WorldWideScience

Sample records for building materials by properties

  1. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  2. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  3. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    Science.gov (United States)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  4. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  5. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  6. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  7. Trends in building materials

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2012-07-01

    Full Text Available , steel and composites research. Analysis of the building materials market situation in South Africa identified the major building material cost drivers as cement and concrete and steel. For South Africa, research and development focus has been... in South Africa be cement and concrete, light-weight steel construction, smart tiles and composite materials. Nanotechnology materials should be used for property enhancement. The building materials developed should be modularised and/or panelised...

  8. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic...

  9. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  10. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc Olivier [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil); LEPTAB, University of La Rochelle, La Rochelle, 17042 Cedex 1 (France); Mendonca, Katia Cordeiro [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil)

    2009-02-15

    Predicting the indoor air relative humidity evolution is of great importance to evaluate people thermal comfort, perceived air quality and energy consumption. In building environments, porous materials of the envelope and furniture act on the indoor air humidity by reducing its variations. Solving the physical processes involved inside the porous materials requires the knowledge of the material hygrothermal properties that needs multiple and, for some of them, time-consuming experimental procedures. Recently, both the NORDTEST Project and Japanese Industrial Standard described a new Moisture Buffer Capacity index that accounts for surrounding air vapor concentration variation. The Moisture Buffer Value (MBV) indicates the amount of water vapor that is transported in or out of a material, during a certain period of time, when the vapor concentration of the surrounding air varies. The MBV evaluation requires only one experimental procedure and its value permits a direct comparison of the building materials moisture performance. However, two limitations can be distinguished: first, no relation between the MBV and the usual material hygrothermal properties has been clearly identified and second, no model has been proposed to actually use the MBV in building simulation. The present study aims to solve these two problems. First, the MBV fundamentals are introduced and discussed; followed by its relation with the usual material properties. Then, a lumped model for building simulation, whose parameters can be determined from the MBV experimental procedure, is described. To finish, examples of the use of this MBV-based lumped model for moisture prediction in buildings are presented. (author)

  11. Building materials. Structure and technology, types and properties, application and handlings. 2. rev. ed. Baustoffkunde. Aufbau und Technologie, Arten und Eigenschaften, Anwendung und Verarbeitung der Baustoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffler, H

    1980-01-01

    Details are given on the large variety of structural and interior building materials. Reference is made to the relation between the structure and technology of building materials on one hand and the properties and handling of building materials on the other hand. The following subjects are dealt with: Fundamentals (historical development, systematy of building materials, regulations, properties, property warranties); natural stone; lumber and derived lumber products (properties, species of lumber, flaws, supply cuts); ceramic building materials and glass (brick, earthenware, refractory materials); building materials with mineral binders added, concrete and mortar (technology, setting); metals (properties, technology); bituminous building materials (technology, properties); plastics (thermoplasts, elastomers, duroplastics, paints, adhesives, synthetic-resin mortar and synthetic-resin concrete); insulating materials, organic floor coverings, papers and paperboard, paints, adhesives and sealing materials; damage to buildings (types, causes, responsibility, avoidance). (HWJ).

  12. Natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Mrnustik, J.

    1988-01-01

    Within a study of the natural radioactivity of building materials, coefficients were determined of the emanation from selected materials and raw materials, such as porous concrete, bricks, marlite, quartzite, etc. Measurements were made of ground samples using Lucas scintillation chambers which give an accuracy of determination of the coefficient of about 10%. Specific radium activity was also determined for the samples. Tabulated is a comparison of the average specific activity of radium in concrete, power plant ash and porous concrete in Czechoslovakia and abroad. It is stated that monitoring the content of natural radionuclides in building materials is an indispensable part of the production process in the building industry, this with regard to the radiation protection of the population. This will be enhanced by the new Czechoslovak standard determining methods of measuring the content of natural radionuclides and the coefficient of radon emanation, and the subsequent evaluation of the properties of building materials. (Z.M.) 3 figs., 3 tabs

  13. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  14. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster

    Directory of Open Access Journals (Sweden)

    M. Lamrani

    2017-12-01

    Full Text Available The aim of the present work was to investigate the thermal properties of a new building material consisting of a mixture of plaster and peanut shells for use as insulating materials in building. The properties are commonly measured by using the steady state asymmetric hot plate method, the asymmetrical transient hot plate method and the flash method. The experimental study that we have conducted, enabled us to determine the conductivity, the effusivity and the thermal diffusivity of our material. The influence of the size and the mass fraction of the peanut shell shards on thermophysical properties of tested material, was investigated. Our experimental data show a good efficiency and a significant decrease in the thermal conductivity of material with peanut shell shards compared to simple plaster material. The purpose is to obtain ecological composite materials with better thermal performance, which can contribute to improve the thermal comfort in constructions in Morocco. The results show that the density of the new material was not substantially influenced by the size of the peanut shell shards. However, the thermal conductivity and diffusivity decrease from 0.3 Wm−1 K−1 and 3.75 × 10−7 m2 s−1 to 0.14 Wm−1 K−1 and 2.11 × 10−7m2 s−1, respectively, according to the variation of the mass fraction of peanut from 0 to20%.

  15. Improvement of operational properties of shell limestone building materials by polysulfide solution impregnation

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2017-06-01

    Full Text Available The data of studies on the effectiveness of impregnation with polysulfide solutions of shell limestone used as facing and wall material, as well as for the manufacture of road products are presented. Modification of the limestone with the impregnating composition «Akvastat» created by the authors which is sulfur-containing water-based solution of calcium polysulfide containing alcohols and surfactants, can significantly reduce water absorption and increase durability of limestone. Impregnating composition on the basis of calcium polysulfide possesses density of 1.22–1.24 g/cm3, the infiltrant penetrates into the pore structure of limestone to a depth of 4 cm or more, depending on the density and structure of the sample. While the material is drying, sulfur nanoparticles are crystallized from the polysulfide solution in its pores. They partially fill pore space and form protective durable insoluble hydrophobic coating that impedes the penetration of water into the pores of the limestone, but preserves its vapor permeability, which is important for wall and decoration materials. The evaluation of protective coatings was performed with laser particle size analyzer, scanning probe microscope and a diffractometer. It showed that the average size of the particles forming the protective coating is in the range of 20–25 nm, the particles shape is spherical, the particles are elemental sulfur with orthorhombic structure of the crystal lattice. The processing of shell limestone with calcium polysulphide solution provides formation of coating based on nanosized sulfur on the surface of stone pores. The coating partially fills the pore space and, as it is hydrophobic, reduces the water absorption of the samples by a factor of 5–8, increases their average density by 22–27%, strength in 1,2–1,3 times, the softening factor by 6–19%, that makes possible to predict the increase of the durability of building materials based on shell limestone to 1

  16. Relationship between geochemical and geomechanical properties of magnesia building material. Final report; Zusammenhang von Chemismus und mechanischen Eigenschaften des MgO-Baustoffs. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Freyer, Daniela [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Anorganische Chemie; Gruner, Matthias [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau und Spezialtiefbau; Popp, Till [Institut fuer Gebirgsmechanik GmbH (IFG), Leipzig (Germany); and others

    2015-06-15

    Long-term isolation of radioactive wastes from the biosphere imposes particular demands an potential building materials for engineered barrier systems (EBS). Due to its proposed longterm stability in salt formations MgO-based (''Sorel'') mortar or concrete is the preferred material option for construction of dam or shaft seals based and more than 100 years practical experiences. Fundamental investigations concerning geochemical and geomechanical properties of the Sorel-building material were performed in the framework of an interdisciplinary research project of the IfAC (Institut fuer Anorganische Chemie) and the IfBUS (Institut fuer Bergbau und Spezialtiefbau) both of University TU Bergakademie Freiberg in cooperation with the IfG Leipzig (Institut fuer Gebirgsmechanik GmbH). The sophisticated investigation approach consisting of a step-by-step procedure, which delivers a comprehensive understanding of the strongly interrelated aspects and processes. This facilitates development of tailored building material mixtures for all technical purposes, e.g. for shotcrete or site concrete applications. Chemical phase formation and stability of sorel binder phases of the magnesia building material were investigated focusing and the solubility equilibria in the basic system Mg(OH){sub 2} - MgCI{sub 2} - H{sub 2}O and Mg(OH){sub 2} - MgSO{sub 4} - H{sub 2}.Two building material mixtures were developed. Both mixtures are optimized under consideration of their flow and solidification behavior and the rheology of the binder suspension, which was modified by adding filler materials. In particular, the used magnesium oxide reactivity was found to be the prime factor for the temporary binder phase formation and heat supply, e.g. too reactive MgO leads to earlier and higher setting temperatures correlating to earlier hardening which affects the material workability. The reliability of results was proven by comparisons with measured properties during large in situ

  17. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  18. PHYSICAL AND MECHANICAL CHARACTERISTICS OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2017-12-01

    Full Text Available The article presents partial results of laboratory research into physical and mechanical characteristics of materials most commonly used as walling units in masonry structures of historic and heritage buildings. Core boreholes and specimens for the laboratory research of selected characteristics were sampled from accessible places of historic buildings, which had not been restored or reconstructed. The results of the research brought new knowledge about the unreliability (variance of the properties of historical, mainly natural building materials, and, at the same time, pointed out the need for further research and extension of knowledge necessary for the assessment of residual physical and mechanical characteristics of historic masonry structures.

  19. Bacterial Biofilm Characterization and Microscopic Evaluation of the Antibacterial Properties of a Photocatalytic Coating Protecting Building Material

    Directory of Open Access Journals (Sweden)

    Thomas Verdier

    2018-03-01

    Full Text Available Use of photocatalytic paint-like coatings may be a way to protect building materials from microbial colonization. Numerous studies have shown the antimicrobial efficiency of TiO 2 photocatalysis on various microorganisms. However, few have focused on easy-to-apply solutions and on photocatalysis under low irradiance. This paper focuses on (a the antibacterial properties of a semi-transparent coating formulated using TiO 2 particles and (b the microscopic investigations of bacterial biofilm development on TiO 2 -coated building materials under accelerated growth conditions. Results showed significant antibacterial activity after few hours of testing. The efficiency seemed limited by the confinement of the TiO 2 particles inside the coating binder. However, a pre-irradiation with UV light can improve efficiency. In addition, a significant effect against the formation of a bacterial biofilm was also observed. The epifluorescence approach, in which fluorescence is produced by reflect rather than transmitted light, could be applied in further studies of microbial growth on coatings and building materials.

  20. Dependence of indoor 222Rn level on building materials

    International Nuclear Information System (INIS)

    Tso, M.W.; Ng, C.; Leung, J.K.C.

    1993-01-01

    The radionuclide contents of typical building materials used in Hong Kong were studied by γ spectroscopic analysis. The physical properties of these building materials affecting the production and transportation of 222 Rn to the surrounding air were examined; these include the emanation coefficient of 2 '2 2 Rn of the material, the diffusion coefficient of 222 Rn in the material and the effect of surface coating and temperature on the rate of 222 Rn exhalation. Results obtained in this study explain the indoor 222 Rn concentration observed in our previous surveys and also suggest that the main source of indoor 222 Rn in Hong Kong is building material. (3 figs., 4 tabs.)

  1. Rehabilitation of adobe buildings. Understanding different materials from Portugal

    Science.gov (United States)

    Costa, Cristiana; Rocha, Fernando; Velosa, Ana

    2016-04-01

    Earth construction is the oldest building material known, with documented cases of the use of earth bricks since Mesopotamia around 10 000 BC (Heathcote, 1995). The earth construction exists throughout the majority of the world in different cultures, and for some countries, nowadays it continues to be the main process of construction (Vega et al, 2011). Around 30% of the world's population lives in buildings made of earth materials. Earthen construction is an environmentally friendly technique with a social and cultural contribution; this advantage is increased when this type of construction is applied in developing countries where the material costs counterbalance with labour costs, and where other materials and techniques cannot be available (Ciancio et al, 2013). Studies of materials characterization are required in order to understand the composition and specific properties of the earth buildings, their heterogeneity and their degradation mechanisms. Some adobes from different buildings, ages and regions of Portugal were collected in order to characterize them (mineralogically, chemically and physically). It was possible to understand the composition of these materials and their differences. Main minerals are quartz, feldspars, calcite and phyllosilicates (mica and kaolinite). The mechanical behaviour of these materials isn't the best, but it is possible to improve it with some simple and cheap natural additives (kaolinitic soils). The characterization of these materials allows us to understand the differences between the materials from the different regions (controlled by locally available raw materials). Understanding these materials, and their properties, it is possible to formulate new ones for repair, conservation and rehabilitation works. The adobe bricks are an alternative of kiln baked bricks which has several advantages and one of the most important is that these materials are recyclable. Adobes are an excellent option for building rehabilitation, if

  2. The radioactivity of house-building materials

    International Nuclear Information System (INIS)

    Sos, K.

    2007-01-01

    The paper compares the natural radioactivity and radon emission properties of different building materials like bricks, concretes, cements, sands, limes, marmors of different origin. A description of the radioactive model of apartments is also given. (TRA)

  3. Multiscale modelling for better hygrothermal prediction of porous building materials

    Directory of Open Access Journals (Sweden)

    Belarbi Rafik

    2018-01-01

    Full Text Available The aim of this work is to understand the influence of the microstructuralgeometric parameters of porous building materials on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improve it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modelling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 3D images were undertaken. In fact, the hygromorphicbehavior under hydric solicitations was considered. In this context, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. These informations were subsequently implemented in a dynamic computation simulation that model the hygrothermalbehaviourof material at the scale of the envelopes and indoor air quality of building. Results reveals that is essential to consider the local behaviors of materials, but also to be able to measure and quantify the evolution of its properties on a macroscopic scale from the youngest age of the material. In addition, comparisons between experimental and numerical temperature and relative humidity profilesin multilayers wall and in building envelopes were undertaken. Good agreements were observed.

  4. People, planet and profit: Unintended consequences of legacy building materials.

    Science.gov (United States)

    Zimmer, Anthony T; Ha, HakSoo

    2017-12-15

    Although an explosion of new building materials are being introduced into today's market, adequate up-front research into their chemical and physical properties as well as their potential health and environmental consequences is lacking. History has provided us with several examples where building materials were broadly deployed into society only to find that health and environmental problems resulted in unintended sustainability consequences. In the following paper, we use lead and asbestos as legacy building materials to show their similar historical trends and sustainability consequences. Our research findings show unintended consequences such as: increased remediation and litigation costs; adverse health effects; offshoring of related industries; and impediments to urban revitalization. As numerous new building materials enter today's market, another building material may have already been deployed, representing the next "asbestos." This paper also proposes an alternative methodology that can be applied in a cost-effective way into existing and upcoming building materials, to minimize and prevent potential unintended consequences and create a pathway for sustainable communities. For instance, our findings show that this proposed methodology could have prevented the unintended incurred sustainability costs of approximately $272-$359 billion by investing roughly $24 million in constant 2014 U.S. dollars on up-front research into lead and asbestos. Published by Elsevier Ltd.

  5. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  6. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  7. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage

    International Nuclear Information System (INIS)

    Su Junfeng; Wang Xinyu; Wang Shengbao; Zhao Yunhui; Huang Zhen

    2012-01-01

    Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ► Microcapsules containing paraffin was fabricated by in-situ polymerization. ► Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ► MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ► The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min −1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the

  8. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  9. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  10. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  11. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  12. Study of building materials impregnation processes by quasi-real-time neutron radiography

    International Nuclear Information System (INIS)

    Nemec, T.; Rant, J.; Apih, V.; Glumac, B.

    1999-01-01

    Neutron radiography (NR) is a useful non-destructive method for determination of hydrogen content in various building and technical materials. Monitoring of transport processes of moisture and hydrogenous liquids in porous building materials is enabled by fast, quasi-real-time NR methods based on novel imaging plate neutron detectors (IP-NDs). Hydrogen content in the samples is determined by quantitative analysis of measured profiles of neutron attenuation in the samples. Detailed description of quantitative NR method is presented by the authors in another accompanying contribution at this conference. Deterioration of building materials is originated by different processes that all require presence of water therefore it is essential to limit or prevent the transport of water through the porous material. In this presentation, results of a study of clay brick impregnation by silicone based hydrophobic agents will be presented. Quantitative results obtained by NR imaging successfully explained the processes that occur during the impregnation of porous materials. Efficiency of hydrophobic treatment was quantitatively evaluated

  13. Building materials. Stichwort Baustoff

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, W

    1981-01-01

    To handle building materials properly, one must know about their characteristics. This pocket book will be of help: structured like a glossary, it gives brief descriptions of the most common building materials. It is small and handy enough to be a constant companion to resident engineers, foremen, gangers, building tradesmen, and construction workers and an aid in their training. The following groups of building materials are discussed: Natural stone; units for brick walls, floors, and roofs; mortar and concrete (definitions, binders, aggregates, additives, admixtures, mixing water); special types of plaster and rendering; light-weight building boards and wood wool basis; multilayer light-weight building boards; gypsum plasterboards; chimney construction; sewers; thermal insulation and sound section; structural steels; plastics.

  14. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  15. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  16. Brief Discussion on Green Building Materials

    International Nuclear Information System (INIS)

    Cai, Jia-wei; Sun, Jian

    2014-01-01

    With more and more emphasizes on the environment and resources, the concept of green buildings has been widely accepted. Building materials are vectors of architectures, only if green building materials and related technical means are used, can we construct green buildings to achieve the purpose of energy conservation and environmental protection. This paper introduces the relationship between green building materials and green buildings, the current situation of green building materials in China, as well as the measures to accelerate the development of green building materials

  17. Electrokinetic desalination of porous building materials

    NARCIS (Netherlands)

    Kamran, K.

    2012-01-01

    The deterioration of porous building materials and structures by the crystallization of water soluble salts is a well known phenomenon. The threats posed by salts to building materials can be minimized either by controlling the environment or by removing the salts from the deteriorated zone. In

  18. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials

    Directory of Open Access Journals (Sweden)

    Seungjun Roh

    2018-05-01

    Full Text Available Because the reduction in environmental impacts (EIs of buildings using life-cycle assessment (LCA has been emphasized as a practical strategy for the sustainable development of the construction industry, studies are required to analyze not only the operational environmental impacts (OEIs of buildings, but also the embodied environmental impacts (EEIs of building materials. This study aims to analyze the EEIs of Korean apartment buildings on the basis of major building materials as part of research with the goal of reducing the EIs of buildings. For this purpose, six types of building materials (ready-mixed concrete, reinforcement steel, concrete bricks, glass, insulation, and gypsum for apartment buildings were selected as major building materials, and their inputs per unit area according to the structure types and plans of apartment buildings were derived by analyzing the design and bills of materials of 443 apartment buildings constructed in South Korea. In addition, a life-cycle scenario including the production, construction, maintenance, and end-of-life stage was constructed for each major building material. The EEIs of the apartment buildings were quantitatively assessed by applying the life-cycle inventory database (LCI DB and the Korean life-cycle impact assessment (LCIA method based on damage-oriented modeling (KOLID, and the results were analyzed.

  19. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  20. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  1. Informatics derived materials databases for multifunctional properties

    International Nuclear Information System (INIS)

    Broderick, Scott; Rajan, Krishna

    2015-01-01

    In this review, we provide an overview of the development of quantitative structure–property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure–property relationships; and even more importantly we are now in a position to build materials databases based on design ‘intent’ and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications. (review)

  2. Neutron activation analysis of some building materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.; Georgescu, I.I.; Muntean, M.I.

    1999-01-01

    Over the past decade, indoor air quality has become a growing environmental problem. A careful selection of building materials concerning the acceptance of chemical and radioactive emissions is one of the ways to ensure high indoor air quality. Nowadays, it is a tendency to obtain new building materials having good isolation properties and low density by using the cheap and practically inexhaustible solid waste products like furnace slag, fly coal ash and phosphogypsum, without combustion. The Romanian furnace slag containing generally, above 45 % CaO can be used alone or mixed with fly ash to obtain some binder materials with mechanical resistance comparable to the Portland cement. Different additives such as CaO+Na 2 SO 4 or CaCl 2 +Na 2 SO 4 are used as activating admixtures. Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U, Yb, W and Zn in seven Romanian building materials were determined by Instrumental Neutron Activation Analysis (INAA) method at WWR-S Reactor of IFIN-HH, Bucharest. Raw material used in the cement production (∼75 % limestone, ∼25 % clay), cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick compacted from furnace slag, fly coal ash, phosphogypsum, lime and cement have been analyzed. The fly coal ashes from five Romanian coal-fired power plants, resulting by the combustion of the xyloide brown coals, lignite and bituminous-subbituminous coals were previously analyzed. It was found that the content of the toxic microelements like As, Co, Cr, Th, U, Zn in the ceramic blocks is especially due to the slag and fly ash, the main components. This content depends on the particular sources of mineral raw materials. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as used in the metallurgical process. (authors)

  3. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    OpenAIRE

    Schroeder, Horst; Lemke, Manfred

    2015-01-01

    [EN] The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the...

  4. Environmental Evaluation of Building Materials of 5 Slovak Buildings

    Science.gov (United States)

    Porhincak, Milan; Estokova, Adriana

    2013-11-01

    Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.

  5. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  6. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  7. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  8. Application of earth building materials for low-income housing in the ...

    African Journals Online (AJOL)

    The characteristics, properties, problems and other factors associated with earth materials for building houses, especially in the tropical regions of the world are identified. The inter-relationships among these factors which inhibit the adoption of earth materials and the recommendations for overcoming the problems in a ...

  9. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Science.gov (United States)

    Spišáková, Marcela; Mačková, Daniela

    2015-11-01

    The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  10. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  11. Thermal characterization of a new effective building material based on clay and olive waste

    Directory of Open Access Journals (Sweden)

    Mohamed Lamrani

    2018-01-01

    Full Text Available The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks.

  12. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  13. Deposition velocities and impact of physical properties on ozone removal for building materials

    Science.gov (United States)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  14. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  15. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Directory of Open Access Journals (Sweden)

    Spišáková Marcela

    2015-11-01

    Full Text Available The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  16. People, Planet and Profit: Unintended Consequences of Legacy Building Materials

    Science.gov (United States)

    Although an explosion of new building materials are being introduced into today's market, adequate up-front research into their chemical and physical properties as well as their potential health and environmental consequences is lacking. History has provided us with several exam...

  17. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...... also investigated in order to establish differences between metabolite production in vitro and on building materials as well as comparison to non-indoor reference strains. On building materials six different chaetoglobosins were detected in total concentrations of up to 950 mg/m2 from C. globosum along...... with three different chaetoviridins/chaetomugilins in concentrations up to 200 mg/m2. Indoor Chaetomium spp. preferred wood-based materials over gypsum, both in terms of growth rate and metabolite production. Cochliodones were detected for the first time on all building materials infected by both C. globosum...

  18. International conventions for measuring radioactivity of building materials

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    In buildings, whether civil or industrial, natural radioactivity always occurs at different degrees in the materials (main building materials, decorative materials). Concerns on radioactivity from building materials is unavoidable for human living and developing. As a member of WTO, China's measuring method of radioactivity for building materials, including radionuclides limitation for building materials, hazard evaluation system etc, should keep accordance with the international rules and conventions. (author)

  19. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  20. Usability of Clay Mixed Red Mud as Building Material in Transdanubian (Hungary) Region

    International Nuclear Information System (INIS)

    Sas, Z.; Somlai, J.J.; Szeiler, G.; Kovacs, T.

    2014-01-01

    The most commonly used building materials in Hungary and in numerous country of the world are the bricks, which made from clays. Due to the congenial internal structure properties of the clays these raw materials can be mixed with other materials, provides great possibility to reuse industrial by-products as additive material. The production and inbuilt of new types of synthetic building materials based on NORM (naturally occurring radioactive materials) by-products is raising concerns among authorities, public and scientists. Several NORM residues produced in large quantity, such as: phospogypsum (phosphate industry), red mud (aluminium processing industry), fly ash, coal slag (coal burning and steelworks) and so on are presently under investigation. The aluminum manufacturing in Ajka (Hungary) started in 1943. As a result of the bauxite refining activities up to now approximately 30 Mt of red mud has been produced in Hungary, stored in reservoirs. The radionuclide content of the bauxite usually exceeds the world average in soils (WA), which entirely remains in the by-product during Bayer process. The exposure pathways in case of application of NORM residues have to be explored in order to reveal the potential risks of NORMs on residents. The gamma radiation originated from the primordial radionuclides (K-40; U-238; Th-232) and their daughter elements found in nature and in building materials as well increase the external dose of the human body. In the EU the Radiation Protection 112 (RP 112) guideline serves for classification of building material, wherein the gamma exposure is limited by I-index

  1. Stone Dust Agglomeration for Utilizing as Building Material

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2017-12-01

    Full Text Available In the paper we discuss the possibility of using stone dust for utilizing as building material. The tested material was amphibolite, found in the Sudeten Mountains and the Tatra Mountains in Poland. The chemical composition of dust was determined by means of spectrometry methods. Moreover, the basic physical properties of the material were designated. Stone dust was mixed with starch or cement binder. The binder addition was from 5% to 20% by weight. The water content was adjusted to about 25% humidity. The mixture was then compressed in a hydraulic press at 50 MPa. The results of the mechanical toughness of agglomerates were shown. On the basis of the results, acceptable toughness of agglomerates was found, with the addition of cement in mass share 20% and seasoning for 48 hours. However, starch was not suitable as a binder for agglomeration of amphibolite.

  2. Testing mechanical properties of natural stone used as a building material

    Czech Academy of Sciences Publication Activity Database

    Hasníková, Hana

    2013-01-01

    Roč. 20, č. 5 (2013), s. 427-435 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GBP105/12/G059 Grant - others:Evropská komise(XE) FP-2007-SSP-5A STONECORE Institutional support: RVO:68378297 Keywords : mechanical properties * non-destructive testing * natural stone * historical building s * ultrasound Subject RIV: JN - Civil Engineering http://www.engineeringmechanics.cz/obsahy.html?R=20&C=5

  3. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  4. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  5. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  6. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  7. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  8. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  9. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    International Nuclear Information System (INIS)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly; Hanifah, Sharina Abu

    2015-01-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration

  10. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Science.gov (United States)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  11. Natural radioactivity measurements of building materials in Baotou, China.

    Science.gov (United States)

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  12. Radioactive substances in the Danish building materials

    International Nuclear Information System (INIS)

    Ulbak, K.

    1986-01-01

    Building materials as any other materials of natural occurrence contain small concentrations of natural radioactive elements. This natural radioactivity affects people inside buildings. This publiccation refers measurements of the Danish building materials, and radiation doses originating from this source affecting the Danish population are related to the other components of background radioactivity. (EG)

  13. Wood as a sustainable building material

    Science.gov (United States)

    Robert H. Falk

    2009-01-01

    Few building materials possess the environmental benefits of wood. It is not only the most widely used building material in the United States but also one with characteristics that make it suitable for a wide range of applications. Efficient, durable, and useful wood products produced from trees range from a minimally processed log at a log-home building site to a...

  14. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  15. A storey of buildings and materials

    Science.gov (United States)

    2017-12-01

    Throughout history, the development of new materials and technologies has enabled more functional and aesthetically pleasing buildings. With the advent of sustainable architecture, the role of materials science in building innovation is becoming more prominent than ever.

  16. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Hizem, N.; Fredj, A. B.; Ghedira, L.

    2005-01-01

    The radioisotopic content of 17 samples of natural and manufactured building materials collected in Tunisia have been analysed by using gamma spectrometry. From the measured gamma ray spectra, activity concentrations are determined for 232 Th, 226 Ra, 235 U and 40 K. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials. The results of 226 Ra, 232 Th and 40 K found in Tunisian building materials indicate that radium and thorium concentrations do not exceed 40 Bq kg -1 , but potassium concentration varies between 50 and 1215 Bq kg -1 . The total effective dose rates per person indoors are determined to be between 0.07 and 0.86 mSv y -1 . Only two materials exceed the reference level of 0.3 mSv y -1 . The activity concentration index is <1. (authors)

  17. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  18. Characterization of LC sensor structures realized by PCB and LTCC technology for determining moisture in building materials

    Directory of Open Access Journals (Sweden)

    Milan R. Radovanović

    2018-03-01

    Full Text Available This paper compares performances of two wireless sensors for measuring water concentration in building materials, one manufactured by the printed circuit board (PCB technology and another one using the low temperature co-fired ceramics (LTCC process. The fabricated sensors consist of inductive part (L and interdigitated capacitive part (C in one metal layer, connected in parallel. Inductance of inductive part was kept constant, whereas capacitance of capacitive part was changed by exposing the sensor to different moisture concentration, changing its resonant frequency. The variation of resonant frequency as a function of different water concentration was measured, using antenna coil and impedance analyser, in two widely used construction materials: clay brick and autoclaved aerated concrete block. Surface analysis for two sensors was performed by means of 3D profilometer. Mechanical properties of the sensors were measured for both conductive segments (copper and silver and substrates materials (PCB and ceramics substrates using nanoindenter. Comparative characteristics of the sensors are presented from their application point of view.

  19. Recipes for porous building materials, More with less

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    The building sector, comprising both buildings and infrastructure, is the largest consumer of energy and materials. As well as the huge amount of raw materials involved, enormous amounts of energy are also used for the production and transport of raw materials, building materials and products. Among

  20. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    Science.gov (United States)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  1. Natural radioactivity for some Egyptian building material

    International Nuclear Information System (INIS)

    Eissa, M. F.; Mostafa, R. M.; Shahin, F.; Hassan, K. F.; Saleh, Z. A.; Yahia, A.

