Heat transfer mechanisms in bubbly Rayleigh-Benard convection
Oresta, Paolo; Lohse, Detlef; Prosperetti, Andrea
2008-01-01
The heat transfer mechanism in Rayleigh-Benard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with point-like vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jacob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.
Buoyancy statistics in moist turbulent Rayleigh-Benard convection
Schumacher, Joerg
2009-01-01
We study shallow moist Rayleigh-Benard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh-Benard problem offers a practical framework for the development and evaluation of parametrizations for atmospheric convection.
Large-scale patterns in Rayleigh-Benard convection
Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 105 and 108 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied
Three caveats for linear stability theory: Rayleigh-Benard convection
Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold
Local boundary layer scales in turbulent Rayleigh-Benard convection
Scheel, Janet D
2014-01-01
We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...
Prediction of temperature distribution in turbulent Rayleigh-Benard convection
She, Zhen-Su; Zou, Hong-Yue; Bao, Yun; Chen, Jun; Hussain, Fazle
2014-01-01
A quantitative theory is developed for the vertical mean temperature profile (MTP) in turbulent Rayleigh-Benard convection (RBC), which explains the recent experimental and numerical observations of a logarithmic law by Ahlers et al.(Phys. Rev. Lett., 2012). A multi-layer model is formulated and quantified, whose predictions agree with DNS and experimental data for the Rayleigh-number (Ra) over seven decades. In particular, a thermal buffer layer follows a 1/7 scaling like the previously postulated mixing zone (Procaccia et al, Phys. Rev. A,1991), and yields a Ra-dependent log law constant. A new parameterization of Nu(Ra) dependence is proposed, based on the present multi-layer quantification of the bulk MTP.
Axially-homogeneous Rayleigh-Benard convection in a cylindrical cell
Schmidt, Laura E.; Calzavarini, Enrico; Lohse, Detlef; Toschi, Federico; Verzicco, Roberto
2011-01-01
Previous numerical studies have shown that the "ultimate regime of thermal convection" can be attained in a Rayleigh-Benard cell when the kinetic and thermal boundary layers are eliminated by replacing the walls with periodic boundary conditions (homogeneous Rayleigh-Benard convection). Then, the heat transfer scales like Nu ~ Ra^{1/2} and turbulence intensity as Re ~ Ra^{1/2}, where the Rayleigh number Ra indicates the strength of the driving force. However, experiments never operate in unbo...
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
Quantifying Rayleigh-Benard convection via a symmetry approach
Zou, Hong-Yue; Chen, Xi; Bao, Yun; Hussain, Fazle; She, Zhen-Su
2015-11-01
We apply our recent symmetry-based theory of wall bounded turbulent flow - WBT - (i.e. channel, pipe and TBL) to study turbulent Rayleigh-Benard convection (RBC), which yields a multi-layer description of both mean velocity and temperature profile in the vertical direction. Close analogy to the WBT is developed in terms of two order functions, i.e. a momentum stress length function and a thermal diffusion function. Using the multi-layer formulas, the predictions are in quantitative agreement with DNS and experimental data for the Rayleigh-number (Ra) covering seven decades. In particular, a thermal buffer layer is predicted in accordance with previously postulated mixing zone which follows a Ra1/7 scaling. Recently observed logarithmic profile of the mean temperature is reproduced, and the Ra-dependence of the log profile is explained. The non-homogenous effects in the horizontal direction of the RBC cell are also characterized by slight variations of the multi-layer parameters (i.e. layer thicknesses), influenced by the plumes and corner vortex in the flow. Thus, the turbulent RBC shares a similar multi-layer structure with the canonical wall-bounded flows whose mean profiles are quantified here for the first time.
Jung, C.H.; Tanahashi, T. [Keio University, Tokyo (Japan); Ogaya, K. [Nippon Telegragh and Telephone Corp., Tokyo (Japan)
2000-08-25
The Rayleigh-Benard convection occurs, if the fluid between the parallel plates is heated from the bottom plate and cooled from the upper plate above the critical temperature difference. The Rayleigh-Benard convection is seen in the blast furnace. Particularly, the lower Prandtl fluid like the fused metal tends to be time dependence flow. This flow disturbs the pressure field and temperature field, and hinders the formation of the metal with the good crystal. The Lorentz force by DC magnetic field can control this flow. By this way, the time dependence flow changes to laminar flow and the three dimensional structure changes to the two dimensional roll structure. In this thesis, the computations have been performed for Rayleigh-Benard convection in the three dimensional cubic cavity, using GSMAC-FEM with {phi} method. From the solution, the author investigated the effect of magnetic field to the flow and temperature field and the two dimensional roll structure. (author)
Helicity of mean and turbulent flow with coherent structures in Rayleigh-Benard convective cell
Eidelman, A; Gluzman, I; Golbraikh, E
2013-01-01
We present results of the study of a turbulent air flow with a large scale circulation in Rayleigh-Benard rectangular convective cell with a heated bottom wall and a cooled top wall. The mean horizontal velocity of the main roll and the mean vorticity of eddy rings are almost aligned in a large part of the flow. The helicity of the mean flow is quite high, and is the source of turbulent helicity. Since helicity of the mean flow and turbulence is quite large, the flow in Rayleigh-Benard convective cell is well suited to study properties of helical turbulence.
Modification of turbulence in Rayleigh-Benard convection by phase change
Heavy or light particles introduced into a liquid trigger motion due to their buoyancy, with the potential to drive flow to a turbulent state. In the case of vapor bubbles present in a liquid near its boiling point, thermal coupling between the liquid and vapor can moderate this additional motion by reducing temperature gradients in the liquid. Whether the destabilizing mechanical feedback or stabilizing thermal feedback will dominate the system response depends on the number of bubbles present and the properties of the phase change. Here we study thermal convection with phase change in a cylindrical Rayleigh-Benard cell to examine this competition. Using the Reynolds number of the flow as a signature of turbulence and the intensity of the flow, we show that in general the rising vapor bubbles destabilize the system and lead to higher velocities. The exception is a limited regime corresponding to phase change with a high latent heat of vaporization (corresponding to low Jakob number), where the vapor bubbles can eliminate the convective flow by smoothing temperature differences of the fluid.
Modification of turbulence in Rayleigh-Benard convection by phase change
Schmidt, Laura E; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea [Physics of Fluids, Department of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Oresta, Paolo [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via per Arnesano, 73100 Lecce (Italy); Toschi, Federico, E-mail: L.E.Schmidt@tnw.utwente.nl [Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)
2011-02-15
Heavy or light particles introduced into a liquid trigger motion due to their buoyancy, with the potential to drive flow to a turbulent state. In the case of vapor bubbles present in a liquid near its boiling point, thermal coupling between the liquid and vapor can moderate this additional motion by reducing temperature gradients in the liquid. Whether the destabilizing mechanical feedback or stabilizing thermal feedback will dominate the system response depends on the number of bubbles present and the properties of the phase change. Here we study thermal convection with phase change in a cylindrical Rayleigh-Benard cell to examine this competition. Using the Reynolds number of the flow as a signature of turbulence and the intensity of the flow, we show that in general the rising vapor bubbles destabilize the system and lead to higher velocities. The exception is a limited regime corresponding to phase change with a high latent heat of vaporization (corresponding to low Jakob number), where the vapor bubbles can eliminate the convective flow by smoothing temperature differences of the fluid.
Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions
Weidauer, Thomas
2012-01-01
Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences...
Rayleigh-Benard Convection with a Radial Ramp in Plate Separation
Paul, M. R.; Cross, M. C.; Fischer, P. F.
2002-01-01
Pattern formation in Rayleigh-Benard convection in a large-aspect-ratio cylinder with a radial ramp in the plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand the pattern wavenumber. Our results suggest that the mean flow, generated by amplitude gradients, plays an important role in the roll compression observed as the contro...
Transition from Spatiotemporal Chaos to Ideal Straight Rolls in Rayleigh-Benard Convection
Cakmur, Reha V.; Egolf, David A.; Plapp, Brendan B.; Bodenschatz, Eberhard
1997-01-01
For Rayleigh-Benard convection in a square cell with a fluid of Prandtl number one, we report experimental results on the transition between a stationary pattern of ideal straight rolls (ISR) and the spatiotemporal chaotic state of spiral defect chaos (SDC). In contrast to experiments in circular geometries, we found ISR states below a particular value of the control parameter and SDC states above this value. By characterizing the pattern with a global measure, the pattern entropy, we found t...
Square patterns in Rayleigh-Benard convection with rotation about a vertical axis
Bajaj, K M S; Naberhuis, B; Ahlers, G; Bajaj, Kapil M. S.; Liu, Jun; Ahlers, Guenter
1998-01-01
We present experimental results for Rayleigh-Benard convection with rotation about a vertical axis at dimensionless rotation rates in the range 0 to 250 and upto 20% above the onset. Critical Rayleigh numbers and wavenumbers agree with predictions of linear stability analysis. For rotation rates greater than 70 and close to onset, the patterns are cellular with local four-fold coordination and differ from the theoretically expected Kuppers-Lortz unstable state. Stable as well as intermittent defect-free square lattices exist over certain parameter ranges. Over other ranges defects dynamically disrupt the lattice but cellular flow and local four-fold coordination is maintained.
Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection
Urban, Pavel; Musilová, Věra; Skrbek, L.
2011-01-01
Roč. 107, č. 1 (2011), 014302:1-4. ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011
Rayleigh-Benard Convection in Large-Aspect-Ratio Domains
Paul, M. R.; Chiam, K-H.; Cross, M. C.; Fischer, P. F.
2004-01-01
The coarsening and wavenumber selection of striped states growing from random initial conditions are studied in a non-relaxational, spatially extended, and far-from-equilibrium system by performing large-scale numerical simulations of Rayleigh-B\\'{e}nard convection in a large-aspect-ratio cylindrical domain with experimentally realistic boundaries. We find evidence that various measures of the coarsening dynamics scale in time with different power-law exponents, indicating that multiple lengt...
Natural Convection in a Finned Rayleigh-Benard Cubical Enclosure
The papers deals with a numerical 3D study of natural convection in a finned Rayleigh-Be nard (RB) cubical enclosure. A single fin with a thickness of 10 pour cent of the cavity side (and a height of 50 pour cent ) is placed vertically on the bottom hot wall at TH. The working fluid is air with Prandtl number Pr = 0.71 and the Rayleigh number (Ra) varies from 103 to 105. The solid-to-fluid thermal conductivity ratio (kR) was fixed at RK = 7000, corresponding to a metal of high conductivity. The top wall is at the temperature TC H and the remaining four surfaces are insulated. Inside the RB enclosure, the flow structure and the temperature distribution are presented in terms of mean velocity vector plots and isotherm plots. The effects of the Rayleigh number on the mean heat transfer rate through the cold wall are presented and discussed. A correlation between the averaged Nusselt number through the top wall and Ra is proposed
Doumenc, F; Guerrier, B; Rossi, M
2009-01-01
The convective instability in a plane liquid layer with time-dependent temperature profile is investigated by means of a general method suitable for linear stability analysis of an unsteady basic flow. The method is based on a non-normal approach, and predicts the onset of instability, critical wave number and time. The method is applied to transient Rayleigh-Benard-Marangoni convection due to cooling by evaporation. Numerical results as well as theoretical scalings for the critical parameters as function of the Biot number are presented for the limiting cases of purely buoyancy-driven and purely surface-tension-driven convection. Critical parameters from calculations are in good agreement with those from experiments on drying polymer solutions, where the surface cooling is induced by solvent evaporation.
Borońska, Katarzyna
2009-01-01
A large number of flows with distinctive patterns have been observed in experiments and simulations of Rayleigh-Benard convection in a water-filled cylinder whose radius is twice the height. We have adapted a time-dependent pseudospectral code, first, to carry out Newton's method and branch continuation and, second, to carry out the exponential power method and Arnoldi iteration to calculate leading eigenpairs and determine the stability of the steady states. The resulting bifurcation diagram contains 17 branches of stable and unstable steady states. These can be classified geometrically as roll states containing two, three, and four rolls; axisymmetric patterns with one or two tori; three-fold symmetric patterns called mercedes, mitubishi, marigold and cloverleaf; trigonometric patterns called dipole and pizza; and asymmetric patterns called CO and asymmetric three-rolls. The convective branches are connected to the conductive state and to each other by 16 primary and secondary pitchfork bifurcations and tur...
Resolving the fine-scale structure in turbulent Rayleigh-Benard convection
Scheel, Janet D; Schumacher, Joerg
2013-01-01
We present high-resolution direct numerical simulation studies of turbulent Rayleigh-Benard convection in a closed cylindrical cell with an aspect ratio of one. The focus of our analysis is on the finest scales of convective turbulence, in particular the statistics of the kinetic energy and thermal dissipation rates in the bulk and the whole cell. The fluctuations of the energy dissipation field can directly be translated into a fluctuating local dissipation scale which is found to develop ever finer fluctuations with increasing Rayleigh number. The range of these scales as well as the probability of high-amplitude dissipation events decreases with increasing Prandtl number. In addition, we examine the joint statistics of the two dissipation fields and the consequences of high-amplitude events. We also have investigated the convergence properties of our spectral element method and have found that both dissipation fields are very sensitive to insufficient resolution. We demonstrate that global transport proper...
The effects of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection
Plumley, Meredith; Marti, Philippe; Stellmach, Stephan
2016-01-01
Numerical simulations of 3D, rapidly rotating Rayleigh-Benard convection are performed using an asymptotic quasi-geostrophic model that incorporates the effects of no-slip boundaries through (i) parameterized Ekman pumping boundary conditions, and (ii) a thermal wind boundary layer that regularizes the enhanced thermal fluctuations induced by pumping. The fidelity of the model, obtained by an asymptotic reduction of the Navier-Stokes equations that implicitly enforces a pointwise geostrophic balance, is explored for the first time by comparisons of simulations against the findings of direct numerical simulations and laboratory experiments. Results from these methods have established Ekman pumping as the mechanism responsible for significantly enhancing the vertical heat transport. This asymptotic model demonstrates excellent agreement over a range of thermal forcing for Pr ~1 when compared with results from experiments and DNS at maximal values of their attainable rotation rates, as measured by the Ekman numb...
Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection
This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in 3He - 4He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f(∝) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs
Wittenberg, Ralf W.
2008-01-01
We investigate the influence of the thermal properties of the boundaries in turbulent Rayleigh-Benard convection on analytical bounds on convective heat transport. Using the Doering-Constantin background flow method, we systematically formulate a bounding principle on the Nusselt-Rayleigh number relationship for general mixed thermal boundary conditions of constant Biot number \\eta which continuously interpolates between the previously studied fixed temperature ($\\eta = 0$) and fixed flux ($\\...
Efficient Algorithm on a Non-staggered Mesh for Simulating Rayleigh-Benard Convection in a Box
Chiam, K.-H.; Lai, M. -C.; Greenside, H. S.
2003-01-01
An efficient semi-implicit second-order-accurate finite-difference method is described for studying incompressible Rayleigh-Benard convection in a box, with sidewalls that are periodic, thermally insulated, or thermally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the solution of four Helmholtz equations and one Poisson equation, and these are are solved by fast direct methods. The method is numerically stable even though all field values ar...
Non-linear effects of the convective motion in a fluid submitted to Rayleigh-Benard instability
The spatial dependance of the convective velocity field is studied in a fluid, submitted to Rayleigh-Benard instability. For 2< epsilon<10, (epsilon=(R-Rsub(c))/Rsub(c)), this dependance can be explained by the superposition of the fundamental mode, which describes the velocity behaviour near the threshold, and its second and third harmonics, the amplitude of which is varying respectively as epsilon and epsilonsup(1,5) when ΔT is increased
Martinand, D.
2003-01-15
This analytical study deals with the spatio-temporal evolution of linear thermo-convective instabilities in a horizontal fluid layer heated from below (the Rayleigh--Benard system) and subject to a horizontal pressure gradient (Poiseuille flow). The novelty consists of a spatially inhomogeneous temperature, in the form of a two-dimensional bump imposed on the lower plate, while the upper plate is kept at a constant temperature. The inhomogeneous boundary temperature and the mean flow of the Rayleigh--Benard--Poiseuille system break the symmetries of the classical Rayleigh--Benard system. The instabilities of interest are therefore spatially localised packets of convection rolls. If a mode of this type is synchronized, it is called a global mode. Assuming that the characteristic scale of the spatial variation of the lower plate temperature is large compared to the wavelength of the rolls, global modes are sought in the form of Eigenmodes in the confined vertical direction, modulated by a two-dimensional WKBJ expansion in the slowly-varying horizontal directions. Such an expansion breaks down at points where the group velocity of the instability vanishes, i.e. at WKBJ turning points. In the neighbourhood of one such point, located at the top of the temperature bump, the boundedness of the solution imposes a selection criterion for the global modes which provides the growth rate (or equivalently the critical threshold), the frequency and the wave vector of the most amplified global mode. This study thus generalizes to two-dimensional cases the methods used and the results obtained for one-dimensional inhomogeneities. The analysis is first applied to a simplified governing equation obtained by an envelope formalism and the analytical results are compared with numerical solutions of the amplitude equation. The formalism is finally applied to the Rayleigh--Benard--Poiseuille system described by the Navier--Stokes equations with the Boussinesq approximation. (author)
Cloud patterns and mixing properties in shallow moist Rayleigh-Benard convection
Three-dimensional direct numerical simulations of idealized moist turbulent Rayleigh-Benard convection are presented. The thermodynamics of moist air is linearized close to the phase boundary between water vapor and liquid water. This formulation allows for a simplified saturation condition for the cloud formation, but omits supersaturation and rain. The sensitivity of this problem to changes of the Rayleigh number, the aspect ratio of the convection layer and the water vapor concentration is studied. The Rayleigh number is found to impact the behavior of the system in multiple ways. First, the relaxation time toward a well-mixed turbulent state increases with the Rayleigh number. Similarly, the flow exhibits a higher spatial and temporal intermittency at higher Rayleigh number. This is in line with an enhanced intermittency of the upward buoyancy flux, which we quantify by a multifractal analysis. In addition, phase transition introduces an asymmetry in the distribution of the thermodynamic properties of the well-mixed state. This asymmetry is most pronounced in layers where clouds are partially present. Furthermore, the geometrical properties of the cloud formations averaged with respect to the height of the layer are studied. Similar to isocontours in scalar mixing, the boundaries of isolated clouds show no strict (mono-)fractal behavior. The results of the perimeter-area analysis of the largest isolated clouds agree well with those of large eddy simulations of cumulus convection. This perimeter-area scaling is also similar to that of percolation processes in a plane.
Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh-Benard convection
Brown, Eric
2009-01-01
Previously we published a dynamical model (E. Brown and G. Ahlers, Phys. Fluids, 20, 075101 (2008)) for the large-scale-circulation (LSC) dynamics of Rayleigh-Benard convection in cylindrical containers. The model consists of a pair of stochastic ordinary differential equations, motivated by the Navier-Stokes equations, one each for the strength delta and the orientation theta_0 of the LSC. Here we extend it to cases where the rotational invariance of the system is broken by one of several physically relevant perturbations. As an example we present experimental measurements of the LSC dynamics for a container tilted relative to gravity. In that case the model predicts that the buoyancy of the thermal boundary layers encourages fluid to travel along the steepest slope, that it locks the LSC in this direction, and that it strengthens the flow, as seen in experiments. The increase in LSC strength is shown to be responsible for the observed suppression of cessations and azimuthal fluctuations. We predict and obse...
Poluakan, Cosmas; Yusuf, Yusril; Tiwow, Vistarani Arini
2012-06-01
An observation set up of Rayleigh Benard Convection (RBC) phenomenon has been developed. Observation set up made from glass box limited by two reservoirs, i.e. bottom and top reservoirs. The bottom reservoir is hotter than the top reservoir which has function to heat horizontal layers of fluid from below. The used media to observe fluid dynamics is water which mixed by teak saw dust as representation of water molecular. The observation show that increasing of temperature difference (ΔT) between two reservoirs causes the pattern of water molecular flow was different i.e. laminar and turbulent.
Brauckmann, Hannes; Schumacher, Joerg
2016-01-01
Rayleigh-Benard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Benard convection in air at Rayleigh number Ra=1e7 and Taylor-Couette flow at shear Reynolds number Re_S=2e4 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angula...
Sterl, Sebastian; Zhong, Jin-Qiang
2016-01-01
In this paper, we present results from an experimental study into turbulent Rayleigh-Benard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity $\\dot{\\theta}$(t) and thermal amplitude $\\delta$(t) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of $\\dot{\\theta}$(t). We also focus on the influence of modulated rotation rates on the frequency of occurrence $\\eta$ of stochastic cessation/reorientation events, and on the interplay between such events and the periodically modulated response of $\\dot{\\theta}$(t). Here we identify a mechanism by which $\\eta$ can be amplfied by the modulated response and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and extend this approach to make predictions for the occurrence ...
Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.
Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan
2007-11-01
We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in nondestructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid. PMID:18052477
Apparatus for real-time acoustic imaging of Rayleigh-Benard convection
Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan
2007-01-01
We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in non-destructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sou...
Dissolution patterns from geochemical reactions during Rayleigh-Benard convection in porous media
Fu, Xiaojing; Cueto-Felgueroso, Luis; Bolster, Diogo; Juanes, Ruben
2013-11-01
Convective mixing is an essential trapping mechanism during CO2 sequestration in deep saline aquifers. Upon injection, buoyant CO2 enters the geologic formation and mixes with the underlying brine, which leads to a local density increase that triggers density-driven flow; meanwhile, the presence of CO2 disturbs the geochemical equilibrium of brine with respect to the formation, which can lead to dissolution or precipitation of carbonate minerals. Dissolution/precipitation reactions result in changes in porosity, which in turn induce changes in permeability that impact the flow dynamics. Motivated by the process of CO2 convective mixing in deep saline aquifers, here we study the formation of rock-dissolution patterns that arise from geochemical reactions during Rayleigh-Bénard convection in porous media. We perform high-resolution simulations to analyze the interplay between the density-driven hydrodynamic instability and the formation of high-porosity channels, explain the emergence of a characteristic length scale in the dissolution channels, and quantify the impact of the channelization process on the macroscopic convection rate.
Stochastic influences on pattern formation in Rayleigh-Benard convection: Ramping experiments
We report on computer-enhanced shadowgraph flow-visualization and heat-flux measurements of pattern formation in convective flows in a thin fluid layer of depth d that is heated from below. Most of the experiments were conducted in a cylindrical container of radius r and aspect ratio Γ==r/d=10. The temperature of the top plate of the container was held constant while the heat current through the fluid was linearly ramped in time, resulting in a temperature difference ΔT between the bottom and top plates. After initial transients ended, the reduced Rayleigh number ε==ΔT/ΔTc-1, where ΔTc is the critical temperature difference for the onset of convection, increased linearly with ramp rate β such that ε(t)=βt. When time was scaled by the vertical thermal diffusion time, our ramp rates were in the range 0.01≤β≤0.30. When the sidewalls of the cell were made of conventional plastic materials, a concentric pattern of convection rolls was always induced by dynamic sidewall forcing. When sidewalls were made of a gel that had virtually the same thermal diffusivity as the fluid, pattern formation occurred independent of cell geometry. In the earliest stages the patterns were then composed of irregularly arranged cells and varied randomly between experimental runs. The same random cellular flow was also observed in samples of square horizontal cross section. The results demonstrate the importance of stochastic effects on pattern formation in this system. However, an explanation of the measured convective heat current in terms of theoretical models requires that the noise source in these models have an intensity that is four orders of magnitude larger than that of thermal noise
无
2001-01-01
Wavelet transform is used to analyze the scaling rule convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).``
FU Qiang; JIANG Min; XIA Ke-qing
2004-01-01
In this paper, the Extended Self Similarity (ESS) was used to study the scaling exponent ξ(q) of temperature data in the Reyleigh-Bénard convection and its variation with experimental measuring locations. The results show that ξ(q) varies with locations and agrees well with experimental data. And then the wavelet transformation is used to extract the coherent structure, by means of the definition of a called non-coherent signal, we can understand the influence of coherent structure on ξ(q) and the relations between large scale vortex motions and small ones.
Absolute scaling law for temperature data in Rayleigh-Benard convection
无
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive intermittent structure of Rayleigh-Bénard convection at the high Ra numbers proportional to temperature. With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching’s paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Numerical simulation of 3-dimensional Rayleigh-Benard system by particle method
Watanabe, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
As one of representative non-equilibrium thermal fluid system, there is a fluid system maintained at lower and higher temperatures at upper and lower faces, respectively, and Rayleigh-Benard (RB) system. On temperature difference between both faces smaller than a critical value, flow into the system is not developed to realize a thermal conductive state, while on that larger than a critical value, macroscopic convection vortex forms to realize a conventional thermal conductive state. A transition process from thermal conduction to convection is well-known for RB unstability and also the convection state is done for RB convection. In this paper, a transition process from thermal conduction to convection was simulated systematically by changing temperature difference at both faces using DSMC method known for one of statistical methods, to investigate the critical Rayleigh number in response to temperature difference at beginning point of the convection, variations and correlative function at proximity of the critical Rayleigh number, pattern formation of the convection and so forth. (G.K.)
Alboussiere, Thierry
2016-01-01
The linear stability threshold of the Rayleigh-Benard configuration is analyzed with compressible effects taken into account. It is assumed that the fluid obeys a Newtonian rheology and Fourier's law of thermal transport with constant, uniform (dynamic) viscosity and thermal conductivity in a uniform gravity field. Top and bottom boundaries are maintained at different constant temperatures and we consider here boundary conditions of zero tangential stress and impermeable walls. Under these conditions, and with the Boussinesq approximation, Rayleigh (1916) first obtained analytically the critical value 27pi^4/4 for a dimensionless parameter, now known as the Rayleigh number, at the onset of convection. This manuscript describes the changes of the critical Rayleigh number due to the compressibility of the fluid, measured by the dimensionless dissipation parameter D and due to a finite temperature difference between the hot and cold boundaries, measured by a dimensionless temperature gradient a. Different equati...
Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows
In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X108 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to Stk 1.3, Stk 0.65 and Stk = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)
Absolute scaling law for temperature data in Rayleigh-Benard convection
FU Qiang
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive in-With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching's paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Mean flow and spiral defect chaos in Rayleigh-Benard convection
Chiam, K.-H.; Paul, M. R.; Cross, M. C.; Greenside, H. S.
2002-01-01
We describe a numerical procedure to construct a modified velocity field that does not have any mean flow. Using this procedure, we present two results. Firstly, we show that, in the absence of mean flow, spiral defect chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns are characterized by mean wavenumbers that approach those uniquely selected by focus-type singularities, which, in the absence of mean flow, lie at the zig-zag insta...
Koschmieder, E. L.
1988-01-01
The work performed for the feasibility study of a microgravity surface tension driven convection experiment was reviewed. An experimental investigation of the onset of convection in shallow fluid layers heated uniformly from below and cooled from above by an air layer was made. Results are discussed in relation to the formation of Benard cells. The onset of Rayleigh-Benard convection in thin fluid layers heated uniformly from below were studied experimentally. It was found that in thin fluid layers the onset of Rayleigh-Benard convection is preceded by subcritical convective motions. Secondly, it was found that the onset of Rayleigh-Benard convection in non-Boussinesq fluid layers takes place in the form of hexagonal cells at Rayleigh numbers larger than the critical Rayleigh number R sub C = 1708 which determines the onset of convection in Boussinesq fluid layers.
Nonequilibrium pattern formation and spatiotemporal chaos in fluid convection
Michael Cross
2006-09-13
The final report for grant number DE-FG03-98ER14891 summarizes the application of the unique simulation capabilities developed under DOE support to investigations of important issues in pattern formation and spatiotemporal chaos in Rayleigh-Benard convection, particularly emphasizing quantitative contact with the active experimental programs.
