were made on an aluminum cylinder exposed to radiation bursts at SPR-III at neutron levels from 10 11 cm -2 to 4.5 x 10 14 cm -2 . Precision thermistors and high speed A/D converters were used to measure temperature with .0025 degree C resolution at 20ms intervals following the burst. Temperature data is presented as a function of neutron fluence

  18. Detection Techniques of Microsecond Gamma-Ray Bursts Using Ground-based Telescopes

    International Nuclear Information System (INIS)

    Krennrich, F.; Le Bohec, S.; Weekes, T. C.

    2000-01-01

    Gamma-ray observations above 200 MeV are conventionally made by satellite-based detectors. The EGRET detector on the Compton Gamma Ray Observatory has provided good sensitivity for the detection of bursts lasting for more than 200 ms. Theoretical predictions of high-energy gamma-ray bursts produced by quantum mechanical decay of primordial black holes (Hawking) suggest the emission of bursts on shorter timescales. The final stage of a primordial black hole results in a burst of gamma rays, peaking around 250 MeV and lasting for 1/10 of a microsecond or longer depending on particle physics. In this work we show that there is an observational window using ground-based imaging Cerenkov detectors to measure gamma-ray burst emission at energies E>200 MeV. This technique, with a sensitivity for bursts lasting nanoseconds to several microseconds, is based on the detection of multiphoton-initiated air showers. (c) (c) 2000. The American Astronomical Society

  19. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  20. Central-engine-powered Bright X-Ray Flares in Short Gamma-Ray Bursts: A Hint of a Black Hole–Neutron Star Merger?

    Science.gov (United States)

    Mu, Hui-Jun; Gu, Wei-Min; Mao, Jirong; Hou, Shu-Jin; Lin, Da-Bin; Liu, Tong

    2018-05-01

    Short gamma-ray bursts may originate from the merger of a double neutron star (NS) or the merger of a black hole (BH) and an NS. We propose that the bright X-ray flare related to the central engine reactivity may indicate a BH–NS merger, since such a merger can provide more fallback materials and therefore a more massive accretion disk than the NS–NS merger. Based on the 49 observed short bursts with the Swift/X-ray Telescope follow-up observations, we find that three bursts have bright X-ray flares, among which three flares from two bursts are probably related to the central engine reactivity. We argue that these two bursts may originate from the BH–NS merger rather than the NS–NS merger. Our suggested link between the central-engine-powered bright X-ray flare and the BH–NS merger event can be checked by future gravitational wave detections from advanced LIGO and Virgo.