    2007-01-01

    Study of the radiation hazards for the building materials is interested in most international countries. Measurements of natural radioactivity was verified for some egyptian building materials to assess any possible radiological hazard to man by the use of such materials. The measurements for the level of natural radioactivity in the materials was determined by γ-ray spectrum using HP Ge detector. A track detector Cr-39 was used to measure the radon exhalation rate from these materials. The radon exhalation rates were found to vary from 2.83±0.86 to 41.57 ± 8.38 mBqm -2 h -1 for egyptian alabaster. The absorbed dose rate in air is lower than the international recommended value (55 n Gy h -1 ) for all test samples

  2. Radioactivity in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  3. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water content – water potential relation of building materials. By that, data published by previous authors as Topp et......Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive...... the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...

  4. Effective 226Ra-content of some Hungarian building materials

    International Nuclear Information System (INIS)

    Toth, A.; Feher, I.

    1976-01-01

    The aim of the work was to analyse the effective 226 Ra content of building- and back filling materials used in Hungary. The quantity of radon was determined by ionization chambers connected to vibrating-reed electrometers, as well as by a scintillation radon counter. The radon measuring instruments were calibrated by known 222 Rn quantities given off from standard RaCl 2 solutions. The overall uncertainty of the data obtained is estimated as being 25%. The minimum measurable effective 226 Ra concentration due to a 10 4 g building material source is calculated as 16 fCi/g for the ionization chambers and 8 fCi/g for the scintillation counter. 68 building material samples and 11 backfill (concrete made by fly-ashes) samples have been studied and it has been found, that the effective 226 Ra contents of the tested building materials are 2 to 9 times greater than those found in the Soviet Union though none exceeds the recommended 600 fCi/g level. Among the back filling materials made with fly-ash the maximum 226 Ra content was 3300 fCi/g. The effective 226 Ra content measurements are well suited for a priori radon escape qualification of building materials. (K.A.)

  5. Environmental effect of structural solutions and building materials to a building

    International Nuclear Information System (INIS)

    Haapio, Appu; Viitaniemi, Pertti

    2008-01-01

    The field of building environmental assessment tools has become a popular research area over the past decade. However, how the service life of a building affects the results of the environmental assessment of a building has not been emphasised previously. The aim of this study is to analyse how different structural solutions and building materials affect the results of the environmental assessment of a whole building over the building's life cycle. Furthermore, how the length of the building's service life affects the results is analysed. The environmental assessments of 78 single-family houses were calculated for this study. The buildings have different wall insulations, claddings, window frames, and roof materials, and the length of the service life varies from 60 years up to 160 years. The current situation and the future of the environmental assessment of buildings are discussed. In addition, topics for further research are suggested; for example, how workmanship affects the service life and the environmental impact of a building should be studied

  6. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  7. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  8. Mechanical behavior of sustainable building materials using PET waste and industrial by-products

    OpenAIRE

    Juárez, C. A; Mendoza-Rangel, J. M; González, J. R; Rodríguez, J. A; Valdez, P

    2015-01-01

    The building industry is facing the challenge of satisfying a growing demand for housing spaces that can be mitigated by the use of construction materials manufactured with industrial by-products that allow the production of low-cost housing with a low environmental impact. In this research, an alternative building system to manufacture lightweight masonry blocks with polyethylene terephthalate (PET) bottles and fiber-reinforced panels using binary mixture (Portland cement and fly ash), was s...

  9. Natural radioactivity of building materials in Austria

    International Nuclear Information System (INIS)

    Sorantin, H.; Steger, F.

    1984-03-01

    About 120 samples of natural and manufactured building materials have been analyzed by gamma-spectrometry for their Thorium 232-, Radium 226- and Potassium 40 - content. Granites showed generally the greatest amounts of the above mentioned radionuclides, whereas other natural products like sand, gravels, marbles and gypsum contained only traces of radionuclides. As regards the manufactured building materials only some types of bricks and chemical gypsum showed relatively high concentrations of radionuclides, while the rest of the bricks, tiles, plaster and accessory materials fulfilled the criteria set up in the OECD-NEA report 1979. (Author)

  10. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    . In this study, the optical properties of different types of surfaces to be cleaned and the dirt found in finishing pig units were investigated in the visual and the near infrared (VIS-NIR) optical range. Four types of commonly used materials in pig buildings, i.e. concrete, plastic, wood and steel were applied...... and after high-pressure water cleaning. The spectral signatures of the surface materials and dirt attached to the surfaces showed that it is possible to make discrimination and hence to classify areas that are visually clean. When spectral bands 450, 600, 700 and 800 nm are chosen, there are at least two...

  11. Cooling of the Building Structure by Night-time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai

    is essential for effective night cooling, and thus a sufficient amount of thermal mass is needed in the building. In order to assess the impact of different parameters, such as slab thickness, material properties and the surface heat transfer, the dynamic heat storage capacity of building elements...... was quantified based on an analytical solution of one-dimensional heat conduction in a slab with convective boundary condition. The potential of increasing thermal mass by using phase change materials (PCM) was also estimated. The results show a significant impact of the heat transfer coefficient on heat storage...... a building energy simulation program (HELIOS), and the effect of different parameters such as building construction, heat gains, air change rates, heat transfer coefficients and climatic conditions on the number of overheating degree hours (operative room temperature >26 °C) was evaluated. Besides climatic...

  12. Mechanical properties of timber deteriorated by beetles in ancient buildings: an experimental analysis

    Directory of Open Access Journals (Sweden)

    Sandra Mendes

    2018-01-01

    Full Text Available The purpose of this study is to analyse the loss of physical-mechanical properties of pine wood from old buildings (100 to 200 years old deteriorated by wood boring beetle (Anobium punctatum, De Geer and aims to contribute to the safety assessment of structural elements in buildings. The effect of degradation can be considered by assuming the reduction of cross-section properties in case of Anobium punctatum degradation, since the galleries formed within the wood are usually surrounded by a considerable amount of sound wood. In this study, a new methodology was developed for qualitative estimation of degradation levels, which was promising. They were then correlated with results of compression tests parallel to the fibers in specimens with 30×30×90 mm: compressive strength, modulus of elasticity and plastic extension. It has been found that, even at relatively important levels of degradation, the loss of properties is small to moderate.

  13. Influence of building materials process technology on radon exhalation

    International Nuclear Information System (INIS)

    Liu Fudong; Wang Chunhong; Liu Senlin; Ji Dong; Zhang Yonggui; Pan Ziqiang

    2009-01-01

    The building materials were produced through changing raw material ingredient, baking temperature, pressure difference between surface and interior of building material, grain diameter etc. Experiment indicates that change of raw material ingredient ratio can obviously influence the radon exhalation from building material, followed by baking temperature; and pressure difference does not have significant influence on radon exhalation. For the factory to produce shale-brick, the radon exhalation is relatively low under the condition that coal gangue accounts for 40%-50%, the grain diameter is less than 2 mm, the baking temperature is about 960 degree C or 1 020 degree C and the pressure difference is 85 kPa. (authors)

  14. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...

  15. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market

    International Nuclear Information System (INIS)

    Stals, M.; Verhoeven, S.; Bruggeman, M.; Pellens, V.; Schroeyers, W.; Schreurs, S.

    2014-01-01

    The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr 3 (Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from 226 Ra and its progeny; 232 Th progeny and 40 K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. -- Highlights: • Many building materials will have to be tested for NORM activity concentrations. • An on-site NORM analysis method has been developed and validated. • Over 120 building materials on the Belgian market have been analyzed with this method. • The Euratom BSS reference level of 1 mSv/year excess dose will

  16. Mould growth on building materials

    DEFF Research Database (Denmark)

    Fog Nielsen, K.

    Mould growth in buildings is associated with adverse health effects among the occupants of the building. However actual growth only occurs in damp and water-damaged materials, and is an increasing problem in Denmark, due to less robust constructions, inadequate maintenance, and too little...

  17. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2015-02-01

    Full Text Available In this research, we focused on the development of composite phase-change materials (CPCMs by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS. The composite PCMs were characterized using environmental scanning electron microscopy (ESEM, Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.

  18. New build: Materials, techniques, skills and innovation

    International Nuclear Information System (INIS)

    Glass, Jacqueline; Dainty, Andrew R.J.; Gibb, Alistair G.F.

    2008-01-01

    The transition to secure, sustainable, low-energy systems will have a significant effect on the way in which we design and construct new buildings. In turn, the new buildings that are constructed will play a critical role in delivering the better performance that would be expected from such a transition. Buildings account for about half of UK carbon dioxide (CO 2 ) production. So it is urgent to ensure that energy is used efficiently in existing buildings and that new building stock is better able to cope with whatever the future holds. Most energy used in buildings goes towards heating, lighting and cooling, but a growing percentage is consumed by domestic appliances, computers and other electrical equipment. Actual energy consumption is the product of a number of factors, including individual behaviours and expectations, the energy efficiency of appliances and the building envelope. This review focuses on the third of these, the building itself, and its design and construction. It discusses the issues faced by the construction industry today, suggesting that major changes are needed relating to materials, techniques, skills and innovation. It moves on to consider future advances to 2050 and beyond, including developments in ICT, novel materials, skills and automation, servitisation (the trend for manufacturers to offer lifetime services rather than simple products), performance measurement and reporting, and resilience. We present a vision of the new build construction industry in 2050 and recommendations for policy makers, industry organisations and construction companies

  19. Study of radon diffusion coefficient for technologically enhanced building construction materials

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2012-01-01

    Most building materials of natural origin contain small amounts of Naturally Occurring Radioactive Materials (NORMs), mainly radionuclides from the 226 Ra and 232 Th decay chains and 40 K. The origin of these materials is the earths crust, but they find their way into building materials, air, water, food and the human body itself. The worldwide average indoor effective dose due to gamma rays from building materials is estimated to be about 0.4 mSv per year. In many parts of the world, building materials containing radioactive materials have been used for generations. As individuals spend more than 80% of their time indoors, the internal and external radiation exposure from building materials creates prolonged exposure situations. The internal (inhalation) radiation exposure is due to 222 Rn and their short lived decay products exhaled from building materials into the room air. The average activity concentrations of 226 Ra, 232 Th and 40 K in the earths crust are 35, 30 and 400 Bq/kg respectively. However, elevated levels of natural radionuclides causing annual doses of several mSv were identified in some regions around the world. Recycled industrial by-products containing Technologically Phosphogypsum, a by-product in the production of phosphate fertilizers is used as building material, and red mud, a waste from primary aluminum production, is used in bricks, ceramics and tiles. The increased tendency of the building material industry to use industrial wastes as substitutes for natural products having relatively high activity concentration of NORMs and the increased exposure caused by them were the driving forces for undertaking the present investigation. (author)

  20. Wood as a sustainable building material

    Science.gov (United States)

    Robert H. Falk

    2010-01-01

    Few building materials possess the environmental benefits of wood. It is not only our most widely used building material but also one with characteristics that make it suitable for a wide range of applications. As described in the many chapters of this handbook, efficient, durable, and useful wood products produced from trees can range from a minimally processed log at...

  1. Increase in buildings sustainability by using renewable materials and energy

    Energy Technology Data Exchange (ETDEWEB)

    Milutiene, Edita [Kaunas University of Technology, Institute of Environmental Engineering, Kaunas (Lithuania); Lithuanian Solar Energy Association, Kaunas (Lithuania); Straw Houses Builders' Association, Kaunas (Lithuania); Staniskis, Jurgis K. [Kaunas University of Technology, Institute of Environmental Engineering, Kaunas (Lithuania); Krucius, Audrys [Straw Houses Builders' Association, Kaunas (Lithuania); JSK ' ' Ecococon' ' , Kaunas (Lithuania); Auguliene, Vida [Lithuanian Hydrometeorological Service under the Ministry of Environment of the Republic of Lithuania, Kaunas (Lithuania); Ardickas, Daumilas [University of Cambridge, Girton College, Cambridge (United Kingdom)

    2012-12-15

    Sustainable development could be seen as indispensable condition for survival of civilization. Construction sector is a field with immediate need for reducing environmental impacts. Sustainability measures applied for buildings could produce very efficient results to the people. The paper provides the methods of construction sustainability increase by researching, developing, and applying the technologies which use renewable materials and energy. The paper analyzes the cases of both a solar eco house which was built of original prefabricated straw-bale panels and was designed to use direct solar energy; and an educational project promoting straw-bale construction and seeking to mitigate climate change. The project results have shown the need of spreading information on sustainable building methods to be accepted by wider society and to be applied to the construction industry. Monitoring of solar ecohouse has proved that direct solar energy gains are significant in reducing heating degree-days in 55 N latitude and in allowing to save half the energy needed for heating. (orig.)

  2. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  3. Radioisotopes present in building materials of workplaces

    Science.gov (United States)

    Del Claro, F.; Paschuk, S. A.; Corrêa, J. N.; Denyak, V.; Kappke, J.; Perna, A. F. N.; Martins, M. R.; Santos, T. O.; Rocha, Z.; Schelin, H. R.

    2017-11-01

    The isotope 222Rn is responsible for approximately half of the effective annual dose received by the world population. The decay products of 222Rn interacting with the cells of biological tissue of lungs have very high probability to induce cancer. The present survey was focused in the evaluation of activity concentration of 222Rn and other radioisotopes related to the building materials at workplaces at Curitiba - Paraná State. For this purpose, the instant radon detector AlphaGUARD (Saphymo GmbH) was used to measure the average concentrations of 222Rn in building materials, which were also submitted to gamma spectrometry analysis for qualitative and quantitative evaluation of the radionuclides present in samples of sand, mortar, blue crushed stone (Gneissic rock), red crushed stone (Granite), concrete and red bricks. The main radionuclides evaluated by gamma spectrometry in building material samples were 238U/226Ra, 232Th and 40K. These measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Paraná in collaboration with the Center of Nuclear Technology Development (CDTN - CNEN). The results of the survey present the concentration values of 222Rn related to construction materials in a range from 427±40.52 Bq/m³ to 2053±90.06 Bq/m³. The results of gamma spectroscopy analysis show that specific activity values for the mentioned isotopes are similar to the results indicated by the literature. Nevertheless, the present survey is showing the need of further studies and indicates that building materials can contribute significantly to indoor concentration of 222Rn.

  4. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  5. Nucleic acids and smart materials: advanced building blocks for logic systems.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-09-03

    Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors.

    Science.gov (United States)

    Quintana, B; Pedrosa, M C; Vázquez-Canelas, L; Santamaría, R; Sanjuán, M A; Puertas, F

    2018-04-01

    A methodology including software tools for analysing NORM building materials and residues by low-level gamma-ray spectrometry has been developed. It comprises deconvolution of gamma-ray spectra using the software GALEA with focus on the natural radionuclides and Monte Carlo simulations for efficiency and true coincidence summing corrections. The methodology has been tested on a range of building materials and validated against reference materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  8. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  9. Effects of energy and carbon taxes on building material competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund, (Sweden)

    2007-04-15

    The relations between building material competitiveness and economic instruments for mitigating climate change are explored in this bottom-up study. The effects of carbon and energy taxes on building material manufacturing cost and total building construction cost are modelled, analysing individual materials as well as comparing a wood-framed building to a reinforced concrete-framed building. The energy balances of producing construction materials made of wood, concrete, steel, and gypsum are described and quantified. For wood lumber, more usable energy is available as biomass residues than is consumed in the processing steps. The quantities of biofuels made available during the production of wood materials are calculated, and the cost differences between using these biofuels and using fossil fuels are shown under various tax regimes. The results indicate that higher energy and carbon taxation rates increase the economic competitiveness of wood construction materials. This is due to both the lower energy cost for material manufacture, and the increased economic value of biomass by-products used to replace fossil fuel. (Author)

  10. Environmental impacts of adobe as a building material: The north cyprus traditional building case

    Directory of Open Access Journals (Sweden)

    A.P. Olukoya Obafemi

    2016-06-01

    Summarily, this paper posits that the successful fusion of traditional building materials such as Adobe and modern design construct will not only give birth to earth conscious building, but will also be energy efficient. Moreover, it will be a substitute building material the building industry can adopt at as a contributing solution to the omniscient global warming malady.

  11. Measurement of naturally occurring radioactive materials in commonly used building materials in Hyderabad, India

    International Nuclear Information System (INIS)

    Balbudhe, A.Y.; Vishwa Prasad, K.; Vidya Sagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Building materials can cause significant gamma dose indoors, due to their natural radioactivity content. The knowledge of the natural radioactivity level of building materials is important for determination of population exposure, as most people spend 80-90% of their time indoors furthermore, it is useful in setting the standards and national guidelines for the use and management of these materials. The concentrations of natural radionuclides in building materials vary depending on the local geological and geographical conditions as well as geochemical characteristics of those materials. The aim of the study is to determine levels of natural radionuclide in the commonly used building materials in Hyderabad, India

  12. Effect of ventilation on perceived quality of air polluted by building materials. A summary of reported data

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Vondruskova, J. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-02-15

    This paper summarizes existing data on how varying ventilation rates affect the perceived quality of air polluted by building materials. This is done by reviewing literature dealing with exposure-response relationships, i.e. the log-linear relationships between the concentration of pollutants (exposure) and the perceived air quality (response). The reviewed data originate from studies with single building materials performed in small-scale ventilated chambers and from studies carried out in a full-scale setting resembling normal offices. Perceived air quality expressed in terms of acceptability as assessed by untrained panels was included. The results show that the exposure-response relationships vary for different building materials as regards the impact of changing ventilation rate on perceived air quality and the level of perceived air quality at a constant ventilation rate. This applies both for the data collected in small-scale and in full-scale experiments. The differences may be caused by the experimental conditions, psychological factors, physiological factors, and chemical/physical factors. A well controlled study taking these factors into account with several different building materials, is thus recommended to further study whether the observed results have practical significance. These experiments should be carried out under realistic fullscale conditions. (au)

  13. Radioactivity of natural and artificial building materials - a comparative study.

    Science.gov (United States)

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  14. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  15. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  16. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.

    Science.gov (United States)

    del Valle-Zermeño, R; Formosa, J; Chimenos, J M; Martínez, M; Fernández, A I

    2013-03-01

    The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Investigations of radioactivity of building raw and materials

    International Nuclear Information System (INIS)

    Zak, A.; Biernacka, M.; Jagielak, J.; Lipinski, P.

    1993-01-01

    In 1980, Ministry of Building and Building Materials Industry, the Central Laboratory for Radiological Protection (abbreviated as CLRP), Ministry of Health and Social Welfare have agreed to issue the compulsory regulation of performing the validation of investigations of building raw and materials. Methods of measurement, apparatus and method of evaluation of results of the investigations have been recommended for the whole country. The following two criteria of usefulness of a building material for housing and public building have been accepted, f 1 = 0.00027 S K + 0.0027 S Ra0 .0043 S Th ≤ 1 (this one limit exposition of the whole body to gamma radiation); f 2 = S Ra ≤ 185 Bq/kg (this one limits exposition of lung epithelium to progeny of radon 222 Rn exhaled from the building walls). The CLRP and Institute of Building Technology supervise over correctness (agreement with the regulations) of operation of laboratories in Departments of Building Industry and Energy, organize training of the personnel and collect results of the measurements. From 1980 till 1991, results of measurements of 6550 samples from 550 localities were collected in computer data base organized in CLRP. In this paper, results of examination of selected groups of building raw and materials have been presented. Annual average values of the qualification coefficients f 1 and f 2 have been also analyzed. (author). 7 refs, 13 figs, 2 tabs

  18. Wood: a construction material for tall buildings

    Science.gov (United States)

    Wimmers, Guido

    2017-12-01

    Wood has great potential as a building material, because it is strong and lightweight, environmentally friendly and can be used in prefabricated buildings. However, only changes in building codes will make wood competitive with steel and concrete.

  19. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. 29 CFR 779.335 - Sales of building materials for residential or farm building construction.

    Science.gov (United States)

    2010-07-01

    ... materials for residential or farm building construction. Section 3(n) of the Act, as amended, excludes from... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for residential or farm building construction. 779.335 Section 779.335 Labor Regulations Relating to Labor (Continued) WAGE AND...

  1. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... roles of water and materials, Health, including a state-of-the-art description of the health-related effects of indoor molds, and Strategies, integrating remediation, prevention and policies....

  2. Building stock dynamics and its impacts on materials and energy demand in China

    International Nuclear Information System (INIS)

    Hong, Lixuan; Zhou, Nan; Feng, Wei; Khanna, Nina; Fridley, David; Zhao, Yongqiang; Sandholt, Kaare

    2016-01-01

    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China. - Highlights: •Growths of China's building floorspace were projected from 2010 to 2050. •A building stock turnover model was built to reflect annual building stock dynamics. •Building related materials and energy demand were projected.

  3. Application of BIM technology in green building material management system

    Science.gov (United States)

    Zhineng, Tong

    2018-06-01

    The current green building materials management system in China's construction industry is not perfect, and there are still many shortcomings. Active construction of green building materials management system based on BIM technology, combined with the characteristics of green building materials and its relationship with BIM technology application, is urgently needed to better realize the scientific management of green building materials.

  4. Determination of natural radionuclides content in some building materials in Nigeria by gamma-ray spectrometry.

    Science.gov (United States)

    Ademola, J A

    2008-01-01

    This paper presents the findings of a study undertaken to determine the natural radioactivity present in some building materials in Nigeria using a gamma-ray spectrometer with a hyper pure germanium detector. A total of 118 samples of commonly used building materials were collected from manufacturers and suppliers of these materials. The mean radioactivity concentrations measured in the different building materials varied from 9.4 to 62.9, 1.3 to 88.4, and 21.5 to 762.4 Bq kg(-1), respectively, for 226Ra, 232Th, and 40K. The average contents of 226Ra, 232Th, and 40K for all the samples were 36.3, 46.5, and 320.9 Bq kg(-1), respectively, lower than the world average for building materials (50, 50, and 500 Bq kg(-1)). The calculated mean radium equivalent activity and external and internal hazard indices for the entire sample were lower than United Nation Scientific Committee on the Effects of Atomic Radiation recommended limits and comparable with results of similar studies undertaken in other countries. The mean annual gonadal equivalent doses of some of the samples were higher than the world average value for soil.

  5. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  6. 32 CFR 176.45 - Disposal of buildings and property.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Disposal of buildings and property. 176.45... HOMELESS ASSISTANCE § 176.45 Disposal of buildings and property. (a) Puglic benefit transfer screening. Not... shall dispose of buildings and property in accordance with the record of decision or other decision...

  7. Parameters for Building Materials Specifications in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Clement Oluwole Folorunso

    2013-07-01

    Full Text Available The responsibility of specifying materials for building construction purposes within Nigeria rests on the architects. Understanding the appropriate parameters for specifying building materials that could lead to immense financial proportion is required from the architects. The level of understanding and knowledge of architects is germane to the optimum performance of buildings throughout their life cycle. The methodology applied for this research involved the administration of a structured questionnaire on professional architects within the study area to determine the basis of their decision on the materials they specify or chose for building finishes. The parameters used to measure the specification of materials for finishes are client’s choice, cost, climatic compliance, and maintenance demand of materials. Findings show that the maintenance demand of materials is the most important factor that determines the specification of materials irrespective of the choice of client and climate. However, cost occupies a prominent role in the decision process. It also shows that most architects are not fully aware about the role of climate in determining the life cycle of materials in tropical environments. The compliance of materials to ever-changing climate does not constitute a major factor in the specification of materials in the area.

  8. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  9. Floating houses “lanting” in Sintang: Assessment on sustainable building materials

    Science.gov (United States)

    Susanto, D.; Lubis, M. S.

    2018-03-01

    One important element in the concept of sustainable building is the use of materials. The higher the use of sustainable material in building, the more sustained the building. Lanting is one type of floating construction, usually made from wood, that can be found in settlement along the river, such as in the city of Sintang, West Kalimantan. Lanting is still survive today because it is still used by community whose lives are tied to the river, and also because of its flexible nature that is able to function as a ‘water building’ as well as ‘land building’, and it is also movable, in addition for land limitation in some places. However, the existence of lanting settlements in the city of Sintang faces insistence because it is considered slum, polluting the environment, the scarcity of wooden materials, disturbing the beauty of the city, and threatened by the concretized river banks by local government. This paper discussed the sustainability of waterfront buildings in the city of Sintang in terms of material uses, through the assessment of ‘green-features’ of the main materials used. Assessment results show that wood is the most green building material and lanting is considered at the highest sustainability level for its use of wooden materials.

  10. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  11. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  12. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  13. Investigating the presence of hazardous materials in buildings

    International Nuclear Information System (INIS)

    Gustitus, D.A.; Blaisdell, P.M.

    1996-01-01

    Environmental hazards in buildings can be found in the air, on exposed surfaces, or hidden in roofs, walls, and systems. They can exist in buildings in solid, liquid, and gaseous states. A sound methodology for investigating the presence of environmental hazards in buildings should include several components. The first step in planning an investigation of environmental hazards in buildings is to ascertain why the investigation is to be performed. Research should be performed to review available documentation on the building. Next, a visual inspection of the building should be performed to identify and document existing conditions, and all suspect materials containing environmental hazards. Lastly, samples of suspect materials should be collected for testing. It is important to sample appropriate materials, based on the information obtained during the previous steps of the investigation. It is also important to collect the samples using standard procedures. Pollutants of concern include asbestos, lead, PCBs, and radon

  14. Natural radioactivity in Slovak construction materials and the indoor dose rate from building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.; Vladar, M.

    1998-01-01

    For keeping the population exposure al low as reasonably achievable (recommended by the Slovak regulations), the radioactive content of primordial radionuclides in building materials and products have not to exceed 370 Bq kg -1 of radium equivalent activity and 120 Bq kg -1 of 226 Ra. Samples of building materials (cement, stone, fly-ash, light concrete, slag, dross, sand dolomite. etc.) user for construction of the residential buildings were collected, milled and screened with 2-3 cm sieve. After drying, the samples were stored in 450 cm 3 sealed polyethylene containers for a 30 day period. All samples were measured in a 4 π geometry usually for 60,000 seconds. Measurements of 226 Ra, 232 Th and 40 K concentrations were carried out by high resolution gamma-ray spectrometry. The primordial radionuclides 226 and 232 Th were assessed through their progeny photo-peaks 214 Bi (609 keV), 214 Pb (295 keV, 351 keV) 228 Ac (338 keV, 911 keV) and 212 Pb (238 keV). The specific activity of both nuclides has been determined as weighted average of their photo-peaks. 40 K was measured directly via its 1460 keV peak. Until now, about 600 samples of building materials have been measured. The obtained radium equivalent activity in various types of building materials and mean annual effective doses of gamma radiation are presented. (J.K.)

  15. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal

  16. Study of Effects on Mechanical Properties of PLA Filament which is blended with Recycled PLA Materials

    Science.gov (United States)

    Babagowda; Kadadevara Math, R. S.; Goutham, R.; Srinivas Prasad, K. R.

    2018-02-01

    Fused deposition modeling is a rapidly growing additive manufacturing technology due to its ability to build functional parts having complex geometry. The mechanical properties of the build part is depends on several process parameters and build material of the printed specimen. The aim of this study is to characterize and optimize the parameters such as layer thickness and PLA build material which is mixed with recycled PLA material. Tensile and flexural or bending test are carried out to determine the mechanical response characteristics of the printed specimen. Taguchi method is used for number of experiments and Taguchi S/N ratio is used to identify the set of parameters which give good results for respective response characteristics, effectiveness of each parameters is investigated by using analysis of variance (ANOVA).

  17. Studies on natural radioactivity of some egyptian building materials

    International Nuclear Information System (INIS)

    Eissa, E. A.; El-Khayat, A.; Ashmawy, L.; Hassan, A.M.

    2005-01-01

    Using high-resolution y-rays spectrometry, the natural radioactivity of 14 samples of natural and o manufactured Egyptian building materials have been investigated. The samples were collected from local market and construction sites. From the measured gamma-ray spectra, specific activities were determined. The radium equivalent activity in each sample was estimated. Radiological evaluations of these materials indicate that all materials meet the external gamma-ray dose limitation. Calculation of concentration indices by assuming a Markkanen room model is constructed from these materials, to find the excess gamma-ray dose taken over that received from the outdoors. The Austrian Standard ONORM S 5200 is used in testing the building materials

  18. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  19. Radiological evaluation of building materials used in Malumfashi ...

    African Journals Online (AJOL)

    ... in building materials (sand, cement, blocks, granite, and paints) used in the construction of buildings in Malumfashi local Government area of Katsina state, Nigeria were determined by means of a gamma-ray spectrometry system using Sodium Iodide thallium activated (NaI(Tl)) detector in a low background configuration.

  20. 24 CFR 586.45 - Disposal of buildings and property.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Disposal of buildings and property... ASSISTANCE-COMMUNITY REDEVELOPMENT AND HOMELESS ASSISTANCE § 586.45 Disposal of buildings and property. (a... from HUD under § 586.35(c)(1) or § 586.35(d)(2), DoD shall dispose of buildings and property in...

  1. Radon exhalation study in cements and other building materials

    International Nuclear Information System (INIS)

    Singh, J.; Sharma, N.