Rayleigh-Benard instability in multicomponent mixtures with the Soret effect
Ryzhkov, Ilya
2011-11-01
Convection in multicomponent mixtures can show a variety of flow patterns due to several heat and mass transfer mechanisms: convection, heat conduction, main and cross diffusion, and the Soret effect. Convective stability of multicomponent fluids has not been widely investigated so far. The use of simplifying assumptions (e.g. the absence of cross-diffusion) may lead to the disagreement between theory and experiment. We study the stability of a plane multicomponent fluid layer heated from above/below in gravity field. In the basic state, the fluid is at rest and temperature gradient induces concentration gradients due to the Soret effect. The problem is reduced to that without cross-diffusion and Soret effect by a special transformation. Several types of boundary conditions are considered: 1) free, permeable 2) rigid, permeable 3) rigid, impermeable. The theorems, which generalize the exchange of stability principle to multicomponent fluids, are proved for boundary conditions 1 and 2. An explicit formula for critical Rayleigh numbers is obtained for boundary conditions 1. The stability problem for boundary conditions 3 was solved numerically for a ternary mixture. The stability maps are constructed in a wide range of parameters. The work is supported by the Interdisciplinary project of SB RAS N 116 and Krasnoyarsk Science Foundation.
Heat transport in bubbling turbulent convection
Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. W...
MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS
HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW
1994-01-01
Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble deter
Brown, E; Funfschilling, D; Ahlers, G; Brown, Eric; Nikolaenko, Alexei; Funfschilling, Denis; Ahlers, Guenter
2005-01-01
We describe three apparatus, known as the large, medium, and small apparatus, used for high-precision measurements of the Nusselt number N as a function of the Rayleigh number R for cylindrical samples of fluid and present results illustrating the influence of the finite conductivity of the top and bottom plates on the heat transport in the fluid. We used water samples at a mean temperature of 40 degrees C (Prandtl number sigma = 4.4). The samples in the large apparatus had a diameter D of 49.69 cm and heights L = 116.33, 74.42, 50.61, and 16.52 cm. For the medium apparatus we had D = 24.81 cm, and L = 90.20 and 24.76 cm. The small apparatus contained a sample with D = 9.21 cm, and L = 9.52 cm. For each aspect ratio Gamma = D/L the data covered a range of a little over a decade of R. The maximum R = 10^12 with Nusselt numbers N = 600 was reached for Gamma = 0.43. Measurements were made with both Aluminum and Copper top and bottom plates of nominally identical size and shape. For the large and medium apparatus...
Logarithmic temperature profiles in the ultimate regime of thermal convection
Grossmann, Siegfried
2012-01-01
We report on the theory of logarithmic temperature profiles in very strongly developed thermal convection in the geometry of a Rayleigh-Benard cell with aspect ratio one and discuss the degree of agreement with the recently measured profiles in the ultimate state of very large Rayleigh number flow. The parameters of the log-profile are calculated and compared with the measure ones. Their physical interpretation as well as their dependence on the radial position are discussed.
Nonlinear Bubbling and Micro-Convection at a Submerged Orifice
无
2002-01-01
The present paper describes the nonlinear behavior of bubble formation from a single submerged orifice and induced liquid motion (micro-convection) surrounding the bubble. The experimental data reveals that departing periods of successive bubbles evolve multiple periods from single to triple periods when the gas flow rate is increased and that the micro-convection evolves bifurcation phenomena similar to the so-called "period doubling" in chaos dynamics. The photographic observation using high-speed video movies and data analysis indicate that the nonlinear features come from the deformation of the bubble and also the interaction between consecutive bubbles. A new comprehensive theoretical model is developed for describing the instantaneous bubble behaviors during formation and ascendance processes and for predicting the departing periods and sizes of successive bubbles for constant flow rate conditions. Owing to the estimation of instantaneous interactions between successive bubbles and the incorporation of the wake effect of previous bubbles, the present model describes the evolution process and mechanisms of bubble departing periods corresponding to different gas flow rate regimes. The theoretical results are in good agreement with experimental results.
Behavior of bubble in subcooled boiling with forced convection, 2
The objective of this research is to observe the bubble behavior in subcooled boiling with forced convection and to investigate the conditions of heaving test with a heater which initiates isolated bubbles and with high speed motion photography. The observation was made at three inlet subcooling of 15, 30 and 45 K with pressure of 0.3 MPa, mass flux of 1000 kg/m2·s, heat flux of 35 kW/m2. At inlet subcooling of 15 K, bubble velocity is nearly constant in the field of visions for upstream and downstream area. But at the higher subcooling, bubble velocity varies greatly and bubble collapse in the camera field. (author)
Simulating Complex Dynamics In Intermediate And Large-Aspect-Ratio Convection Systems
Lai, M C; Chiam, K. H.; Cross, M. C.; Greenside, H. S.
2000-01-01
Buoyancy-induced (Rayleigh-Benard) convection of a fluid between two horizontal plates is a central paradigm for studying the transition to complex spatiotemporal dynamics in sustained nonequilibrium systems. To improve the analysis of experimental data and the quantitative comparison of theory with experiment, we have developed a three-dimensional finite-difference code that can integrate the three-dimensional Boussinesq equations (which govern the evolution of the temperature, velocity, and...
Heat transport in bubbling turbulent convection
Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv
Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)
1995-12-31
Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.
Interfacial area concentration in bubble column and forced convective bubbly flow
Although gas-liquid bubbly flows are encountered in various engineering fields, there are very few established theoretical foundations on the interfacial area concentration, which have been supported by extensive experimental data. From this point of view, a simple equation for the interfacial area concentration has been derived from the interfacial area transport equation. The derived theoretical equation has been modified to obtain experimentally supported predictive correlation. The obtained interfacial area correlation was validated by 459 data sets measured in bubble columns and forced convective bubbly flows under various conditions. These data sets covered extensive loop and flow conditions such as channel geometry (circular or rectangular channel), channel hydraulic equivalent diameter (9.0 mm ∼ 5500 mm), flow direction (vertical or horizontal flow), superficial gas velocity (0.000788 m/s ∼ 4.87 m/s), and superficial liquid velocity (0.00 m/s ∼ 6.55 m/s). The extensive database also covered wide ranges of physical properties such as liquid density (684 kg/m3 ∼ 1594 kg/m3), liquid viscosity (0.410 mPa·s ∼ 21.1 mPa·s), and surface tension (20.0 mN/m ∼ 75.0 mN/m). An excellent agreement was obtained between the developed semi-theoretical correlation and 459 data within an average relative deviation of ±22.0 %
A reassessment of the heat transport by variable viscosity convection with plates and lids
The heat transport by a viscous fluid with temperature dependent viscosity has been studied numerically. As opposed to previous models, the top surface of the fluid clearly defines a tectonic plate with horizontally uniform velocity and subduction. Past studies failed to incorporate plates, the heat transport is as efficient as Rayleigh-Benard convection with constant viscosity; there is a strong buffering between internal temperature and heat loss. Past studies of parameterized convection which incorporated parameters indicative of strong buffering between internal temperature and total heat output still provide the most physically plausible representation of the Earth's thermal evolution
Further on integrator circuit analogy for natural convection
Khane, Vaibhav [Nuclear Engineering, Missouri University of Science and Technology, 225 Fulton Hall, 300W. 13th St., Rolla, MO-65409 (United States); Usman, Shoaib, E-mail: usmans@mst.ed [Nuclear Engineering, Missouri University of Science and Technology, 225 Fulton Hall, 300W. 13th St., Rolla, MO-65409 (United States)
2010-03-15
This research is an extension of the previous work on the development of an integrator (RC) circuit analogy for natural convection. This analogy has been proven experimentally as well as by numerical simulations. Additional Rayleigh-Benard convection numerical simulations were performed to investigate DELTAT (temperature difference between source and sink) dependence of the thermal resistance of a natural convection system. Our results suggest that analogous to voltage dependent resistor (VDR) in electrical engineering, DELTAT dependent thermal resistance is observed in natural convection system. This DELTAT dependent thermal resistance leads to a variable time constant. Moreover, this research also suggests that for a natural convection system, in addition to the thermal capacitance a kinetic energy capacitance also exists. The relative contribution of kinetic energy capacitance depends on Rayleigh number. These results provide significant step forward towards development of a new inexpensive modeling and transient analysis tool for a natural convection system.
Further on integrator circuit analogy for natural convection
This research is an extension of the previous work on the development of an integrator (RC) circuit analogy for natural convection. This analogy has been proven experimentally as well as by numerical simulations. Additional Rayleigh-Benard convection numerical simulations were performed to investigate ΔT (temperature difference between source and sink) dependence of the thermal resistance of a natural convection system. Our results suggest that analogous to voltage dependent resistor (VDR) in electrical engineering, ΔT dependent thermal resistance is observed in natural convection system. This ΔT dependent thermal resistance leads to a variable time constant. Moreover, this research also suggests that for a natural convection system, in addition to the thermal capacitance a kinetic energy capacitance also exists. The relative contribution of kinetic energy capacitance depends on Rayleigh number. These results provide significant step forward towards development of a new inexpensive modeling and transient analysis tool for a natural convection system.
Highlights: • We simulate convective nucleate pool boiling with a novel phase-change model. • We simulate four cases at different sub-cooling and wall superheat levels. • We investigate the flow structures around the growing bubble and analyze the accompanying physics. • We accurately simulate bubble shape elongation and enhanced wall cooling due to the sliding and slanting motions of bubbles. • Bubble cycle durations show good agreement with experimental observations. - Abstract: With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low
Rayleigh-Bénard convection instability in the presence of temperature variation at the lower wall
Jovanović Miloš M.
2012-01-01
Full Text Available This paper analyzes the two-dimensional viscous fluid flow between two parallel plates, where the lower plate is heated and the upper one is cooled. The temperature difference between the plates is gradually increased during a certain time period, and afterwards it is temporarily constant. The temperature distribution on the lower plate is not constant in x-direction, and there is longitudinal sinusoidal temperature variation imposed on the mean temperature. We investigate the wave number and amplitude influence of this variation on the stability of Rayleigh-Benard convective cells, by direct numerical simulation of 2-D Navier-Stokes and energy equation.
Magnetic field generation by intermittent convection
Chertovskih, R; Chimanski, E V
2016-01-01
Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.
On the relevance of bubbles and potential flows for stellar convection
Bertolami, Marcelo M Miller; Prat, Vincent; Barsukow, Wasilij; Weiss, Achim
2016-01-01
Recently Pasetto et al. have proposed a new method to derive a convection theory appropriate for the implementation in stellar evolution codes. Their approach is based on the simple physical picture of spherical bubbles moving within a potential flow in dynamically unstable regions, and a detailed computation of the bubble dynamics. Based on this approach the authors derive a new theory of convection which is claimed to be parameter free, non-local and time-dependent. This is a very strong claim, as such a theory is the holy grail of stellar physics. Unfortunately we have identified several distinct problems in the derivation which ultimately render their theory inapplicable to any physical regime. In addition we show that the framework of spherical bubbles in potential flows is unable to capture the essence of stellar convection, even when equations are derived correctly.
On the relevance of bubbles and potential flows for stellar convection
Miller Bertolami, M. M.; Viallet, M.; Prat, V.; Barsukow, W.; Weiss, A.
2016-04-01
Recently Pasetto et al. have proposed a new method to derive a convection theory appropriate for the implementation in stellar evolution codes. Their approach is based on the simple physical picture of spherical bubbles moving within a potential flow in dynamically unstable regions, and a detailed computation of the bubble dynamics. Based on this approach, the authors derive a new theory of convection which is claimed to be parameter-free, non-local and time-dependent. This is a very strong claim, as such a theory is the holy grail of stellar physics. Unfortunately, we have identified several distinct problems in the derivation which ultimately render their theory inapplicable to any physical regime. In addition, we show that the framework of spherical bubbles in potential flows is unable to capture the essence of stellar convection, even when equations are derived correctly.
Leo Kadanoff's legacy for turbulent thermal convection
Lohse, Detlef
Rayleigh-Benard (RB) convection -- the buoyancy-driven flow of a fluid heated from below and cooled from above -- is a classical problem in fluid dynamics. It played a crucial role in the development of stability theory in hydrodynamics (Rayleigh, Chandrasekhar) and had been paradigmatic in pattern formation and in the study of spatial-temporal chaos (Ahlers, Libchaber, and many other). It was Leo Kadanoff and his associates in Chicago who, in the 1980s and 1990s, propagated the RB system as paradigmatic for the physics of fully developed turbulence and contributed tremendously to today's understanding of thermally driven turbulence. He and his experimental coworkers (Libchaber et al.) revealed the importance of the thermal plumes and the large-scale wind, and elucidated the interplay between thermal boundary layers and bulk. His scaling analysis laid the basis for our present understanding of turbulent convection, which I will review in this talk, highlighting Leo's trailblazing contributions. Kadanoff session.
A PERIODICALLY LOCALIZED TRAVELING WAVE STATE OF BINARY FLUID CONVECTION WITH HORIZONTAL FLOWS
NING Li-zhong; QI Xin; HARADA Yoshifumi; YAHATA Hideo
2006-01-01
In this paper, the convection structure in a rectangular channel with a horizontal flow was studied for the aspect ratio Γx=12 and the separation ratio ψ=-0.11. Our simulations were preformed by solving the hydrodynamic equations using the SIMPLE method. In the system of binary fluid convection with a horizontal flow, a Periodically Localized Traveling Wave (PLTW) state was found. It has similar behavior to classical Rayleigh-Benard convection in a binary fluid mixture, but the region and wave number of convection change periodically with time. The instability of PLTW depends on the Rayleigh number r and the intensity of horizontal flows Re for given ψ. Thus, the PLTW convection results from the competition between the horizontal flow and the counter-propagating wave near the onset of convection.
Turbulent heat transfer is of basic interest for the development and analysis of the lead-bismuth cooled accelerator-driven nuclear reactor concept. Results of a direct numerical simulation (DNS) for Rayleigh-Benard convection for the Rayleigh number Ra = 105 in a fluid with the Prandtl number Pr = 0,025, which corresponds to liquid lead-bismuth, are used to analyze turbulent time scales and the temperature variance dissipation rate. These results indicate that an application of the thermal or mixed time scale may considerably improve the standard heat flux model at this Rayleigh- and Prandtl numbers. Standard temperature variance dissipation rate model is investigated using the DNS results for Rayleigh-Benard convection at Pr equals 0,025, Ra equals 105. The analysis of the standard temperature variance dissipation rate model shows the importance of wall functions and the qualitatively good predictions by the standard model for this type of flow. Quantitatively this model over-predicts the results of direct numerical simulation by about 25%. The two-point correlation method is used to model the temperature variance dissipation rate. Comparison with DNS results shows qualitatively and quantitatively good predictions of the new model. The new temperature variance dissipation rate model leads therefore to an increased accuracy of turbulent heat flux models for this type of flow. An additional advantage is a minimal increase in model complexity which makes no special demands on model implementation into computer codes
Dimensionless analysis of bubble departure frequency in forced convective subcooled boiling flow
Forced convective subcooled boiling flow experiments were conducted in a vertical upward annular channel. Water was used as the testing fluid, and the tests were performed at atmospheric pressure. A high-speed digital video camera was applied to capture the dynamics of the bubble nucleation process. Bubble departure frequencies were obtained from the video for a total of 58 test conditions. The non-dimensional analysis was performed on the current data as well as available data from literature. Existing models and correlations were compared with the experimental data of bubble waiting time, growth time, and departure frequency. The correlations developed for pool boiling flow do not work well for forced convective subcooled boiling flow, while the models proposed for subcooled boiling flow can not predict the bubble departure frequency in wide experimental ranges. Dimensionless bubble departure frequency is correlated with non-dimensional nucleate boiling heat flux. The new correlation agrees reasonably well with existing experimental data at lower wall superheat. (author)
GeoFlow: 3D numerical simulation of supercritical thermal convective states
Futterer, B; Egbers, C [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Siemens-Halske-Ring 14, 03046 Cottbus (Germany); Hollerbach, R [Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (United Kingdom)], E-mail: futterer@tu-cottbus.de
2008-11-01
'GeoFlow' is a thermal convection experiment in rotating spherical shell geometry, which is going to take place in microgravity environment of International Space Station. We present numerical preliminary studies of the spherical Rayleigh-Benard problem under an artificial central force field. Numerical simulation is done with a pseudospectral method. Special focus here is the simulation of flow states at selected parameter points of Rayleigh and Taylor number of a defined plan for experimental runs on ISS. One loop will contain thermal convection without rotation, i.e. rising temperature gradient between inner and outer sphere. Another loop investigates convection superimposed by rotation, i.e. fixing temperature gradient and then rising rotation rate. In such cases different transitions are expected to be observed. Just rising Rayleigh number shows different stable states depending on initial conditions. Fixing Rayleigh number and then rising up Taylor number leads to traverse of different convective states showing rich dynamics of the system.
An experimental investigation of convection in a fluid that exhibits phase change
Fitzjarrald, D. E.
1980-01-01
Convection flows were systematically observed in a layer of fluid between two isothermal horizontal boundaries. The working fluid was a nematic liquid crystal, which exhibits a liquid-liquid phase change at which latent heat is released and the density changed. In addition to ordinary Rayleigh-Benard convection when either phase is present alone, there exist two types of convective motions initiated by the unstable density difference. When a thin layer of heavy fluid is present near the top boundary, hexagons with downgoing centers exist with no imposed thermal gradient. When a thin layer of light fluid is brought on near the lower boundary, the hexagons have upshooting centers. In both cases, the motions are kept going once they are initiated by the instability due to release of latent heat. Relation of the results to applicable theories is discussed.
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F
2015-01-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...
Doumenc, F.; Boeck, T.; Guerrier, B.; Rossi, M.
2010-04-01
The convective instability in a plane liquid layer with time-dependent temperature profile is investigated by means of a general method suitable for linear stability analysis of an unsteady basic flow. The method is based on a non-normal approach, and predicts the onset of instability, critical wave number and time. The method is applied to transient Rayleigh-Benard-Marangoni convection due to cooling by evaporation. Numerical results as well as theoretical scalings for the critical parameters as function of the Biot number are presented for the limiting cases of purely buoyancy-driven and purely surface-tension-driven convection. Critical parameters from calculations are in good agreement with those from experiments on drying polymer solutions, where the surface cooling is induced by solvent evaporation.
Global and local statistics in turbulent convection at low Prandtl numbers
Scheel, Janet D
2016-01-01
Statistical properties of turbulent Rayleigh-Benard convection at low Prandtl numbers (Pr), which are typical for liquid metals such as mercury, gallium or liquid sodium, are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air. We compare the scaling of global momentum and heat transfer. The scaling exponents are found to be in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number which underlies a more vigorous bulk turbulence in the low-Pr regime. The skin-friction coefficient displays a Reynolds-number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as Pr decreases and conversely the velocity boundary layer thicknesses be...
The onset of nonpenetrative convection in a suddenly cooled layer of fluid
Ihle, Christian F. [Program in Fluid Dynamics, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Blanco Encalada 2002 Of. 327, Santiago (Chile); Nino, Yarko [Departamento de Ingenieria Civil, Division de Recursos Hidricos y Medio Ambiente, Universidad de Chile, Av. Blanco Encalada 2002, Santiago (Chile)
2006-04-15
Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq fluid layer subject to a step change in temperature are studied using propagation theory. A wide range of Prandtl numbers and two different kinematic boundary conditions are considered. It is shown that for high Rayleigh numbers, critical conditions for the onset of convective motion reproduce exactly those for the unsteady Rayleigh-Benard instability. Present results extend those of previous research and show a tendency of the rigid-rigid and free-rigid critical curves to converge for low Prandtl numbers. Comparison between present and previously reported results on critical conditions for the onset of instabilities and onset time using different methods yields good agreement on a middle to high Prandtl number range. A ratio of 10 between experimentally measured and theoretically predicted onset times is suggested for stress-free bounded systems. (author)
Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels
Jaikumar, A.; Kandlikar, S. G.
2016-01-01
Bubbles departing from the nucleation sites induce a liquid flow from the bulk to the heated surface during pool boiling. Alternating the nucleating regions with non-nucleating regions facilitates separate liquid-vapor pathways for departing vapor bubbles and returning liquid. We explored an additional enhancement through liquid feeder channels on the heater surface directing the returning liquid towards the nucleating region. The nucleating bubbles were confined to the nucleating region as the returning liquid flow induced strong convective currents over the non-nucleating regions. In the best performing configuration, the nucleating regions were 0.5 mm wide, separated by non-nucleating regions of width 2.125 mm, which corresponded to the bubble departure diameter. The non-nucleating regions contained 0.5 mm wide feeder channels directing liquid towards the nucleating region. High speed images indicated distinct vapor columns over the nucleating regions with liquid channeled through the feeder channels. At higher heat fluxes, the strong liquid currents established over the feeder channels suppressed any undesirable nucleation in them keeping the separated vapor-liquid pathways functional. This enhancement technique resulted in a critical heat flux of 394 W/cm2 at a wall superheat of 5.5 °C which translated to a heat transfer coefficient of 713 kW/m2 °C. The additional surface area and high heat transfer coefficient due to microchannel flow in feeder channels, and the unobstructed surface available for the bubbles to expand over the prime heat transfer surface area before departing were seen to be responsible for their superior performance.
Dholakia, Nikhilesh; Turcan, Romeo V.
2013-01-01
A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could and...... do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....
In the absence of bubbling, natural convection in an internally heated pool is largely anisotropic. There are large heat transfers to the upper and lateral walls, while the heat transfer to the cooled lower surface is small. Bubbling is a well-known mean of increasing the heat transfer coefficients, especially at the lower wall. The heat transfer between an internally heated pool and its walls has been experimentally studied while air bubbles were produced through a grid drilled with holes installed at the lower interface. Sugar solutions have been used as simulant the high temperature corium melts that would be produced during molten core-concrete interaction with respect to [Deckwer, W.-D.,1992. Bubble Column Reactors. John Wiley and Sons, Chichester (English Translation)] heat transfer model. Without any gas bubbling, natural convection in the pool exhibits a large anisotropy with a small heat transfer to the bottom wall. This is due to the building of a thermal gradient through the pool height. Bubbling with superficial gas velocity as low as 1 mm/s is sufficient to destabilize these layers in water and homogenize the pool. For more viscous fluids, it has been possible to determine a threshold between these regimes
Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae
Pruet, J; Woosley, S E; Buras, R; Janka, H; Hoffman, R D
2004-09-02
As an explosion develops in the collapsed core of a massive star, neutrino emission drives convection in a hot bubble of radiation, nucleons, and pairs just outside a proto-neutron star. Shortly thereafter, neutrinos drive a wind-like outflow from the neutron star. In both the convective bubble and the early wind, weak interactions temporarily cause a proton excess (Y{sub e} {approx}> 0.50) to develop in the ejected matter. This situation lasts for at least the first second, and the approximately 0.05-0.1 M{sub {circle_dot}} that is ejected has an unusual composition that may be important for nucleosynthesis. Using tracer particles to follow the conditions in a two-dimensional model of a successful supernova explosion calculated by Janka, Buras, and Rampp (2003), they determine the composition of this material. most of it is helium and {sup 56}Ni. The rest is relatively rare species produced by the decay of proton-rich isotopes unstable to positron emission. In the absence of pronounced charged-current neutrino capture, nuclear flow will be held up by long-lived waiting point nuclei in the vicinity of {sup 64}Ge. The resulting abundance pattern can be modestly rich in a few interesting rare isotopes like {sup 45}Sc, {sup 49}Ti, and {sup 64}Zn. The present calculations imply yields that, when compared with the production of major species in the rest of the supernova, are about those needed to account for the solar abundance of {sup 45}Sc and {sup 49}Ti. Since the synthesis will be nearly the same in stars of high and low metallicity, the primary production of these species may have discernible signatures in the abundances of low metallicity stars. They also discuss uncertainties in the nuclear physics and early supernova evolution to which abundances of interesting nuclei are sensitive.
Global and local statistics in turbulent convection at low Prandtl numbers
Scheel, Janet; Schumacher, Joerg
2015-11-01
Very high resolution direct numerical simulations (DNS) of turbulent Rayleigh-Benard Convection (RBC) for low Prandtl numbers which are typical for liquid metals such as mercury/gallium (0.021) or sodium (0.005) will be presented. The scaling of global momentum and heat transport is determined and compared to experimental and theoretical results. We also present mean profiles of root-mean-square velocity and vorticity as well as the thermal and kinetic energy dissipation rates. The velocity boundary layer is found to be much thinner than the thermal boundary layer, and the consequences of this for the heat transport as well as the nature of turbulence in RBC will also be discussed. Finally we investigate the skin friction coefficient and shear Reynolds numbers for these systems. Results will also be compared and contrasted with results from DNS for Prandtl numbers of 0.7 and 6.0 and similar Rayleigh numbers.
Betz, J.; Straub, J. [Lehrstuhl A fuer Thermodynamik, Technical Univ. Muenchen, Garching (Germany)
2001-04-01
At liquid-gas or liquid-liquid interfaces thermocapillary or Marangoni convection develops in the presence of a temperature or concentration gradient along the interface. This convection was not paid much attention up to now, because under terrestrial conditions it is superimposed by the strong buoyancy convection. In a microgravity environment, however, it is the remaining mode of natural convection. During boiling in microgravity it was observed at subcooled conditions. Therefore the question arises about its contribution to the heat transfer. Thus the thermocapillary convection was intensively studied at single gas bubbles in various liquids both experimentally and numerically. Inside a temperature gradient chamber, the overall heat transfer around single bubbles of different volume was measured with calorimetry and the liquid flow with PIV and LDV. In parallel to the experiment, a 2-dimensional mathematical model was worked out and the coupled heat transfer and fluid flow was simulated with a CV-FEM method both under earth gravity level and under microgravity. The results are described in terms of the dimensionless Nusselt-, Peclet-, Marangoni-, Bond- and Prandtl-number. (orig.)
Prediction of bubble departure in forced convection boiling: a mechanistic model
Colombo, M; Fairweather, M.
2015-01-01
In the context of computational fluid dynamic simulations of boiling flows using time-averaged Eulerian multi-phase approaches, the many sub-models required to describe such a complex phenomena are of particular importance. Of interest here, wall boiling requires calculation of the contribution of evaporation to global heat transfer, which in turn relies on determination of the active nucleation site density, bubble departure diameter and frequency of bubble departure. In this paper, an impro...
Gibert, M
2007-10-15
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
The model laws for the initial film boiling at forced convection are realized in vertical tubes. The local conditions in the investigated area were regarded to be most effective and sufficient for the description. The theory was confirmed by experimental data. (orig.)
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O.; Seychelles, F.; Zonta, F.; Chibbaro, S.; Coudarchet, T.; Gasteuil, Y.; Pinton, J.-F.; Salort, J.; Chillà, F.
2016-05-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and temperature frequency spectra is shown and discussed. In particular, we observe that temperature spectra exhibit an anomalous f^2.5 frequency scaling, likely representing the ubiquitous passive and active scalar behavior of temperature
Numerical simulation of Rayleigh-Bernard convection in a cylindrical container
Sanchez-Torres, Norma Y.; Lopez-Sanchez, Erick J.; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo
2013-11-01
The heat transport by natural convection is a central mechanism in the explanation of many natural phenomena. Despite many works that treat the Rayleigh-Benard convection, most of them describe the phenomenon by making a two-dimensional approach. The purpose of this work is to use a cylindrical geometry. The study further extends to convection driven by evaporation which actually is an open subject. In this work we use a numerical methods to solve the Navier-Stokes, continuity and energy equations: a finite differences method for time, r and z coordinates; and a Fourier spectral method for the angular coordinate. In this manner the numerical code can be parallelized. The boundary conditions are the usual on solid walls, i.e. non-slip for velocity. The system starts at rest. The results are compared with experimental results and data reported in the literature. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''
Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid
Furukawa, A.; Meyer, H.; Onuki, A.
2004-01-01
Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.
Dissolution patterns from geochemical reactions during CO2 convective mixing in saline aquifers
Fu, X.; Cueto-Felgueroso, L.; Bolster, D.; Juanes, R.