    2012-01-01

    Radon is a radioactive inert gas, which is produced during the decay of radium, an element present in the naturally occurring uranium series. In the recent past, environmental scientists all over the world have been expressing great concern about the radiation hazard from radon and its short lived daughter products inside buildings. The radon concentration inside a building depends upon the radon exhalation from the building materials used for the construction and the soil underneath the building. In the present investigations, a comparative study for radon exhalation rate has been carried out in some Indian and Pakistani cements and other building materials being used locally such as sand, soil, bricks, marbles, CaCO 3 , POPs by using Track Etch Technique. The Pakistani cement with the trade name 'Elephant' shows the minimum mass exhalation rate while the Indian 'Birla White' cement has shown the maximum. Among the other building materials studied, CaCO 3 has shown the minimum, while local soil the maximum mass exhalation rate. Out of the fired clay bricks, roof tiles, floor tiles and different marbles, floor tiles have the minimum areal exhalation rate while roof tiles the maximum. (author)

  2. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  3. Natural radioactivity and radiological hazards of building materials in Xianyang, China

    International Nuclear Information System (INIS)

    Lu Xinwei; Yang Guang; Ren Chunhui

    2012-01-01

    Common building materials collected from Xianyang, China were analyzed for the natural radioactivity of 226 Ra, 232 Th and 40 K using γ-ray spectroscopy. The average activity concentration of 226 Ra, 232 Th and 40 K in the studied building materials ranges from 13.4 to 69.9, 13.1–99.1 and 124.7–915.1 Bq kg −1 , respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the worldwide average activity of soil. To assess the radiation hazard of the natural radioactivity in all samples to the people, the radium equivalent activity, external hazard index, internal hazard index, indoor absorbed dose rate and total annual effective dose were estimated. The radium equivalent activities of the studied samples are below the internationally accepted values. The external hazard index and internal hazard index of all analyzed building materials are less than unity. The mean values of indoor absorbed dose rate for all building materials except for lime are higher than the world population-weighted average of 84 nGy h −1 and the total annual effective dose values of building materials are lower than 1 mSv y −1 except for some cyan brick samples. The study shows the measured building materials do not pose significant source of radiation hazard and are safe for use in the construction of dwellings. - Highlights: ► Natural radioactivity in building materials was determined by gamma ray spectrometry. ► The radiological hazard of studied building materials is within the recommended safety limit. ► Most of the studied building materials do not pose significant radiation risk to residents.

  4. Natural radioactivity in building materials in Iran

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.

    2011-01-01

    This work presents a comprehensive study of natural radioactivity in building materials used in Iran. For this purpose, 177 samples of five types of building material, i.e. cement, gypsum, cement blocks, gravel and brick, were gathered from different regions of the country and analyzed by gamma spectroscopy to quantify radioactivity concentrations using a high purity germanium (HPGe) detector and a spectroscopy system. According to the results of this investigation, cement samples had maximum values of the mean Ra-226 and Th-232 concentrations, 39.6 and 28.9 Bq/kg, respectively, while the lowest value for mean concentration of these two radionuclides were found in gypsum samples 8.1 and 2.2 Bq/kg, respectively. The highest (851.4 Bq/kg) and lowest (116.2 Bq/kg) value of K-40 mean concentration were found in brick and gypsum samples, respectively. The absorbed dose rate and the annual effective dose were also calculated from the radioactivity content of the radionuclides. The results show that the maximum values of dose rate and annual effective dose equivalent were 53.72 nGy/h and 0.37 mSv/y in brick samples. The radium equivalent activities R eq calculated were below the permissible level of 370 Bq/kg for all building materials. The values of hazard indexes were below the recommended levels, therefore, it is concluded that the buildings constructed from such materials are safe for the inhabitants. The results of this study are consistent with the results of other investigations in different parts of the world. (authors)

  5. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  6. Possibilities of using new technology materials in constructing the radioactive waste containers The paper will consider using the latest technologies in material science for building

    International Nuclear Information System (INIS)

    Itu, Razvan Bogdan

    2008-01-01

    The paper will consider using the latest technologies in materials science for building the radioactive waste containers. A new amorphous steel has been discovered by the scientists from the University of Virginia, a material three times stronger then conventional steel and non-magnetic. Scientists shown that this steel, DARVA - Glass 101, has superior anticorrosive proprieties. The paper will also consider using Para-Aramides in protecting the radioactive waste containers. Chemical and physical properties of these materials shown a great tensile strength and the inter-chain bonds make these materials extremely strong. (author)

  7. Gamma spectrometric method for measuring natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Toth, A.; Feher, I.

    1976-11-01

    The natural 232 Th, 226 Ra and 40 K concentrations of building materials were determined by gamma spectrometry. Altogether 121 samples from all over Hungary, one from each factory producing building materials, were examined. The presented data had preliminary character. The results were compared to the relating ones from abroad. (Sz.N.Z.)

  8. Composite Materials Based on Hemp and Flax for Low-Energy Buildings

    Science.gov (United States)

    Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz

    2017-01-01

    The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime–flax–hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime–flax–hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite. PMID:28772871

  9. Radioactivity in building materials : a first overview of the European scenario

    International Nuclear Information System (INIS)

    Trevisi, Rosabianca; D'Alessandro, Marco; Nuccetelli, Cristina; Risica, Serena

    2008-01-01

    With a wide research into the national and international literature an inventory was created of building materials in Europe, characterised on the basis of activity concentration of the main natural radionuclides ( 226 Ra, 232 Th and 40 K). Materials of natural origin and containing industrial by-products were both accounted for. The inventory allowed to calculate the activity concentration index I - suggested by a European technical guidance document - for many building materials in Europe. A first identification of materials was thus made, which could be subject to controls or restrictions as for movement and/or use if the index were to be adopted by the European legislation. The analysis presented in this paper is a first attempt to discuss the data of our inventory and only five materials have been analysed. In a near future a more complete discussion will be published, also considering natural stones and superficial materials. As regards natural stones a tentative grouping will be made, classifying stones by their geological origin. Moreover, if enough data were available, we will also assess the radiation protection consequences of the potential use of by-products of industrial origin in building materials. Finally, the activity concentration of 232 Th, often higher than that of 226 Ra, in building materials shows the need of improving research into the health effects of the 232 Th chain, in particular of thoron concentration indoors. (author)

  10. Risk to Krakow population of gamma radiation from building materials

    International Nuclear Information System (INIS)

    Koperski, J.; Jasinska, M.

    1980-01-01

    A statistics was made of 7128 dwelling-houses considering their age, types of building materials and density of population. Gamma dose rates were measured by means of the TL and pressurized ionization chamber techniques inside 300 buildings and in 44 points outdoors over different kinds of beddings. Personal doses of 49 inhabitants of the buildings monitored were also recorded. By means of the spectrometric analysis of gamma radiation, and basing on a specially developed computational programme ''DOZA'' mean concentrations of 40 K, 226 Ra and 232 Th in 61 samples of building materials were evaluated. It was found that the mean personal dose rate as well as the mean indoor dose rate equals 5.7 urad/h /15.8 pGy/s/ and is about 19% higher than the dose outdoors which equals 4.8 urad/h /13.3 pGy/s/. Gamma dose rates inside the buildings made of gravel-sand concrete elements are about 10% lower than those in the buildings made of red bricks. Mean annual dose equivalent per capita from gamma radiation of building materials equals 40.6 mrem/y /406 uSv/y/, which constitutes about 57% of total annual dose equivalent per capita from all environmental sources of gamma radiation in the residential districts in Krakow. (author)

  11. The impact of green building approach to office property value

    Science.gov (United States)

    Sitanggang, Yosephine; Susanto, Dalhar

    2017-12-01

    A real estate development often produces negative impacts towards the environment such as the reduction of the ecological capacity in the site and its surroundings, energy exploitation, and excessive pollutant emission. To overcome these issues, the green building concept or approach has been adapted by several real estate businesses in Indonesia especially in the office sector. According to the data provided by GBCI in 2017, there are 17 buildings listed as a certified green building office in various levels. As what has been known, the green building approach results in the increase of price in the planning, construction and the building's maintenance. This paper will discuss about the research results regarding the effect of the green building approach towards the property value of office buildings especially in Jakarta. The research will be executed through the comparison method, which is the process of comparing office building that have already adapted the green building concept with the one that have not, or in other words, the conventional office buildings. Data gathering is done through observation and interviews with developers and building managers. The research results show that by adapting the green building approach for office buildings in Jakarta, the property value regarding the utility, scarcity, effective demands, and transferability aspect can increase.

  12. Assessing sustainability of building materials in developing countries: the sustainable building materials index (SBMI)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2014-10-01

    Full Text Available performance. This paper reviews a selection of sustainability assessment and reporting methodologies in order understand the applicability of existing systems as a means of measuring sustainability of building materials in developing countries. The review...

  13. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  14. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  15. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities.Calculations......In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...

  16. Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse

    Directory of Open Access Journals (Sweden)

    Neslihan Doğan-Sağlamtimur

    2018-01-01

    Full Text Available In order to bring a solution to the problem of waste foundry sand (WFS in the foundry sector and achieve its reuse, geopolymer building material (as a cementless technology was produced from the WFS for the first time in the literature in this study. The physical and mechanical characteristics of this material were determined. In the first part of the experimental step, the sieve analysis, loose/tight unit weight, and loss of ignition of the WFS were obtained as well as the ultimate analysis. In the second step, the water absorption percentage, porosity, unit weight, and compressive strength tests were conducted on the WFS-based geopolymer specimens activated by chemical binders (sodium hydroxide: NaOH and sodium silicate: Na2SiO3. As the unit weights of all the produced samples were lower than 1.6 g/cm3, they may be considered as lightweight building materials. The minimum compressive strength value for building wall materials was accepted as 2.5 MPa by national standards. In this study, the maximum compressive strength value was measured as 12.3 MPa for the mixture incorporation of 30% Na2SiO3 at the curing temperature of 200°C in 28 days. It was concluded that this geopolymer material is suitable for using as a building wall material.

  17. Using Bamboo as an Alternative Material for Environmental Friendly Building

    NARCIS (Netherlands)

    Mardjono, F.; Erkelens, P.A.; Jonge, S. de; Vliet, A.A.M. van

    2000-01-01

    Bamboo is one of natural resources that can be applied for building materials. In such bamboo growing countries, bamboo has main role as a building material for more than hundreds years ago. Sometimes bamboo can be used to replace wood based building material. Based on the detecting of problems on

  18. A study on the mechanical properties of additive manufactured polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Dept. of Mechanical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2015-08-15

    Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

  19. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  20. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.

  1. Natural radioactivity level of main building materials in Baotou, China

    International Nuclear Information System (INIS)

    Zhao Caifeng; Lu Xinwei; Li Nan; Yang Guang

    2012-01-01

    A survey was done on natural radioactivity level and annual effective dose rate of main building materials in Baotou, China. The natural radionuclides of 40 K, 232 Th and 226 Ra in main building materials collected from Baotou were measured using NaI γ-ray spectrometry and the measured data were analyzed according to the national standards and radiological protection principles of the European Commission. The specific activities of 40 K, 232 Th and 226 Ra in the building materials samples were 218.82-1145.92, 19.75-1.32.50 and 11.46-82.66 Bq/kg, respectively. The internal and external exposure indexes of building materials were 0.06-0.41 and 0.28-0.70, respectively. The annual effective dose equivalent was 0.41-0.97 mSv/y. This justifies the production and sale of the main building materials, as both the internal and external exposure indexes of building materials are less than 1. The effective dose rate of ash brick is 0.97 mSv/y, while the maximum acceptable value is 1 mSv/y. Therefore, it is necessary to control the amount of industrial waste residue in building materials to avoid unnecessary radioactive exposure to residents. (authors)

  2. Building materials. VOC emissions, diffusion behaviour and implications from their use

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-01-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m −3 , accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). - Highlights: ► Neopentyl glycol is reported in emissions from building materials for the first time. ► Neopentyl glycol dominates the VOC emissions from cement-based building materials. ► A dual chamber was developed to control diffusion through building materials. ► Building materials facilitate diffusion of indoor air pollutants through their pores. - Neopentyl glycol was detected in high concentrations in emissions from building materials.

  3. Survey and specimen taking of building materials which are destined for house building in The Netherlands

    International Nuclear Information System (INIS)

    Boer, J.F. den

    1985-11-01

    This investigation deals with the following items: (a) Some building materials cause an increase of the natural radioactive radiation level indoors, especially building materials containing a certain kind of phosphogypsum. The radiation level depends among other things on the applied quantity of building materials and on the location in the building (walls, floors or roofs, etc.). The soil underneath dwellings can also be an important radiation source. The report gives a listing of the kind of building materials used for dwellings in The Netherlands, both present ones as well as possible future ones. A survey of the quantities applied and the location of application in dwellings is also given. The different types of soil underneath the dwellings are discussed. (b) Samples were collected from various factories, dealers and other sources (both present and future samples) of the most important building materials and components thereof. The samples were handed over to Division of Technology for Society TNO, Radiological Service TNO and Netherland Energy Research Foundation, in order to measure the activity concentrations and the radon exhalations. A listing of the samples is given. (Auth.)

  4. Updated database on natural radioactivity in building materials in Europe.

    Science.gov (United States)

    Trevisi, R; Leonardi, F; Risica, S; Nuccetelli, C

    2018-07-01

    The paper presents the latest collection of activity concentration data of natural radionuclides ( 226 Ra, 232 Th and 4  K) in building materials. This database contains about 24200 samples of both bulk materials and their constituents (bricks, concrete, cement, aggregates) and superficial materials used in most European Union Member States and some European countries. This collection also includes radiological information about some NORM residues and by-products (by-product gypsum, metallurgical slags, fly and bottom ashes and red mud) which can be of radiological concern if recycled in building materials as secondary raw materials. Moreover, radon emanation and radon exhalation rate data are reported for bricks and concrete. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Use of industrial waste for the manufacturing of sustainable building materials.

    Science.gov (United States)

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  7. Exposure to radiation from the natural radioactivity in building materials

    International Nuclear Information System (INIS)

    1979-05-01

    Radiation exposure of members of the public can be increased appreciably by the use of building materials containing above-normal levels of natural radioactivity. This phenomenon has attracted attention in recent years, and in this review, an attempt is made to the quantify exposures incurred under various circumstances. The second section of the review is a general survey of those building materials, mostly industrial wastes, that have aroused interest in Member countries. The probability that environmental pressures may cause such wastes to be used more and more by building industries may lead to similar situations in the future. Other review material of a relevant nature is described in the third section. Primordial radionuclides only are considered here. They are: potassium-40 (K-40); radium-226 (Ra-226) and its decay products; the series headed by thorium-232 (Th-232). The important radiological consequences of the natural radioactivity in building materials are two-fold, irradiation of the body by gamma rays and irradiation of the lung tissues by radon-222 (Rn-222) decay products or daughters. These consequences cannot be explored quantitatively except in relation to the specific activities of the nuclides of interest, and the approach adopted in this review is to assess the consequences in terms of the incremental radiation exposures that would be incurred by occupants of substantial dwellings entirely constructed of materials with various specific activities or combinations thereof. Gamma rays are dealt with in the fourth section and radon daughters in the fifth

  8. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  9. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office...... partition, and medium density fiberboard each released greater than 38 mg m(-2) of by-products....

  10. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    Science.gov (United States)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  11. Evaluation of possibility to increasing sustainability of high-rise buildings through use university intellectual property

    Science.gov (United States)

    Potekhin, Igor; Mischenko, Valeryi; Mottaeva, Angela; Zheltenkov, Alexander

    2018-03-01

    In this article explained approach of valuation of intellectual property of Voronezh State Technical University, as her usefulness to increasing the sustainability and ecological safety of high-rise building. High-rise building is main type of buildings in modern cities. They include large volume of material mass, high volume of energy using and high volume of emissions. Using innovation solutions to improving ecology safety of high-rise buildings has large potential to city in whole. Explained in the article methods of calculation of effects helps to value sustainable solutions of present and future generations. Thus usefulness of patents express through usefulness regarding to high-rise building, including for sustainable development.

  12. Measurement of natural radioactivity in building materials used in Urumqi, China.

    Science.gov (United States)

    Ding, Xiang; Lu, Xinwei; Zhao, Caifeng; Yang, Guang; Li, Nan

    2013-07-01

    Building materials contain natural radionuclides (226)Ra, (232)Th and (40)K, which cause direct radiation exposure of the public. The concentrations of (226)Ra, (232)Th and (40)K in commonly used building materials of Urumqi, China have been analysed using gamma-ray spectrometry. The concentrations of (226)Ra, (40)K and (232)Th in the studied building materials range from 19.8 to 87.4, from 273.3 to 981.2 and from 11.6 to 47.7 Bq kg(-1), respectively. The radium equivalent activity (Raeq), gamma index (Iγ) and alpha index (Iα) were calculated to assess the radiation hazards to people living in dwellings made of the materials studied. The calculated Raeq values of all the building materials are lower than the limit of 370 Bq kg(-1) for building materials. The values of Iγ and Iα of all the building materials are less than unity. The study shows that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  13. Reduction of Ambient Radon Activity by the use of Advanced Building Materials at King Saud University, Saudi Arabia

    International Nuclear Information System (INIS)

    Diab, H.M.; Abd-El Hafeez, A.I.

    2011-01-01

    The spatial variation of radon concentration within the building of the preparatory year located in Riyadh was studied. Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six month periods in more than 40 rooms of the surveyed building. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between floors and between rooms on the same floor. Floor mean ratios, with ground floor as a reference level, were calculated also in order to study the correlation between radon concentration and floor levels in case of using advanced Italian granite building material. All the results of this study were investigated and compared with usual Indian granite building material and it was found that the k nowledgement building i s a healthy work place which may be due to uses of advanced building materials.

  14. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  15. Study of radiation dose reduction of buildings of different sizes and materials

    International Nuclear Information System (INIS)

    Furuta, Takuya; Takahashi, Fumiaki

    2015-01-01

    The dependence of radiation dose reduction on the sizes and materials of buildings was studied by numerical analyses using the Monte Carlo simulation code, PHITS. The dose rates inside the buildings were calculated by simulating gamma-ray transport from radioactive cesium deposited at the ground surface. Three building models were developed: the wooden house, the open-space concrete building, and the thin-wall building, to study the effect of building size and construction material on dose reduction inside these structures. Here the floor-area sizes of the building models were varied to clarify the influence of building configuration on dose reduction. The results demonstrated that the dose rates inside the buildings linearly decreased with increasing floor area on a logarithmic scale for all types of buildings considered. The calculated dose distribution inside a building indicated that the distance from the outer walls was a determining factor for the dose rate at each position in the building. The obtained tendency was verified by comparison with data reflecting the dose reduction of typical buildings in Japan. (author)

  16. Activity measurement and effective dose modelling of natural radionuclides in building material

    International Nuclear Information System (INIS)

    Maringer, F.J.; Baumgartner, A.; Rechberger, F.; Seidel, C.; Stietka, M.

    2013-01-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  17. Conditioning of material properties by micro rotary swaging

    Science.gov (United States)

    Ishkina, Svetlana; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Cold forming initiates a change of the material properties like flow stress and hardness. Due to work hardening and the accompanied loss of formability some intermediate heat treatment may become necessary in multi-stage forming processes. One possibility to avoid this heat treatment is to adjust the forming characteristics in terms of flow stress and formability by rotary swaging. This process is particularly suitable not only for producing of the target geometry but also for modifying of the material properties during the process and thus, rotary swaging can prepare the parts for further forming, such as extrusion. In this contribution, the process chain "rotary swaging - extrusion" for austenite stainless steel AISI304 was investigated. The forming characteristics of the semi-finished products for the extrusion were influenced by the previous swaging process. The conditioning by changing of the microstructure, the work hardening and the geometry of the processed wires was achieved by the process design. For this purpose, the geometry of the swaging dies, the feeding velocity as well as the process kinematics (eccentric swaging) and a stroke following angle Δɸ were varied. In particular, the novel geometry of the swaging dies with extraordinary sloped faces generated a non-symmetric material flow with severe shear deformation and thus an extreme change of the microstructure. The required forming force of the following extrusion process reflected the range of achievable conditioning. The micro rotary swaging process positively improved the formability of AISI304 by work softening.

  18. Web building and silk properties functionally covary among species of wolf spider.

    Science.gov (United States)

    Lacava, Mariángeles; Camargo, Arley; Garcia, Luis F; Benamú, Marco A; Santana, Martin; Fang, Jian; Wang, Xungai; Blamires, Sean J

    2018-04-15

    Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  19. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  20. Sustainable hemp-based composites for the building industry application

    Science.gov (United States)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  1. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material,

  2. The measurement theory of radioactivity in building materials

    International Nuclear Information System (INIS)

    Qu Jinhui; Wang Renbo; Zhang Xiongjie; Tan Hai; Zhu Zhipu; Man Zaigang

    2010-01-01

    Radioactivity in Building Materials is the main source of natural radiation dose that the individual is received, which has caused serious concern of all Social Sector. The paper completely introduce the measurement theory of the Radioactivity in Building Materials along with the measurement principle of natural radioactivity, design of shielding facility, choosing measurement time, sample prepared and spectrum analyzed. (authors)

  3. Natural radioactivity in granite stones and their radiological aspects as building material

    International Nuclear Information System (INIS)

    Kumaravel, S.; Sunil, C.N.; Narashimha Nath, V.; Raghunath, T.; Prashanth Kumar, M.; Ramakrishna, V.; Nair, B.S.K.; Purohit, R.G.; Tripati, R.M.

    2014-01-01

    Natural radioactivity in building and building decorating materials comes mainly from natural radioactive series like 238 U, 232 Th and 40 K. India is one of the leading users of granite stones as it is preferred by decorators and architects. The knowledge of presence of natural radioactivity in these materials is required for the assessment of radiation exposure due to them. The objective of this study is to determine the natural radioactivity and radiological aspects of granite stones as building material

  4. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  5. Natural radioactivity in building materials used in Changzhi, China

    International Nuclear Information System (INIS)

    Yang, G.; Lu, X.; Zhao, C.; Li, N.

    2013-01-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of 226 Ra, 232 Th and 40 K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg -1 , respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings. (authors)

  6. Natural radioactivity in building materials used in Changzhi, China.

    Science.gov (United States)

    Yang, Guang; Lu, Xinwei; Zhao, Caifeng; Li, Nan

    2013-08-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of (226)Ra, (232)Th and (40)K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg(-1), respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings.

  7. COMPUTER MODELING OF STRUCTURAL - CONCENTRATION CHARACTERISTICS OF BUILDING COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    I. I. Zaripova

    2015-09-01

    Full Text Available In the article the computer modeling of structural and concentration characteristics of the building composite material on the basis of the theory of the package. The main provisions of the algorithmon the basis of which it was possible to get the package with a significant number of packaged elements, making it more representative in comparison with existing analogues modeling. We describe the modeled area related areas, the presence of which determines the possibility of a percolation process, which in turn makes it possible to study and management of individual properties of the composite material of construction. As an example of the construction of a composite material is considered concrete that does not exclude the possibility of using algorithms and modeling results of similar studies for composite matrix type (matrix of the same material and distributed in a certain way by volume particles of another substance. Based on modeling results can be manufactured parts and construction elementsfor various purposes with improved technical characteristics (by controlling the concentration composition substance.

  8. Sustainable materials for low carbon buildings

    OpenAIRE

    B.V. Venkatarama Reddy

    2009-01-01

    This paper focuses on certain issues pertaining to energy, carbon emissions and sustainability of building construction with particular reference to the Indian construction industry. Use of sustainable natural materials in the past, related durability issues, and the implications of currently used energy-intensive materials on carbon emissions and sustainability are discussed. Some statistics on the Indian construction sector regarding materials produced in bulk quantities and the energy impl...

  9. Photoelectric properties of GaAs materials studied by pulsed laser techniques

    International Nuclear Information System (INIS)

    Aguir, Khalifa

    1981-01-01

    This research thesis addressed the photoelectric properties of single-crystal or epitaxial GaAs (N doped or P doped) materials. The objective is to characterize and to improve the electric quality of these materials and associated components, notably for the production of high performance solar cells for ground-based or space-based applications. More particularly, this research aimed at using an excitation by a pulsed laser to analyse recombination and trapping properties of carriers created by photo-excitation, and also at studying the effect of low doses of particle irradiation on the carrier properties. Thus, the author describes conduction characteristics of two different N-type epitaxial layers, discusses carrier excitation and recombination processes which may occur in semiconductors, and proposes an overview of trapping phenomena. Photoelectric properties of the considered epitaxial layers are then studied and discussed

  10. Confinement Effect on Material Properties of RC Beams Under Flexure

    Science.gov (United States)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  11. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials

    International Nuclear Information System (INIS)

    Metaxa, E.; Agelakopoulou, T.; Bassiotis, I.; Karagianni, Ch.; Roubani-Kalantzopoulou, F.

    2009-01-01

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides-building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  12. Papercrete brick as an alternate building material to control Environmental Pollution

    Science.gov (United States)

    Sudarsan, J. S.; Ramesh, S.; Jothilingam, M.; Ramasamy, Vishalatchi; Rajan, Rajitha J.

    2017-07-01

    Utilization of concrete in the construction industry is increasing day by day. The increasing demand for concrete in the future is the major issue, for which an alternate option is to find out at a reduced or no additional cost and to reduce the environmental impact due to increase of cement industries that are important ingredient to economic development. It turns out urgent to find out alternate for the partial replacement of concrete and cement, as natural sources of aggregates are becoming exhausted. As large quantity of paper waste is generated from different countries all over the world which causes serious environmental problems, So in this present study abandoned paper waste was used as a partial replacement material in concrete,. Study indicates that 80% of the construction cost of a building was contributed by building material and still millions of people in developing countries like India are not able to afford the cost of construction of house. This study is based on potential use of light weight composite brick as a building material and potential use of paper waste for producing at low-cost. Experimental investigation was carried out to analyse optimization of mix for papercrete bricks depending upon the water absorption, compressive strength and unit weight. Papercrete bricks were prepared out of waste paper, and quarry dust with partial replacement of cement by another industrial by-product Fly Ash in varying proportions of 25%, 40% and 55%. The properties like mechanical strength, standard quality comparisons with the conventional bricks through standard tests like hardness, soundness, fire resistance and Cost-Benefit Analysis were performed and studied. The specimens of dimension 230mm x 110mm x 80mm were subjected to 7 Days and 28 days air curing and sun drying before tests were performed on them. Based on the study it was found that for non-load bearing walls papercrete bricks are best suited.

  13. Prevention of radioactive gas seeping into buildings through constructive materials

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2004-01-01

    Full text: One of possible method of realization of the terrorist acts is using gases and liquids, which easily permeate through the constructive materials of walls, floor, ceiling, roof, etc. into buildings by the capillary action of the pores. Toxic volatile organic compounds, organic and inorganic gases, radioactive elements, especially, which emits alpha particles can be used as the dangerous substances. Increased ventilation may help in removing the gases, but can actually increase the gases level by increasing the suction through the pores of concrete. If the gases and liquids are soluble in water and are easily volatilized from it, they can also get by groundwater up to underground structures and penetrate inside through opening and pores in concrete or pushed by hydrostatic pressure. The purpose of this work is creating a method to reduce concentration of toxic and radioactive gases in homes, buildings, underground buildings, tunnels, hangars, garages, bomb shelters, etc. The most effective method to prevent penetration of radionuclides into premises of buildings and underground structures through walls, roofs, floors is using special chemicals, which seal micropores inside the construction materials against gases. Worked out chemicals which consist of blend of polymeric compounds are described in the paper. Radioactive gases permeability in constructive materials after treatment by chemicals was studied. Influence of types of cement, sand and gypsum, preliminary treatment by different chemicals, different types of polymeric compounds, time between treatments, moisture of materials, time between preparation of chemicals and treatment of materials (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) were examined. Experiments have shown that our method allows reducing the coefficient of gas permeability 200 - 400 times

  14. Towards the development of performance based guidelines for using Phase Change Materials in lightweight buildings

    Science.gov (United States)

    Poudel, Niraj

    Incorporating Phase Change Materials (PCMs) in construction materials can increase the thermal mass of a building. With this increase in thermal mass, PCMs are known to reduce the heating and cooling loads of a building significantly. During the past 10 years, studies have estimated potential reduction of energy consumption of buildings between 10 and 30 percent. This wide range is due to the large number of parameters that effect energy consumption and make the process of selecting the optimal type and amount of PCM challenging. In fact, extensive engineering studies are generally necessary to determine the practicality of PCM in any specific case. As a result, architects and engineers are reluctant to use PCM because of the lack of such a comprehensive study. In the United States, eight climate zones are identified on the basis of annual degree heating and degree cooling days. For a given building in a given climate, there exists an optimal melting temperature and enthalpy that can reduce the energy consumption and the payback period. In this research, the optimal properties of PCM boards are determined for all 15 representative cities. Additional topics discussed in this research are the sensitivity of the optimal properties of PCM and the effect of the average cost of energy on the selection of PCM. The effect of six independent variables on the performance of PCM boards is presented in detail and the climate types where PCM boards perform optimally are narrowed down. In addition, a new procedure is presented to study the temporal and directional melting and solidifying trend of the PCM placed in buildings. The energy consumption and hourly data for the PCM enhanced buildings are determined numerically using the Department of Energy software EnergyPlus, which calculates the energy consumption for heating and cooling a building under any climate and operation schedule. The software is run on a computer cluster for a wide range of properties from which the

  15. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  16. ADVANTAGES AND DISADVANTAGES OF STRAW-BALE BUILDING

    Directory of Open Access Journals (Sweden)

    Larisa Brojan

    2014-06-01

    Full Text Available This paper is focused on general properties of straw bale as a building material which has been proven by buildings throughout the world to be an appropriate material choice. Still, there are many hesitations about using this alternative building material. The building techniques are relatively easy to learn and the performance of straw bale structures has a high value in terms of several aspects as long as general requirements are followed. The primary benefit of straw bale as a building material is its low embodied energy. It also has high thermal and sound insulation properties. Many previous research studies on straw bale building have been focused on structural stability, fire resistance and assessing moisture content in straw bales which is one of the major issues. Therefore, special attention needs to be devoted to details to insure proper building safety. Render selection is especially crucial and an extremely important step in straw bale building, not only in matters concerning moisture but also structural capacity and fire protection. A major disadvantage of straw bale construction is its lack of material research. The paper is divided into three parts in which advantages and disadvantages of such a building are discussed. In the third part, results are presented for a survey in which correspondents emphasized the advantages and disadvantages of living in a straw bale building.