2013-12-01
Convective mixing is an essential trapping mechanism during CO2 sequestration in deep saline aquifers. Upon injection, buoyant CO2 enters the geologic formation and mixes with the underlying brine, which leads to a local density increase that triggers density-driven flow; meanwhile, the presence of CO2 disturbs the geochemical equilibrium of brine with respect to the formation, which can lead to dissolution or precipitation of carbonate minerals. Dissolution/precipitation reactions result in changes in porosity, which in turn induce changes in permeability that impact the flow dynamics. Motivated by the process of CO2 convective mixing in porous media, here we study the formation of rock-dissolution patterns that arise from geochemical dissolution/precipitation reactions during Rayleigh-Benard convection. We use high-resolution simulations to examine the interplay between the density-driven hydrodynamic instability and the evolution of high-porosity channels, explain the emergence of a characteristic length scale in the dissolution patterns, and analyze the impact of the channelization process on the macroscopic mass exchange rate.
Lavrenteva, O. M.; Leshansky, A. M.; Nir, A.
1999-07-01
Mass and heat transfer between two adjacent droplets and the surrounding viscous fluid induce local variations in the surface properties of the drops. These may result in a self-induced surface flow and a subsequent motion of the droplets toward or away from each other. Previous studies of this spontaneous thermocapillary interaction were conducted under the limiting assumptions that inertia, convective effects, and interfacial deformation were negligible. In the present paper the effect of convective transport on the spontaneous interaction of droplets at small nonzero Peclet numbers is examined. It is shown that at large separation distances the motion maintains its quasi-steady nature and the correction to the approach velocity is of O(Pe). When the droplets are at closer proximity the temporal changes of the domain are dominant. They result in the appearance of a Basset type history term in the expansion of concentration field and, hence, in the force balance equation. The correction to the approach velocity is of O(Pe1/2) and it depends on the initial position and the evolution in time of the interaction process.
Dynamics and flow-coupling in two-layer turbulent thermal convection
Xie, Yi-Chao
2015-01-01
We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...
Generation of a large-scale barotropic circulation in rotating convection
Rubio, Antonio; Julien, Keith; Weiss, Jeffrey
2012-11-01
We recently reported on the existence of a slow-growing large scale barotropic mode in DNS of rotating Rayleigh-Benard convection using the non-hydrostatic balanced geostrophic equations (NHBGE) (Julien et al. 2012). Such large scale modes had been previously observed as an inverse cascade in stable layer quasi-geostophic dynamics or via instability mechanisms of thermal Rossby waves occuring in presence of sloping endwalls (i.e quasi-geostrophic beta-convection). In this talk we report on the early time history of this large scale mode and discuss the generating physical mechanism as a ``symmetry-breaking'' forcing function of the barotropic vorticity equation. Impacts of the large scale barotropic mode on the smaller scale baroclinic components of the flow are detailed with a specific emphasis on the changing nature of the heat transport as the barotropic mode evolves. This work was supported by the National Science Foundation under FRG grants DMS-0855010 and DMS-0854841. Computational resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS).
Frontal Polymerization in Microgravity: Bubble Behavior and Convection on the KC-135 Aircraft
Pojman, John A.; Ainsworth, William; Chekanov, Yuri; Masere, Jonathan; Volpert, Vitaly; Dumont, Thierry; Wilke, Hermann
2001-01-01
Frontal polymerization is a mode of converting monomer into polymer via a localized exothermic reaction zone that propagates through the coupling of thermal diffusion and Arrhenius reaction kinetics. Frontal polymerization was discovered in Russia by Chechilo and Enikolopyan in 1972. The macrokinetics and dynamics of frontal polymerization have been examined in detail and applications for materials synthesis considered. Large temperature and concentration gradients that occur in the front lead to large density gradients. A schematic is presented for a liquid monomer, usually a monoacrylate, being converted to a liquid (thermoplastic) polymer. The velocity can be controlled by the initiator concentration but is on the order of a cm/min. If the liquid monomer is multifunctional, then a solid (thermoset) polymer is formed. Convection can occur with all types of monomers if the front propagates up a tube. Bowden et al. studied liquid/solid systems. McCaughey et al. studied liquid polymer systems. Descending fronts in thermoplastic systems are also susceptible to the Rayleigh-Taylor instability.
The present study considers unsteady natural convection induced by the absorption of radiation for possible applications in the water quality management for the shallow regions of lakes and reservoirs. The direct absorption of the incoming radiation by the water body forms a stable thermal stratification, whilst residual radiation reaching the bottom bathymetry is re-emitted as a boundary flux, forming an unstable thermal stratification, which is a potential source for a Rayleigh-Benard type instability. The bottom boundary layer instability drives intermittent vertical convection in the form of rising plumes. The plume rise is, however, limited by the stable thermal stratification due to the direct absorption, which is controlled by the attenuation coefficient of water. The attenuation coefficient is therefore an important parameter in determining the plume rise and the associated vertical mixing. The wavelength dependency of the attenuation coefficient of water is accounted for by using a three-waveband model. A theoretical prediction is made for the plume rise distance, which represents the region of vigorous mixing. Two-dimensional numerical simulation provides verification for the accuracy of the theoretical prediction.
Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes
Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian
2015-08-01
Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.
Global and local statistics in turbulent convection at low Prandtl numbers
Scheel, Janet D.; Schumacher, Jörg
2016-09-01
Statistical properties of turbulent Rayleigh-Benard convection at low Prandtl numbers (Pr), which are typical for liquid metals such as mercury, gallium or liquid sodium, are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air. We compare the scaling of global momentum and heat transfer. The scaling exponents are found to be in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number which underlies a more vigorous bulk turbulence in the low-Pr regime. The skin-friction coefficient displays a Reynolds-number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as Pr decreases and conversely the velocity boundary layer thicknesses become smaller. We investigate the scaling exponents and find a slight decrease in exponent magnitude for the thermal boundary layer thickness as Pr decreases, but find the opposite case for the velocity boundary layer thickness scaling. A growing area fraction of turbulent patches close to the heating and cooling plates can be detected by exceeding a locally defined shear Reynolds number threshold. This area fraction is larger for lower Pr at the same Ra. Our analysis of the kurtosis of the locally defined shear Reynolds number demonstrates that the intermittency in the boundary layer is significantly increased for the lower Prandtl number and for sufficiently high Rayleigh number compared to convection in air. This complements our previous findings of enhanced bulk intermittency in low-Prandtl-number convection.
KEARNEY,SEAN P.; REYES,FELIPE V.
2000-12-13
In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
He, Xiaozhou; Ahlers, Guenter
2016-01-01
We present measurements of the orientation $\\theta_0$ and temperature amplitude $\\delta$ of the large-scale circulation in a cylindrical sample of turbulent Rayleigh-Benard convection (RBC) with aspect ratio $\\Gamma \\equiv D/L = 1.00$ ($D$ and $L$ are the diameter and height respectively) and for the Prandtl number $Pr \\simeq 0.8$. Results for $\\theta_0$ revealed a preferred orientation with upflow in the West, consistent with a broken azimuthal invariance due to Earth's Coriolis force [see \\cite{BA06b}]. They yielded the azimuthal diffusivity $D_\\theta$ and a corresponding Reynolds number $Re_{\\theta}$ for Rayleigh numbers over the range $2\\times 10^{12} < Ra < 1.5\\times 10^{14}$. In the classical state ($Ra < 2\\times 10^{13}$) the results were consistent with the measurements by \\cite{BA06a} for $Ra < 10^{11}$ and $Pr = 4.38$ which gave $Re_{\\theta} \\propto Ra^{0.28}$, and with the Prandtl-number dependence $Re_{\\theta} \\propto Pr^{-1.2}$ as found previously also for the velocity-fluctuation Rey...
A reference solution to a benchmark problem for a three-dimensional mixed-convection flow in a horizontal rectangular channel differentially heated (Poiseuille-Rayleigh-Benard flow) has been proposed in Part 1 of the present article (Numer. Heat Transfer B, vol. 60, pp. 325-345, 2011). Since mixed Dirichlet and Neumann thermal boundary conditions are used on the horizontal walls of the channel, a temperature gradient discontinuity is generated. The aim of this article is to analyze the consequences of this singularity on Richardson extrapolation (RE) of the numerical solutions. The convergence orders of the numerical methods used (finite difference, finite volume, finite element), observed from RE of local and integral quantities are discussed with an emphasis on singularity influence. With the grids used, it is shown that RE can increase the accuracy of the discrete solutions preferentially with the discretization methods of low space accuracy order, but only in some part of the channel and for a restricted range of the extrapolation coefficient. A correction to the Taylor expansion involved in the RE formalism is proposed to take into account the singularity and to explain the majority of the RE behaviors observed. (authors)
Haddad, Zoubida [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria); Abu-Nada, Eiyad [Department of Mechanical Engineering, King Faisal University, Al-Ahsa 31982 (Saudi Arabia); Oztop, Hakan F. [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Mataoui, Amina [Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria)
2012-07-15
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Laboratoire Institut Universitaire des Systemes Thermiques Industriels (IUSTI), CNRS UMR 6595, DME, 13 - Marseille (France)
2005-06-01
We present here an experimental work of a single vapor bubble growth in a subcooled liquid bulk (FC-72) at atmospheric pressure. The vapor bubble grows on a downward facing heating element (at constant heating power) on an artificial nucleation site located in the centre of the heated surface. Bubble dynamics are studied thanks to image proceeding. The temporal evolution of geometric parameters, such as diameter, height, volume and shape, are measured. The analysis of some parameters enables us to determine the influence of the heating power on the heat and mass transfers. Moreover an observation, using a shadowgraphy method, of the different modes of convective instabilities is presented. The non condensable gas influence on the occurrence of the instability is discussed. (authors)
Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique
Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
Distributed chaos and Rayleigh-Benard turbulence at very high Ra
Bershadskii, A
2016-01-01
It is shown, by the means of distributed chaos approach and using the experimental data, that at very large Rayleigh number $Ra > 10^{14}$ and Prandtl number $Pr \\sim 1$ the Rayleigh-B\\'{e}nard turbulence can undergo a transition related to spontaneous breaking of the fundamental Lagrangian relabeling symmetry. Due to the Noether's theorem helicity plays central role in this process. After the transition the temperature spectrum has a stretched exponential form $E (k) \\propto \\exp(-k/k_{\\beta})^{\\beta}$ with $\\beta =2/5$ both at the cell midplain and at the near-wall (low boundary) regions. There is a similarity between this phenomenon and the effects of polymer additives.
Hendricks, Vincent Fella; Pedersen, David Budtz
2013-01-01
Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....
Jones, T. B.; Bliss, G. W.
1977-01-01
The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.
Convection in Type 2 supernovae
Miller, D.S.
1993-10-15
Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.
Breuer, D.; Futterer, B.; Plesa, A.; Krebs, A.; Zaussinger, F.; Egbers, C.
2013-12-01
In mantle dynamics research, experiments, usually performed in rectangular geometries in Earth-based laboratories, have the character of ';exploring new physics and testing theories' [1]. In this work, we introduce our spherical geometry experiments on electro-hydrodynamical driven Rayleigh-Benard convection that have been performed for both temperature-independent (`GeoFlow I'), and temperature-dependent fluid viscosity properties (`GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high voltage potential between the inner and outer boundaries and a dielectric insulating liquid and perform the experiment under microgravity conditions at the ISS [2, 3]. Further, numerical simulations in 3D spherical geometry have been used to reproduce the results obtained in the `GeoFlow' experiments. For flow visualisation, we use Wollaston prism shearing interferometry which is an optical method producing fringe pattern images. Flow pattern differ between our two experiments (Fig. 1). In `GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by 3D numerical simulations using two different and independently developed codes. In contrast, in `GeoFlow II' we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realised in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the `GeoFlow II' experiment, from which we conclude that non-linear effects shift the effective viscosity ratio [4]. References [1] A. Davaille and A. Limare (2009). In: Schubert, G., Bercovici, D. (Eds.), Treatise on Geophysics - Mantle Dynamics. [2] B. Futterer, C. Egbers, N. Dahley, S. Koch, L. Jehring (2010). Acta Astronautica 66, 193-100. [3] B. Futterer, N. Dahley, S. Koch, N. Scurtu, C. Egbers (2012). Acta Astronautica 71, 11-19. [4
Bubble rupture in bubble electrospinning
Chen Rouxi
2015-01-01
Full Text Available As the distinctive properties and different applications of nanofibers, the demand of nanofibers increased sharply in recently years. Bubble electrospinning is one of the most effective and industrialized methods for nanofiber production. To optimize the set-up of bubble electrospinning and improve its mass production, the dynamic properties of un-charged and charged bubbles are studied experimentally, the growth and rupture process of a bubble are also discussed in this paper.
Avdeev, Alexander A
2016-01-01
This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...
Corrigan, Jackie
2004-01-01
A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM
Lohse, Detlef
2003-01-01
With their ubiquitous occurrence in a multitude of fluid systems, bubbles occupy an important place in contemporary science and technology. One can readily cite several examples: the production and transport of oil, in which bubbles are purposely injected to help lift heavy oil to the surface; energ
Bubble, Bubble, Toil and Trouble.
Journal of Chemical Education, 2001
2001-01-01
Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)
Natural convection type reactor
In a natural convection type nuclear reactor, recycling flow rate of coolants is increased and the amount of entrained bubbles are increased as the driving force is increased, so that bubbles are not separated completely even if a stagnation region is disposed. Then, a space opened only at the upper portion is disposed at the outer circumference of the upper end of a riser for storing overflown coolants temporarily. The flow of coolants incorporating steam bubbles uprising in the riser turns into the horizontal direction at the upper end of the riser wall and flows into the coolant reservoir. In the coolant reservoir, since the momentum of the coolants is lost and the flow is stagnated, the bubbles are easily released to the upper space. Coolants, after releasing the bubbles, further overflow and descend in the downcomer. Then, the bubbles can be separated undergoing no influence of the driving force caused as the sum of the uprising force in the riser and the water head pressure in the downcomer, to prevent increase of carry under due to increase of the driving force. (N.H.)
O'Geary, Melissa A.
Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.
Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab
1995-01-01
We investigate the gravitational behavior of spherical domain walls (bubbles) arising during the phase transitions in the early Universe. In the thin-wall approximation we show the existence of the new solution of Einstein equations with negative gravitational mass of bubbles and the reversed direction of time flow on the shell. This walls exhibit gravitational repulsion just as the planar walls are assumed to do. The equilibrium radius and critical mass of such objects are found for realistic models.
Mario Forni; Luca Gambetti; Marco Lippi; Luca Sala
2014-01-01
We introduce noisy information into a standard present value stock price model. Agents receive a noisy signal about the structural shock driving future dividend variations. The resulting equilibrium stock price includes a transitory component — the "noise bubble" — which can be responsible for boom and bust episodes unrelated to economic fundamentals. We propose a non-standard VAR procedure to estimate the structural shock and the "noise" shock, their impulse response functions and the bubble...
Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented
Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution
Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)
1995-01-01
We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.
无
2011-01-01
The shift of China’s monetary policy stance from "moderately loose" to "prudent" in 2011 indicates curbing inflation and asset bubbles have become the Central Government’s top priority. But is China’s bubble problem short-term or long-term? Is it only monetary or related to economic structure? Is it the cause of China’s economic imbalance or the result? And what kind of deep-rooted problems in the macro economy does it reflect? All these questions call for deep thought,said Zhang Monan,a
Solar prominences: 'double, double ... boil and bubble'
Keppens, Rony
2015-01-01
Observations revealed rich dynamics within prominences, the cool 10,000 K, macroscopic (sizes of order 100 Mm) "clouds" in the million degree solar corona. Even quiescent prominences are continuously perturbed by hot, rising bubbles. Since prominence matter is hundredfold denser than coronal plasma, this bubbling is related to Rayleigh-Taylor instabilities. Here we report on true macroscopic simulations well into this bubbling phase, adopting a magnetohydrodynamic description from chromospheric layers up to 30 Mm height. Our virtual prominences rapidly establish fully non-linear (magneto)convective motions where hot bubbles interplay with falling pillars, with dynamical details including upwelling pillars forming within bubbles. Our simulations show impacting Rayleigh-Taylor fingers reflecting on transition region plasma, ensuring that cool, dense chromospheric material gets mixed with prominence matter up to very large heights. This offers an explanation for the return mass cycle mystery for prominence mater...
Microwave excitation of submerged plasma bubbles
Steady-state models were formulated for spherical plasma bubbles, excited in water by an external microwave radiation source. The bubbles were assumed to be at rest relative to the surrounding water, and the energy absorbed by the plasma was balanced by energy loss through thermal conductance and convection to the surrounding water. Two regimes were considered: (1) bubbles with radii R less than the skin depth δ, i.e. R δ. A self-consistent system of equations was formulated. In the R δ case obtained for strong electric fields was larger than in the R δ bubbles had an isothermal core and power from the microwave field was absorbed in a relatively thin layer in the plasma bubble. (paper)
Bubble drag reduction requires large bubbles
Verschoof, Ruben A; Sun, Chao; Lohse, Detlef
2016-01-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Certain peculiarities of the solutocapillary convection
This paper presents experimental results on solutocapillary Marangoni convection, an effect that occurs in a thin horizontal layer of the inhomogeneous solution of a surface-tension-active agent (surfactant) either near the free upper boundary of the layer or near the surface of an air bubble injected into the fluid. A procedure using interferometry is developed for simultaneously visualizing convective flow structures and concentration fields. A number of new phenomena are observed, including the deformation and rupture of the liquid layer due to a surfactant droplet spread over its surface; bubble self-motion (migration) toward higher surfactant concentrations; self-sustained convective flow oscillations around stationary bubbles in a fluid vertically stratified in concentration; and the existence of a threshold for a solutal Marangoni flow in thin layers. A comparison of solutocapillary and thermo-capillary phenomena is made. (methodological notes)
Experimental study on bubble growth in vertical narrow channel
A visual investigation of vapor bubble growth in subcooled upward forced convection boiling in vertical rectangular narrow channel (the gap is 2 mm) was performed. High speed camera was used to record the bubble growth with a speed of 5000 fps (frames per second), and the picture size are 512 x 512 pixel. Experimental results about bubble growth in various work conditions (with variation heat flux and mass flux) were recorded; and based on the regression analysis, the exponential fitting relationship between the mean equivalent bubble diameter (De) and the bubble growth time was revealed. The results show that the exponential fitting can predict the mean bubble growth in narrow channel very well; but the coefficients of K and n, are quite different with that of conventional channel; and the K is less dependent on Ja number other than that of conventional channel, and the n has the value of wider range of 0.339 ∼ 0.914. (authors)
Bubble Lift-off Diameter and frequency in a Vertical Subcooled Boiling Flow
Together with an active nucleation site density and a bubble detachment frequency, the bubble detachment diameter determines the evaporative heat flux in commercial CFD codes. Also, an increase of an interfacial area concentration by a wall boiling nucleation, i.e., the boiling source term in an interfacial area transport equation (IATE), is expressed by the above three terms. Several studies were performed to investigate the bubble diameters in the forced convective boiling flows. However, the database is still insufficient and the applicability of the suggested models was not thoroughly examined against the existing database. In the present study, the bubble behaviors were captured using a highspeed digital video camera for a forced convective subcooled boiling flow in a vertical annulus. Bubble liftoff diameter and bubble nucleation frequency was quantified by analyzing the captured images. Also, the prediction capability of the models for the bubble lift-off diameter was evaluated against the experimental data of the present work and literature
Engsted, Tom
2016-01-01
While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...
Engsted, Tom
Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to....... On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability. On data samples that include the 1990s...
An application of the method of moments to the modeling of bubbly flow
Bubbly flows are relevant in nuclear reactors thermalhydraulics and safety analysis. Regularly, empirical constitutive laws are required to close the two-fluid equations, particularly in relating the interfacial area and the bubble number densities to the local void fraction. In this article, starting from a generalized Boltzmann transport equation for the bubble size spectrum, a convection equation for the bubble number density is derived using the method of moments. The equation is analyzed for a vertical bubbly flow in stagnated liquid, showing excellent agreement with experimental data. The model is useful as a mean to provide conservation-based correlations to complement the existing two-fluid models
Levine, Shellie-helane; And Others
1986-01-01
Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)
Preheating in Bubble Collision
Zhang, Jun
2010-01-01
In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatically oscillating of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually high inelastic. The cosmological implications of this result are discussed.
Bouncing bubble dynamics and associated enhancement of heat transfer
Heat transfer enhancement resulting from the effects of two phase flow can play a significant role in convective cooling. To date, the interaction between a rising gas bubble and a horizontal surface has received limited attention. Available research has been focused on bubble dynamics, although the associated heat transfer has not been reported. To address this, this study investigates the effect of a single bubble bouncing against a heated horizontal surface. Local heat transfer measurements have been performed for four orifice to surface distances, with a bubble injection orifice of 1 mm in diameter. High-speed photography and infrared thermography have been utilized to investigate the path of the bubble and the associated heat transfer.
Micro-Bubble Experiments at the Van de Graaff Accelerator
Sun, Z. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, K. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-02-01
In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O_{2} + H_{2}) data were collected. The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.
Bubbles tomorrow and bubbles yesterday, but never bubbles today?
Williams, John C.
2013-01-01
Standard asset price models have generally failed to detect bubbles, with enormous costs to the economy. Economists are now creating promising new models that account for bubbles by relaxing the assumption of rational expectations and allowing people’s decisions to be driven by their perceptions of what the future may hold. ; This letter is adapted from a presentation by the president and CEO of the Federal Reserve Bank of San Francisco to the National Association for Business Economics in Sa...
Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)
Transition phenomena in unstably stratified turbulent flows
Bukai, M.; Eidelman, A.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Sapir-Katiraie, I.
2009-01-01
We study experimentally and theoretically transition phenomena caused by the external forcing from Rayleigh-Benard convection with the large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC whereby the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-B\\'enard apparatus with an additional source of turbulence produced by two oscillating grids located nearby the side walls of the chamber. When the frequency o...
Spontaneous pattern formation in an anti-ferromagnetic quantum gas
Kronjäger, Jochen; Becker, Christoph; Soltan-Panahi, Parvis; Bongs, Kai; Sengstock, Klaus
2009-01-01
Spontaneous pattern formation is a phenomenon ubiquitous in nature, examples ranging from Rayleigh-Benard convection to the emergence of complex organisms from a single cell. In physical systems, pattern formation is generally associated with the spontaneous breaking of translation symmetry and is closely related to other symmetry-breaking phenomena, of which (anti-)ferromagnetism is a prominent example. Indeed, magnetic pattern formation has been studied extensively in both solid-state mater...
Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave
Yamakoshi, Yoshiki; Koganezawa, Masato
2005-06-01
Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.
Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author)
Wildeman, Sander; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea
2016-01-01
We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns ...
Youssefmir, M; Hogg, T; Youssefmir, Michael; Huberman, Bernardo; Hogg, Tad
1994-01-01
We present a dynamical theory of asset price bubbles that exhibits the appearance of bubbles and their subsequent crashes. We show that when speculative trends dominate over fundamental beliefs, bubbles form, leading to the growth of asset prices away from their fundamental value. This growth makes the system increasingly susceptible to any exogenous shock, thus eventually precipitating a crash. We also present computer experiments which in their aggregate behavior confirm the predictions of the theory.
Inexperienced Investors and Bubbles
Robin Greenwood; Stefan Nagel
2008-01-01
We use mutual fund manager data from the technology bubble to examine the hypothesis that inexperienced investors play a role in the formation of asset price bubbles. Using age as a proxy for managers' investment experience, we find that around the peak of the technology bubble, mutual funds run by younger managers are more heavily invested in technology stocks, relative to their style benchmarks, than their older colleagues. Furthermore, young managers, but not old managers, exhibit trend-ch...
Sonoluminescence and bubble fusion
Arakeri, Vijay H
2003-01-01
Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...
Bubble Dynamics on a Heated Surface
Kassemi, M.; Rashidnia, N.
1999-01-01
In this work, we study steady and oscillatory thermocapillary and natural convective flows generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. A combined numerical-experimental approach is adopted here. The temperature field is visualized using Mach-Zehnder and/or Wollaston Prism Interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the transient two-dimensional continuity, momentum, and energy equations and includes the effects of temperature-dependent surface tension and bubble surface deformation. Below the critical Marangoni number, the steady state low-g and 1-g temperature and velocity fields predicted by the finite element model are in excellent agreement with both the visualization experiments in our laboratory and recently published experimental results in the literature. Above the critical Marangoni number, the model predicts an oscillatory flow which is also closely confirmed by experiments. It is shown that the dynamics of the oscillatory flow are directly controlled by the thermal and hydrodynamic interactions brought about by combined natural and thermocapillary convection. Therefore, as numerical simulations show, there are considerable differences between the 1-g and low-g temperature and flow fields at both low and high Marangoni numbers. This has serious implications for both materials processing and fluid management in space.
Sonochemistry and bubble dynamics.
Mettin, Robert; Cairós, Carlos; Troia, Adriano
2015-07-01
The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210
Miller
2011-01-01
The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec
Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)
1995-09-01
In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.
Turcan, Romeo V.
prospects of a new venture and intended outcomes of that new venture; the higher the residue, the higher the likelihood of the bubble emergence; as residue increases, the likelihood of bubble burst increases. One question that arises is whether one can manage the hype, hence the residue. In this, it is...
Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea
2014-01-01
We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rub
Settnes, Mikkel; Power, Stephen; Lin, Jun;
2015-01-01
Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)
2000-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher
Rotating bubble membrane radiator
Webb, Brent J.; Coomes, Edmund P.
1988-12-06
A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.
National Convective Weather Diagnostic
National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...
Bubble Collision in Curved Spacetime
We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles
Bubble chamber: antiproton annihilation
1971-01-01
These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.
Dirk G Baur; Kristoffer Glover
2012-01-01
In this paper we use a test developed by Phillips et al. (2011) to identify a bubble in the gold market. We find that the price of gold followed an explosive price process between 2002 and 2012 interrupted only briefly by the subprime crisis in 2008. We also provide a theoretical foundation for such bubble tests based on a behavioural model of heterogeneous agents and demonstrate that periods of explosive price behaviour are consistent with increased chartist activity in the gold market. The ...
CONDITIONS FOR BUBBLE FORMATION
Joffe, M
2010-01-01
A bubble is typically defined as ìtrade in high volume at prices that are considerably at variance from intrinsic valueî, which is compatible both with higher or lower prices, whereas the metaphor suggests something asymmetric that gradually inflates rather than deflates. Whether bubbles are symmetric or not is an empirical question; the historical record appears to be that they are asymmetric, but the literature is unclear on this point. In addition, in some types of market such as property,...
Dunn, R J H; Taylor, G B
2005-01-01
We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with Ghz radio emission, to our sample, and also investigating ``ghost bubbles,'' i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10 MHz and 10 GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 < k/f < 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have high...
Dynamics of bubbles in supernovae and turbulent vortices
Bychkov, V.; Popov, M. V.; Oparin, A. M.; Stenflo, L.; Chechetkin, V. M.
2006-04-01
We consider the motion of a bubble in a central acceleration field created by gravity or a centrifugal force. In the former case, the bubble moves outwards from and, in the latter, towards the center. We have calculated the characteristic time needed for a bubble to leave or reach the center. The solution obtained provides insight into the processes of thermonuclear supernovae and combustion; in other words, into the interaction between a flame and a turbulent vortex. In the case of combustion, a light bubble of burnt material propagates towards the axis of a strong turbulent vortex faster than it drifts in the direction of rotation of the vortex. It is expected that the development of bubbles should prevent the formation of “pockets” at the flame front, similar to those predicted by a simplified model of turbulent combustion in a constant density flux. In the case of a thermonuclear supernova in a deflagration burning regime, it is shown that light products of burning rise from the center of the white dwarf substantially more rapidly than the thermonuclear flame front propagates. As a result, a flame cannot completely burn the central part of the star, and instead is pushed to the outer layers of the white dwarf. The effect of bubble motion (large-scale convection) makes spherically symmetric models for thermonuclear supernovae unrealistic, which is of prime importance for the supernova spectrum and energy. The motion of bubbles is even faster in the case of a rotating white dwarf; under certain conditions, the centrifugal force may dominate over the gravitational force. To test this theory, we have carried out numerical simulations of supernovae explosions for various sizes of the burned region in the core of the presupernova. We have derived a relation between the rate of large-scale convection and the size of the burned region, which is specified by the rate of the deflagration in the thermonuclear burning.