  17. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  18. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings

    OpenAIRE

    PAVEL CLAUDIU; BLAGOEVA DARINA

    2017-01-01

    Insulation materials could contribute significantly to improving the overall energy efficiency and sustainability of the buildings, especially by reducing the energy losses through the building envelope (walls, roofs, floors, etc.). The global demand for thermal insulation materials in building applications is projected to increase at a CAGR of 4.5 % between 2016 and 2027. In the EU the demand for thermal insulation materials is estimated at 3.48 % (2015-2027). Wool minerals (glass and stone ...

  19. The bioreceptivity of building stone

    Science.gov (United States)

    Mauko Pranjić, Alenka; Mulec, Janez; Muck, Tadeja; Hladnik, Aleš; Mladenovič, Ana

    2015-04-01

    Bioreceptivity is an intrinsic property of stone, and is defined as the ability of a material to be colonized by living organisms. The fouling and staining of building stone material due to the activity of microorganisms presents a serious problem in modern as well as historical buildings, not only due to the aesthetic impact but also due to the deterioration of the material. Biological colonisation on stone materials is influenced by a number of factors, e.g. the intrinsic properties of the stone (porosity, roughness, permeability, mineral composition), environmental parameters (e.g. solar radiation, temperature, water regime, climate, etc.), and specific microclimatic parameters (e.g. orientation, exposure to shadow, permanent capillary humidity, etc.). In order to assess the bioreceptivity of building stones, use is often made of artificial colonisation experiments compromising the inoculation of stones with a single species or a few isolated strains under laboratory conditions. In the present work the authors present the development of a method for the determination of bioreceptivity, as well as a study of the bioreceptivity of selected natural stone versus the latter's intrinsic properties. Field examples of biodeterioration are also presented. The study was supported by the Slovenian Research Agency (L1-5453).

  20. Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece

    International Nuclear Information System (INIS)

    Papaefthymiou, H.; Gouseti, O.

    2008-01-01

    Five different kinds of building materials (Pozzolanic and Portland cements, limestone, white cement, marble powder and sand) commonly used in building construction in Peloponnese, Greece, and Portland cement's raw materials were analyzed for their natural radioactivity content, using γ-ray spectrometry. Pozzolanic and Portland cement (Cem II) samples were found to contain the highest average 226 Ra, 232 Th and 40 K activity concentrations compared with the other examined building material samples. This could be attributed to their containing fly ash, which was found to contain high natural radionuclide concentrations, especially that of 226 Ra (1041Bqkg -1 ). Results obtained were compared with the results reported by other Greek researchers and the worldwide values for building materials and soil. The calculated activity concentration index (I) values for all the examined building material samples were lower than the recommended exception limits for exposure to external γ-radiation

  1. Valorisation of phosphogypsum as building material: Radiological aspects

    Directory of Open Access Journals (Sweden)

    Tayibi, H.

    2011-12-01

    Full Text Available Nowadays, alternative uses of phosphogypsum (PG in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM. This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I in the final by-products. The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

    Actualmente, en muchos países se está contemplando el uso alternativo del fosfoyeso (PG en la industria de la construcción, aunque su contenido en radionucleidos naturales puede presentar ciertas restricciones para dicha aplicación (material clasificado por la US-EPA como TENORM: “Technologically Enhanced Naturally Occurring Materials. No obstante, estos inconvenientes podrían paliarse controlando el porcentaje del PG y los niveles de radioactividad en las materias primas a incorporar al cemento y calculando el índice de concentración de actividad (I en los productos finales. La valorización del PG como material de construcción se ha estudiado en este trabajo desde el punto de vista radiológico, desarrollando un nuevo proceso de estabilización/solidificación, obteniéndose un material de características similares al cemento y que presenta menor contenido de radionucleidos naturales que el

  2. Safety distance for preventing hot particle ignition of building insulation materials

    OpenAIRE

    Jiayun Song; Supan Wang; Haixiang Chen

    2014-01-01

    Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere ...

  3. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  4. The natural radioactivity of building materials used in the Christchurch urban area

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1984-01-01

    The natural gamma radioactivity of a variety of common building materials in Christchurch, has been measured by gamma spectroscopy. Using conversion factors from the literature, relative dose rate indices for the various building materials were calculated and compared. An increasing order of radioactivity concentration was found from timber to compressed limestone to brick products. These levels are however less than the acceptable limits of radioactivity based on some overseas criteria suggested as building standards

  5. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    Science.gov (United States)

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  6. RESRAD-BUILD: A computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material

    International Nuclear Information System (INIS)

    Yu, C.; LePoire, D.J.; Jones, L.G.

    1994-11-01

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material inside the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to: three compartments, 10 distinct source geometries, and 10 receptor locations. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure to materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particulates; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces of the building compartments

  7. pH and redox effects of building materials

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van Zomeren, A.; Meeussen, J.C.L.; De Nie, D.S.

    2007-11-01

    The application of relatively fine grained industrial slags as fill material in industrial terrains and parking lots has led to unacceptably elevated pH values and imposed reducing conditions in ground- and surface water. Based on the Dutch Building Materials Decree the materials applied were classified as category 1 materials (free use). There are no limits set to pH and redox in this regulation. In itself a lower or higher pH and a low redox potential are not necessarily critical. Only when the buffer capacity of the surroundings is exceeded, undesirable situations may develop. In this work, the release of alkaline and reducing substances has been studied to assess if regulatory controls are needed and how such controls could be implemented practically. Both pH and redox potential are unsuitable properties for this purpose as it is the buffer capacity of the releasing material and the buffer capacity of the receiving soil and water bodies that determine whether unacceptable conditions develop. As pH and redox are also affected by gas reactions (O2 and CO2), the evaluation becomes relatively complex. Using the chemical speciation-transport model ORCHESTRA, a scenario description has been developed to assess the release of alkaline and reducing species from slag by infiltration under unsaturated conditions. Proper acid neutralization and redox buffering data for the materials were determined. Based on the sophisticated model results, a simplified model description was applied to link observations to impact. Decision schemes for applications above groundwater and in surface water have been developed based on the buffer capacity and particle size distribution of the material to be used, the infiltration rate, the degree of exposure to O2 and CO2 from the atmosphere or from soil air and the dimensions of the application. This has led to a preliminary guidance on implementing rules for acceptance of materials in specific applications. The modeled release predictions

  8. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  9. Terrain and building effects on the transport of radioactive material at a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Park, Misun; Jeong, Haesun; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2014-01-01

    Highlights: • This study is to quantify the building and terrain effects on the atmospheric dispersion. • Statistical methods with AERMOD-PRIME and CFD were used. • To assess the risk in nuclear power plants, terrain and building effects have to be considered. - Abstract: This study identified the terrain and building effects on the atmospheric dispersion of radioactive materials at the Wolsong Nuclear Site. To analyze the atmospheric dispersion of radioactive materials, the AERMOD-PRIME model, CFD model and meteorological data from 2010 were used. The terrain and building effects on the atmospheric dispersion of radioactive materials within a 1 km radius of the site were statistically significant. The maximum concentration of the radioactive material increased by 7 times compared to the concentration when the terrain and building effects were not considered. It was found that the terrain and building influenced the decrease in the concentration of radioactive material in a concentric circle with a 914 m radius from the center of the site. The concentration of radioactive material in a concentric circle with a 350 m radius was two-times higher than the concentration estimated at the backside of the building, which is the downwind side, without any consideration of the terrain and building effects. In consideration of the Korean situation, in which multiple nuclear reactors are built on the same nuclear site, it is necessary to evaluate the risk that may affect workers and nearby residents by reflecting the terrain and building effects

  10. Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, H. [Division of Physics, Inorganic and Nuclear Chemistry, Department of Chemistry, University of Patras, Patras 265 00 (Greece)], E-mail: epap@chemistry.upatras.gr; Gouseti, O. [Division of Physics, Inorganic and Nuclear Chemistry, Department of Chemistry, University of Patras, Patras 265 00 (Greece)

    2008-09-15

    Five different kinds of building materials (Pozzolanic and Portland cements, limestone, white cement, marble powder and sand) commonly used in building construction in Peloponnese, Greece, and Portland cement's raw materials were analyzed for their natural radioactivity content, using {gamma}-ray spectrometry. Pozzolanic and Portland cement (Cem II) samples were found to contain the highest average {sup 226}Ra, {sup 232}Th and {sup 40}K activity concentrations compared with the other examined building material samples. This could be attributed to their containing fly ash, which was found to contain high natural radionuclide concentrations, especially that of {sup 226}Ra (1041Bqkg{sup -1}). Results obtained were compared with the results reported by other Greek researchers and the worldwide values for building materials and soil. The calculated activity concentration index (I) values for all the examined building material samples were lower than the recommended exception limits for exposure to external {gamma}-radiation.

  11. Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-05-01

    Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms

  12. Daylight as a building material

    DEFF Research Database (Denmark)

    Thule Kristensen, Peter; Madsen, Merete

    2005-01-01

    The article draws on examples to chronologically trace the use of daylight as building material in architecture of the 20th and early 21st century. The essay covers works of Mies van der Rohe, Le Corbusier, Erik Bryggman, Rudolf Schwarz, Alvar Aalto, Aldo Rossi, Jørn Utzon, Daniel Libeskind, Peter...

  13. Variability in energy and carbon dioxide balances of wood and concrete building materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Sathre, Roger [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    A variety of factors affect the energy and CO{sub 2} balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO{sub 2} emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO{sub 2} balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO{sub 2} balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO{sub 2} balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO{sub 2} emission to the atmosphere. (author)

  14. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  15. Evaluation of internal/external exposure from interior building materials

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Morita-Murase, Yuko; Yoshizawa, Yukio

    2008-01-01

    Internal exposure to alpha particles emitted from 222 Rn (radon) and its daughters is the second leading cause of lung cancer. As a source of indoor radon in home, there are interior building materials that contain radioactive minerals. These radioactive consumer products have been claimed by distributors to have effect of 'minus-ion' or 'radon spring' for healthy promotion. We analyzed radioactive nuclides contained in the interior building materials, and measured radon levels released from them. The results of gamma-ray spectrometry revealed that these interior building materials contain U- and Th-series nuclides. The densities of some radioactive nuclides in the tile used for a bathroom exceeded the exempt limits of International Basic Safety Standards. However, the radon densities released from the tile was lower than detectable limit. In contrast, one of the wallpaper released 34 Bq·m -3 of radon gas in a 50-liter container. This value is two times higher than the average radon level in Japanese homes. The minus-ion effect' wallpapers are thought to be a cause of residential exposure to radon. (author)

  16. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V.

    2012-01-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of 226 Ra, 232 Th and 40 K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. - Highlights: ► Most of the building materials contain natural radionuclides. ► The radioactivity level in building materials is used to assess the radiological hazards to human. ► We present the results for the measured activities and radiation hazards of building materials. ► We report that the studied building materials do not pose any significant radiation hazard.

  17. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  18. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  19. Production of mycotoxins on artificially and naturally infested building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Gravesen, S.; Nielsen, P.A.

    1999-01-01

    , especially Asp. ustus and Asp. niger produced many unknown secondary metabolites on the building materials. Analyses of wallpaper and glass-fibre wallpaper naturally infested with Asp. versicolor revealed sterigmatocystin and 5-methoxysterigmatocystin. Analyses of naturally infested wallpaper showed that C......In this study, the ability to produce mycotoxins during growth on artificially infested building materials was investigated for Penicillium chrysogenum, Pen. polonicum, Pen. brevicompactum, Chaetomium spp., Aspergillus ustus, Asp. niger, Ulocladium spp., Alternaria spp., and Paecilomyces spp., all...... isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high...

  20. Natural radioactivity in some building materials and assessment of the associated radiation hazards

    Energy Technology Data Exchange (ETDEWEB)

    Kasumovic, Amira; Hankic, Ema; Kasic, Amela; Adrovic, Feriz [Tuzla Univ. (Bosnia and Herzegovina). Dept. of Physics

    2018-04-01

    The results of the specific activities of {sup 232}Th, {sup 226}Ra and {sup 40}K measured in samples of commonly used building materials in Bosnia and Herzegovina are presented. Measurements were performed by gamma-ray spectrometer with coaxial HPGe detector. The surface radon exhalation and mass exhalation rates for selected building materials were also measured. The determined values of specific activities were in range from 3.16 ± 0.81 Bq kg{sup -1} to 64.79 ± 6.16 Bq kg{sup -1} for {sup 232}Th, from 2.46 ± 0.95 Bq kg{sup -1} to 53.89 ± 3.67 Bq kg{sup -1} for {sup 226}Ra and from 28.44 ± 7.28 Bq kg{sup -1} to 557.30 ± 93.38 Bq kg{sup -1} for {sup 40}K. The radium equivalent activity, the activity concentration index, the external and internal hazard indices as well as the absorbed dose rate in indoor air and the corresponding annual effective dose, due to gamma-ray emission from the radioactive nuclides in the building material, were evaluated in order to assess the radiation hazards for people. The measured specific activities of the natural radioactive nuclides in all investigated building materials were compared with the published results for building materials from other European countries. It can be noted that the results from this study are similar to the data for building materials from neighbouring countries and for building materials used in the EU Member States. The radiological hazard parameters of the building materials were all within the recommended limits for safety use.

  1. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  2. Measurement of thoron exhalation rates from building materials.

    Science.gov (United States)

    de With, G; de Jong, P; Röttger, A

    2014-09-01

    Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (220Rn), limited information on thoron exposure is available. The purpose of this study is to develop a test method for the determination of the thoron exhalation rate from building materials. The method is validated, and subsequently the thoron exhalation rates from 10 widely-applied concretes, gypsums, brick, limestone, and mortar are determined. The measured thoron exhalation rates of these materials range from 0.01 Bq m-2 s-1 to 0.43 Bq m-2 s-1, with relative standard uncertainties between 6% to 14%.

  3. Buildings materials and raw materials as a source of exposition of population of the Slovak Republic

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2005-01-01

    In this presentation author presents specific activities of potassium-40, radium-226, thorium-232 and equivalent of specific activity in some building materials and raw materials used at building-up of flats in the Slovak Republic

  4. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  5. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  6. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    Science.gov (United States)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  7. Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials

    International Nuclear Information System (INIS)

    Dimas, Leon S; Buehler, Markus J

    2012-01-01

    Diatoms, bone, nacre and deep-sea sponges are mineralized natural structures found abundantly in nature. They exhibit mechanical properties on par with advanced engineering materials, yet their fundamental building blocks are brittle and weak. An intriguing characteristic of these structures is their heterogeneous distribution of mechanical properties. Specifically, diatoms exhibit nanoscale porosity in specific geometrical configurations to create regions with distinct stress strain responses, notably based on a single and simple building block, silica. The study reported here, using models derived from first principles based full atomistic studies with the ReaxFF reactive force field, focuses on the mechanics and deformation mechanisms of silica-based nanocomposites inspired by mineralized structures. We examine single edged notched tensile specimens and analyze stress and strain fields under varied sample size in order to gain fundamental insights into the deformation mechanisms of structures with distinct ordered arrangements of soft and stiff phases. We find that hierarchical arrangements of silica nanostructures markedly change the stress and strain transfer in the samples. The combined action of strain transfer in the deformable phase, and stress transfer in the strong phase, acts synergistically to reduce the intensity of stress concentrations around a crack tip, and renders the resulting composites less sensitive to the presence of flaws, for certain geometrical configurations it even leads to stable crack propagation. A systematic study allows us to identify composite structures with superior fracture mechanical properties relative to their constituents, akin to many natural biomineralized materials that turn the weaknesses of building blocks into a strength of the overall system. (paper)

  8. PRESENT-DAY AND FUTURE APPLICATIONS OF NANOTECHNOLOGIES IN THE PRODUCTION OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Shuyskiy Anatoliy Ivanovich

    2012-12-01

    Full Text Available The authors have made an overview of the status of production of cement concrete using nanotechnologies. The authors also provide their analysis of domestic and foreign researches into the application of nanotechnologies in the field of building materials. The authors have picked out positive examples of introduction of nano-scale particles into the concrete mix. The process needs continuous monitoring for the composition and the mixing time to be adjustable. The findings have been solely made by local developers of nano-materials and technologies. The authors propose their method of cement consumption reduction through the introduction of nanoparticles and simultaneous grinding of cement. The authors provide a new procedure of treatment of materials that contemplates enhanced mixing processes accompanied by simultaneous grinding of materials and their exposure to the electromagnetic treatment. The experiments completed by the team of authors have proven the efficiency of a combination of two nanotechnologies within one process, including the treatment of wet cement at the final grinding stage of processing to ensure specific cement properties for a specific surface area of 8,000 cm2/g, and the introduction of nano-scale particles into the process of manufacturing of cement compositions. The use of carbon nanotubes in the process of manufacturing of cement concrete can improve its physical and mechanical properties and reduce the cement consumption rate while maintaining the design strength of concrete.

  9. Activity measurement and effective dose modelling of natural radionuclides in building material.

    Science.gov (United States)

    Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M

    2013-11-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Radionuclide content and associated radiation hazards of building materials and by-products in Baoji, West China

    International Nuclear Information System (INIS)

    Lu, X.; Zhang, X.

    2008-01-01

    Seven types of common building materials and by-products of coal-fired power plants collected from Baoji, West China, were analysed for the natural radioactivity of 226 Ra, 232 Th and 40 K using gamma ray spectrometry with an NaI(Tl) detector. The average activity concentrations vary from 23.0 to 112.2, 20.2 to 147.5 and 113.2 to 890.8 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The measured activity concentrations for these radionuclides were compared with the data reported from other countries and with the worldwide average activity of soil. As a measure of radiation hazard to the people, the radium equivalent activities, total annual effective dose and activity concentration index were estimated. The radium equivalent activities of the studied samples are below the internationally accepted values. The calculated total annual effective dose and the activity concentration index of seven types of common building materials are -1 and 1, respectively. But fly ash and bottom ash exhibit the higher values that exceed and be close to the acceptable values, respectively. This study shows that the measured building materials do not pose any significant source of radiation hazard and are safe for use in the construction of dwellings. Nevertheless, when fly ash and bottom ash are used in dwelling construction, it is important to assess their radiation potential. (authors)

  11. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  12. Polymeric-SiO2-PCMs for improving the thermal properties of gypsum applied in energy efficient buildings

    International Nuclear Information System (INIS)

    Borreguero, Ana M.; Serrano, Angel; Garrido, Ignacio; Rodríguez, Juan F.; Carmona, Manuel

    2014-01-01

    Highlights: • Inorganic–organic PCM microcapsules were incorporated into gypsum. • The physical and thermal properties of the gypsum composites were studied. • The gypsum composites presented better properties than some previously investigated. • 10.20 kW h/operating cycle could be saved in a room with 1 m 3 of this material. • 1.26 kg of CO 2 emissions could be reduced per one operating cycle. - Abstract: A new thermoregulating material containing the commercial paraffin Rubitherm®RT27 stabilized by SiO 2 with a polymeric shell from polystyrene–divinylbenzene (Polymeric-SiO 2 -PCMs) was incorporated into gypsum up to a 15 mass ratio respect to the initial hemihydrate in order to develop building materials with a high thermal energy store (TES) capacity. The effect of this material on the gypsum crystals and the main physical, thermal and mechanical properties were studied and compared to those caused by another three kinds of thermoregulating materials. Polymeric-SiO 2 -PCMs presented the lowest agglomeration and therefore, the best distribution into the gypsum pores. As expected, the thermoregulating effect of the PCM improved the thermal properties of the gypsum since, the higher the microcapsules content, the higher the equivalent heat capacity (c p ) and the accumulated heat power (q acc ). Considering a conversion of 100% of the accumulated heat into electricity savings, the addition of a 15% of microcapsules respect to the hemihydrate allowed to save 10.20 kW h/m 3 and, consequently, reduced the CO 2 emissions in a 1.26 kg of CO 2 per operating cycle. Besides, the addition of the Polymeric-SiO 2 -PCMs reduces the gypsum density, but it is always higher than 600 kg/m 3 , as required by the European regulation EN 13279-2. The thermal conductivity (k) is also reduced by the microcapsules addition but for the case of a content of 15%. On the other hand, the porosity is barely affected just varying always less than a 3.5%. Finally, despite of the

  13. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  14. Radioactivity assessment of some building materials from Little Poland Region

    International Nuclear Information System (INIS)

    Bogacz, J.; Cywicka-Jakiel, T.; Mazur, J.; Loskiewicz, J.; Swakon, J.; Tracz, G.

    1994-01-01

    In the paper are presented the results of building materials analysis connected with radiation protection. The concentration of natural radioactive elements (K, U, Th), and the values of f 1 and f 2 coefficients are measured for these materials. The values for ceramic building materials and for cellular concretes are composed. The utility of f 2 parameter is unformally discussed. (author). 9 refs, 12 figs, 3 tabs

  15. Bulk moisture determination in building materials by fast neutron/gamma technique

    International Nuclear Information System (INIS)

    Padron Diaz, I.; Felipe Desdin, L.; Martin Hernandez, G.; Shtejer, K.; Perez Tamayo, N.; Ceballos, C.; Lemus, O.

    1998-01-01

    Fast Neutron/Gamma Transmission technique has been improved to allow to measure moisture content in building materials. In order to improve fast neutron/gamma discrimination in the transmission system employing the NE-213 scintillation detector a pulse shape discrimination system was constructed at the CEADEN. A separate neutron/gamma detection approach was used with neutron transmission measurement using an Am-Be neutron source and a BF 3 detector and gamma transmission measurement using a collimated 137 Cs source and a NaI scintillator

  16. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  17. Preparation and Properties of Paraffin/TiO2/Active-carbon Composite Phase Change Materials

    Directory of Open Access Journals (Sweden)

    HAO Yong-gan

    2016-11-01

    Full Text Available A novel composite phase change materials (PCMs of paraffin/TiO2/active-carbon was prepared by a microemulsion method, where paraffin acted as a PCM and titanium dioxide (TiO2 as matrix material, and a small amount of active carbon was added to improve the thermal conductivity. The compositions, morphology and thermal properties of the paraffin/TiO2/active-carbon composite PCMs were characterized by XRD, SEM, TGA and DSC respectively. The shape stability during phase change process of this composite was also tested. The results show that paraffin is well encapsulated by TiO2 matrix, and thus exhibiting excellent shape-stabilized phase change feature. Besides, this composite PCM also presents superhydrophobic property. Therefore, these multifunctional features will endow PCMs with important application potential in energy efficient buildings.

  18. Thermoluminescence dosimetry materials: properties and uses

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Moscovitch, M.; Townsend, P.D.

    1995-01-01

    This book selects a range of the most popular thermoluminescence dosemeter (TLD) materials in use today and provides a critical account of their thermoluminescence (TL) and dosimetric properties. The information provided includes in-depth discussions of TL mechanisms, including an account of luminescence properties, and relevant information regarding dosimetric characteristics. The book is intended for those involved in TLD materials research, and for technicians and workers involved in the practical application of these materials in TL dosimetry. The advent of modern spectroscopic methods for measuring TL emission spectra (the so-called ''3-D'' presentation) seemed to the authors to be an invitation to compile such spectra for all the major TLD materials. Further consideration led to an expansion of the initial idea to include a compilation of dosimetric properties. One intention is to provide a synopsis of the TL and dosimetric properties of the most widely used TLD materials currently available and to form a link between the solid state defect properties of these materials and their actual dosimetric properties. A second intention is to provide a solid framework from which future studies of TLD materials could be launched. Too often in the past research into TLD materials has been haphazard, to say the least. By illustrating the links between solid state physics and the radiation dosimetry properties of these materials the book points to the future and to the pressing need for enhanced research on TLD materials. (Author)

  19. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  20. Moisture measurement in wood, wood-based materials and building materials - a literature review

    International Nuclear Information System (INIS)

    Kober, A.; Mehlhorn, L.; Plinke, B.

    1989-10-01

    Methods of moisture measurement in solid substances, especially on wood, wood-based materials and building materials were examined and evaluated according to the literature available. The question was which methods of examining the moisture distribution in building elements at climate loading offer the best accuracy and spatial resolution as well as which methods are the most appropriate at present and in future for the solution of measurement problems in the wood and wood-based industry. The most common methods are electric measurement methods which are utilizing either the moisture-depending conductivity or the dielectric constant or the reflectivity of the material for infrared radiation but they offer only a limited accuracy. The same is valid for the rarely used microwave methods or X-ray and NMR tomography. Simple electric methods will further on play an important role in the industrial process measuring technique. For the examination of building elements, methods using nuclear radiation still offer possibilities for a further development. (orig.) With 207 refs., 13 figs [de

  1. Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux

    Directory of Open Access Journals (Sweden)

    Pranas Juozas ŽILINSKAS

    2013-03-01

    Full Text Available This work analyzes the opportunities of wider characterization of textile materials, fabrics, upholstery fabrics, fibers, yarns or others, which may accumulate electric charge. A non-contact way for electrostatic properties measurement based on affecting those materials by ions with positive or negative charge is described. The method allows to measure simultaneously the time dependences of the surface voltage and the electric charge during the charging process and the time dependences of the surface voltage during the discharging process. From the measured dependencies the following set of parameters was measured or calculated: the surface voltage limiting value, the surface voltage semi-decay time, the maximum deposited charge, the layer capacitance, the energy of the accumulated charge and others. The surface voltage distribution measurement method when the investigated textile material is affected by ion flux was also described. To verify the applicability of the proposed methods for characterization of textile materials in order to determine the above-mentioned parameters of cotton, linen, wool, viscose, acetate, polyester, polyester coated with polytetrafluoroethylene, a series of experiments were performed. The surface voltage distribution measurement method based on affecting textile materials by ions with positive charge was described and a surface voltage distribution of a polyester-cotton upholstery fabric produced by a Jacquard mechanism was presented. The performed experiments demonstrate the possibilities of method application for comparison of the electrostatic properties of different textile materials used for the same tasks or the same materials produced by different technological processes.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3828

  2. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  3. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  4. Amoebae and other protozoa in material samples from moisture-damaged buildings

    International Nuclear Information System (INIS)

    Yli-Pirilae, T.; Kusnetsov, Jaana; Haatainen, Susanna; Haenninen, Marja; Jalava, Pasi; Reiman, Marjut; Seuri, Markku; Hirvonen, Maija-Riitta; Nevalainen, Aino

    2004-01-01

    Mold growth in buildings has been shown to be associated with adverse health effects. The fungal and bacterial growth on moistened building materials has been studied, but little attention has been paid to the other organisms spawning in the damaged materials. We examined moist building materials for protozoa, concentrating on amoebae. Material samples (n=124) from moisture-damaged buildings were analyzed for amoebae, fungi, and bacteria. Amoebae were detected in 22% of the samples, and they were found to favor cooccurrence with bacteria and the fungi Acremonium spp., Aspergillus versicolor, Chaetomium spp., and Trichoderma spp. In addition, 11 seriously damaged samples were screened for other protozoa. Ciliates and flagellates were found in almost every sample analyzed. Amoebae are known to host pathogenic bacteria, such as chlamydiae, legionellae, and mycobacteria and they may have a role in the complex of exposure that contributes to the health effects associated with moisture damage in buildings

  5. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    Science.gov (United States)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  6. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  7. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials

    International Nuclear Information System (INIS)

    Khudhair, Amar M.; Farid, Mohammed M.

    2004-01-01

    Energy storage in the walls, ceiling and floor of buildings may be enhanced by encapsulating suitable phase change materials (PCMs) within these surfaces to capture solar energy directly and increase human comfort by decreasing the frequency of internal air temperature swings and maintaining the temperature closer to the desired temperature for a longer period of time. This paper summarizes the investigation and analysis of thermal energy storage systems incorporating PCMs for use in building applications. Researches on thermal storage in which the PCM is encapsulated in concrete, gypsum wallboard, ceiling and floor have been ongoing for some time and are discussed. The problems associated with the application of PCMs with regard to the selection of materials and the methods used to contain them are also discussed

  8. Naturally radioactivity in common building materials used in Thiruvannamalai city, Tamilnadu, India

    International Nuclear Information System (INIS)

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Sivakumar, S.; Senthilkumar, G.; Chandramohan, J.; Vijayagopal, P.; Venkatraman, B.