Colliding with a crunching bubble
Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen
2007-03-26
In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.
Solares, H A Ayala; Hüntemeyer, P
2015-01-01
The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...
Prakash, Manu
2011-11-01
Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford
QU Jian-wu; MURAI Yuichi; YAMAMOTO Fujio
2005-01-01
Bubble-bubble interaction in free rising bubbly flows is experimentally investigated in the present study.The velocity vectors of the bubbles are measured by a stereoscopic bubble-tracking technique and then the relative velocity vectors of two nearest-neighbor bubbles are calculated with high statistical reliability.With the measurement data at Reynolds number ranging from 5 to 75, the vertical attraction and the horizontal repulsion are confirmed for Re＜10 as known by the past study based on Navier-Stokes simulation.The new finding of the present measurement is that the bubbles of Re＞30 have repulsive velocity bothin the horizontal and the vertical directions as those rise closely.Moreover, the three-dimensional structure of the bubble-bubble interaction is discussed with the data analysis of the interaction vector fields.
Analyzing Cosmic Bubble Collisions
Gobbetti, Roberto
2012-01-01
We develop a set of controlled, analytic approximations to study the effects of bubble collisions on cosmology. We expand the initial perturbation to the inflaton field caused by the collision in a general power series, and determine its time evolution during inflation in terms of the coefficients in the expansion. In models where the observer's bubble undergoes sufficient slow-roll inflation to solve the flatness problem, in the thin wall limit only one coefficient in the expansion is relevant to observational cosmology, allowing nearly model-independent predictions. We discuss two approaches to determining the initial perturbation to the inflaton and the implications for the sign of the effect (a hot or cold spot on the Cosmic Microwave Background temperature map). Lastly, we analyze the effects of collisions with thick-wall bubbles, i.e. away from the thin-wall limit.
Gleiser, Marcello
1994-01-01
The evolution of spherically symmetric unstable scalar field configurations (``bubbles'') is examined for both symmetric (SDWP) and asymmetric (ADWP) double-well potentials. Bubbles with initial static energies $E_0\\la E_{{\\rm crit}}$, where $E_{{\\rm crit}}$ is some critical value, shrink in a time scale determined by their linear dimension, or ``radius''. Bubbles with $E_0\\ga E_{{\\rm crit}}$ evolve into time-dependent, localized configurations which are {\\it very} long-lived compared to characteristic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.tic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
Scanning bubble chamber pictures
1974-01-01
These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.
Critical scattering by bubbles
We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.)
1972-01-01
Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Bubble Dynamics and Shock Waves
2013-01-01
This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa, M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz), shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...
National Convective Weather Forecast
National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...
In this note we construct families of asymptotically flat, smooth, horizonless solutions with a large number of non-trivial two-cycles (bubbles) of N = 1 five-dimensional supergravity with an arbitrary number of vector multiplets, which may or may not have the charges of a macroscopic black hole and which contain the known bubbling solutions as a sub-family. We do this by lifting various multi-center BPS states of type IIA compactified on Calabi-Yau three-folds and taking the decompactification (M-theory) limit. We also analyse various properties of these solutions, including the conserved charges, the shape, especially the (absence of) throat and closed timelike curves, and relate them to the various properties of the four-dimensional BPS states. We finish by briefly commenting on their degeneracies and their possible relations to the fuzzball proposal of Mathur et al
Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, P.
Liberec: Technical University of Liberec, 2013 - (Vít, T.; Dančová, P.; Novotný, P.), s. 114-118 ISBN 978-80-260-5375-0. [Experimental Fluid Mechanics 2013. Kutná hora (CZ), 19.11.2013-22.11.2013] R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional support: RVO:61388998 Keywords : bubbles * hot chocolate effect * visualization Subject RIV: BK - Fluid Dynamics
2009-01-01
The Chinese stock and property markets have been outperforming expectations, fueled by an unprecedented surge in bank lending. Xie Guozhong, an economist and board member of Rosetta Stone Advisors, argues the robust Chinese economic figures are only propped up by bubbles, whose bursting will lead to a hard landing for the economy. Xie published his opinion in a related article in Caijing Magazine. Edited excerpts follow:
The present invention concerns a gas bubbling cleaning method for objects to be cleaned having complicate shapes such as reactor equipments. For instance, air is used as the gas, while water is used as the cleaning fluid. A jetting air is jetted out to an object to be cleaned from an air bubbling nozzle disposed below the object. This constitutes air/water two phase flow near the object to be cleaned, to generate a three dimensional circulating flow. The distance between the inner wall surface of a cleaning vessel and the object to be cleaned is set to greater than 5 mm, and the ratio between the air flow rate and the horizontal cross section of the cleaning vessel is set to 0.1 to 0.4m/sec. This enables to enter an appropriate amount of bubbles to the air at the inside of the object to be cleaned having a complicate shape. Accordingly, deposits adhered to the inside of the object to be cleaned can be eliminated and cleaned effectively. (I.N.)
Mechanisms of gas bubble retention
Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength
Electrowetting of a soap bubble
Arscott, Steve
2013-01-01
A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture - the surfaces are composed of highly doped, commercial silicon wafers covered with nanometre thick films of Teflon. Voltages less than 40V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g. laboratory-on-a-chip) - the potential gains in terms of volume, speed and surface/volume ratio are non-negligible.
Rational Bubbles in Stock Prices?
Behzad T. Diba; Grossman, Herschel I.
1985-01-01
This paper reports empirical tests for the existence of rational bubbles in stock prices. The analysis focuses on a familiar model that defines market fundamentals to be the expected present value of dividends, discounted at a constantrate, and defines a rational bubble to be a self-confirming divergence of stock prices from market fundamentals in response to extraneous variables. The tests are based on the theoretical result that, if rational bubbles exist, time series obtained by differenci...
Rational Asset Pricing Bubbles Revisited
Jan Werner
2012-01-01
Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...
Droplets, Bubbles and Ultrasound Interactions.
Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel
2016-01-01
The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337
One possible fate of an accreting white dwarf is explosion in a type Ia supernova. However, the route to the thermonuclear runaway has always been uncertain owing to the lack of a convective model consistent with the Urca process. We derive a formalism for convective motions involving two radial flows. This formalism provides a framework for convective models that guarantees self-consistency for chemistry and energy budget, allows time-dependence and describes the interaction of convective motions with the global contraction or expansion of the star. In the one-stream limit, we reproduce several already existing convective models and allow them to treat chemistry. We also suggest as a model easy to implement in a stellar evolution code. We apply this formalism to convective Urca cores in Chandrasekhar mass white dwarfs. We stress that in degenerate matter, nuclear reactions that change the number of electrons strongly influence the convective velocities. We point out the sensitivity of the energy budget on the mixing. We illustrate our model by computing stationary convective cores with Urca nuclei. We show that even a very small mass fraction of Urca nuclei (10-8) strongly influences the convective velocities. Finally, we present preliminary computations of the late evolution of a close to Chandrasekhar mass C+O white dwarf including the convective Urca process
Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity
Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.
2015-01-01
Roč. 134, SEP 29 (2015), s. 205-216. ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014
Dynamic Bubble Behaviour during Microscale Subcooled Boiling
WANG Hao; PENG Xiao-Feng; David M.Christopher
2005-01-01
@@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.
Study of Interfacial Mass Transfer on Vapor Bubbles in Microgravity
Johannes Straub
2005-03-01
Full Text Available The knowledge of interfacial heat and mass transfer is important for environmental and technical applications, especially nowadays for numerical simulations of two phase problems. However, the data available up to now are inconsistent, because most experiments performed on earth suffer under buoyancy and convection, and thus the boundary conditions at the evaluation could not clearly be defined. Therefore, we seized the opportunity to investigate interfacial heat and mass transfer in microgravity environment. In these experiments the growth and collapse in the overall superheated and subcooled bubles, respectively, liquid or free vapor bubbles were observed at various liquid temperature and pressure states and over periods of from a few seconds up to 300 seconds. It was for the first time that such very long periods of bubble growth could be observed. The experimental set-up allowed the control of the liquid supersaturation before the bubbles were initiated by a short heat pulse at a miniaturized heater. Therefore it was possible to perform a systematic parametric study. The measured curves for vapor bubble growth are in good agreement with our numerical simulation. Based on this model the kinetic coefficients for the evaporation and condensation according to Hertz-Knudsen have been derived from the experimental data.
Optical behavior of surface bubbles
Straulino, Samuele; Gambi, Cecilia M. C.; Molesini, Giuseppe
2015-11-01
The observation of diamond-like light spots produced by surface bubbles obliquely illuminated is reported. The phenomenon is discussed in terms of geometrical optics, and an explanation is provided attributing the effect to the astigmatism introduced by the deformation of the liquid surface surrounding the bubble. An essential ray tracing program is outlined and used to reconstruct the observed phenomenon numerically.
Bubble chamber: colour enhanced tracks
1998-01-01
This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.
Bubble coalescence in breathing DNA
Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias; Hansen, Mikael Sonne; Metzler, Ralf
2007-01-01
We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...
Bubble Formation in Basalt-like Melts
Jensen, Martin; Keding, Ralf; Yue, Yuanzheng
2011-01-01
The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... species. Mass spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on...
Simulating deep convection with a shallow convection scheme
C. Hohenegger; Bretherton, C.S.
2011-01-01
Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convec...
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)
2001-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant
A heat transfer model for evaporating micro-channel coalescing bubble flow
Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, E-mail: john.thome@epfl.ch
2009-07-01
The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a {+-} 30% error band. (author)
Electric fields effect on the rise of single bubbles during boiling
Siedel, Samuel; Cioulachtjian, Serge; Bonjour, Jocelyn [CETHIL - UMR 5008 CNRS INSA-Lyon Univ. Lyon 1, INLSA-Lyon (France)], e-mail: jocelyn.bonjour@insa-lyon.fr
2009-07-01
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)
Electric fields effect on the rise of single bubbles during boiling
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)
Strings on Bubbling Geometries
Lin, Hai; Shock, Jonathan P
2010-01-01
We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.
Skenderis, Kostas
2007-01-01
We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maladacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.
Stochastic Convection Parameterizations
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Two dimensional superfluidity and melting
The author reviews the equilibrium theory of superfluidity and XY magnetism, due in large part to the seminal work of Kosterlitz and Thouless. A dynamic generalization of this theory, with application to third sound in helium films is discussed. The statistical mechanics of two-dimensional melting on both smooth and periodic substrates, is discussed. The dynamic version of the theory is sketched. A theory of melting dynamics is particularly important in interpreting of the experiments on melting and crystallization described earlier. Finally the theory as it applies to anisotropic media including layered materials like smectics, cholesterics, and Rayleigh-Benard convection cells, is discussed. (Auth.)
Liquid metal folding patterns induced by electric capillary force
Wang, Lei; Liu, Jing
2016-04-01
A fundamental phenomenon regarding spontaneous formation of symmetrical folding patterns induced on liquid metal free surface with circular shape features was disclosed. The occurrence and evolution processes of the patterns were demonstrated and interpreted. The electric capillary force imposed on liquid metal due to surface tension gradient was found responsible for producing a variety of surface folding patterns like wheel-shape, dual concentric ring-shape, and so on. All the patterns display a property of axial symmetry and could be analogue to the Rayleigh-Benard convection which produces hexagonal patterns. This finding on liquid metal flow folding refreshes knowledge of classical fluid kinematics.
Grid refinement for entropic lattice Boltzmann models
Dorschner, B; Chikatamarla, S S; Karlin, I V
2016-01-01
We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.
Mahood Hameed B.
2016-01-01
Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.
Préve, Deison; Saa, Alberto
2015-10-01
Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.
Marangoni convection in fuel elements with liquid metal sublayer
Analysis of heat- and mass-transfer in liquid metal sublayer of fuel element in the presence of gas bubbles is conducted. Analysis of the effects related with developing Marangoni convection is done. Assessed values are present for liquid metal flow velocities, temperature nonuniformity on inner side of fuel element cladding and in fuel pellets depending on gap size, physical properties of liquid metal in the gap, on heat generation rate and on average temperature in liquid-metal sublayer. It is shown that Marangoni convection can lead to fast corrosion on inner surface of the cladding. It is pointed out that at high values of convection rate the mechanism of material erosion also can be initiated
Bubble Growth in Lunar Basalts
Zhang, Y.
2009-05-01
Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth
Sonochemistry and the acoustic bubble
Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi
2015-01-01
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p
Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment
Grugel, Richard N.
2012-01-01
As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.
Dean Baker
2005-01-01
This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.
Kundu, Anup; Sharma, Chandan; Das, Gargi; Harikrishnan, G.
2011-01-01
In these fluid dynamics videos, we, for the first time, show various interactions of a 'Taylor bubble' with their smaller and differently, shaped counterparts, in a shear thinning, non-Newtonian fluid, confined in a narrow channel.
A certain part of helium generated in MOX fuel could form additional bubbles in fuel pellets as a result of the combination of radiation defects and high temperature. In the present study, the helium infusion treatments were conducted at high temperature with highly pressurized helium for both polycrystalline UO2 fragments and hyperstoichiometric single crystal UO2+x particles. Annealing tests for polycrystalline UO2 were followed by the helium infusion treatment to evaluate formation of helium bubble. In case of as helium-infused polycrystalline sample, it was confirmed that helium bubbles were formed after slight oxidative annealing at more than 1573K. On the other hand, the cavity observed in as-helium-infused single crystal sample grew up to form a negative crystal. Formation mechanism of helium bubble and negative crystal were discussed. (author)
Transient bubbles, bublets and breakup
Keen, Giles; Blake, John
1999-11-01
The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.
Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.
2010-06-01
Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.
Cox, D. P.