    2012-01-01

    The radioactivity of some building materials used in Thiruvannamalai city has been measured using a NaI(Tl) detector based gamma ray spectrometer. The distribution of natural occurring radionuclides ( 226 Ra, 232 Th and 40 K) in the building materials was studied. The radium equivalent activity (Ra eq ), external hazard index (H ex ) internal radiation hazard index (H in ) and the activity utilization index (I) associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the building materials. The present work shows that the natural radioactivity levels in the building construction materials used in Thiruvannamalai city is well below the acceptable limits. From the analysis, it was found that these materials may be safely used as construction materials and do not pose significant radiation hazards. (author)

  9. Preparation and Thermal Properties of Molecular-Bridged Expanded Graphite/Polyethylene Glycol Composite Phase Change Materials for Building Energy Conservation.

    Science.gov (United States)

    Zhang, Dong; Chen, Meizhu; Liu, Quantao; Wan, Jiuming; Hu, Jinxuan

    2018-05-16

    Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings' energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations.

  10. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  11. Hydration effects on the electronic properties of eumelanin building blocks

    International Nuclear Information System (INIS)

    Assis Oliveira, Leonardo Bruno; Fonseca, Tertius L.; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-01-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  12. Hydration effects on the electronic properties of eumelanin building blocks

    Energy Technology Data Exchange (ETDEWEB)

    Assis Oliveira, Leonardo Bruno [Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO (Brazil); Fonseca, Tertius L. [Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Costa Cabral, Benedito J., E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Coutinho, Kaline; Canuto, Sylvio [Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  13. Uranium concentration in building materials used in the central region of Egypt

    International Nuclear Information System (INIS)

    Higgy, R.H.; El-Tahawy, M.S.; Ghods, A.

    1997-01-01

    Within a radiological survey of the building materials used in the urban dwellings in the central region of Egypt, the uranium concentration in 80 representative samples of raw and fabricated building materials are determined using laser fluorimetry technique. For 40 samples from the studied raw building materials of sand, gravel, gypsum, lime-stone, granite and marble the determined uranium concentration values range between 0.3 and 3.6 ppm for all these samples except for one type of granite having the corresponding value of 7.8 ppm. For 37 samples from studied fabricated building materials of normal cement, clay brick, sand brick, tiles and ceramic plates the determined uranium concentration values range from 0.5 to 3.4 ppm. The corresponding values for three types of iron cement are 3.1, 6.1 and 9.3 ppm. The radium-226 content (of the uranium-238 series) in the same samples was determined using high resolution gamma-ray spectrometers based on HP Ge-detectors. The data obtained by the two techniques are in good agreement for the majority of the studied samples. (author)

  14. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  15. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  16. Property Specification Patterns for intelligence building software

    Science.gov (United States)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  17. Properties of plastic filtration material

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1988-01-01

    Discusses properties of filters made of thermoplastic granulated material. The granulated plastic has a specific density of 10.3-10.6 kN/m/sup 3/ and a bulk density of about 6 kN/m/sup 3/. Its chemical resistance to acids, bases and salts is high but is it soluble in organic solvents. Filters made of this material are characterized by a porosity coefficient of 36.5% and a bulk density of 5.7-6.8 kN/m/sup 3/. Physical and mechanical properties of filter samples made of thermoplastic granulated material (50x50x50 mm) were investigated under laboratory conditions. Compression strength and influencing factors were analyzed (ambient temperature, manufacturing technology). Tests show that this filtration material developed by Poltegor is superior to other filtration materials used in Poland.

  18. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  19. Advanced FRP for flooring in buildings: a low carbon material application in the construction industry

    OpenAIRE

    Gao, Yijian

    2013-01-01

    Fibre-reinforced polymers (FRP) are building materials that permit both the improvement of long-term building performance and the simplification of the construction process, thanks to their high specific strength, low thermal conductivity, good environmental resistance, and ability to be formed into complex shapes. FRP materials are well-suited to fulfilling many building functions. By integrating traditionally separate building systems and layers into single function-integrated components, a...

  20. Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials

    International Nuclear Information System (INIS)

    Stojanovska, Z.; Nedelkovski, D.; Ristova, M.

    2010-01-01

    During the manufacturing process in the cement industry, raw materials of different levels of natural radioactivity are utilized. In this study we present the radiological impact of cements as a building material and the different raw materials used in their manufacture. A total of 218 samples of raw materials and their end product cements were collected from the cement industry of Macedonia (The Former Yugoslav Republic) during the period 2005-2007. The specific activities, evaluated by gamma spectrometry analysis, showed the highest mean specific activity in fly ash ( 226 Ra, 107 ± 45 Bq kg -1 ; 232 Th, 109 ± 30 Bq kg -1 ; 40 K, 685 ± 171 Bq kg -1 ), which is used as a raw material. However, the final cement product usually has relatively lower activity compared with the activity of the raw material and the mean specific activity of the final cement products were lower ( 226 Ra, 42 ± 10 Bq kg -1 ; 232 Th, 28 ± 6 Bq kg -1 ; 40 K, 264 ± 50 Bq kg -1 ). The radium equivalent activity and the hazard index were calculated for each sample to assess the radiation hazard. The mean annual effective dose originating from the cements was found to be 111 ± 22 μSv y -1 , which is below the recommended EC limit of 300 μSv y -1 .

  1. Preservation of adobe buildings. Study of materials

    Science.gov (United States)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  2. Hydrophobization by Means of Nanotechnology on Greek Sandstones Used as Building Facades

    Directory of Open Access Journals (Sweden)

    Georgios Karagiannis

    2013-01-01

    Full Text Available Modern sustainable architecture indicates the use of local natural stones for building. Greek sandstones from Epirus (Demati, Greece, EN 12440 used as building facades meet aesthetic and have high mechanical properties, but the inevitable interaction between stone materials and natural or anthropogenic weathering factors controls the type, and extent of stone damages. In the present paper, samples of sandstone were treated with a conventional hydrophobic product and four solutions of the same product, enriched with nanosilica of different concentrations. The properties of the treated samples, such as porosity and pore size distribution, microstructure, static contact angle of a water droplet, and durability to deterioration cycles (freeze-thaw were recorded and conclusions were drawn. The research indicates the increased hydrophobic properties in nanosilica solutions but also the optimum content in nanoparticles that provides hydrophobicity without altering the properties of the stone.

  3. Assessment of the radiological impact of selected building materials

    International Nuclear Information System (INIS)

    Gwiazdowski, B.

    1983-02-01

    Naturally occurring radionuclides in building materials are a source of external and internal radiation exposure to essentially the entire Polish population. The programme of our studies met two main aspects on radioactivity of building materials: Gamma dose rate and radon or alpha potential energy concentration measurements in dwellings of various kinds of structure and materials in both industrial and rural districts of Poland. Gamma dose rate measurements were made in about 2200 dwellings and radon or alpha potential energy concentration measurements - in 750 dwellings. On the basis of these studies the annual effective dose equivalent to the Polish population due to gamma and alpha radiation indoors was estimated to be 0.39 mSv/a and 0.99 mSv/a, respectively. The contribution of external (from gamma) and internal (from alpha) radiation exposure due to naturally occurring radionuclides in building materials to the total radiation exposure of Polish population was assessed to be 3.6 per cent and 34.2 per cent, respectively. Measurements of about 1500 samples of various kinds of building materials and raw materials were made to determine radionuclide concentrations in them. The highest values were obtained in samples of phosphogypsum, fly ash and slag: potassium concentration ranges up to 36 pCi g -1 (a slag sample), radium - up to 17 pCi g -1 (a phosphogypsum sample) and thorium - up to 4 pCi g -1 (a phosphogypsum). On the basis of the results of our studies we came to the conclusion that it was necessary to work out a control system which could protect habitants against enhancement of indoor exposure to ionizing radiation

  4. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  5. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  6. Effect of UV on building materials in New Zealand

    International Nuclear Information System (INIS)

    Bennett, A.F.

    1993-01-01

    Building materials can be divided into two main classes; organic or polymeric based and inorganic materials. Inorganic materials are in most cases largely unaffected by UV radiation. Many common polymers have bonds sensitive to radiation in the UV region. Absorption of radiation of these wavelengths will lead to excitation of electrons which can lead to isomerisation, chain scissors, cross linking and free radical formation. It is worth noting that the effects of UV radiation are always acting synergistically with other environmental effects. (author). 4 refs., 2 tabs

  7. Machine learning properties of materials and molecules with entropy-regularized kernels

    Science.gov (United States)

    Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip

    Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).

  8. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    Science.gov (United States)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  9. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    Science.gov (United States)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  10. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  11. Determination of Natural Radioactivity in Building Materials with Gamma Spectrometry

    International Nuclear Information System (INIS)

    Turki, Faten

    2010-01-01

    In the setting of this work, the natural radioactivity of building materials used in Tunisia has been measured by gamma spectrometry. These products have been ground and dried at 100 degree for 12 h. Then, they have been homogenized, weighed and finally conditioned during 23 days in order to reach the radioactive equilibrium. The measures' results proved that all building materials studied except bauxite and the ESC clay, possess doses lower than the acceptable limit (1 mSv.an-1). However, the possibility of reinforcement of the natural radioactivity in some industry of building can exist. To insure that the cement, the most used in the world, don't present any radiological risk on the workers' health, a survey has been made in the factory - les Ciments de Bizerte - about its manufacture's process. The results of this survey showed that this product can be considered like a healthy product.

  12. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  13. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    Science.gov (United States)

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  15. Methods of measurement and evaluation of natural radionuclide contents in buildings, at building sites, and in building materials and water

    International Nuclear Information System (INIS)

    1998-01-01

    The recommendations should serve as guidelines for specifying the scope of measurement and ways of evaluating the measuring results when satisfying the relevant requirements laid down by the Czech Atomic Act (Act No. 18/1997) and Decree No. 184/1997 in the field of natural radiation sources occurring in the environment without deliberate use. The document consists of the following sections: Methodology for the measurement and assessment of natural exposure of persons in dwelling rooms of buildings; Methodology of determination of the radon risk of building sites; Principles of systematic measurement and evaluation of natural radionuclide contents of building materials; and Principles of systematic measurement and evaluation of natural radionuclide contents of supplied water. (P.A.)

  16. Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling

    OpenAIRE

    Steinhaus, Thomas

    2010-01-01

    Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational domain. The various sub-models associated with these have been developed sufficiently to reduce the errors below 10%-15%, and work continues on reducing these errors yet further. However, the uncertainties introduced by using material properties as an input for these models a...

  17. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  18. Measurement of natural radioactivity in building materials of Hassan District, Karnataka, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.; Suresh, S.

    2018-01-01

    Significant portion of the background radiation is coming from the primordial nuclides such as 226 Ra, 232 Th and 40 K which are present in the soil, rock and building material. These radionuclides are sources of the external and the internal radiation exposures in dwellings. The specific activities of 226 Ra, 232 Th and 40 K in the building raw materials and products mainly depend on geological and geographical conditions as well as geochemical characteristics of those materials. Knowledge of radioactivity present in building materials enables one to assess any possible radiological risk to human health

  19. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  20. Building Materials Reclamation Program

    International Nuclear Information System (INIS)

    Weggel, David C.; Chen, Shen-En; Hilger, Helene; Besnard, Fabien; Cavalline, Tara; Tempest, Brett; Alvey, Adam; Grimmer, Madeleine; Turner, Rebecca

    2011-01-01

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C and D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C and D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C and D materials. Table 1 summarizes the six subprojects, including the C and D material studied and the graduate student and the faculty advisor on each subproject.

  1. Investigation of possibility of recovery nonferrous metals and producing building materials from copper-nickel smelterslag

    Directory of Open Access Journals (Sweden)

    Svetlov A.V.

    2015-06-01

    Full Text Available Pelletized slag of copper-nickel smelter ("Pechenganikel" combine, "Kola MMC" JSC has been investigated as a potential technogenic deposit. It has been shown that nonferrous metals can be re-extracted from slag using flotation. The work presents the results of laboratory simulation of heap leaching of non-ferrous metals. Ceramic building materials from slag-based feed have been produced and their main properties have been studied

  2. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    International Nuclear Information System (INIS)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M.A.; Miah, M.M.H.; Bradley, D.A.

    2017-01-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble ‘Carrara’ imported from Italy is suitable to be used as radiation shielding material. - Highlights: • Studies of decorative building materials for shielding of ionizing radiation. • High energy photon beam were used to obtain various interaction properties. • Marble stone ‘Carrara’ from Italy shows suitability to be used as shielding material.

  3. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  4. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  5. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  6. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  7. Longevity of borehole and shaft sealing materials: characterization of ancient cement based building materials

    International Nuclear Information System (INIS)

    Langton, C.A.; Roy, D.M.

    1983-01-01

    Durability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehold environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques. 7 references, 5 figures, 2 tables

  8. Exposure to radiation from the natural radioactivity in Tunisian building materials.

    Science.gov (United States)

    Gharbi, F; Oueslati, M; Abdelli, W; Samaali, M; Ben Tekaya, M

    2012-12-01

    Building materials can expose public and workers to radiation because of their content of radium, thorium and potassium isotopes. This is why it is very important from the radiological point of view to survey the natural radioactivity content of commonly used building materials in any country. This work consists of the measurement of (226)Ra, (232)Th and (40)K activity concentrations in a variety of commonly used building materials in Tunisia and on the estimation of their radiological hazard. The maximum value of radium equivalent for the studied materials was equal to 169 Bq kg(-1) and corresponds to the clay brick, which is lower than the recommended value of 370 Bq kg(-1). In this work, several radiological indexes were calculated and were found to be under their highest permitted limit.

  9. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  10. Divergent synthesis and optoelectronic properties of oligodiacetylene building blocks

    NARCIS (Netherlands)

    Pilzak, G.S.; Lagen, van B.; Sudhölter, E.J.R.; Zuilhof, H.

    2008-01-01

    A new and divergent synthetic route to oligodiacetylene (ODA) building blocks has been developed via Sonogashira reactions under a reductive atmosphere. These central building blocks provide a new way for rapid preparation of long ODAs. In addition, we report on their optoelectronic properties which

  11. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundara, U.G. Yasantha [Ministry of Education, Isurupaya, Battaramulla (Sri Lanka); Babel, Sandhya [Environmental Technology Program, School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2009-05-15

    This paper presents a matrix to select sustainable materials for buildings in Sri Lanka, taking into consideration environmental, economic and social assessments of materials in a life cycle perspective. Five building elements, viz., foundations, roofs, ceilings, doors and windows, and floors are analyzed based on materials used for these elements. Environmental burdens associated with these elements are analyzed in terms of embodied energy and environmental impacts such as global warming, acidification and nutrient enrichment. Economic analysis is based on market prices and affordability of materials. Social factors that are taken into account are thermal comfort, interior (aesthetics), ability to construct quickly, strength and durability. By compiling the results of analyses, two building types with minimum and maximum impacts are identified. These two cases along with existing buildings are compared in a matrix of environmental, economic and social scores. Analysis of the results also indicates need for higher consideration of environmental parameters in decision-making over social and economic factors, as social and economic scores do not vary much between cases. Hence, this matrix helps decision-makers to select sustainable materials for buildings, meaningfully, and thus helps to move towards a more sustainable buildings and construction sector. (author)

  12. Field-Induced Texturing of Ceramic Materials for Unparalleled Properties

    Science.gov (United States)

    2017-03-01

    Texturing of Ceramic Materials for Unparalleled Properties by...influence over many properties , such as optical transparency, strength, electrical conductivity, and piezoelectricity .19 Highly textured materials are... Ceramic Materials for Unparalleled Properties by Raymond Brennan, Victoria Blair, Nicholas Ku, Krista Limmer, Tanya Chantawansri, Mahesh

  13. Method for evaluating building materials with a high content of radioactivity

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    In order to avoid increased radiation doses to the population due to the introduction of building materials with an unusually high content of radioactivity, a method for evaluating building materials has been developed. An expression for the gamma radiation due to radium, thorium and potassium 40 has been proposed by a Scandinavian group. When this value for a given material does not exceed 1, then no restriction is placed. Should it exceed 1, then the material is subjected to further investigation. Similarly, since the radon concentration depends on the radium content, an expression for this is proposed. Should this be less than unity the material may be sold freely. Should it exceed unity, further investigations must be made. Measurements have also been made on the exhalation of radon from concrete, and the results are given. An expression including this exhalation rate and the ventilation rate, giving the radon concentration is given. (JIW)

  14. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A.

    2007-01-01

    The concentration of 238 U, 232 Th and 40 K in 13 building materials obtained from factories and collected in field in Cameroon were investigated by γ-ray spectrometry. The activity ranged from 1.76 to 49.84Bqkg -1 , 0.32 to 147Bqkg -1 and 18 to 1226Bqkg -1 for 238 U, 232 Th and 40 K, respectively. The highest 238 U activity was found in compressed red soil brick type I (49.6+/-0.3Bqkg -1 ) produced by a local manufacturer while the highest 232 Th (139+/-13Bqkg -1 ) and 40 K (1162+/-108Bqkg -1 ) activities were found in gravel collected from an exploitation site in Logbadjeck. The activities are compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra eq , the external hazard index H ex , the indoor absorbed dose rate D-bar in air and the annual effective dose equivalent E-bar were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra eq (range from 10 to 313Bqkg -1 ) lower than the limit of 370Bqkg -1 set in the Organization for Economic Cooperation and Development [OECD, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris] report which is equivalent to a γ-dose of 1.5mSvyr -1 . Except for the gravel from Logbadjeck, all the materials examined are acceptable for use as building materials as defined by the OECD criterion

  15. Natural radioactivity of building materials used in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M. [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang, Selangor D.E. (Malaysia)

    2002-03-01

    A study has been carried out to determine the natural radioactive content of building materials used in Malaysia. The materials analysed include both old and new clay bricks, cement bricks, mortar, cement, sands, ceramic tiles and gypsum. Samples of the first three materials were collected from the 12 states of the Malay Peninsula. Radium-226 (from the U-238 series) and Ra-228 (from the Th-232 series), these both representing naturally occurring radionuclides, were analysed using high-resolution HpGe gamma spectrometers. The results of our investigations showed that some old clay bricks contain high levels (at more than 5 times the normal soil concentration) of natural radionuclides, with maximum concentrations of 590 Bq/kg and 480 Bq/kg for respectively Ra-226 and Ra-228. The reasons behind this finding were not clearly understood. As there are people living in old buildings, i.e. built using old clay bricks, there is a possibility that they are being exposed to significant radiation doses. However, there proved to be no significant overall difference between old and new clay bricks in terms of the natural radioactivity levels determined, at a 95% confidence level. The overall mean concentrations of Ra-226 and Ra-228 observed in Malaysian clay bricks were respectively 118 {+-} 58 Bq/kg and 120 {+-} 42 Bq/kg. The radioactive content of other materials was found to be not much different from that to be determined in normal soil from Malaysia. The data obtained can be used as a basis for reaching decisions on the regulatory limits for radioactivity levels in building materials in Malaysia. (orig.)

  16. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  17. Acquisition System Verification for Energy Efficiency Analysis of Building Materials

    Directory of Open Access Journals (Sweden)

    Natalia Cid

    2017-08-01

    Full Text Available Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs. To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.

  18. Effect of Material Variability and Mechanical Eccentricity on the Seismic Vulnerability Assessment of Reinforced Concrete Buildings

    Directory of Open Access Journals (Sweden)

    Mario Lucio Puppio

    2017-07-01

    Full Text Available The present paper deals with the influence of material variability on the seismic vulnerability assessment of reinforced concrete buildings. Existing r.c. buildings are affected by a strong dispersion of material strengths of both the base materials. This influences the seismic response in linear and nonlinear static analysis. For this reason, it is useful to define a geometrical parameter called “material eccentricity”. As a reference model, an analysis of a two storey building is presented with a symmetrical plan but asymmetrical material distribution. Furthermore, an analysis of two real buildings with a similar issue is performed. Experimental data generate random material distributions to carry out a probabilistic analysis. By rotating the vector that defines the position of the center of strength it is possible to describe a strength domain that is characterized by equipotential lines in terms of the Risk Index. Material eccentricity is related to the Ultimate Shear of non-linear static analyses. This relevant uncertainty, referred to as the variation of the center of strength, is not considered in the current European and Italian Standards. The “material eccentricity” therefore reveals itself to be a relevant parameter to considering how material variability affects such a variation.

  19. Measurement of Ra-226 in building materials, with a Na I (Tl) scintillation counter

    International Nuclear Information System (INIS)

    Vallejo, L.R.; Fuenteseca, J.W.; Rivera, C.A.; Aros, F.H.

    1992-01-01

    Ra-226 concentration in building materials is determined using gamma-ray spectrometry. Ra-226 contained in sundry materials employed in the construction of dwelling houses and public buildings in Antofagasta city is determined by counting the Pb-214 peaks at 295 KeV and 352 keV, and the Bi-214 peak at 609 keV recorded by means of a 7.5-cm Nal (TI) scintillation counter. (author)

  20. Measurement of natural radioactivity and radiation hazards for some natural and artificial building materials available in Romania

    International Nuclear Information System (INIS)

    Muntean, L.E.; Moldovan, D.V.

    2014-01-01

    As building materials are known to be the second source regarding high radon concentrations, it is very important to determine the amounts of natural radionuclides from every building material in use. In the present study the most frequently used Romanian natural (sand, gypsum, limestone) and artificial (portland cement, lime, clinker, electrofilter powder, fly ash, cement-lime plaster mortar, cement plaster mortar) building materials were analyzed. The absorbed dose rate and the annual effective dose equivalent rate for people living in dwelling buildings made of these building materials under investigation were also calculated. The analysis was performed with gamma-ray spectrometry, with two hyper-pure germanium detectors. The activity concentrations of natural radionuclides were in the ranges: 5.2-511.8 Bq kg - 21 for 226 Ra; 0.6-92.6 Bq kg -1 for 232 Th and -1 for 40 K, respectively. The radium equivalent activity in the fifty-one (51) samples varied from 9 to 603 Bq kg -1 . By calculating all the radioactivity indices (R aeq , H ext , I α , I yr ) it was found that all the building materials under investigation can be used to erect dwelling buildings. Except for sample SA6, SA7 and SA11 among the natural building materials and sample SG1, SG2, FAH1, CLM1, CM1 among the artificial building materials that are considered hazardous materials when are used in large quantities. (author)

  1. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration

    Science.gov (United States)

    Vojtková, H.

    2017-10-01

    Microorganisms cause changes in the building stone, which reduce its usable life and reliability. Microalgae make important parts of the biodegradation consortia of microorganisms on the surface of building materials. Via their metabolites, microalgae affect the stability of mineral components and thus lead to the material destruction. The aim of the paper was to identify aerophytic microalgae on the surface of engineering structures in the Ostrava agglomeration, and to describe the basic interactions between such microorganisms and the building materials, which may lead to the destruction of the materials.

  2. Equilibrium paths analysis of materials with rheological properties by using the chaos theory

    Science.gov (United States)

    Bednarek, Paweł; Rządkowski, Jan

    2018-01-01

    The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.

  3. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib

    2011-01-01

    melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins...

  4. Natural radioactivity and associated radiation hazardous of main building materials in Yan'an, China

    International Nuclear Information System (INIS)

    Li Nan; Lu Xinwei; Yang Guang; Zhao Caifeng

    2012-01-01

    Background: With the rapidly economic development and urbanization in Yan'an city, more building materials were consumed in building construction. While the natural radioactivity level of building materials from Yan'an is limited in the literatures. Purpose: The main objective of this study is to determine the natural radioactivity level and to analyze the associated radiation hazards of building materials in Yan'an. Methods: The specific activities of natural radionuclides 226 Ra, 232 Th and 40 K in various building materials from Yan'an city were determined using low-background gamma-ray spectrometry, and their radiation hazards were evaluated according to the standard methods. Results: The results show that the specific activities of 226 Ra, 232 Th and 40 K in the building materials are 9.4-73.1, 11.5-86.9 and 258.9-1055.1 Bq/kg, respectively. The activities of 226 Ra and 232 Th, except for sand and gravel aggregate, in all other building materials are higher than the corresponding means of local soil, and the activities of 40 K in hollow brick, red-clay brick, sand and gravel aggregate exceed the means of 40 K in soil. However, the values of internal exposure index, external exposure index and gamma radiation index in all investigated building materials are less than 1. Conclusions: The radiation levels of all analyzed building materials are within the national safety standard, which indicates that all analyzed building materials can be used anywhere and they can't cause radiation hazard to the local residents. (authors)

  5. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  6. Building materials as a source of a possible radiation exposure of the population

    International Nuclear Information System (INIS)

    Pensko, J.; Burkart, W.

    1986-12-01

    Two main pathways of exposure contribute to the human radiation exposure indoors: external whole body irradiation from gamma-rays originating from the walls, and exposure of lung tissue by alpha-rays emitted by radon daughters present in the inhaled air. Natural radioactive elements present in building materials produce both kinds of radioactive exposure. Uranium, thorium and potassium are sources of gamma radiations. Materials containing radium can create an alpha-radiation hazard for the human respiratory system through the exhalation of radon from room surfaces. Measurements of the natural radioactivity of building materials made in several European countries are reviewed. A preliminary assessment of the radioactivity content of potentially hazardous materials on the Swiss market shows elevated levels in imported phosphogypsum and tuff. (author)

  7. Simulation of energy- efficient building prototype using different insulating materials

    Science.gov (United States)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  8. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  9. Assessment of natural radioactivity in major building materials of Xiangyang, China

    International Nuclear Information System (INIS)

    Feng, Tingting; Lu, Xinwei

    2014-01-01

    The activity concentrations of 40 K, 226 Ra and 232 Th in the commonly used building materials collected from Xiangyang were measured using NaI (Tl) gamma spectrometer. The radioactivity values of 40 K, 226 Ra and 232 Th in the studied samples ranged from 130.5 to 1006.3, 8.4 to 164.0, and 8.7 to 145.6 Bq kg -1 , respectively. The concentrations of these radionuclides have been compared with the typical published world values. Radium equivalent activity, external and internal hazard indexes, external and internal exposure indexes, indoor air absorbed dose rate and annual effective dose rate have been calculated to assess the potential radiological hazard associated with natural radionuclides in the studied materials. The calculated values of all the assessed indices in the analyzed building materials except for fly ash are below the internationally accepted limits indicating that these building materials can be safely used in dwellings construction and do not lead to any significant radiation exposure to occupants. Nevertheless, the annual effective dose rate values of all fly ash samples, external and internal hazard indexes values in most fly ash samples exceed the recommended values. It is, therefore, desirable to regularly monitor the natural radioactivity level of the building materials products made from fly ash.

  10. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  11. Measurement of Rn-222 concentrations in building materials used in jordan

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A M; Abumyrad, K M; Kullab, M K; Albataina, B A [Physics Dept., Yarmouk University, 219-10 Irbid, (Jordan)

    1995-10-01

    In this work, the concentrations of the radiative inert gas Rn-222 emanated from the building materials that are commonly in jordan have been studied. For this purpose, samples of ten jordanian building materials of different masses were prepared in plastic cans sealed to passive integrated dosimeters containing CR-39 solid state nuclear track detectors which are very sensitive to alpha-particles. The Rn-222 concentrations in these samples range from 137 Bq/m{sup 3} to 267 Bq/m{sup 3} with an average of 189 Bq/m{sup 3}. These levels were found to be consistent with those measured by other workers in other countries. 4 figs., 2 tabs.

  12. Measurement of Rn-222 concentrations in building materials used in jordan

    International Nuclear Information System (INIS)

    Ismail, A.M.; Abumyrad, K.M.; Kullab, M.K.; Albataina, B.A.

    1995-01-01

    In this work, the concentrations of the radiative inert gas Rn-222 emanated from the building materials that are commonly in jordan have been studied. For this purpose, samples of ten jordanian building materials of different masses were prepared in plastic cans sealed to passive integrated dosimeters containing CR-39 solid state nuclear track detectors which are very sensitive to alpha-particles. The Rn-222 concentrations in these samples range from 137 Bq/m 3 to 267 Bq/m 3 with an average of 189 Bq/m 3 . These levels were found to be consistent with those measured by other workers in other countries. 4 figs., 2 tabs

  13. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    Science.gov (United States)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  14. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    Science.gov (United States)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  15. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  16. Study on the Application Mode and Legal Protection of Green Materials in Medical-Nursing Combined Building

    Science.gov (United States)

    Zhiyong, Xian

    2017-09-01

    In the context of green development, green materials are the future trend of Medical-Nursing Combined building. This paper summarizes the concept and types of green building materials. Then, on the basis of existing research, it constructs the green material system framework of Medical-Nursing Combined building, puts forward the application mode of green building materials, and studies the policy and legal protection of green material application.

  17. Correlations in hydrothermal properties of building insulation

    International Nuclear Information System (INIS)

    Antonyová, A

    2013-01-01

    The contribution comprises analysis that is based on scientific work as a part of participation on the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled 'Detection and Management of Risk Processes in Building Insulation' and numbered SRDA SK-AT-0008-10. Statistical approach with correlations among humidity, time and temperature values in the space between the wall and building insulation uses the set of data obtained during the measurement series as testing using a new technology with equipment that does not influence the environment properties in the space. Therefore such real mapping can bring a real picture of possible condensation as a risk process in the building envelope.

  18. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    Science.gov (United States)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2018-04-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  19. Towards The Adaptation of Green Building Material Systems to the Egyptian Environment

    OpenAIRE

    Sherif Mohamed Sabry Elattar; Eman Badawy Ahmed

    2014-01-01

    This research briefly reviews the definition and the principles of green architecture, making a comparison between the global green building rating systems in respect to materials only. These systems are the [1, 2]Green Pyramid, BREEAM (Building Research Establishment Environment Assessment Method), [3] LEED (Leadership in Energy and Environmental Design) and the [4] Green Star in the form of Credits %, importance and its Requirements.The research Aims to evaluate the green building material ...

  20. Old materials and techniques to improve the durability of earth buildings

    OpenAIRE

    Camões, Aires; Eires, R.; Jalali, Said

    2012-01-01

    Quite a big part of the world’s heritage is still made by earth constructions. The durability of the existent heritage, as well as the new earth buildings is particularly conditioned by erosion caused by water action, especially in countries with high rainfall index. With this research one intends to value the ancient knowledge in order to allow higher durability. Analysing the old building techniques to protect the earth material from the water action it is possible to understand how ear...

  1. Investigation of Waste Paper Cellulosic Fibers Utilization into Cement Based Building Materials

    Directory of Open Access Journals (Sweden)

    Viola Hospodarova

    2018-03-01

    Full Text Available Recently, the utilization of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest. This is due to their advantageous properties, low environmental impact and low cost. The objective of this paper is to investigate the influence of recycled cellulosic fibers (in the amount 0.5 wt % of the filler and binder weight and superplasticizer (in the amount 0.5 wt % of the cement weight on the resulting properties of cement composites (consistency of fresh mixture, density, thermal conductivity, and compressive and flexural strength for hardening times of 1, 3, 7, 28, and 90 days. Plasticizer use improved the workability of fresh cement mixture. In comparison to the reference sample, the results revealed a decrease in density of 6.8% and in the thermal conductivity of composites with cellulosic fibers of 34%. The highest values of compressive (48.4 MPa and flexural (up to 7 MPa strength were achieved for hardened fiber cement specimens with plasticizer due to their significantly better dispersion of cement particles and improved bond strength between fibers and matrix.

  2. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  3. Natural radioactivity in some building materials of Xi'an, China

    International Nuclear Information System (INIS)

    Lu Xinwei

    2005-01-01

    Eight kinds of building materials collected from Xi'an, China were analyzed for the natural radioactivity of 226 Ra, 232 Th and 40 K using γ-ray spectroscopy. The concentrations of 226 Ra, 232 Th and 40 K in the selected building materials ranges from 19.5 to 68.3Bqkg -1 , 13.4 to 51.7Bqkg -1 and 63.2 to 713.9Bqkg -1 , respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. The radium equivalent activities (Ra eq ), external hazard index (H ex ) and the internal radiation hazard index (H in ) associated with the natural radionuclides were calculated. The Ra eq values of all building materials are lower than the limit of 370Bqkg -1 , equivalent to a γ-dose of 1.5mSvyr -1 . The values of H ex and H in are less than unity

  4. TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials

    Directory of Open Access Journals (Sweden)

    Manuel Luna

    2018-03-01

    Full Text Available The high pollution levels in our cities are producing a significant increase of dust on buildings. An application of photoactive coatings on building materials can produce buildings with self-cleaning surfaces. In this study, we have developed a simple sol-gel route for producing Au-TiO2/SiO2 photocatalysts with application on buildings. The gold nanoparticles (AuNPs improved the TiO2 photoactivity under solar radiation because they promoted absorption in the visible range. We varied the content of AuNPs in the sols under study, in order to investigate their effect on self-cleaning properties. The sols obtained were sprayed on a common building stone, producing coatings which adhere firmly to the stone and preserve their aesthetic qualities. We studied the decolourization efficiency of the photocatalysts under study against methylene blue and against soot (a real staining agent for buildings. Finally, we established that the coating with an intermediate Au content presented the best self-cleaning performance, due to the role played by its structure and texture on its photoactivity.

  5. Tribological properties of nonasbestos brake pad material by using coconut fiber

    Science.gov (United States)

    Craciun, A. L.; Pinca-Bretotean, C.; Utu, D.; Josan, A.

    2017-01-01

    In automotive industry, the brake system is influenced by a large number of variables including geometry of components, materials of brakes, components interaction and many operating condition. Organic fiber reinforced metallic friction composites are increasingly being used in automotive brake shoes, disc and pads, linings, blocks, clutch facings, primarily because of awareness of health hazards of asbestos. Current trend in the research field of automotive industry is to utilization of different wastes as a source of raw materials for composite materials. This will provide more economical benefit and also environmental preservation by utilize the waste of natural fibre In this paper it has performed a tribological study to determine the characteristics of the friction product by using coconut natural fibred reinforced in aluminium composite. In this sense, two different laboratory formulation were prepared with 5% and 10% coconut fibre and other constitutes like binder, friction modifiers, abrasive material and solid lubrificant using powder mettallurgy. These dnew materials for brake pads are tested for tribological behaviour in a standard pin on disc tribometer. To know the wear behavior of composite materials will determine the parameters that characterize there tribological properties.

  6. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  7. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  8. Assessment of radioactivity in building material(granite) in Sudan

    International Nuclear Information System (INIS)

    Osman, Z. A; Salih, I; Albadwai, K. A; Salih, A. M; Salih, S. A.

    2016-01-01

    In the present work radioactivity in building materials (granite) central Sudan was evaluated. In general the building materials used in Sudan are derived either from rocks or soil. These contain trace amounts of naturally occurring radioactive materials(NORMs), so it contains radionuclides from uranium and thorium series and natural potassium. The levels of these radionuclides vary according to the geology of their site of origin. High levels increase the risk of radiation exposure in homes(especially exposure due to radon). Investigation of radioactivity in granite used of the building materials in Sudan is carried out, a total of 18 major samples of granite have been collected and measured using X- ray fluorescence system (30 mci). The activity concentrations have been determined for uranium ("2"3"8U), thorium ('2"3"2Th) and potassium("4"0K) in each sample. The concentrations of uranium have been found to range from 14.81 Bq/kg to 24.572 Bq/kg, thorium between 10.02 Bq/kg and 10.020-84.79 Bq/kg and the potassium concentration varies between 13.33 Bq/kg to 82.13 Bq/kg. Limits of radioactivity in the granite are based on dose criteria for controls. This study can be used as a reference for more extensive studies of the same subject in future. (Author)

  9. Innovative Development of Building Materials Industry of the Region Based on the Cluster Approach

    Directory of Open Access Journals (Sweden)

    Mottaeva Asiiat

    2016-01-01

    Full Text Available The article discusses issues of innovative development of building materials industry of the region based on the cluster approach. Determined the significance of regional cluster development of the industry of construction materials as the effective implementation of the innovative breakthrough of the region as an important part of strategies for strengthening innovation activities may be to support the formation and development of cluster structures. Analyses the current situation with innovation in the building materials industry of the region based on the cluster approach. In the course of the study revealed a direct correlation between involvement in innovative activities on a cluster basis, and the level of development of industry of construction materials. The conducted research allowed identifying the factors that determine the innovation process, systematization and classification which determine the sustainable functioning of the building materials industry in the period of active innovation. The proposed grouping of innovations for the construction industry taking into account industry-specific characteristics that reflect modern trends of scientific and technological progress in construction. Significance of the study lies in the fact that the proposals and practical recommendations can be used in the formation mechanism of innovative development of building materials industry and the overall regional construction complex of Russian regions by creating clusters of construction.

  10. The release of lindane from contaminated building materials

    OpenAIRE

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F. Handan; Brown, Carl E.

    2014-01-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the s...

  11. Building materials. VOC emissions, diffusion behaviour and implications from their use.

    Science.gov (United States)

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-10-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stone material investigations of the Riga Stock Exchange building

    Science.gov (United States)

    Igaune-Blumberga, S.; Vitina, I.; Lindina, L.; Timma, I.; Barbane, I.

    2011-12-01

    This paper deals with the stone material investigation of former Riga Stock Exchange building and presents the following aspects: characterization of materials, analyses of mortars for sealing and cladding of artificial marble, decors, bricks, render of sealing, analyses of soluble salts, analyses of deteriorated granite surface of foundation. The last damage by fire was in 1979 which caused the collapse of the roof and consequently an infiltration of rain water. The conditions of the objects were found in very bad condition-deterioration represented by salt efflorescence's, cracking and in very large areas there was a complete loss of the artificial marble (stucco marble).

  13. Stone material investigations of the Riga Stock Exchange building

    International Nuclear Information System (INIS)

    Igaune-Blumberga, S; Vitina, I; Lindina, L; Timma, I; Barbane, I

    2011-01-01

    This paper deals with the stone material investigation of former Riga Stock Exchange building and presents the following aspects: characterization of materials, analyses of mortars for sealing and cladding of artificial marble, decors, bricks, render of sealing, analyses of soluble salts, analyses of deteriorated granite surface of foundation. The last damage by fire was in 1979 which caused the collapse of the roof and consequently an infiltration of rain water. The conditions of the objects were found in very bad condition-deterioration represented by salt efflorescence's, cracking and in very large areas there was a complete loss of the artificial marble (stucco marble).

  14. Data analytics and parallel-coordinate materials property charts

    Science.gov (United States)

    Rickman, Jeffrey M.

    2018-01-01

    It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.

  15. Assessment of natural radioactivity in major building materials of Xiangyang, China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tingting; Lu, Xinwei [Shaanxi Normal Univ., Xi' an (China). School of Tourism and Environment

    2014-10-01

    The activity concentrations of {sup 40}K, {sup 226}Ra and {sup 232}Th in the commonly used building materials collected from Xiangyang were measured using NaI (Tl) gamma spectrometer. The radioactivity values of {sup 40}K, {sup 226}Ra and {sup 232}Th in the studied samples ranged from 130.5 to 1006.3, 8.4 to 164.0, and 8.7 to 145.6 Bq kg{sup -1}, respectively. The concentrations of these radionuclides have been compared with the typical published world values. Radium equivalent activity, external and internal hazard indexes, external and internal exposure indexes, indoor air absorbed dose rate and annual effective dose rate have been calculated to assess the potential radiological hazard associated with natural radionuclides in the studied materials. The calculated values of all the assessed indices in the analyzed building materials except for fly ash are below the internationally accepted limits indicating that these building materials can be safely used in dwellings construction and do not lead to any significant radiation exposure to occupants. Nevertheless, the annual effective dose rate values of all fly ash samples, external and internal hazard indexes values in most fly ash samples exceed the recommended values. It is, therefore, desirable to regularly monitor the natural radioactivity level of the building materials products made from fly ash.

  16. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  17. The application of entropy weight topsis method for optimal choice in low radiological decorative building materials

    International Nuclear Information System (INIS)

    Feng Guangwen; Hu Youhua; Liu Qian

    2010-01-01

    In this paper, the principle of TOPSIS method was introduced and applied to sorting the given indexes of glazed brick and granite respectively in different areas' decorative building materials in order to selecting the optimal low radiological decorative building materials. First, the entropy weight TOPSIS method was used for data processing about the sample numbers and radio nuclides content, and then different weights were given to different indexes. Finally, by using the SAS software for data analysis and sorting, we obtained that the optimal low radiological decorative building materials were Sichuan glazed brick and Henan granite. Through the results, it could be seen that the application of entropy weight TOPSIS method in selecting low radiological decorative building materials was feasible, and it will also provide the method reference. (authors)

  18. A metric for characterizing the effectiveness of thermal mass in building materials

    International Nuclear Information System (INIS)

    Talyor, Robert A.; Miner, Mark

    2014-01-01

    Highlights: • Proposes a metric for interior thermal mass materials (floors, walls, counters). • Simple, yet effective, metric composed of easily calculated ‘local’ and ‘global’ variables. • Like Energy Star, the proposed metric gives a single number to aid consumer choice. • The metric is calculated and compared for selected, readily available data. • Drywall, concrete flooring, and wood paneling are quite effective thermal mass. - Abstract: Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about

  19. New materials properties achievable by ion implantation doping and laser processing

    International Nuclear Information System (INIS)

    Appleton, B.R.; Larson, B.C.; White, C.W.; Narayan, J.; Wilson, S.R.; Pronko, P.P.

    1978-12-01

    It is well established that ion implantation techniques can be used to introduce selected impurities into solids in a controlled, accurate and often unique manner. Recent experiments have shown that pulsed laser processing of materials can lead to surface melting, dopant redistribution and crystal regrowth, all on extremely short time scales (approx. < 1 μ sec.). These two processes can be combined to achieve properties not possible with normal materials preparation techniques, or to alter materials properties in a more efficient manner. Investigations are presented utilizing the combined techniques of positive ion scattering-channeling, x-ray scattering and transmission electron microscopy which show that supersaturated alloys can be formed in the surface regions (approx. 1 μm) of ion implanted, laser annealed silicon single crystals, and that these surfaces undergo a unique one dimensional lattice contraction or expansion depending on the dopant species. The resultant surface has a lattice parameter significantly different from the bulk, is free from any damage defects, has essentially all the dopant atoms in substitutional sites and the impurity concentrations can exceed solid solubility limits by more than an order of magnitude

  20. Influence of Porous Aggregate on the Properties of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Namsone Elvija

    2016-12-01

    Full Text Available Nowadays energy-efficient use of building resources is getting more and more popular. Technological developments have promoted production of new building materials with improved physical, mechanical and thermal properties. Foamed concrete with porous aggregate can serve as an alternative material for the existing lightweight concrete materials. This building material shows good mechanical and thermal properties, as well as capillary absorption and shrinkage test results that attest the longevity of this building material.

  1. Salinization effects on the water sorption of porous building materials

    NARCIS (Netherlands)

    Brocken, H.J.P.; Rook, W.; Adan, O.C.G.

    1999-01-01

    The interaction of salt transport and moisture transport plays a crucial role in some deterioration mechanisms of porous building materials. For this reason it has been an important research subject for mant' years. Yet most research was still complicated by the lack of experimental techniques

  2. Studies on radon exhalation rate from building materials of Mysuru district, Karnataka

    International Nuclear Information System (INIS)

    Chandini, M.; Lavanya, B.S.K.; Chandrashekara, M.S.; Pruthvi Rani, K.S.

    2017-01-01

    In the present study, mass exhalation rate of 222 Rn from soil and building materials was studied using scintillation based Smart Radon Monitor (SRM) and also using Solid State Nuclear Track Detectors (SSNTD) employing Can Technique, following standard procedure. Mass exhalation rate of 222 Rn from various building material samples such as brick, sand, cement, concrete and from different types of flooring materials was determined. The results obtained from these methods were compared and analysed. The samples of construction materials were collected from various locations of Mysuru city. The city has an area of about 128 sq km with population of about 1 million. Mining industries of magnetite, dunite and lime stone are located around Mysuru city. In addition to this, quarrying and crushing of granite stones for building activities also exist nearby

  3. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon) and Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy)]. E-mail: mngachin@yahoo.com; Garavaglia, M. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Giovani, C. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Kwato Njock, M.G. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Nourreddine, A. [Institut Pluridisciplinaire Hubert Curien, UMR7500 CNRS-IN2P3 et Universite Louis Pasteur, 23 Rue du Loess, BP 28, F-67037, Strasbourg Cedex 2 (France)

    2007-01-15

    The concentration of {sup 238}U, {sup 232}Th and {sup 40}K in 13 building materials obtained from factories and collected in field in Cameroon were investigated by {gamma}-ray spectrometry. The activity ranged from 1.76 to 49.84Bqkg{sup -1}, 0.32 to 147Bqkg{sup -1} and 18 to 1226Bqkg{sup -1} for {sup 238}U, {sup 232}Th and {sup 40}K, respectively. The highest {sup 238}U activity was found in compressed red soil brick type I (49.6+/-0.3Bqkg{sup -1}) produced by a local manufacturer while the highest {sup 232}Th (139+/-13Bqkg{sup -1}) and {sup 40}K (1162+/-108Bqkg{sup -1}) activities were found in gravel collected from an exploitation site in Logbadjeck. The activities are compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra{sub eq}, the external hazard index H{sub ex}, the indoor absorbed dose rate D-bar in air and the annual effective dose equivalent E-bar were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra{sub eq} (range from 10 to 313Bqkg{sup -1}) lower than the limit of 370Bqkg{sup -1} set in the Organization for Economic Cooperation and Development [OECD, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris] report which is equivalent to a {gamma}-dose of 1.5mSvyr{sup -1}. Except for the gravel from Logbadjeck, all the materials examined are acceptable for use as building materials as defined by the OECD criterion.

  4. Natural Radioactivity in some building materials from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Miro, C. [Universidad de Extremadura (UEX), 10071-Caceres (Spain); Madruga, M.J.; Reis, M. [Instituto Superior Tecnico, Universidade de Lisboa, Campus Tecnologico e Nuclear, 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Studies of natural radiation are of great importance because it is the main source of exposure of human kind. Building materials is one of the sources which cause direct radiation exposure because of their radium, thorium and potassium content. The aim of this work is to measure gamma activity due to {sup 40}K, {sup 226}Ra and {sup 232}Th in samples of commonly used as a building materials in Spain. Cement, gypsum, plaster, marble, slates, granite and wood had been analysed. These materials are used for private and public building. Radium equivalent activities (Ra{sub eq}) and various hazard indices were also calculated to assess the radiation hazard. Results were also compared with the data available in the literature for other countries of the world. Cement, gypsum and plaster samples were collected from hardware stores. Marble, slates and granite samples were taken from different quarries. And the wood samples were taken from eucalyptus trees from forest. Activity concentrations {sup 40}K-, {sup 226}Ra- and {sup 232}Th-activity was determined by gamma spectrometry using a HPGe coaxial detector. The results show that the range of average values of the activity concentrations due to {sup 40}K, {sup 226}Ra and {sup 232}Th were found between 37 and 1340 Bq/kg, 0.007 and 104 Bq/kg, and <0.005 and 75 Bq/kg, respectively. Maxima values were obtained in granite. Radium equivalent activities range from 3.7 Bq/kg to 283 Bq/kg, calculated in wood and granite, respectively. Therefore all the samples showed Raeq activities within the limit, 370 Bq/kg, set by UNSCEAR. Values of external hazard index for all samples under investigation are below the unity, while the internal hazard index for granite exhibits a value around the unity. Acknowledgements to the financial support of the Junta de Extremadura (project PRI09A092 and FEDER-group GRU09053). (authors)

  5. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  6. Steady-State Thermal Properties of Rectangular Straw-Bales (RSB for Building

    Directory of Open Access Journals (Sweden)

    Leonardo Conti

    2016-10-01

    Full Text Available Straw is an inevitable product of cereal production and is available in huge quantities in the world. In order to use straw-bales as a building material, the characteristic values of the thermal performances should be determined. To not lose the benefits of the cheapness and sustainability of the material, the characteristics must be determined with simple and inexpensive means and procedures. This research aims to implement tools and methods focused at the determination of the thermal properties of straw-bales. For this study, the guidelines dictated by ASTM and ISO were followed. A measurement system consisting of a Metering Chamber (MC was realized. The MC was placed inside a Climate Chamber (CC. During the test, a known quantity of energy is introduced inside MC. When the steady-state is reached, all the energy put into MC passes through its walls in CC, where it is absorbed by the air-conditioner. A series of thermopiles detect the temperature of the surfaces of the measurement system and of the specimen. Determining the amount of energy transmitted by the various parts of MC and by the specimen, it is possible to apply Fourier’s law to calculate the thermal conductivity of the specimen.

  7. Dose and radon measurements inside houses containing ash as building material

    International Nuclear Information System (INIS)

    Bodnar, R.; Lendvai, Z.; Somlai, J.; Nemeth, C.

    1996-01-01

    Radon concentration and external dose have been measured in dwellings that contain by-products of coal burning for building materials. The concentrations of 40 K, 232 Th, 238 U and 226 Ra have been determined in the materials. The date are analyzed according to indices frequently used for decision of utilizing the by-products. The observed daily fluctuation of the radon concentration in dwellings might exceed a factor of 5. (author)

  8. Concentration of radionuclides in building materials and soils in The Netherlands

    International Nuclear Information System (INIS)

    Ackers, J.G.

    1985-11-01

    About 150 samples of building materials used in the Netherlands have been analysed by gamma spectrometry for their Ra-226, Th-232 and K-40 concentrations. From 26 samples of soils the radioactivity concentration was measured. Calibration was performed by the use of a large volume standard source made as a mixture of monazite, pitchblende and silica. The results are reported in Bq.kg -1 ; the statistical error is within 5% (standard deviation) and for most of the results the systematic error is smaller than 15%. Most of the building materials and all soil samples revealed activity concentrations smaller than 100 Bq.kg -1 for Ra-226 and Th-232 and smaller than 1000 Bq.kg -1 for K-40. Part of the results is compared with data published elsewhere. (Auth.)

  9. A review on the development of reinforced ice for use as a building material in cold regions

    NARCIS (Netherlands)

    Vasiliev, N.K.; Pronk, A.D.C.; Shatalina, I.N.; Janssen, F.H.M.E.; Houben, R.W.G.

    2015-01-01

    Carrying building materials into remote cold regions makes construction in these regions difficult and rather expensive. The need for such materials can be reduced by the use of both ice and ice-soil composites. In cold regions ice is abundant and cheap. However, using ice as a building material has

  10. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  11. Potential Damage to Modern Building Materials from 21st Century Air Pollution

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2010-01-01

    Full Text Available The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950–2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation.

  12. Development of an Assessment Method for Building Materials Under Euratom Scope.

    Science.gov (United States)

    de With, Govert

    2017-11-01

    In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses

  13. Material and welding development of anchor plates to build nuclear power plant by blue arc process

    International Nuclear Information System (INIS)

    Gibelli, C.E.

    1986-01-01

    To build nuclear power plants, anchor plates are plenty used. These anchor plates serve as a system with the purpose to fix many heavy components or a simple stair. Considering the necessity of element fabrication fastly, with reasonable economy and quality, the arc study welding process (blue arc) was used. A special development of the material concept as well as a welding procedure and a subsuppliers qualification of the raw material was necessary. (Author) [pt

  14. Building Materials, Ionizing Radiation and HBIM: A Case Study from Pompei (Italy

    Directory of Open Access Journals (Sweden)

    Pasquale Argenziano

    2018-01-01

    Full Text Available This paper presents a different point of view on the conservation of the built heritage, adding ionizing radiation to the most well-known digital documentation dataset. Igneous building materials characterize most of the built heritage in the Campania region, and in a large part of southern Italy. The ionizing radiations proceeding from these materials can produce stochastic biological effects on the exposed living beings. The research team designed and tested a technical-scientific protocol to survey and analyse this natural phenomenon in association with the use of geological material for building purposes. Geographical Information Systems (GISs, City Information Modelling (CIM, and Building Information Modelling (BIM are the digital tools used to manage the construction entities and their characteristics, and then to represent the thematic data as false-colour images. The emission spectra of fair-faced or plastered materials as a fingerprint of their nature is proposed as a non-invasive method. Due to both the huge presence of historical buildings and an intense touristic flow, the main square of Pompei has been selected as a study area.

  15. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  16. New concrete materials technology for competitive house building

    OpenAIRE

    Peterson, Markus

    2003-01-01

    The research project aims at investigating the potential of new concrete materials technology (high performance concrete, HPC and self-compacting concete, SCC) for competitive design, production and function of structural frames of cast in-situ concrete in house building.

  17. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  18. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  19. Measurement of natural gamma radiation in building materials from Thellar of Tiruvannamalai Dist, Tamilnadu, India by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Raghu, Y.; Ravisankar, R.; Chandrasekararn, A.; Vijayagopal, P.; Venkatraman, B.

    2016-01-01

    The knowledge of natural radioactivity in building materials is an important aspect of or determining the amount of public exposure because people spend most of their time (about 80%) indoors. Further, the knowledge of this radioactivity is useful in setting the standards and national guidelines in regard to the international recommendations and in assessing the associated radiation hazard. In the present work, the concentrations of natural radionuclides were measured in four types of building materials from Thellar of Tiruvannamalai district, Tamilnadu, India using gamma-ray spectrometry and associated radiological hazards are calculated

  20. Pulsed power experiments in hydrodynamics and material properties

    CERN Document Server

    Reinovsky, R E

    1999-01-01

    A new application for high performance pulsed power program, the production of high energy density environments in materials for the study of material properties and hydrodynamics in complex geometries, has joined family of radiation source applications in the Stockpile Stewardship. The principle tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density liner. The most attractive pulsed power system for driving such experiments is an ultra-high current, low impedance, microsecond time scale source that is economical both to build and operate. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ /cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA ...

  1. Research of footwear lining materials thermoconductive properties

    Science.gov (United States)

    Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.

    2017-11-01

    Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.

  2. Photon activation analysis on building materials

    International Nuclear Information System (INIS)

    Schulze, D.; Heller, W.; Kupsch, H.

    1988-01-01

    With regard to the planned construction of a new microtron, first investigations on raw materials for the aerated concrete production have been done to clear up the possibilities of photon activation analysis (PAA). Irradiations have been partly carried out on linear accelerators with a self-developed moveable activation equipment. PAA results of qualitative and quantitative elemental analysis are described. The detection of chlorine is important for studying the oversalting processes in buildings. (author)

  3. The analysis of radon diffusion through the buildings materials

    International Nuclear Information System (INIS)

    Grujic, S.; Radukin-Kosanovic, A.; Bikit, I.; Mrdja, D.; Forkapic, S.

    2009-01-01

    Since people most of the time spent indoors it is of great importance to analyse the radon diffusion through different types of materials, in order to prevent the increase of its concentration in the interior of buildings. The paper examined six different types of materials used in construction, mainly in the insulating purposes, in order to determine the material, or a combination of appropriate type and thickness of material which have a smaller value of diffusion coefficient of radon. (author) [sr

  4. The concentration of natural radionuclides in various types of building materials in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Cabanekova, H [Inst. of Peventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    The concentration of the natural radionuclides in various types of building materials was determined by the gamma spectrometry analysis using 130 cm{sup 3} high purity germanium detector and MCA LIVIUS 2000. Radium-226 and thorium-232 was assessed through their progeny photo peaks. The specific activity of both nuclides as weighted average of their photo peaks was determined. Potassium-40 was measured directly via its 1460 keV peak. The radium equivalent activity was calculate from specific activities of radium-226, thorium-232 and potassium-40. All samples were measured in 4{sup p}i{sup g}eometry. The building materials and products were milled and screened with 2-3 mm sieve. After drying the samples were stored in 450 cm{sup 3} sealed polyethylene container for 30 days ingrowing period. The results of analysis are corrected to the background distribution and to the self absorption in the volume of the samples. The efficiency calibration is realized using the reference sources distributed by IAEA in Vienna and by the Institute for Radionuclide Production in Prague The measured activity concentrations of the buildings materials are given. There are shown the minimum and maximum values for different investigated materials. (J.K.) 4 tabs., 5 refs.

  5. Radon exhalation from building materials for decorative use

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing, E-mail: jing.chen@hc-sc.gc.c [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada); Rahman, Naureen M.; Atiya, Ibrahim Abu [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2010-04-15

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m{sup -2} d{sup -1}. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m{sup -2} d{sup -1} for slate tiles and 42 Bq m{sup -2} d{sup -1} for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m{sup -2} d{sup -1}, it would contribute only 18 Bq m{sup -3} to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  6. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Science.gov (United States)

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Investigation of natural radioactivity in building materials commonly used in Sudan

    International Nuclear Information System (INIS)

    Mohamed, S. E. A.

    2010-12-01

    Investigation of radioactivity content of commonly used building materials in Khartoum State is carried out during the year 2010. A total of 25 samples of natural and manufactured materials from different types of building materials have been collected and measured using gamma spectrometry system. The activity concentrations have been determined for radium (2''2''6''Ra), thorium (''2'3''2Th) and potassium (''4''0K) in each sample. The concentrations of radium (represents activity of uranium and its decay series) have been found to rang from 2.8 Bq/kg in (gravel) to 108.2 Bq/kg (porcelain), thorium between 48 and 302 Bq/kg and the potassium concentration varies between 82.3 Bq/kg in (gravel) to 1413.3 Bq/kg in (marble). The activity index has also been calculated and found that it is less than 1 (mean value of 0.77 range between 0.33 and 1.97), and less than 6 for surface materials. The results have been compared with European previous studies. It is concluded that the measured radioactivity of building materials are within acceptable levels and dose not poses any risk from radiation protection point of view. (Author)

  8. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science.

    Science.gov (United States)

    Hrdlicka, Patrick J; Karmakar, Saswata

    2017-11-29

    Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.