Modeling the Local Bubble is one of those activities fraught with danger. It is very easy to be too naive, to fail to consider the dependence of the model on assumptions about the nearby ambient state, or the likelihood of such a structure. It is similarly easy to become so caught up in the details of the vicinity that it is unclear where to begin a necessarily idealized modeling effort. And finally, it is important to remember that the data we have may in some cases be lying to us, and that we have not yet learned to read their facial expressions quite carefully enough. That said, I've tried in this paper to be helpful to those who may wish to take the risks. I surveyed the very most basic stories that the data seem to tell, and pointed out the standard coincidences that may be telling us a lot about what is happening, but may turn out once again to have been just coincidences. I've described 5 distinct conceptions that in one flavor or another pretty well survey the collection of mental images that have so far been carried by those who've attempted models. One may be right, or something entirely different may be more appropriate. It's at least vital to realize that a conception comes first, followed by a simplified model of details. I've also included a long list of questions directed at observers. Some have partial answers, some one wouldn't know today quite how to approach. But it is a list that students of the soft x-ray background, interstellar absorption lines, possible instrumentation, and the heliosphere may wish to review from time to time, just to see whether they can figure out how to be more helpful. There is another list for modelers, things the models must address, however-so-flimsily if necessary, because there are strong observational constraints (and stronger ones coming) on what can and cannot be present in the local ISM. To that I've added a few remarks concerning x-ray emission coming from beyond the Local Bubble, and another few on how x
Garaud, Pascale
2014-01-01
Much progress has recently been made in understanding and quantifying vertical mixing induced by double-diffusive instabilities such as fingering convection (usually called thermohaline convection) and oscillatory double-diffusive convection (a process closely related to semiconvection). This was prompted in parts by advances in supercomputing, which allow us to run Direct Numerical Simulations of these processes at parameter values approaching those relevant in stellar interiors, and in parts by recent theoretical developments in oceanography where such instabilities also occur. In this paper I summarize these recent findings, and propose new mixing parametrizations for both processes that can easily be implemented in stellar evolution codes.
Mechanisms of single bubble cleaning.
Reuter, Fabian; Mettin, Robert
2016-03-01
The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γflows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially
Ostwald Ripening in Multiple-Bubble Nuclei
Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu
2014-01-01
The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As ...
Learning the CAPM through Bubbles
Haim Kedar-Levy
2004-01-01
Bubbles are generally considered the outcome of investor irrationality or informational asymmetry, both objectionable in efficient markets with rational investors. We introduce an Intertemporal-CAPM with market clearing between high- and low-risk-averse rational investors who learn the CAPM under incomplete, yet symmetric information. Periodic equilibrium prices make a lognormal price process that nests the classic CAPM with a potential for endogenous bubbles through learning. The absence of ...
Preve, Deison
2015-01-01
Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $V<\\alpha L^3/6\\pi^2$, with $\\alpha\\approx 0.21$, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtainin...
The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
FEASTING BLACK HOLE BLOWS BUBBLES
2002-01-01
A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas
Bubbles Tomorrow and Bubbles Yesterday, but Never Bubbles Today?
Williams, John C.
2013-01-01
Considering their importance and the amount of effort that has gone into understanding them, asset price bubbles continue to perplex. The evidence of these bubbles seldom squares with what would be expected from standard asset price theory. Unlike the suggestions from theory, expectations of prices of both stocks and houses tend to be procyclical—price expectations are driven by recent price performance. Thus, price expectations are extrapolative rather than rational, as assumed by standard a...
Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.
1988-01-01
This paper will describe the experimental and analytical work that has been done to establish justification and feasibility for a Shuttle mid-deck experiment involving mass transfer between a gas bubble and a liquid. The experiment involves the observation and measurement of the dissolution of an isolated, immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble have been successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration has been accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model has been developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity. The results will yield information on transport under conditions of pure diffusion.
Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin
2012-01-01
Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented
Growth process of helium bubbles in aluminum
The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal at 200 to 6450C for 1 hr to 100 hr was observed by transmission electronmicroscopy and possible mechanisms are discussed. The effects of helium concentration and cold work were investigated. Helium bubbles are detectable only by annealing above 5500C for 1 hr in both the annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of the bubble distribution are divided into two categories, irrespective of helium concentration and cold work; (1) fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even by the anneal just below the melting point, and (2) the coarsened and nonuniform bubble distribution ranging from 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. From these two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment (1) the growth of bubbles by Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of the intermediate size bubble is explained in this way. (auth.)
Aspherical bubble dynamics and oscillation times
Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)
1999-03-01
The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.
Tohoku one meter bubble chamber
At the request of Tohoku University and the National Laboratory for High Energy Physics, IHI has developed a complete freon bubble chamber system successfully, which is used for photo analysis of elementary particles physics. This system will be delivered to Fermi National Accelerator Laboratory (FNAL) in Illinois (U.S.A.) and will be coupled with the superconducting accelerator (TEVATRON) for the study of elementary particles. The total system of the freon bubble chamber is composed of a stainless steel casting spherical bubble chamber with a diameter of about one meter, an expansion system for freon pressure control, hydraulic system for driving an expansion piston, a freon feed system, a temperature control system, an overall control system as well as camera and flashlight for photograph. (author)
Simulating deep convection with a shallow convection scheme
Hohenegger, C.; Bretherton, C. S.
2011-10-01
Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Simulating deep convection with a shallow convection scheme
C. Hohenegger
2011-03-01
Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-Column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.
Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Simulating deep convection with a shallow convection scheme
C. Hohenegger
2011-10-01
Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.
Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Gravity wave initiated convection
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Hydrodynamic Interactions of a Bubble Pair and Bubbles in Clusters
Stanovský, Petr; Růžička, Marek
Prague : ICPF ASCR, 2013. s. 122. ISBN N. [Workshop on Smart and Green Interfaces 2013. 20.3.2013-22.03.2013, Prague] Grant ostatní: COST (XE) MP1106 Institutional support: RVO:67985858 Keywords : ultrapure water * bubbles * silicon oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering
Parameterizing convective organization
Brian Earle Mapes
2011-06-01
Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time
Favre-Marinet, Michel
2009-01-01
Convection heat transfer is an important topic both for industrial applications and fundamental aspects. It combines the complexity of the flow dynamics and of the active or passive scalar transport process. It is part of many university courses such as Mechanical, Aeronautical, Chemical and Biomechanical Engineering. The literature on convective heat transfer is large, but the present manuscript differs in many aspects from the existing ones, particularly from the pedagogical point of view. Each chapter begins with a brief yet complete presentation of the related topic. This is followed by a
Arnett, W. David
2009-05-01
We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1
Mathematical models of convection
Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V
2012-01-01
Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel
Convective transport in tokamaks
Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)
Similarity Solution for Convection Heat Transfer Due to Marangoni Flow over a Flat Surface
无
2002-01-01
Marangoni convection occurs along any liquid-vapor interface that has a surface tension gradient. The surface tension gradient can result from either temperature or concentration gradients along the surface. Marangoni convection is of importance in crystal growth melts and during boiling as it influences the flow around the vapor bubbles. The influence of Marangoni induced convection is more obvious under microgravity but also occurs in earth gravity. This paper presents a similarity solution for Marangoni induced flow for both the velocity and temperature profiles, assuming developing boundary-layer flow along a surface with various imposed temperature profiles. The surface velocity, the total flow rate, and the heat transfer characteristics are given for various temperature profiles and various Prandtl numbers. Since the predicted boundary layer thickness would be much less than the diameter of vapor bubbles during nucleate boiling, the bubble surface curvature effects can be neglected and this analysis can also be used as a first estimate of the effect of Marangoni flow around a vapor bubble.
Radiation Characteristics of Glass Containing Gas Bubbles
Pilon, Laurent; Viskanta, Raymond
2003-01-01
In many materials processing and manufacturing situations such as steel, aluminum, ceramics and glass, gas bubbles can form in liquid and solid phases. The presence of such bubbles affects the thermophysical properties and radiation characteristics of the two-phase system and hence the transport phenomena. This paper presents a general formulation of the radiation characteristics of semitransparent media containing large gas bubbles (bubble radius is much larger than the wavelength of radiati...
Modeling bubbly-cap flows using two-group average bubble number density
The basic concept of two-group average bubble number density equations along with three-fluid model has been demonstrated for vertical gas-liquid flow. Specifically, the current study focused on: (i)classification of bubble interaction between spherical bubbles (Group-1) and cap bubbles (Group- 2), (ii) preliminary consideration of source and sink terms in the averaged bubble number density equations via the model of Hibiki and Ishii [1] and (iii) assessment by means of experimental data sets at bubbly-to-cap flow transition. Reasonable agreement was achieved between measured and predicted distributions of void fraction, interfacial area concentration (IAC) and volume equivalent bubble diameter. (author)
Frictional drag reduction by bubble injection
Murai, Yuichi
2014-07-01
The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.
Modeling bubble collapse aggressiveness in traveling bubble cavitation using bubble breakup model
Zima, Patrik; Sedlář, M.
Singapore : Research Publishing Services, 2012 - (Ohl, C.; Klaseboer, E.; Ohl, S.; Gong, S.; Khoo, B.), s. 182-186 ISBN 978-981-07-2826-7. [International Symposium on Cavitation /8./ CAV 2012. Singapur (SG), 13.08.2012-16.08.2012] R&D Projects: GA ČR GAP101/10/1428 Institutional research plan: CEZ:AV0Z20760514 Keywords : bubble collapse * traveling bubble cavitation * numerical modeling Subject RIV: BK - Fluid Dynamics http://rpsonline.com.sg/proceedings/9789810728267/html/209.xml51.xml
On the contribution of plasma sheet bubbles to the storm time ring current
Yang, Jian; Toffoletto, Frank R.; Wolf, Richard A.; Sazykin, Stanislav
2015-09-01
Particle injections occur frequently inside 10 Re during geomagnetic storms. They are commonly associated with bursty bulk flows or plasma sheet bubbles transported from the tail to the inner magnetosphere. Although observations and theoretical arguments have suggested that they may have an important role in storm time dynamics, this assertion has not been addressed quantitatively. In this paper, we investigate which process is dominant for the storm time ring current buildup: large-scale enhanced convection or localized bubble injections. We use the Rice Convection Model-Equilibrium (RCM-E) to model a series of idealized storm main phases. The boundary conditions at 14-15 Re on the nightside are adjusted to randomly inject bubbles to a degree roughly consistent with observed statistical properties. A test particle tracing technique is then used to identify the source of the ring current plasma. We find that the contribution of plasma sheet bubbles to the ring current energy increases from ~20% for weak storms to ~50% for moderate storms and levels off at ~61% for intense storms, while the contribution of trapped particles decreases from ~60% for weak storms to ~30% for moderate and ~21% for intense storms. The contribution of nonbubble plasma sheet flux tubes remains ~20% on average regardless of the storm intensity. Consistent with previous RCM and RCM-E simulations, our results show that the mechanisms for plasma sheet bubbles enhancing the ring current energy are (1) the deep penetration of bubbles and (2) the bulk plasma pushed ahead of bubbles. Both the bubbles and the plasma pushed ahead typically contain larger distribution functions than those in the inner magnetosphere at quiet times. An integrated effect of those individual bubble injections is the gradual enhancement of the storm time ring current. We also make two predictions testable against observations. First, fluctuations over a time scale of 5-20 min in the plasma distributions and electric field
Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm
2013-05-01
Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.
Bejan, A
2006-01-01
Provides an introduction to convection in porous media, such as fibrous insulation, geological strata, and catalytic reactors. This third edition covers ""designed"" porous media, the theory of deformable media, modeling viscous dissipation in hyperporous media, and more. It is useful for researchers, practicing engineers and students.
Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE
Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.
2003-01-01
Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.
Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble
罗晶; 许唯临; 牛志攀; 罗书靖; 郑秋文
2013-01-01
Experiments are carried out by using high-speed photography to investigate the interaction between the spark-generated cavitation bubble and the air bubble in its surrounding fluid. Three problems are discussed in detail: the impact of the air bubble upon the development of the cavitation bubble, the evolution of the air bubble under the influence of the cavitation bubble, and the change of the fluid pressure during the development of a micro jet of the cavitation bubble. Based on the experimental results, under the condition of no air bubble present, the lifetime of the cavitation bubble from expansion to contraction increases with the increase of the maximum radius. On the other hand, when there is an air bubble present, different sized cavitation bubbles have similarity with one another generally in terms of the lifetime from expansion to contraction, which does not depend on the maximum radius. Also, with the presence of an air bubble, the lifetime of the smaller cavitation bubble is extended while that of the bigger ones reduced. Furthermore, it is shown in the experiment that the low pressure formed in the opposite direction to the cavitation bubble micro jet makes the air bubble in the low pressure area being stretched into a steplike shape.
. Measured DFs are described as a function of the time and the iodine concentration. To clarify the process of the iodine mass transfer in a xenon-iodine mixed gas bubble rising through the liquid sodium pool, the mass transfer is analyzed on the basis of a diffusion model applied to the first short stage just after the bubble generation and a convection model applied to the successive stage. In the diffusion model, production of sodium iodide aerosols and generation of the heat caused by the chemical reaction of iodine vapor and sodium vapor are taken into account in addition to the diffusion of vapor and aerosols and the heat conduction in a static spherical bubble. The diffusion of aerosols is composed of Brownian motion, thermophoresis and diffusiophoresis. In the convection model, the analysis is made for aerosol settling caused by inertial deposition, sedimentation and Brownian motion in an internal flow induced by a spherical cap bubble rising. Increase in the initial iodine concentration in the bubble is shown to enlarge the temperature difference across a region between the reaction front and the bubble surface and enhance a contribution of thermophoresis to the aerosol diffusion through the region. The DF obtained from the calculation describes well a rapid increase at the first stage and a slow increase in the successive Period, which are seen in measured DFs, and suggests the breakup of the original bubble during rising through the pool. (author)
Hydrodynamics in a swarm of rising bubbles
In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α0,4, spectrum in k-3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)
Shell correction energy for bubble nuclei
Yu, Y; Magierski, P; Bulgac, Aurel; Magierski, Piotr
2000-01-01
The positioning of a bubble inside a many fermion system does not affect the volume, surface or curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the only other contribution to the ground state energy of such a system arises from shell effects. We show that the potential energy surface is a rather shallow function of the displacement of the bubble from the center and in most cases the preferential position of a bubble is off center. Systems with bubbles are expected to have bands of extremely low lying collective states, corresponding to various bubble displacements.