  9. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  10. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  11. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  12. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  13. Use of EMW radiation in the building industry at defects in buildings

    Directory of Open Access Journals (Sweden)

    Sobotka Jindřich

    2017-01-01

    Full Text Available This paper discusses theory and application of microwave radiation and experimental optimization of microwave radiation to eliminate moisture content in wood elements. It will be appreciated that the rising moisture leaking into the structure, resulting in defects and structures of the buildings themselves. Owing to its properties, microwave radiation has been used in the construction industry in modern times, in particular to dry wet masonry of buildings. Effects of electromagnetic radiation on building structures lead to relatively sharp decreases in moisture content from damp building structures or elements. The influence of electromagnetic radiation on building structures lead to oscillation of water molecules contained in the material, which cause a phase transformation of water into vapour. Consequently, the vapour evaporates from the moist material, thereby drying the element exposed to radiation. The article describes experiments carried out at the Faculty of Civil Engineering of the Faculty of Technology in Brno that demonstrate successful decrease of water content in building materials using microwave radiation. First, the understanding of microwave radiation will be discussed. Following an analysis of research results an optimum intensity of microwave radiation sources as well as the necessary length of the irradiation of microwave radiation have been determined with respect to the particular type of building material and the success rate of elimination of moisture.

  14. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Redzuwan Yahaya; Muhammad Samudi Yasir

    2013-01-01

    Full-text: Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80 % of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m -3 , 192 Bq m -3 , 176 Bq m -3 and 28 Bq m -3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m -3 for example higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y -1 , 4.85 mSv y -1 , 4.44 mSv y -1 and 0.72 mSv y -1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels for example 3 - 10 mSv y -1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively. (author)

  15. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2014-01-01

    Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m −3 , 192 Bq m −3 , 176 Bq m −3 and 28 Bq m −3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m −3 i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y −1 , 4.85 mSv y −1 , 4.44 mSv y −1 and 0.72 mSv y −1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y −1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively

  16. Radiological impact assessment of building materials on ordinary houses dwellers

    International Nuclear Information System (INIS)

    Campos, M.P. de.

    1994-01-01

    The radiological impact due to building materials on habitants living in the Santo Andre district of Sao Paulo state, Brazil, was assessed through the total effective dose equivalent rate determination, for external and internal irradiation. The effective dose equivalent rate for external irradiation was calculated by the gamma spectrometry determination of natural radionuclides specific activity in the dwelling materials. The effective dose equivalent rate due to 222 Rn inhalation was calculated through the radon indoor activity determination by using solid state nuclear track detectors. (author). 46 refs, 6 figs, 14 tabs

  17. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  18. Construction patterns of birds' nests provide insight into nest-building behaviours

    OpenAIRE

    Biddle, Lucia; Goodman, Adrian; Deeming, Charles

    2017-01-01

    Previous studies have suggested that birds and mammals select materials needed for nest building based on their thermal or structural properties, although the amounts or properties of the materials used have been recorded for only a very small number of species. Some of the behaviours underlying the construction of nests can be indirectly determined by careful deconstruction of the structure and measurement of the biomechanical properties of the materials used. Here we examined this idea in a...

  19. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  20. Measurement of natural radioactivity in building materials in Qena city, Upper Egypt

    International Nuclear Information System (INIS)

    Ahmed, Nour Khalifa

    2005-01-01

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials (bricks, cement, gypsum, ceramics, marble, limestone and granite) in Qena city, Upper Egypt have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. The results show that the highest mean value of 226 Ra activity is 205 ± 83 Bq kg -1 measured in marble. The corresponding value of 232 Th is 118 ± 14 Bq kg -1 measured in granite. For 40 K this value is (8.7 ± 3.9) x 10 2 Bq kg -1 measured in marble. The average concentrations of the three radionuclides in the different building materials are 116 ± 54, 64 ± 34 and (4.8 ± 2.2) x 10 2 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. Radium equivalent activities and various hazard indices were also calculated to assess the radiation hazard. The maximum mean of radium equivalent activity Ra eq is 436 ± 199 Bq kg -1 calculated in marble. The highest radioactivity level and dose rate in air from these materials were calculated in marble

  1. Use of Secondary Building Materials in EU - Different National Strategies; Anvaendning av restprodukter inom EU - Olika nationella strategier

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Gunilla; Wilhelmsson, Anna (Ramboell Sverige AB, Goeteborg (Sweden))

    2008-06-15

    The aim of this report is to show how use of waste/secondary building materials/aggregates for construction purposes is managed in 8 different countries within the European Union. A short review is done how national legislations and guidelines support, and restrict, reuse in an environmentally responsible way, and experiences from and control of some construction purposes. Different national strategies are used in the studied countries, depending on their previous experiences of reuse of secondary building materials, natural conditions and energy systems, and administrative traditions. In general the actual regulations are built on high demands on protection of water and soil resources and protection of health and environment, with the pronounced aim of supporting waste reuse for construction purposes. In most countries regulations of environmentally controlled use of secondary building materials contains these elements as a basis: - Inert waste are often free for construction use; - Specific waste fractions are allowed; - Specified use is defined; - Different material categories might be used/prescribed for different purposes; - Ashes of different origin is an important source for secondary aggregates; - Quality control of materials and construction is essential; - Specified precaution or remediation are prescribed, according to the purpose; - Reporting or simplified permit processes are prescribed. There is generally a specific regulation concerning use of secondary materials. If used in other circumstances than prescribed/listed, it will normally need a regular environmental permit process. Important experiences are that proper design and control of the construction is essential, based on know-how, research and feed-back from experience. It exists a broad base of knowledge in the studied European countries, including material properties, leaching behaviour and testing methods for a wide range of materials. Many successful ways of promoting cooperation between

  2. Aging characteristics of containment building and sensitivity on ultimate pressure capacity

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choun, Young Sun; Choi, In Kil; Ha, Jae Joo

    1998-03-01

    For the reliable safety assessment of the containment building, structural and material conditions can be investigated in detail and pertinent assessment technologies have to be established. Also, an understanding on the aging-related degradations for the construction materials is required to predict long-term structural safety of the containment building. For the development of reliable aging prediction models, an extensive data base system related to aging properties of the containment building has to be prepared. The objectives of this research are to develop aging models representing long-term degradation of materials and a structural performance assessment program for containment building considering aging-related degradation. According to the results of sensitivity analysis, as the mechanical properties of the constituent materials degrade, the ultimate pressure capacity of containment building may decrease and severe damage may occur around the mid-level of the containment wall. (author). 28 refs., 11 tabs., 36 figs

  3. Materials, used in historical buildings, analysis methods and solutions puroposals

    Science.gov (United States)

    Döndüren, M. Sami; Sişik, Ozlem

    2017-10-01

    Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş) mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  4. Materials, used in historical buildings, analysis methods and solutions puroposals

    Directory of Open Access Journals (Sweden)

    Döndüren M.Sami

    2017-01-01

    Full Text Available Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  5. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  6. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  7. Natural radioactivity of building materials coming from a volcanic region

    International Nuclear Information System (INIS)

    Roca, V.; Pugliese, M.; Sabbarese, C.; D'Onofrio, A.; Lubritto, C.; Terrasi, F.; Ermice, A.; Inglima, I.; Migliore, G.

    2004-01-01

    Radioactivity was found to be very high in tuff and other materials originating from volcanic lava. Emanation of radon from such materials is appreciably higher than from materials of other origin. This work allowed us to obtain a first complete database of natural radioactivity concentrations in building materials from this region. Measurements were carried out by means of a gamma spectrometry system. Gamma emitting daughter products of 222 Rn were measured to determine 226 Ra. The samples, after a routine treatment, were accommodated in sealed metallic containers for a time sufficient for the equilibrium to establish. The determination of the radon emanation power was carried out by using an electrostatic monitor. Alpha spectroscopy of radon daughters was used to evaluate the content of radon coming from the sample

  8. The Effect of Anisotropy of Building Materials on the Moisture Transfer

    Directory of Open Access Journals (Sweden)

    J. Drchalová

    2000-01-01

    Full Text Available The effect of anisotropy of building materials on the moisture transfer in the design of envelope parts of building structures is studied. Two typical fibre containing plate building materials produced in the Czech Republic, Dekalux and Dekalit P, are chosen for the demonstration of this effect. Experimental results show that while for lighter Dekalit P, an order of magnitude difference in the moisture diffusivities k for the two basic orientations, i.e. along and across the plate, is observed, for the heavier Dekalux the differences in k are within the errorbar of the experimental method. As follows from the experimental results, compacting of surface layers of the plates of light fibred materials is very favorable from the point of view of moisture penetration but one should keep in mind that any local damage of the surface layer can result in a considerably faster moisture transfer in the direction along the plate.

  9. Natural radionuclides in ceramic building materials available in Cuddalore district, Tamil Nadu, India.

    Science.gov (United States)

    Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K

    2013-10-01

    The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.

  10. Luminescence dosimetry using building materials and personal objects

    International Nuclear Information System (INIS)

    Goeksu, H. Y.; Bailiff, I. K.

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed. (authors)

  11. Building of nested components by a double-nozzle droplet deposition process

    Science.gov (United States)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  12. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  13. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  14. Radiometric characterisation of more representative natural building materials in the province of Rome

    International Nuclear Information System (INIS)

    Trevisi, R.; Bruno, M.; Orlando, C.; Ocone, R.; Paolelli, C.; Amici, M.; Altieri, A.; Antonelli, B.

    2005-01-01

    Natural building materials, characterised by middle-low-activity concentrations of primordial radionuclides ( 40 K, 232 Th and 238 U series) are widely used in Italy. Since natural materials reflect the geological variability of their sites of origin, a systematic study was carried out in the province of Rome and the results are reported in this paper. In the present work, in order to evaluate average, minimum and maximum contents of primordial radionuclides, more representative lithologies outcropping on the territory of the province of Rome were identified and around 150 samples were collected. Also, these lithologies were characterised from a radioprotection point of view, by means of the evaluation of the index, I, when they are used as building materials. The results confirm the high-primordial radionuclide content within some materials used in Latium (central Italy). Although the study was carried out in a limited area, the results confirm considerable variation in the primordial radionuclide content depending on the sites of origin. (authors)

  15. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  16. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  17. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  18. Study of an experimental methodology for thermal properties diagnostic of building envelop

    OpenAIRE

    Yang , Yingying; Sempey , Alain; Vogt Wu , Tingting; Sommier , Alain; Dumoulin , Jean; Batsale , Jean ,

    2017-01-01

    International audience; The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used f...

  19. PENERAPAN MATERIAL KACA DALAM ARSITEKTUR

    Directory of Open Access Journals (Sweden)

    Lestari .

    2014-07-01

    Full Text Available Kaca telah dikenal sejak ribuan tahun dan merupakan bahan buatan manusia yang cukup tua. Penggunaannya sebagai bahan bangunan meluas sejak abad ke 17 terutama setelah perang dunia kedua.  Arsitektur kaca menjadi suatu kecenderungan dari desain-desain bangunan di dunia sejak abad ke-20. Material ini dianggap sangat relevan dengan konsep-konsep yang ada. Kaca digunakan sebagai material ornamen, bukaan atau jendela, material kulit  bangunan,  sampai pada material struktur  bangunan. Sifat kaca yang transparan,  simple, dan bersih menjadikan material ini menguntungkan untuk mendukung konsep yang digunakan. Tulisan ini memaparkan penggunaan kaca sebagai bahan bangunan, baik sebagai bahan ornamen, kulit bangunan atau struktur bangunan, maupun sebagai pendukung konsep arsitektur khususnya konsep transparansi. Dipaparkan pula mengenai sifat-sifat teknis dari bahan kaca sebagai pertimbangan dalam pemilihan bahan bangunan.   Glass has been known for thousands of years and is a man made material  that is quite old. Extends its use as building material since the 17 century, especially after the second world war. Glass architecture become a trend of buiding designs in the world since 20th century. This material relevant to the existing concepts. Glass is used as an ornament material, window, the building skin materials, and the building structure materials. Glass  properties that transparent, simple and clean make this material support the concepts used. This paper describes the use of glass as a building material, either as a ornament, the building skins, the building structures, and the building concepts expecially transparency concept. This paper also present the technical properties of glass as a building material REFERENCES Garg, N.K . 2007. Guidelines for Use of Glass in Building. New age international publisher. New Delhi Piano, R. 1997. The Renzo Piano Logbook. The Monacelli Press. London Staib, Schittich. 1999. Glass Construction

  20. Properties and characterization of modern materials

    CERN Document Server

    Altenbach, Holm

    2017-01-01

    This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-...

  1. Analyse of possibilities of increasing housing energy efficiency by application of phase-changing materials

    Directory of Open Access Journals (Sweden)

    Vučeljić-Vavan Sanja

    2009-01-01

    Full Text Available Refurbishment of existing building stock using energy-saving phase-changing smart materials and technologies, in addition to improved indoor climatic conditions, offer an opportunity for increasing housing energy efficiency and value. This fast developing technology becomes increasingly cost-effective with much shorter payback periods. However, it is undertaken only on a limited scale; because of lack of knowledge about their changeable properties and dynamism in that they behave in response to energy fields. Main characteristics, which make them different form others, are: immediacy transience, self-actuation, selectivity and directness. Phase change processes invariably involve the absorbing, storing or releasing of large amounts of energy in the form of latent heat. These processes are reversible and phase-changing materials can undergo an unlimited number of cycles without degradation. Since phase-changing materials can be designed to absorb or release energy at predictable temperatures, they have naturally been explored for use in architecture as a way of helping deal with the thermal environment in a building. Technologies based on sealing phase-changing materials into small pellets have achieved widespread use in connection with radiant floor heating systems, phase change wallboards, mortar or facade systems. Thermal characteristics of existing buildings can be improved on increasing their thermal-stored mass by implementation products of phase-changing smart materials. In addition to contributing to carbon reduction and energy security, using phase-changing materials in the building sector stimulates innovations.

  2. Measurements of radon exhalation from building materials under model climate conditions

    International Nuclear Information System (INIS)

    Jann, O.; Schneider, U.; Koeppke, J.; Lehmann, R.

    2003-01-01

    The inhalation of 222 Rn (radon) is the most important reason for lung cancer as a result of smoking. The cause for enhanced radon concentration in the air of buildings is mostly the building ground. But also building products can lead to increased radon concentrations in indoor air when the products contain raw materials or residues with higher contents of 226 Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of radon concentrations it is helpful to perform emission tests on the basis of emission test chambers. Emissions test chambers are already used successfully for the measurement of volatile organic compounds (VOC) emitted from different materials and products. The analysis of radon in air was performed with a test device based on the principle of ionisation chamber (ATMOS 12 D). It could be show that radon concentrations emitted from building materials can be determined reliably if certain boundary conditions such as temperature, relative humidity and especially area specific air flow rate are met. It was also shown that reduced area specific air flow rates or reduced air exchange rates lead to higher radon concentrations. It is remarkable that no conclusion can be drawn from the activity concentration of radium to the radon concentration in the air. Therefore in some cases much higher radon concentrations in air were determined that had been expected. Obviously diffusion within the material plays an important role. (orig.)

  3. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  4. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    Natural radiation is the main source of exposure to humans. The basic raw materials, generally used in the construction industry, contain natural radionuclides which reflects their natural origin and the geological conditions at the site of production. In the last time, most building materials are manufactured from secondary raw materials with higher concentration of natural radionuclides. The estimation of the 226 Ra content as well as the 232 Th and 40 K concentration in building materials and products is essential for the evaluation of the external x-ray contribution to the exposure. The building materials with high value of 226 Ra coupled with pronounced porosity of the final products make them potential indoor Rn sources. It means that external exposure and part of inhalation dose from radon and its progeny inside of building is caused to the radiation from the primordial radionuclides pres ent in building materials and products and can increase the indoor natural radiation exposure. For keeping the population exposure as low as reasonably achievable is in the Slovak legislation the radioactive content of primordial radionuclides in building materials and products regulated and the maximum of specific activity is 370 Bq.kg-1 of radium equivalent activity and 120 Bq.kg-1 of 226 Ra. The Health ministry and Slovak metrological institute nominated the department of Radiation Hygiene of Slovak medical university to investigate regularly the content of natural radionuclides and also the radon emanation in samples of raw and secondary building materials and products used in Slovak building industry. In the framework of the screening of building materials and products there were analyzed over 3 000 samples. The natural radionuclides are assessed through their progeny photo peaks. The specific activity of nuclides is determined as weighted average of their photo peaks. The obtained results are corrected to the background distribution and to the self absorption in the

  5. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  6. Elevated radon and thoron concentrations from natural radioactivity in building materials

    International Nuclear Information System (INIS)

    Smith, D.; Vivyurka, A.

    1980-01-01

    Radon levels in excess of 20 mWL were observed in an apartment building under construction in Elliot Lake. Tracer studies showed ventilation periods as long as 29 hours since the ventilation system of the building was not yet working. It was concluded that, once the contribution from thoron daughters was taken into account, the natural radioactivity of the concrete and other building materials was sufficient to produce the observed levels of radioactivity

  7. Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards

    Directory of Open Access Journals (Sweden)

    Silverio Hernández Moreno

    2012-02-01

    Full Text Available Este reporte presenta una evaluación de las emisiones de materiales de construcción, al interior de los edificios que pueden causar daño a la salud de los usuarios durante la ocupación, pues emiten sustancias tóxicas al interior de los edificios. Este reporte presenta un caso de studio que evalúa a los tableros de yeso, frecuentemente usados en la construcción de muros divisorios y falsos plafones. La parte experimental se basa en un espacio tridimensional el cual simula un cuarto de cualquier tipo de edificación; por ejemplo: un salón de clases u oficina. Las condiciones ambientales al interior, tales como: ventilación, temperatura y humedad, afectan directamente las emisiones de sustancias químicas por los materiales de construcción. La metodología se basa en la comparación de materiales convencionales y materiales alternativos con distinta composición y similares características, en donde usamos métodos de prueba, condiciones ambientales, instrumentos y herramientas similares. Este es un estudio muy importante para entender los problemas relacionadoscon la contaminación ambiental, específicamente del aire y sus efectos en el interior de los edificios, y que se relaciona directamente con la salud pública e indirectamente con los sistemas constructivos y la selección de materiales en los edificios. Las pruebas concluyen que los materiales alternativos (de contenido reciclado son mejores que los tradicionales, porque reducen la contaminación del aire al interior de los edificios. This report presents an evaluation of emissions from indoor building materials that may cause health damage to the people who occupy the building, since these materials emit toxic chemicals into the air and indoor surfaces. This report presents a case study which evaluates Gypsum Boards, frequently used in the construction of dividing walls and ceilings. The experimental part of this report is based on a three-dimensional space that simulates a

  8. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  9. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... with its ionic mobility properties. It is, further, assumed that Gauss’s law can be used to calculate the internal electrical field induced by the diffusion it self. In this manner the external electrical field applied can be modeled, simply, by assigning proper boundary conditions for the equation...

  10. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  11. Radiological properties of a wax-gypsum compensator material

    International Nuclear Information System (INIS)

    Plessis, F.C.P. du; Willemse, C.A.

    2005-01-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm 2 , and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm 2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm 2 . At 100 cm SSD the RSI values were below 50% for all field sizes used

  12. Comparative Study on the Cost of Building Public House Construction Using Red Brick and Interlock Brick Building Material in the City of Banda Aceh

    Science.gov (United States)

    Malahayati, Nurul; Hayati, Yulia; Nursaniah, Cut; Firsa, T.; Fachrurrazi; Munandar, Aris

    2018-05-01

    Red brick and interlocking brick are the building materials that are often used for wall installation work on houses construction. In the development of building materials technology and cost savings, interlocking brick can be alternative to replace red bricks. In Aceh Province, the use of interlocking bricks is less popular compared to other big cities in Indonesia. Interlocking brick is made from a mixture of clay, concrete sand and compacted cement and one of the environmentally friendly materials because it does not burn the process like red brick material. It is named interlocking brick because the installation method is locked together and it serves as a structural and partition wall of residential buildings. The aims of this study are to compare the cost of building a house in Banda Aceh City using red brick and interlock brick building materials. The data were obtained from interviews and questionnaires distributed to respondents who had built houses in Banda Aceh City. The results concluded that the house construction cost using interlock brick offer lower construction cost at comparable quality rather than using red brick.

  13. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  14. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  15. Size-Dependent Materials Properties Toward a Universal Equation

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2010-01-01

    Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.

  16. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, S.; Hauschildt, P.; Pejtersen, Jan

    1999-01-01

    found on peak flow, eye foam formation, tear fluid cells, or conjunctival epithelial damage. Among subjective evaluations only sound intensity rating was significant. A correlation was found between acute nose irritation rating and change in nasal volume.Conclusions. The findings indicate physiological......Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... respectively to clean air, to emissions from linoleum, from carpet, and from an alternative new vinyl. Measurements of objective and subjective effects were made.Results. Tear film stability decreased after exposure to linoleum. The nasal volume decreased near-significantly for all exposures. No effects were...

  17. Limitations on the concentration of radioactive elements substances (natural or enhanced by human activity) in building materials - a proposal for draft Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Hareuveny, R.; Margaliot, M.

    1997-01-01

    Natural radioactive elements 40 K 228 U and 232 Th and their decay product such as 226 Ra and its short lived daughters occur in building materials in relatively high concentrations. 40 K and part of the above mentioned radionuclides cause external exposure while the inhalation of 222 Ra and its short lived progeny lead to internal exposure of the respiratory tract to alpha particles. In recent years there is a growing tendency to use new construction materials with naturally or technologically enhanced levels of radioactivity (e.g. phosphogypsum, fly ash, exotic minerals etc). This trend causes a growing health concern.The result of this concern is legislation activity and publication of guidance notes by national authorities and international professional organizations related to the radiological implications of these novel technologies. The Ministry of the Environment in Israel is authorized by Israeli legislation to control the exposure of the public to ionising radiation. The ministry asked in 1996 a professional group in the Radiation Protection Division in the Soreq NRC (the authors of this presentation) to study the radiological implications of the use of building materials with naturally or technologically enhanced concentrations of radioactive substances, and to submit draft regulations setting primary limits on excess exposure of the public to ionizing radiation from building materials, and derived limits related to concentrations of specific radionuclides in these materials.The draft regulations will be presented and the way of their derivation will be reviewed (authors)

  18. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  19. Fungal accumulation of metals from building materials during brown rot wood decay.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

    2014-08-01

    This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood

  20. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...

  1. Non-destructive examination and estimation of radioactivity levels for decorative building materials

    International Nuclear Information System (INIS)

    Mao Yahong; Liu Yigang; Lin Libin

    2003-01-01

    Measurement of gamma ray intensity from building materials can be substituted by measuring alpha rays following outline of a radionuclide decay. Exposure levels of alpha ray from the surface of decorative materials can be measured non-destructively by placing a detector on the surface of the materials. Authors have studied the relationship between gamma specific activities of natural radionuclides and alpha and beta ray level in building materials used in interior decoration, and the saturated thickness of beta ray from the surface of different materials. The results showed that the range of beta ray with the maximum energy in natural radioactive series is longer than thickness of a piece of decorative materials. So the exposure level of beta ray cannot be used to estimate the limit of external and internal indexes. The polynomial between exposure level of alpha ray from surface (α) and external index (I γ ) for granite is: I γ =0.38 + 49.84α + 288.24α 2 . The measured values were in accordance with the values from the polynomial within 95%. The polynomial between exposure level of alpha ray from surface (α) and external index (Iγ) for polishing tiles is: I γ =0.42 + 343.55α-32999.66α 2 . The measured values were in accordance with the values from the polynomial within 90%

  2. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    Science.gov (United States)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  3. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-01-01

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  4. Mould growth on building materials under low water activities

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Holm, G.; Uttrup, L.P.

    2004-01-01

    The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5degreesC, 10degreesC, 20degreesC and 25degrees...... growth at RH > 90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities...

  5. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    International Nuclear Information System (INIS)

    Andersen, C.E.

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm 3 . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h -1 kg -1 . Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m -3 . (au)

  6. Intelligent Radiative Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  7. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE

    International Nuclear Information System (INIS)

    Marcus, Benjamin L

    2012-01-01

    The Abu Dhabi Authority for Culture and Heritage (ADACH) is responsible for the conservation and management of historic buildings and archaeological sites in the Emirate. Laboratory analysis has been critical for understanding the composition of historic materials and establishing appropriate conservation treatments across a wide variety of building types, ranging from Iron Age earthen archaeological sites to late-Islamic stone buildings. Analysis was carried out on historic sites in Al Ain, Delma Island and Liwa Oasis using techniques such as micro-x-ray fluorescence (MXRF), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDX), polarized light microscopy (PLM), and x-ray diffraction (XRD). Testing was conducted through consultant laboratories and in collaboration with local universities. The initial aim of the analysis was to understand historic earthen materials and to confirm the suitability of locally sourced clays for the production of mud bricks and plasters. Another important goal was to characterize materials used in historic stone buildings in order to develop repair mortars, renders and grouts.

  8. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  9. The role of clearance in Germany - release of materials, buildings and sites

    International Nuclear Information System (INIS)

    Thierfeldt, S.

    2005-01-01

    Clearance in Germany is far advanced. A complex regulatory framework exists in the Radiation Protection Ordinance (RPO/Strahlenschutzverordnung, StrlSchV) since 2001 which has replaced previous recommendations on clearance issued by the German Radiation Protection Commission (Strahlenschutzkommission, SSK). A number of options exist both for unconditional clearance (e.g. of all kinds of materials with no restrictions on the destination or future use) and for clearance for a specific purpose (e.g. recycling of metal scrap). For each clearance option there is a set of nuclide specific clearance levels which have been derived on the basis of the 10 Sv/a individual dose criterion using complex radiological models which are tailored to the respective material cycles (metal scrap, buildings, building rubble, waste for disposal, sites). The clearance levels have been thoroughly reviewed by the SSK. An extensive comparison to sets of clearance levels used in other countries or issued as guidance by international bodies revealed that the correspondence between values is between good and acceptable taking into account country-specific approaches and special assumptions which would not necessarily pertain to German situations. Clearance is a major factor in the material management, especially of nuclear installations undergoing decommissioning. The variety of clearance options leaves the operator of a nuclear installation sufficient flexibility for optimisation of the material management. Clearance is of particular importance in a country like Germany where the estimated costs for a future repository are very high and the interim storage facilities for radioactive material are limited and costly. While the licensee is responsible for his material management, the issuance of a clearance permit is done by the regulatory body upon application. The regulators may choose to use the clearance levels and regulations as stipulated by the RPO, or to impose site-specific regulations on

  10. Improving the antimicrobial properties of titanium condenser material by surface modification using nanotechnology

    International Nuclear Information System (INIS)

    George, Rani P.; Dash, S.; Krishnan, R.; Kamruddin, M.; Kalavathi, S.; Tyagi, A.K.; Manoharan, N.; Dayal, R.K.; Vishwakarma, Vinita; Theresa, Josephine

    2008-01-01

    Biofouling is one of the major problems faced by condenser materials of power plants using seawater for cooling. Fouling control strategies in condensers include a combination of mechanical and chemical treatments like sponge ball cleaning, back washing and chlorination. In general, numerous studies have shown that no routine treatment regime can successfully keep the condenser tube clean over a period extending to years. Surface properties of the substratum influence initial adhesion and growth of bacterial cells on materials, modification of the surface for mitigating microbial attachment is the need of the hour. Metal nanoparticles are known to exhibit enhanced physical and chemical properties when compared to their bulk counter parts because of their high surface to volume ratios. Metals like copper are very toxic to microorganisms and effectively kill most of the microbes by blocking the respiratory enzyme. Copper alloys with their excellent resistance to biofouling are used extensively for marine applications. However, they are prone to localized corrosion initiation and consequently are getting replaced by extremely corrosion resistant titanium. Still, the inertness and biocompatibility of titanium makes it very susceptible to biofouling. Hence, this study attempts to use nano technology methods of surface modification of titanium using thin film of copper and also multilayers and bilayers of copper and nickel. This is aimed at improving the antimicrobial properties of this condenser pipe material. These nano structured thin films have been grown on titanium substrate using pulsed DC magnetron-sputtering and pulsed laser deposition. The thin films were characterized using Atomic Force Microscopy (AFM), Glancing Incidence X-ray Diffraction (GIXRD) and scanning electron microscopy (SEM with EDAX analysis). Antimicrobial properties were evaluated by exposure studies in seawater and bacterial cultures and by post exposure analysis using culture and

  11. Material focus

    DEFF Research Database (Denmark)

    Sokoler, Tomas; Vallgårda, Anna K. A.

    2009-01-01

    In this paper we build on the notion of computational composites, which hold a material perspective on computational technology. We argue that a focus on the material aspects of the technology could be a fruitful approach to achieve new expressions and to gain a new view on the technology's role...... in design. We study two of the computer's material properties: computed causality and connectability and through developing two computational composites that utilize these properties we begin to explore their potential expressions....

  12. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  13. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.

    Science.gov (United States)

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M

    2015-12-26

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal ® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g -1 and 99.3 J·g -1 for M-2 and Micronal ® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus ( E ), load at maximum displacement ( P m ), and displacement at maximum load ( h m ), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal ® DS 5008 X.

  14. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope

    International Nuclear Information System (INIS)

    Zwanzig, Stephen D.; Lian, Yongsheng; Brehob, Ellen G.

    2013-01-01

    Highlights: ► A numerical method to study the heat transfer through a PCM composite wallboard is presented. ► PCM wallboard can reduce energy consumption and shift peak electricity load. ► There is an optimal location for the PCM wallboard in the building envelop. ► The PCM wallboard performance depends on weather conditions. - Abstract: Phase change materials (PCMs) have the capability to store/release massive latent heat when undergoing phase change. When impregnated or encapsulated into wallboard or concrete systems, PCMs can greatly enhance their thermal energy storage capacity and effective thermal mass. When used in the building envelope PCM wallboard has the potential to improve building operation by reducing the energy requirement for maintaining thermal comfort, downsizing the AC/heating equipment, and shifting the peak load from the electrical grid. In this work we numerically studied the potential of PCM on energy saving for residential homes. For that purpose we solved the one-dimensional, transient heat equation through the multi-layered building envelope using the Crank–Nicolson discretization scheme. A source term is incorporated to account for the thermal-physical properties of the composite PCM wallboard. Using this code we examined a PCM composite wallboard incorporated into the walls and roof of a typical residential building across various climate zones. The PCM performance was studied under all seasonal conditions using the latest typical meteorological year (TMY3) data for exterior boundary conditions. Our simulations show that PCM performance highly depends on the weather conditions, emphasizing the necessity to choose different PCMs at different climate zones. Comparisons were also made between different PCM wallboard locations. Our work shows that there exists an optimal location for PCM placement within building envelope dependent upon the resistance values between the PCM layer and the exterior boundary conditions. We further

  15. Ecological and Economic Use of Energy by Optimization of Building Construction

    International Nuclear Information System (INIS)

    Jahrmann, H. J.

    1998-01-01

    A major part of energy used in daily life is consumed by heating buildings during cold weather periods and for cooling buildings at warmer times. Another major use of energy takes place during production of building materials, construction of the building itself and the depletion and disposal of this building at the end of its lifecycle. Therefore it seems apparent, that effective conservation and saving of energy is a very comprehensive and total approach. The topic is not solely energy saving, it rather is the most effective use of economical and ecological resources. To be energy conscious we have to give closer look to all phases in the existence of a building, and not only of the building. The human being as well must be thoroughly considered in his surrounding, all aspects of his housing suspected for the waste and potential of energy use. So human itself, with his well being in the house, is a major source of energy use. Even the humans health and sickness with its need for cure will cause significant energy input. In the first phase of energy saving programs two aspects should be focused: 1. Primary energy need of construction materials: Primary energy need is the amount of energy used to produce a construction material; from its base origin up to assembling in the housing. Complete ecological balances already exist for a number of materials. Significant difference between materials is observed. The potential for energy saving is impressive. At least 10-30% total energy conservation during the lifecycle of a building appears likely. In many cases a strong positive impact on local economy is expected too. 2. Energy saving by improvement of the thermal quality of buildings: Energy conscious construction of buildings shows an enormous potential for saving. Thermal insulation and effective heating and ventilation systems promise energy savings in the amount of 30-70%. Infrared thermal building analysis and software simulations used prior revitalization of

  16. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)

  17. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  18. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  19. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  20. Nanomaterials in building materials. The impacts of hightech products have to be proven; Nanomaterialien in Baustoffen. Die Wirkungen von Hightech-Produkten muessen nachgewiesen werden

    Energy Technology Data Exchange (ETDEWEB)

    Nowack, Bernd [Empa - Eidgenoessische Material- und Forschungsanstalt, St. Gallen (Switzerland). Abt. Technologie und Gesellschaft an der Empa; Kuehnle, Elke

    2013-04-01

    The construction sector has more than 1.5 million co-workers and a total turnover of nearly 170 billion Euro (destatis 2010). Thus, the construction sector is an important sector in the German economy. The systematic development and application of new products and building projects advance continuous innovation leaps. Nanotechnology is one of these innovations. As a cross-sectional technology, nanotechnology supplies manifold opportunities to modify the properties of materials and possibly to reduce the consumption of resources for the manufactures of building materials. The expected impact of such products and their modes of action on human beings and environment still are not investigated and proved sufficiently.

  1. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  2. Natural radioactivity in granite stones used as building materials in Iran.

    Science.gov (United States)

    Asgharizadeh, F; Abbasi, A; Hochaghani, O; Gooya, E S

    2012-04-01

    Due to increasing concern about environmental radiological protection, specific radioactivity concentrations of (226)Ra, (232)Th and (40)K in different types of commonly used granite stone samples collected from the Tehran city of Iran have been determined by means of a high-resolution HPGe gamma-spectroscopy system. The activity concentrations of (232)Th, (226)Ra and (40)K in the selected granite samples ranged from 18 to 178, 6 to 160 and 556 to 1539 Bq kg(-1), respectively. The radium equivalent activities (Ra(eq)) are lower than the limit of 370 Bq kg(-1) set by NEA-OECD [Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts. OECD (1979)], except in two samples. The internal hazard indexes have been found well below the acceptable limit in most of the samples. Five samples of investigated commercial granite stones do not satisfy the safety criterion illustrated by UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation. Exposure from natural sources of radiation. Report to the General Assembly (1993). Applying dose criteria recently recommended by the EC [European Commission Report on Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Radiation Protection 112 (1999)] for superficial materials, all investigated samples meet the exemption dose limit of 0.3 mSv y(-1).

  3. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage

    International Nuclear Information System (INIS)

    Jamekhorshid, A.; Sadrameli, S.M.; Barzin, R.; Farid, M.M.

    2017-01-01

    Highlights: • A composite of wood–plastic-MEPCM has been produced. • Compression molding has been used for the composite preparation. • Thermal and properties were investigated using DSC analysis and cycling test. • Leakage test has been performed for the encapsulated PCM. • The composites can be used as a building material for thermal energy management. - Abstract: Application of phase change materials (PCMs) in lightweight building is growing due to the high latent heat of fusion of PCMs and their ability to control temperature by absorbing and releasing heat efficiently. Wood-plastic composites (WPC) are materials used in the interior parts of buildings that have improved properties compared to conventional materials. However, these materials have low energy storage capacity, which can be improved by incorporating PCM in them. Leakage of PCM is a major obstacle to the industrial applications, which can be solved through the use of microencapsulated PCM (MEPCM). This paper presents the performance tests conducted for a composite of wood-plastic-MEPCM for using in buildings for thermal storage. The wood-plastic-MEPCM composites were produced in this project using compression molding and their thermal and mechanical properties were investigated using DSC analysis, cycling test, leakage test, and three point bending analysis. The results showed that there is no leakage of PCM during phase change. The results also indicated that the composite has reasonable thermal properties, but its mechanical properties need to be improved by increasing the pressure during the molding process or by using extrusion method. The produced composites can be used as a building material for thermal energy management of building.

  4. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  5. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  6. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  7. Radioactivity measurement in different types of fabricated building materials used in Palestine

    International Nuclear Information System (INIS)

    Dabayneh, K.M.

    2007-01-01

    The natural radionuclides ( 238 U, 232 Th and 40 K) and the manmade radiation levels were measured in samples of different types of fabricated building materials in Palestine. Concentration of radionuclide in samples were determined by γ -ray spectrometry using hyper-pure germanium (HPGe) detector in Bq/Kg dry weight. In this paper samples of commonly building materials (granite, clay brick (karmeed), lime stone, marble, cement, white cement, sea sand, gravel powder, gravel, glue ceramic, gypsum powder and hydrated lime) used in Palestinian buildings were collected. the concentration values of 238 U, 232 Th and 40 K in these samples ranged between 13.9-97.3,7.2-78.6 and 2.0-1139.0 Bq/Kg.respectively. The 137 Cs isotope was detected in some samples. Radium equivalent activity (Ra e q) dose rate in air (Dr), external hazard index (Hex), radioactivity Level index (I y ) and annual gonadal equivalent dose (D) in all samples were calculated. The activity concentration data were discussed are compared with other experimental values in some countries

  8. Structural and compositional characterization of the adhesive produced by reef building oysters.

    Science.gov (United States)

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.

  9. Flotation tailings as a raw material for ceramic building materials

    Energy Technology Data Exchange (ETDEWEB)

    Burmistrov, V N; Karpunina, T I; Smolin, V N

    1986-02-01

    The VNIIstrom research institute developed a method for utilizing flotation tailings for production of bricks. Tailings are dewatered using filter presses. After dewatering, moisture content in the tailings ranges from 25 to 26%. Tailings are mixed with chamotte with a grain size to 2 mm. Using 30% chamotte improves mechanical and physical properties of the bricks and reduces energy consumption of brick firing. Tailings mixed with chamotte are granulated and dried on a conveyor. Granules with moisture content reduced to the optimum level are mixed a second time and formed in a press. The bricks are fired in a tunnel kiln with modified design. The bricks made of flotation tailings mixed with 30% chamotte are characterized by mechanical properties comparable to those of high quality bricks made of conventional materials.

  10. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings. Hist...

  11. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.

    Science.gov (United States)

    Pofale, Arun D; Nadeem, Mohammed

    2012-01-01

    This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.

  12. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    Science.gov (United States)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  13. THE MODEL CONSTRUCTIONS OF PRICE FORMING OF BUILDING MATERIALS MANUFACTURE IN BASHKORTOSTAN

    Directory of Open Access Journals (Sweden)

    H.N. Gizatullin

    2007-06-01

    Full Text Available In this work attempt has been done analyze the influence of the environmental factors, as outward, as inside to choice of the strategy and the pricing of the industry of the building materials of Bashkortostan. This article examines the competitive surroundings of enterprises and branches in a aspect of the regional market of the building industry’s production. The evaluation of the compatibility is given of the price and competitive strategy. As a result of the research and pricing majority of industry’s enterprises had no official document stating their per pose in a pricing area. In reason of analysis the general situation of the industry building materials the enterprises of Bashkortostan, the conception of pricing is determined on functional level.

  14. PHYSICAL AND MECHANICAL PROPERTIES OF BLACK WOOD (EBONY AS A CONSTRUCTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-01-01

    Full Text Available This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures   Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.   REFERENCES Aghayere A & Jason V. 2007. Structural Wood Design: A Practice-Oriented Approach Using the ASD Method. John Wiley & Sons, Inc., New Jersey Boen T. 2009. Constructing Seismic Resistant Masonry Houses in Indonesia. United Nation. Chauf KA. 2005. Karakteristik Mekanik Kayu Kamper sebagai Bahan Konstruksi. Majalah Ilmiah MEKTEK . Vol 7 : 41-47. Dolan JD. 2004. Timber Structures. Pp 628-669 in Wai FC & Eric ML (Eds Handbook of Structural Engineering – 2nd

  15. Proposal for the use of new materials in the TOKAMAK building cover

    International Nuclear Information System (INIS)

    Chiva, L.

    2011-01-01

    It was considered relevant and innovative to apply new structural materials to the construction of the roof of the building that lodged the TOKAMAK reactor, with the aim of achieving a severe reduction of the weight of the roof structure that result in greater ease of mounting, minor charges on the walls and foundations of the building and a reduced impact on the distribution of masses of the building scheme.

  16. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  17. Radioactivity reference levels in ceramics tiles as building materials for different countries

    International Nuclear Information System (INIS)

    Ortiz, Josefina; Ballesteros, Luisa; Serradell, Vicente

    2008-01-01

    Measurements campaigns of ceramic tiles and raw materials used in them, shows that natural radionuclides of uranium ( 238 U) and thorium ( 232 Th) series, together with the radioactive isotope of potassium ( 40 K ), are presents. Uranium series contain radium, which decays to radon ( 222 Rn), an inert gas that can be released from materials and inhaled by individuals. Limits of 226 Ra concentrations are established by different countries in order to control Radon levels (200 Bq.m -3 in European Union). Potassium -40 and others gamma emitters of 226 Ra and 232 Th descendent, can cause an external dose. Therefore, with the purpose that individual doses due to building materials doesn't exceed a certain level recommendations or regulations have been established. A maximum value of 1 mSv.y -1 is recommended in European Union. In practice an easy way to avoid ceramic tiles provide doses to individuals over the reference level is to introduce an index, depending on activities concentrations of 226 Ra, 232 Th and 40 K, defined so that the dose limits due, exclusively, to building materials, will never be exceeded. These limits and indexes present differences between countries. In this paper indexes are compared and differences are discussed. (author)

  18. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  19. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  20. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  1. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  2. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  3. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Science.gov (United States)

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  4. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  5. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    Science.gov (United States)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  6. The MaSe decision support system: Development of an integrated information system for the selection of environmentally preferable materials and products in the building process

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Sigrid Melby

    2003-07-01

    the assessment of the indoor environmental influence of a material includes emissions of substances and fibres, cleaning methods, cleaning chemicals, cleaning friendliness and dust adhering properties. The results from each sub area are weighted into one index, referred to as the Environmental index. Each material is characterised with this index and a judgement. All costs related to the production, use and disposal of a material are included in the MaSe system evaluation. The MaSe system is suited for use in the relevant phases of the building process. It is possible to use the system on different levels and with different input, from client priorities to details of the different products studied by the contractor. Economy is included in the system, and this one important aspect that separates the MaSe system from many of the existing systems. Many different products and materials can be handled within the system as long as the functional unit (FU) of the data are carefully defined. The structure of the scorecards and the aggregation of information into one index using Analytical Hierarchical Process (AHP) and pair wise comparison, makes it possible to include new information as it is made available. (author)

  7. A model for the build-up of disordered material in ion bombarded Si

    International Nuclear Information System (INIS)

    Nelson, R.S.

    1977-01-01

    A new model based on experimental observation is developed for the build-up of disordered material in ion bombarded silicon. The model assumes that disordered zones are created in a background of migrating point defects, these zones then act as neutral sinks for such defects which interact with the zones and cause recrystallization. A simple steady state rate theory is developed to describe the build-up of disordered material with ion dose as a function of temperature. In general the theory predicts two distinct behaviour patterns depending on the temperature and the ion mass, namely a linear build-up with dose to complete disorder for heavy bombarding ions and a build-up to saturation at a relatively low level for light ions such as protons. However, in some special circumstances a transition region is predicted where the build-up of disorder approximately follows a (dose)sup(1/2) relationship before reverting to a linear behaviour at high dose. (author)

  8. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  9. Cold storage with phase change material for building ventilation

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    This paper presents an experimental and numerical analysis of building coolingusing night-time cold accumulation in phase change material (PCM), otherwise known as the "free-cooling" or "passive-cooling" principle. The phase change materials were used in ceilings and floors. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the ni...

  10. The global warming potential of building materials : An application of life cycle analysis in Nepal

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, Ramesh Kumar; Cavalli, Raffaele

    2017-01-01

    This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types - traditional, semimodern, and modern - in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood

  11. On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2017-12-01

    Full Text Available Architectural expression and energy performance are key decision-drivers in the selection of a particular construction element, with the purpose of Urban Heat Island mitigation, energy-consumption reductions, and cultural heritage preservation in historical centers. In historical centers, the external layer of the envelope and the visible parts of the building are built with traditional materials and technological solutions, such as single-layer walls or brickworks, depending on the country’s context, while the energy performance is usually optimized by means of internal insulation layers, or other active and passive solutions. Thermal-energy efficient materials and construction elements for the temperate, warm climate of the Mediterranean area are usually light-colored to reflect the largest part of solar radiation, thus reducing energy demands for cooling and improving thermal comfort conditions for occupants. On the other hand, many historical centers in such areas are characterized by reddish or grayish colors. In this work, we considered Italian historical areas, and other countries in the Mediterranean area with present similar situations. Thus, in this study, innovative, cool-colored, cement-based materials were developed to improve the thermal-energy performance of the external envelope of historical/historic built environments, without altering their appearance. These materials were prepared directly on-site, by mixing two types of pigments to achieve the desired color saturation. Optic and thermal properties were assessed, and yearly dynamic simulations of a historic, listed, case study building were performed, by comparing traditional-colored mortar and the prototype cool mortar envelopes. The research demonstrates that such cool-colored materials can maintain lower surface temperatures (−8 °C, while reducing energy demands for cooling (−3%.

  12. Community Building Services Training Program: A Model Training Program to Provide Technical Training for Minority Adults in Construction, Building Maintenance,and Property Management. Final Report.

    Science.gov (United States)

    Community Building Maintenance Corp., Chicago, IL.

    A demonstration program, administered by a community based building maintenance, management, and construction corporation, was developed to provide technical training for minority adults in construction, building maintenance, and property management in the Chicago area. The program was concerned with seeking solutions to the lack of housing, job…

  13. Preliminary study on influences of radioactivity of residential granite building materials upon parent mice and their offspring

    International Nuclear Information System (INIS)

    Liang Minyi; Zhang Jinghong; Zhu Weiyun; Li Yinyan; Liang Yongqing; Zhang Songshuan; Zhu Daming; Li Jinlin; Lu Qingpu

    2006-01-01

    Objective: To observe the effects of radioactivity of the residential granite building materials on the survival and fertility of mice. Methods: The radioactivities of A, B, C, and D granite building materials were measured and screened by gamma-ray spectrometer, and then these materials were placed into the mice cages. The residential radon was measured with solid state nuclear track detector's and 24-hour continuous measurement. Ninety-six healthy and ablactated mice were randomly selected and put into the four animal cages with different levels of radioactivity, and fed for 120 days. Mice mated and bred naturally. The fertilities and survivals of P, F 1 , and F 2 generation were observed and analyzed. Results: External exposures in the four mice cages were higher than those from the internal exposure. The differences of rates of pregnancy, abortion, and infertility between the P and F 1 generations had no statistical significance among all the groups after being fed for 120 days (P>0.05). There was significant difference among each group in the fertility of F 1 generation (P< 0.001), and the survival rates of the offspring were decreased with increase of radioactivity in granite building materials (P<0.001). Conclusion: Compared with the residential radon, the gamma rays released from the granite building materials had a greater influence on animals. The study suggested that different granite building materials had different influences on the survival and fertility of mice. (authors)

  14. Mechanical properties of papercrete

    Directory of Open Access Journals (Sweden)

    Zaki Harith

    2018-01-01

    Full Text Available This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating namely (5%, 10%, 15% and 20% by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density, as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.

  15. Microbes on building materials — Evaluation of DNA extraction protocols as common basis for molecular analysis

    International Nuclear Information System (INIS)

    Ettenauer, Jörg D.; Piñar, Guadalupe; Lopandic, Ksenija; Spangl, Bernhard; Ellersdorfer, Günther; Voitl, Christian; Sterflinger, Katja

    2012-01-01

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials — common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: ► Up to thirteen extraction methods were evaluated with three building materials.

  16. Reduced energy use for ventilation of buildings through selection of low-polluting building materials and furniture. Final Report; Reduceret energiforbrug til ventilation af bygninger hvori der systematisk er valgt lav-forurenende materialer og inventar. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-15

    The main objective of the research project was to study the potential of reducing energy used for ventilating buildings by using low-polluting building materials and thereby ensuring that indoor air quality will not be compromised. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and the perceived indoor air quality (indoor air quality perceived by humans as opposed to indoor air quality evaluated by chemical measurements), were established for rooms furnished with different more or less polluting materials. Based on these results simulations of energy used for ventilation were carried out for selected building scenarios. The exposure-response relationships were established by summarizing existing data reported in the literature and by a series of new experiments. The data summarized by reviewing the literature included data for building materials and furnishing tested in a laboratory setting in small-scale ventilated glass chambers, and in full-scale in ventilated climate chambers, test rooms or normal offices. Relevant low-polluting building materials were selected based on the literature review and a series of new experiments performed in ventilated small-scale glass chambers. Then the final experiments in which the effects of using low-polluting materials on perceived air quality were carried out in ventilated small-scale glass chambers and in full-scale test rooms ventilated with different outdoor air supply rates. Simulations of energy used for ventilation were carried out using BSim software. During simulations the ventilation rate was varied to obtain different levels of air quality when low-polluting building materials had been used, and it was examined how these changes influence the energy use. The results show that the exposure-response relationships vary between different building materials and thus the ventilation requirement to achieve a certain level of perceived indoor air quality vary

  17. Assessment of natural radioactivity and the associated radiation hazards in some Cameroonian building materials

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.

    2005-09-01

    The concentration of 238 U, 232 Th, 40 K in natural and fabricated building materials used in Cameroon was investigated by a high-resolution γ-ray spectrometry system with a co-axial HPGe detector. Fourteen kinds of building materials were collected from factories and in the field. Each sample was therefore kept in a 500 ml plastic Marinelli beakers and measured in a very low-background laboratory. The measured activity concentrations range from 1.76 to 49.84 Bq kg -1 , from 0.32 to 147.2 Bq kg -1 and from 18.16 to 1226.29 Bq kg -1 for 238 U, 232 Th and 40 K respectively. The highest mean value of 238 U concentration was found in red compressed soil-brick type I (49.57±0.33 Bq kg -1 ) produced by MIPROMALO whereas the highest average concentration of 232 Th (138.89±12.51 Bq kg -1 ) and 40 K (1161.46±107.57 Bq kg -1 ) was found in gravel collected from an exploitation site in LOGBADJECK. The activity concentrations obtained were compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra eq , the external hazard index H ex as well as the indoor absorbed dose rate D radical in air and the annual effective dose equivalent H radical E were evaluated to assess the radiation hazards for people living in dwellings made of studied materials. All building materials have shown Ra eq activity (range from 10.15 to 312.57 Bq kg -1 ) lower than the limit of 370 Bq kg -1 set in the Organization for Economic Cooperation and Development (OECD, 1979) report, and which is equivalent to a γ-dose of 1.5 mSv yr -1 All the examined materials are acceptable for use as building materials in accord with the OECD criterion. (author)

  18. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Sun, Shi-Hai; Koizumi, Yuichiro; Kurosu, Shingo; Li, Yun-Ping; Matsumoto, Hiroaki; Chiba, Akihiko

    2014-01-01

    The microstructures and high-temperature tensile properties of a Co–28Cr–6Mo–0.23C–0.17N alloy fabricated by electron beam melting (EBM) with cylindrical axes deviating from the build direction by 0°, 45°, 55° and 90° were investigated. The preferred crystal orientations of the γ phase in the as-EBM-built samples with angles of 0°, 45°, 55° and 90° were near [0 0 1], [1 1 0], [1 1 1] and [1 0 0], respectively. M 23 C 6 precipitates (M = Cr, Mo or Si) were observed to align along the build direction with intervals of around 3 μm. The phase was completely transformed into a single ε-hexagonal close-packed (hcp) phase after aging treatment at 800 °C for 24 h, when lamellar colonies of M 2 N precipitates and the ε-hcp phase appeared in the matrix. Among the samples, the one built with 55° deviation had the highest ultimate tensile strength of 806 MPa at 700 °C. The relationship between the microstructure and the build direction dependence of mechanical properties suggested that the conditions of heat treatment to homogenize the microstructure throughout the height of the EBM-built object should be determined by taking into account the thermal history during the post-melt period of the EBM process, especially when the solid–solid transformation is sluggish

  19. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  20. Dry desulfurization product as raw material for building components. Afsvovlingstoerprodukt som raavare fortrinsvis i byggematerialer

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J P; Tram, B

    1988-05-01

    The report describes a number of investigations carried out with the purpose of finding useful applications for a waste product form the flue-gas cleaning process at coal-fired power plants, especially applications in the field of industrial building components. The waste product originates from a cleaning device, where the content of sulphur dioxide is removed from the flue-gas by the so called spray absorption method, developed by the Danish company Niro Atomizer A/S. The product is a finely divided, dry powder, consisting of a mix of calcium sulfite, calcium sulfate, calcium hydroxide, calcium carbonate, calcium chloride and fly ash. Trials were made, using the waste product mainly as a filler in the following products: Brick mortar, flue for ceramic tiles, stopping, filler for plastic paint, filler for plastics, filler for paper and paper-coating, autoclaved light-weight concrete, autoclaved fibre-cement sheets. The investigations has shown some interesting possiblilities for the use of named waste product in light-weight concrete, where good mechanical properties could be obtained, using a raw material mix, consisting mainly of the sulfuric waste product and fly ash. Also used as a filler in fibre-cement sheets, the waste material showed some interesting abilities. The waste product affects the properties of cellulosefibre reinforced sheets with a cementsilica matrix in a way, that leads to increased toughness of these, often rather brittle sheets. The MOR however will decrease slightly. (EG).

  1. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  2. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  3. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  4. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    Science.gov (United States)

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  5. The influence of surface treatment on mass transfer between air and building material

    DEFF Research Database (Denmark)

    Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake......The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...

  6. Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions

    International Nuclear Information System (INIS)

    Rehman, Hassam Ur

    2017-01-01

    Highlights: • Experimental investigation of building insulation materials in UAE from 2012–2014. • Four same calorimeters with different south walls were built in open air laboratory. • Heat flux was reduced by 22–75% in steady state analysis during summer by insulation. • Hence, energy consumption for cooling was reduced by an average 7.6–25.3%. • Heat flow was steady in free floating analysis in winter through insulated walls. - Abstract: It is known that enhancement of building energy efficiency can help in reducing energy consumption. The use of the solar insulating materials are the most efficient and cost effective passive methods for reducing the cooling requirements of the buildings. Apart from theoretical studies, no detailed experimental studies were performed in the UAE on energy savings by using solar insulation materials on buildings. Four (3 m × 3 m × 3 m) solar calorimeters were built in RAK, UAE in order to perform an open air outdoor test for energy savings obtained with solar insulating materials. The design is aimed to determine the heat flux reduction and the energy savings achieved with and without different solar insulating materials, mounted at the south wall of solar calorimeters with similar indoor and ambient conditions. Experimental results are discussed to evaluate the thermal performance during high temperature conditions in summer’s period when cooling demand of the building is at its peak and also in winters when there is no cooling demand. The test is from 2012 to 2014. The controlled-temperature experimental study at a set point of 24 °C showed that if the standard building material, i.e. solid concrete, is retrofitted with polyisocyanurate (PIR) and reflective coatings or completely replaced with energy-efficient dry insulation material walls such as exterior insulation finishing system (EIFS), energy savings up to an average of 7.6–25.3% can be achieved. This is due to the reduction of heat flux by an

  7. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  8. Investigation on adhering properties of dental materials by means of radioactively labelled bacteria

    International Nuclear Information System (INIS)

    Pfister, W.; Kleinert, P.; Sandig, H.C.; Wutzler, P.; Ruschitschka, A.; Schaefer, U.

    1987-01-01

    Bacteria of the species Streptococcus mutans were radioactively labelled with 113 In-oxinate. Different dental materials were incubated with the labelled bacteria. Counts per minute of the dental materials could be determined as proportion of the quantity of adhering microorganisms. Silver-palladium-alloy had a lower adherence than silver-tin-alloy. Finest polished alloys had lower adhering properties than unpolished surfaces of materials. (author)

  9. Radiometric emanation method for the assessment of the durability of building materials towards aggressive media

    International Nuclear Information System (INIS)

    Balek, V.; Beckman, I.N.

    1991-01-01

    A new express method has been suggested for testing durability of building materials in contact with aggressive liquids and gases. The method is based on the measurement of radon released from samples studied, continuously during the interaction of the sample with the aggressive medium. The samples are previously labeled by the source of radon atoms, i.e. thorium Th-228 and radium Ra-224 are incorporated in the samples to be tested. Due to high sensitivity of the method the first stages of the interaction between the cement stone (concrete) sample and aggressive liquid or gas can be followed. The express information about the relative durability of the building materials was obtained. This method was also advantageously used for the investigation of corrosion early stage of marble (calcium carbonate) by sulphur dioxide (in the concentrations of 500-3,000 ppm). The most advantageous application of the method is for rapid assessment of the relative durability of building materials, e.g. the information about the relative durability of the samples studied was obtained within several minutes, resp. hours, whereas by means of traditional chemical methods it needs several weeks or months

  10. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  11. Radiological aspects of the usability of red mud as building material additive

    International Nuclear Information System (INIS)

    Somlai, Janos; Jobbagy, Viktor; Kovacs, Jozsef; Tarjan, Sandor; Kovacs, Tibor

    2008-01-01

    Several researchers have examined and achieved favourable results in connection with the building industry's use of red mud extracted in large quantities from the processing of bauxite. These days more and more precedence is being given to limiting the radiological dose to the population. In this study carried out in Hungary, the use of red mud, bauxite, and clay additives recommended for the production of special cements, were examined from a radiological aspect. 226 Ra and 232 Th activity concentrations measured in Hungarian bauxite, red mud and clay samples were significantly similar with the levels for such raw materials mentioned in international literature. Taking radiation protection aspects into consideration, none of these products can be directly used for building construction. Taking Hungarian and international values into consideration, a small amount of red mud, not exceeding 15% could be used for brick production, for example as a colouring material. However, beyond this amount the standards for building materials would not be met. For the production of cements an even stricter limit needs to be determined when both bauxite and red mud are used

  12. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  13. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    Science.gov (United States)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  15. Modern management of building materials with the example hard coal fly ash; Modernes Baustoffmanagement am Beispiel von Steinkohlenflugasche

    Energy Technology Data Exchange (ETDEWEB)

    Backes, H.P.; Brandenburger, D.; Meissner, M. [BauMineral GmbH, Herten (Germany)

    2005-07-01

    Today, Germany has a leading position world-wide regarding the utilisation of power plant by-products as well as regarding the use of fly ash as concrete addition, in particular. This is based on a modern management of building materials successfully practised in Germany for decades. Current tasks show how possibilities of fly ash application and thus sustainable construction methods can be increased by a modern management of building materials. (orig.)

  16. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2015-01-01

    In this paper, the viscoelastic behavior of asphalt mixture was studied by using discrete element method. The dynamic properties of asphalt mixture were captured by implementing Burger’s contact model. Different ways of taking into account of the normal and shear material properties of asphalt mi...

  17. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  18. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  19. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    Science.gov (United States)

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.

  20. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (