WorldWideScience

Sample records for bubbling fluidised bed

  1. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  2. Modeling and Simulation of a lab-scale Fluidised Bed

    Directory of Open Access Journals (Sweden)

    Britt Halvorsen

    2002-04-01

    Full Text Available The flow behaviour of a lab-scale fluidised bed with a central jet has been simulated. The study has been performed with an in-house computational fluid dynamics (CFD model named FLOTRACS-MP-3D. The CFD model is based on a multi-fluid Eulerian description of the phases, where the kinetic theory for granular flow forms the basis for turbulence modelling of the solid phases. A two-dimensional Cartesian co-ordinate system is used to describe the geometry. This paper discusses whether bubble formation and bed height are influenced by coefficient of restitution, drag model and number of solid phases. Measurements of the same fluidised bed with a digital video camera are performed. Computational results are compared with the experimental results, and the discrepancies are discussed.

  3. Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier

    International Nuclear Information System (INIS)

    Kaewluan, Sommas; Pipatmanomai, Suneerat

    2011-01-01

    Experiments of rubber wood chip gasification were carried out in a 100-kW th bubbling fluidised bed gasifier to investigate the effect of air to fuel ratio (represented as equivalence ratio - ER) on the yield and properties of synthesis gas. For all experiments, the flow rate of ambient air was fixed, while the feed rate of rubber wood chip was adjusted to vary ER in the range of 0.32-0.43. Increasing ER continuously raised the bed temperature, which resulted in higher synthesis gas yield and lower yield of ash and tar. However, higher ER generally gave synthesis gas of lower heating value, partly due to the dilution of N 2 . Considering the energy efficiency of the process, the optimum operation was achieved at ER = 0.38, which yielded 2.33 Nm 3 of synthesis gas per kg of dry biomass at the heating value of 4.94 MJ/Nm 3 . The calculated carbon conversion efficiency and gasification efficiency were 97.3% and 80.2%, respectively. The mass and energy balance of the gasification process showed that the mass and energy distribution was significantly affected by ER and that the energy losses accounted for ∼25% of the total output energy. The economical assessment of synthesis gas utilisation for heat and electricity production based on a 1-MW th bubbling fluidised bed gasifier and the operational data resulting from the rubber wood chip gasification experiments in this study clearly demonstrated the attractiveness of replacing heavy fuel oil and natural gas by the synthesis gas for heat applications in terms of 70% and 50% annual saving of fuel cost, respectively. However, the case of electricity production does not seem a preferable option due to its current technical and non-technical barriers.

  4. Fluidised bed cereal cooking

    International Nuclear Information System (INIS)

    Jenkins, Simon Anthony

    2002-01-01

    Man has been cooking food for thousands of years for a number of reasons: to improve flavour and palatability, sterilise, increase digestibility, improve texture and colour. Increasingly more advanced techniques are employed today in food production plants to engineer foods with many different properties. With this in mind manufacturers are constantly seeking to improve processing techniques and apply new or different technologies (such as microwaves, RF and extrusion) to develop foods with new properties (like puffed texture starches) and to increase process efficiencies (energy efficiency, water reduction). This thesis reports on work undertaken to demonstrate the potential to achieve high temperature starch conversion of whole wheat grains in a fluidised bed, thereby reducing the amount of water required and processing time. Specifically, wheat from the farm at 14% water content is cooked in a fluidised bed. The fluidised bed heats the wheat quickly by convective heating. In addition, energy can be delivered directly to the grain by microwave heating during fluidisation. Degree of starch conversion is determined by measuring the reduction in size of endotherm of reaction as observed by Differential Scanning Calorimetry. The fluidising gas, processing temperature and starting moisture content were varied in order to investigate their effect on the cooking process. A mathematical model based on energy and species concentration equations was developed to help understand the internal grain processes. The model coupled the thermal energy equation with water diffusion. The effect of water evaporation was represented as a thermal sink in the energy equation. Popular kinetic models from literature were adapted to predict the degree of starch conversion. The model gives solutions consistent with experimental data and physical intuition. A commercial computational fluid dynamics package was used to study simple airflow and particle tracks in the fluidisation column. A

  5. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  6. Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A hard-sphere discrete particle model of a gas-fluidised bed was used in order to simulate segregation phenomena in systems consisting of particles of different sizes. In the model, the gas-phase hydrodynamics is described by the spatially averaged Navier¿Stokes equations for two-phase flow. For

  7. Solid phase transport in series fluidised bed reactors

    International Nuclear Information System (INIS)

    Hayes, M.R.

    1980-01-01

    In a multistage counter-current fluidised bed column, fluidised bed material is recycled within each stage and a fraction is continuously withdrawn to the next lower stage at a rate dependent only on the rate of removal of the fluidised bed material from the base of the column. It has a particular application to the ion exchange treatment of liquids containing suspended solids, for example leach solutions from uranium ores. (author)

  8. Dynamical and technological consequences of multiple isolas of steady states in a catalytic fluidised-bed reactor

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2017-09-01

    Full Text Available Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.

  9. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.

    Science.gov (United States)

    Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

    2008-11-01

    Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.

  10. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  11. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  12. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  13. Performance of entrained flow and fluidised bed biomass gasifiers on different scales

    International Nuclear Information System (INIS)

    Tremel, Alexander; Becherer, Dominik; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut

    2013-01-01

    Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MW th to 500 MW th . While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MW th ) and €7.4 cent/kWh (10 MW th ) in the economic analysis of both technologies. The study indicates that the

  14. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy-fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 3.752, year: 2016

  15. Axial concentration profiles and N{sub 2}O flue gas in a pilot scale bubbling fluidised bed coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tarelho, L.A.C.; Matos, M.A.A.; Pereira, F.J.M.A. [Environment and Planning Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-05-15

    Atmospheric Bubbling Fluidised Bed Coal Combustion (ABFBCC) of a bituminous coal and anthracite with particle diameters in the range 500-4000 {mu}m was investigated in a pilot-plant facility (circular section with 0.25 m internal diameter and 3 m height). The experiments were conducted at steady-state conditions using three excess air levels (10%, 25% and 50%) and bed temperatures in the 750-900 {sup o}C range. Combustion air was staged, with primary air accounting for 100%, 80% and 60% of total combustion air. For both types of coal, virtually no N{sub 2}O was found in significant amounts inside the bed. However, just above the bed-freeboard interface, the N{sub 2}O concentration increased monotonically along the freeboard and towards the exit flue. The N{sub 2}O concentrations in the reactor ranged between 0-90 ppm during bituminous coal combustion and 0-30 ppm for anthracite. For both coals, the lowest values occurred at the higher bed temperature (900 {sup o}C) with low excess air (10%) and high air staging (60% primary air), whereas the highest occurred at the lower bed temperature (750 {sup o}C for bituminous, 825 {sup o}C for anthracite) with high excess air (50%) and single stage combustion. Most of the observed results could be qualitatively interpreted in terms of a set of homogeneous and heterogeneous reactions, where catalytic surfaces (such as char, sand and coal ash) can play an important role in the formation and destruction of N{sub 2}O and its precursors (such as HCN, NH{sub 3} and HCNO) by free radicals (O, H, OH) and reducing species (H{sub 2}, CO, HCs)

  16. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach.

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision

  17. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy- fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuel s Impact factor: 3.752, year: 2016

  18. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  19. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A [ATEKO a.s., Hradec Kralove (Czech Republic)

    1997-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  20. Coal-char combustion in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, S.P.; Pande, M. [Indian Institute of Technolgy, Kanpur (India)

    2001-12-01

    Combustion of bituminous coal chars ranging from 0.8 mm to 1.8 mm has been studied in a fluidised bed reactor at temperatures ranging from 500 to 850{sup o}C. The fluidised bed consists of inert sand particles of average size of 0.5 mm and reactive coal char particles. A heat balance has been worked out to calculate the rate of combustion of char from measured incremental changes in the bed temperature during combustion. Investigations on partially burnt particles suggest that the ash layer which builds up around the burning core of char particles is non-flaking and the particles burn in a shrinking core manner. Analysis of rate data indicates that the rate of combustion is controlled by chemical reaction kinetics, though diffusion of oxygen through the bundary layer begins to influence the overall reaction kinetics at higher temperatures. The burnt out time varies linearly with particle size. Activation energy for the chemical reaction control regime is found to be around 68 kJ/mole.

  1. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C

    2017-04-01

    Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.

  2. Comparative simulation of a fluidised bed reformer using industrial process simulators

    Science.gov (United States)

    Bashiri, Hamed; Sotudeh-Gharebagh, Rahmat; Sarvar-Amini, Amin; Haghtalab, Ali; Mostoufi, Navid

    2016-08-01

    A simulation model is developed by commercial simulators in order to predict the performance of a fluidised bed reformer. As many physical and chemical phenomena take place in the reformer, two sub-models (hydrodynamic and reaction sub-models) are needed. The hydrodynamic sub-model is based on the dynamic two-phase model and the reaction sub-model is derived from the literature. In the overall model, the bed is divided into several sections. In each section, the flow of the gas is considered as plug flow through the bubble phase and perfectly mixed through the emulsion phase. Experimental data from the literature were used to validate the model. Close agreement was found between the model of both ASPEN Plus (ASPEN PLUS 2004 ©) and HYSYS (ASPEN HYSYS 2004 ©) and the experimental data using various sectioning of the reactor ranged from one to four. The experimental conversion lies between one and four sections as expected. The model proposed in this work can be used as a framework in developing the complicated models for non-ideal reactors inside of the process simulators.

  3. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  4. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    Blacker, P.T.; McLain, D.R.

    1962-04-01

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  5. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, P T; McLain, D R [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-04-15

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm{sup 2}. This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable.

  6. Gaseous emissions in pressurised fluidised-bed combustion. Analysis and summary of the pilot experiments

    International Nuclear Information System (INIS)

    Korpela, T.; Hippinen, I.; Konkola, M.

    1996-01-01

    The influence of operating conditions on gaseous emissions in pressurised fluidised-bed combustion have been studied. The research objectives have been behaviour of sulphur absorbents and reduction of sulphur dioxide emissions, reduction of nitrogen oxide emissions, release of vapour-phase alkalimetals and carbon monoxide emissions. The sulphur capture capacities of calcium-based sorbents under PFBC conditions have been studied at a pressurised fluidised-bed reactor and at a pressurised thermogravimetric apparatus. The project has also connected results of the experimental PFBC at HUT/EVO. (author)

  7. Kinetic evaluation of an anaerobic fluidised-bed reactor treating slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    An anaerobic fluidised-bed reactor for purification of slaughterhouse wastewater was modelled as a continuous-flow, completely-mixed homogeneous microbial system, with the feed COD as the limiting-substrate concentration. The average microbial residence time in the reactor was defined in terms of conventional sludge-retention-time. The experimental data obtained indicated that the Michaelis-Menten expression was applicable to a description of substrate utilisation (i.e. COD removal) in the anaerobic fluidised-bed system. The maximum substrate utilisation rate, k, and the Michaelis constant, K{sub s}, were determined to be 1.2/day and 0.039 g/l. The observed biomass yield in the reactor decreased with increasing sludge-retention-time. The specific methane production rate observed was a linear function of the specific substrate-utilisation rate. (Author)

  8. Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-09-01

    Full Text Available Fluidised bed gasification (FBG) is a clean coal technology suitable for power and fuel generation from low grade coals. However, the resulting bottom ash presents some disposal challenges to the power plants and the environment. The production...

  9. a novel interconnected fluidised bed for the combined flash pyrolysis of biomass and combustion of char

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, Arthur M.C.; Biesheuvel, P.M.; Biesheuvel, Pieter Maarten; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    A novel system of two adjacent fluidised beds operating in different gas atmospheres and exchanging solids was developed for the combined flash pyrolysis of biomass and combustion of the produced char. Fluidised sand particles (200 μm < dp < 400 μm) are transported from the pyrolysis reactor to the

  10. A novel interconnected fluidised bed for the combined flash pyrolysis of biomass and combustion of char.

    NARCIS (Netherlands)

    Janse, Arthur M.C.; Janse, A.M.C.; Biesheuvel, P.M.; Biesheuvel, Pieter Maarten; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A novel system of two adjacent fluidised beds operating in different gas atmospheres and exchanging solids was developed for the combined flash pyrolysis of biomass and combustion of the produced char. Fluidised sand particles (200 μm < dp < 400 μm) are transported from the pyrolysis reactor to the

  11. Experience gained in bench scale and pilot scale fluidised bed processing

    CSIR Research Space (South Africa)

    Hadley, TD

    2005-01-01

    Full Text Available of titanium dioxide. Expertise in the design and commissioning of industrial-scale plants has led to the supply (through licensees) of a biomass sludge incinerator/boiler generating 26t/h steam, a 20 MW high-sulphur pitch incinerator and a 12 MW fluidised bed...

  12. Heat transfer in a membrane assisted fluidised bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidised bed was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged in a staggered formation with the membrane

  13. Combustion of poultry litter in a fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; D. Boavida; J. Seabra Barros; I. Cabrita; J. Leahy; B. Kelleher; M. Leahy [DEECA-INETI, Lisbon (Portugal)

    2003-04-01

    Combustion studies of poultry litter alone or mixed with peat by 50% on weight basis were undertaken in an atmospheric bubbling fluidised bed. Because of high moisture content of poultry litter, there was some uncertainty whether the combustion could be sustained on 100% poultry litter and as peat is very available in Ireland, its presence was considered to help to improve the combustion. However, the results showed that, as long as the moisture content of poultry litter was kept below 25%, the combustion did not need the addition of peat. The main parameters that were investigated are (i) moisture content, (ii) air staging, and (iii) variations in excess air levels along the freeboard. The main conclusions of the results are (i) combustion was influenced very much by the conditions of the fuel supply, (ii) the steady fuel supply was strongly dependent on the moisture content of the poultry litter, (iii) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, (iv) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and (vi) NOx emissions were influenced by air staging in the freeboard. Particles collected from the bed and the two cyclones were analysed to determine the levels of heavy metals and the leachability tests were carried out with ashes collected to verify whether or not they could safely be used in agricultural lands. 8 refs., 1 fig., 8 tabs.

  14. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available that due to the good heat and mass transfer properties of fluidised beds, coal with ash contents up to 70% can be utilised. The CSIR’s research and development work resulted in the installation of five bubbling fluidised bed combustors (BFBCs) between... 1989 and 1999. Other companies, such as Babcock and Scientific Design, also installed a number of BFBC plants during this time. It was realised during the development of BFBC technology that due to the low lateral dispersion coefficient of coal...

  15. Optimum diameter of a circulating fluidised bed combustor with negative wall heat flux

    CSIR Research Space (South Africa)

    Baloyi, J

    2015-07-01

    Full Text Available on irreversibilities in a 7 m circulating fluidised bed combustor with a negative wall heat flux, firing a mixture of air and solid pitch pine wood, was investigated. An analytical expression was derived that predicts the entropy generation rate, thereby...

  16. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    Energy Technology Data Exchange (ETDEWEB)

    Hoogeveen, M O [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.).

  17. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    International Nuclear Information System (INIS)

    Hoogeveen, M.O.

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.)

  18. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  19. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  20. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  1. A multi-biofuel, fluidised-bed district heating plant in Sweden

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At the end of 1984, the city of Haessleholm in Sweden started up a 65 MW district heating plant which included a 14 MW solid fuel plant. The plant included a specially-designed fluidised-bed boiler, capable of burning all grades of solid fuel, including organic fuel of such low grade that no other boilers around Haessleholm could use it. By 1992, the district heating system served some 250 detached houses and 6,000 flats as well as several schools and industrial premises. The biofuel boiler provides almost 60% of the energy required. (UK)

  2. Energy recovery from sewage sludge by means of fluidised bed gasification

    International Nuclear Information System (INIS)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes

  3. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  4. Gaseous emissions in pressurised fluidised-bed combustion. Analysis and summary of the pilot experiments; Kaasumaiset paeaestoet paineistetussa leijukerrospoltossa. Koetulosten kaesittely ja yhteenveto

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Hippinen, I.; Konkola, M. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The influence of operating conditions on gaseous emissions in pressurised fluidised-bed combustion have been studied. The research objectives have been behaviour of sulphur absorbents and reduction of sulphur dioxide emissions, reduction of nitrogen oxide emissions, release of vapour-phase alkalimetals and carbon monoxide emissions. The sulphur capture capacities of calcium-based sorbents under PFBC conditions have been studied at a pressurised fluidised-bed reactor and at a pressurised thermogravimetric apparatus. The project has also connected results of the experimental PFBC at HUT/EVO. (author)

  5. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  6. Occurrence of bromine in fluidised bed combustion of solid recovered fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vainikka, P.

    2011-12-15

    Corrosive ash species are the single most important factor limiting the electric efficiency of steam boiler plants fired with waste or biomass. Chlorine has been found to have a central role in the chemistry involved as it reduces the melting temperature of ash, forms corrosive vapour and gas species in the furnace and halogenated deposits on boiler heat transfer surfaces. In this context chlorine has been extensively researched. At the time of writing this thesis there was hardly any published data available on the occurrence of bromine (Br) in the aforementioned context. The objective of this work was to review the occurrence of bromine in solid fuels and characterise the behaviour of bromine in full-scale fluidised bed combustion. The review on the occurrence of bromine in solid fuels revealed that in anthropogenic wastes bromine is mainly found in connection to flame retarded substances. Several weight percentages of bromine can be found in plastics treated with brominated flame retardants (BFRs). Bromine is typically found some 100-200 mg kg-1 in mixed municipal solid wastes (MSW). Bromine may be enriched in fuels with high share of plastics, such as solid recovered fuel (SRF) or refuse derived fuel (RDF). Up to 2000 mg kg-1 was found as a monthly average in SRF, typical levels being 20-200 mg kg-1. Wastewater sludge from paper mills may contain bromine 20-100 mg kg-1 due the use of bromine based biocides. In other fuels bromine may be found in significant amounts in marine influenced coal deposits and peat as well as in biomass treated with brominated pesticides. In the experimental part SRF, spruce bark and wastewater sludge from a paper mill were co-fired in a full- scale bubbling fluidised bed (BFB) boiler, and the collected fuels, aerosols and waterwall deposits were analysed with the focus on the fate of bromine. Bromine was mainly found to form water soluble high vapour pressure alkali metal halides in the furnace - in the form of KBr(g) and NaBr(g) as

  7. Fluidisation and dispersion behaviour of small high density pellicular expanded bed adsorbents

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Elsner, H.D.; Thomas, Owen R. T.

    2002-01-01

    correlation for characterisation of expanded bed systems is questioned. Residence time distribution studies using acetone tracers, demonstrated that in comparison to existing commercial supports, the small pellicular prototype materials generally possessed far superior hydrodynamic properties, which augurs......, fluidisation behaviour was poorly predicted from the Richardson-Zaki correlation, with experimentally determined values of the expansion index being considerably higher than the theoretical values. The reasons for these discrepancies are discussed in detail and the validity of applying this widely used...

  8. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  9. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Jong, W de; Hein, K R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  10. On suitability of novel fluidised bed technique for separation of metallic powders during commercial powder metallurgical processing

    NARCIS (Netherlands)

    Ritherdon, J; Dechsiri, C; Jones, AR; Hoffmann, AC; Wright, IG

    Experiments have been performed to test the efficiency with which a novel fluidised bed technique could separate different metallic powders in terms of size and density. The overall aim was to assess the potential of this technique for the commercial separation of defective powder fractions from

  11. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  12. Thermal disposal of sewage sludges by fluidised bed combustion with low emissions of pollutants. Thermische Entsorgung kommunaler Klaerschlaemme durch schadstoffarme Verbrennung in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, B. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik); Lindau, S. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik); Busse, U. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik)

    1992-04-01

    The volume of sludge from the sewage treatment represents the largest problem in the waste management in Germany recently. The thermal treatment is inevitable for the solution of the problem. The fluidised bed combustion is suitable for a very good usability of sewage sludge. Experimental investigations carried out in a stationary fluidised bed in laboratory scale. The emissions of gaseous air pollutants are influenced by the properties of the sludge and the parameters of the process. The dependence of the formation and the reactions of the pollutants from various parameters are analysed and judged. (orig.)

  13. Effect of organic loading rate on anaerobic treatment of slaughterhouse wastewater in a fluidised-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    COD removal efficiencies in the range 75.0-98.9% were achieved in an aerobic fluidised-bed reactor treating slaughterhouse wastewater, when evaluated at organic loading rates (OLR) of between 2.9 and 54.0 g COD/l.d, hydraulic retention times (HRT) of between 0.5 and 8 h and feed COD concentrations of between 250 and 4500 mg/l. More than 94% of feed COD could be removed up to OLR of about 27 g COD/l.d. Up to 0.320 litres of methane were produced per gram of COD removed and this methane production rate was independent of the OLR applied in this investigation. Volatile fatty acid (VFA) concentration in the reactor increased sharply at an OLR of about 30 g COD/l.d and, therefore, sufficient alkalinity should be provided to prevent pH from dropping to an undesirable level. The anaerobic fluidised-bed system can be operated at a significantly higher liquid throughput than other previously reported systems while maintaining its excellent efficiency. (Author)

  14. Gasification of Biomass with CO2 and H2O Mixtures in a Catalytic Fluidised Bed.

    Czech Academy of Sciences Publication Activity Database

    Jeremiáš, Michal; Pohořelý, Michael; Svoboda, Karel; Manovic, V.; Anthony, E.J.; Skoblia, S.; Beňo, Z.; Šyc, Michal

    2017-01-01

    Roč. 210, DEC 15 (2017), s. 605-610 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 103-2923-E-042A-001-MY3 Institutional support: RVO:67985858 Keywords : fluidised bed * gasification * catalyst Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 4.601, year: 2016

  15. A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, F.J.; Ollero, P. [Universidad de Sevilla (Spain). Dept. de Ingenieria Quimica y Ambiental; Cabanillas, A.; Otero, J. [Centro de Investigaciones Energeticas y Medioambientales, (CIEMAT), Madrid (Spain)

    2002-11-01

    Flue gas desulfurisation in a circulating fluidised bed absorber (CFBA) is quite a novel dry desulfurisation technology [6th International Conference on Circulating Fluidised Beds (1999) 601] that shows significant advantages in comparison with other dry technologies and that could also be competitive with the widely-used wet FGD technology. This experimental study analyses the performance of a flue gas treatment plant comprising a CFBA and an electrostatic precipitator (ESP). The most significant aspects considered in this study are: the effect of precollecting the fly ash, the effect of the SO{sub 2} inlet concentration, the effect of power plant load changes, the contribution of the final particulate control equipment to the overall SO{sub 2} removal efficiency and the impact of the desulfurisation unit on the ESP behaviour and its final dust emissions. In addition, the behaviour of the integrated CFBA-ESP system with respect to the main operating parameters was studied by means of a fractional factorial design of experiments. All this experimental work was carried out in a 3-MWe equivalent pilot plant that processes real gases withdrawn from the Los Barrios Power Plant. Processing a flue gas with up to 2000 ppm SO{sub 2} concentration, a sulfur removal of 95-97% with a lime utilisation of 75% was achieved. A simple regression model to evaluate the efficiency of the whole system is also proposed.(author)

  16. Gas fluidized bed reactor

    International Nuclear Information System (INIS)

    Bernardelli, H. da C.

    1976-03-01

    The equations of motion for both gas and particles in a gas fluidised system are stablished through general assumptions which are generally accepted on physical grounds. The resulting model is used to study the velocity fields of each phase in the case of an isolated bubble rising close to the flat distributor plate. A well posed problem results for the solution of Laplace's equation of the potential flow of the particles when consideration is given to the presence of the distributor as a boundary condition. The corresponding stream functions are also obtained which enable the drawing of the motion patterns using numerical techniques. The following two dimensional cases are analysed: S/b=1; S/b=1,5; S/b=2,5; S/b=5 and the limiting case S/b→αinfinite. The results for the interphase exchange between bubbles and particulate phases are applied to a gas fluidised bed reactor and its effect on the chemical conversion is studied for the simplest cases of piston flow and perfect mixing in the particulate phase [pt

  17. Gasification of Biomass with CO2 and H2O Mixtures in a Catalytic Fluidised Bed.

    Czech Academy of Sciences Publication Activity Database

    Jeremiáš, Michal; Pohořelý, Michael; Svoboda, Karel; Manovic, V.; Anthony, E.J.; Skoblia, S.; Beňo, Z.; Šyc, Michal

    2017-01-01

    Roč. 210, DEC 15 (2017), s. 605-610 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 103-2923-E-042A-001-MY3 Institutional support: RVO:67985858 Keywords : fluidised bed * gasification * catalyst Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuel s Impact factor: 4.601, year: 2016

  18. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  19. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available model (CeSFaMB). The predictive capability of the model was analysed in terms of the degree of variation between experimental and simulated results for each test. The calibrated model was used to design a 15 MW fluidised bed coal gasifier...-scale BFBG are given in Figure 1 and Table 1. Process description Coal, air, oxygen and steam are the input streams to the process which produce the output streams: gas and char (ash). Coal is fed to the gasifier by means of a screw conveyor at a...

  20. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  1. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  2. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    Gidaspow, D.P.; Tsuo, Y.P.; Ding, J.

    1991-01-01

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  3. Recommendations for conversions of grate fired boilers to fluidising beds; Anvisningar foer konvertering av rosterpannor till fluidiserad baeddteknik

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lars; Ingman, Rolf [AaF Energikonsult AB, Stockholm (Sweden)

    2001-03-01

    This report gives advice and recommendations for retrofitting of grate fired boilers to fluidising beds. Nine plants have been visited and experiences from these conversion projects have been gathered and analysed. Among the important points planning, fuel specification, heat balance calculations and clarifying of delivery limits can be mentioned. It is also important not to underestimate the need for education of the operational staff.

  4. Validation of the flux number as scaling parameter for top-spray fluidised bed systems

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    2SO4 using Dextrin as binder in three top-spray fluidised bed scales, i.e. a small-scale (type: GEA Aeromatic-Fielder Strea-1), medium-scale (type: Niro MP-1) and large-scale (type: GEA MP-2/3). Following the parameter guidelines adapted from the original patent description, the flux number....... Coating conditions with flux number values of 4.5 and 4.7 were however successful in terms of agglomeration tendency and match of particle size fractions, but indicated in addition a strong influence of nozzle pressure. The present paper suggests even narrower boundaries for the flux number compared...

  5. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  6. The combustion of coal blends in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    Combustion studies of five coals of different origin were carried out in a laboratory scale fluidised bed combustor. Five blends prepared by mixing two coals based on their petrological characterisation, in varying amounts, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. The results showed that some blends had the opposite behaviour concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were, however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of Nox. Most of the blends studied showed some evidence of interaction between them. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  7. Wear oxidation of evaporator coils in fluidised bed captive power plants

    International Nuclear Information System (INIS)

    Ghosal, S.K.; De, P.K.

    2000-01-01

    Combustion of pulverised coal or gas to form steam in thermal power plants is a common practice. Corrosion of water-wall, superheater and reheater tubes is the typical problem faced in these power plants. Modification of process conditions, redesigning of equipment and selection of more corrosion resistant materials are few methods which have been tried to combat corrosion to a certain extent. Restricted heat transfer efficiency is another problem associated with these power plants. In order to bring upon improvements, fluidized bed combustors are being used in some advanced thermal power plants at present because of excellent combustion and heat transfer efficiencies. Even with low grade coals, higher combustion efficiency could be achieved in these combustors due to excellent gas/solid chemical reactivity at relatively low reaction temperatures. Further improvements in in-bed heat transfer and bed temperature uniformity have been possible with the use of sand in bed. However, erosion, corrosion and combined erosion/corrosion are some of the major modes of material degradation associated with these fluidized bed combustors using sand. Recently in a captive power unit using bubbling fluidized bed combustors containing sand, evaporator coils made of carbon steel were seen to be severely affected by erosion corrosion. The directional nature of metal removal from the studs, tube OD and ultimately the rupture of the thinned tube wall confirmed the above observation. Microstructural examinations showed loss of carbon at certain places including those near the leaked/punctured regions at the prevailing bed temperature of 850 deg C. This paper describes the detailed investigations carried out on wear oxidation phenomenon occurred in a captive thermal power plant using advanced bubbling fluidized bed combustors. (author)

  8. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  9. Application of process tomography in gas-solid fluidised beds in different scales and structures

    Science.gov (United States)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  10. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  11. Bubble Swarm Rise Velocity in Fluidized Beds.

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Růžička, Marek; Šimčík, Miroslav

    2016-01-01

    Roč. 152, OCT 2 (2016), s. 84-94 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA15-05534S Institutional support: RVO:67985858 Keywords : bubbling fluidized bed * gas-solid * bubble swarm velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.895, year: 2016

  12. Hydrodynamic study of the turbulent fluidized beds; Etude hydrodynamique des lits fluidises turbulents

    Energy Technology Data Exchange (ETDEWEB)

    Taxil, I.

    1996-12-20

    Gas-solid turbulent fluidization has already been widely studied in the literature. However, its definition and specificities remain controversial and confused. Most of the studies focussed on the turbulent transition velocities are based on wall pressure drop fluctuations studies. In this work, we first characterize the turbulent regime with the classical study of pressure drop signals with standard deviation analysis, completed with a more specific frequency analysis and also by a stochastic analysis. Then, we evaluate bubble flow properties. Experimental results have been obtained in a 0.2 m I.D. fluidized bed expanding to 0.4 m I.D. in the freeboard in order to limit entrainment at high fluidization velocities. The so lid used was FCC catalyst. It was fluidized by air at ambient conditions. The superficial fluidization velocity ranged 0.2 to 2 m/s. Fast response transducers recorded pressure drop at the wall and bubble flow properties (bubble size, bubble velocity and bubble frequency) could be deduced from a light reflected signal at various bed locations with optical fibers. It has been shown the turbulent regime is delimited by two velocities: Uc (onset of turbulent regime) and Utr (onset of transport regime), which can be determined based on standard deviations, dominant frequencies and width of wave land of pressure signals. The stochastic analysis confirms that the signal enriches in frequencies in the turbulent regime. Bubble size and bubble velocity could be correlated to the main superficial gas velocity. The main change in bubble flow in the turbulent regime was shown to be the stagnation of the bubble frequency at its maximum value. It was also shown that the bubble flow properties in the turbulent regime imply a strong aeration of the emulsion phase. (authors) 76 refs.

  13. Pressurised fluidised-bed gasification experiments with biomass, peat and coal at VTT in 1991-1994. Gasification of Danish wheat, straw and coal

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Laatikainen-Luntama, J; Staahlberg, P; Moilanen, A [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    Fluidised-bed air gasification of three different Danish straw feedstocks and Colombian bituminous coal was studied in the PDU-scale test facilities of VTT. The test programme was divided into two different modes of operation. First, the usability of straw as the only feedstock was investigated by operating the gasifier at relatively low temperature normally used in biomass gasifiers. In this operation mode the main aim was to find out the limits for gasification temperatures, set by the sintering behaviour of the straw. Secondly, the use of straw as an additional feedstock in a fluidised-bed coal gasifier was examined by operating the gasifier at about 1 000 deg C with different ratings of straw and coal feeding. The gasifier was operated at 5 bar pressure and at 80 990 deg C. The product gas was cleaned by ceramic candle filters operated at 465-540 deg C. Concentrations of tars, nitrogen com- pounds, sulphur gases, vapour-phase alkali metals as well as chlorine were determined in different operating conditions. (12 refs.)

  14. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    Science.gov (United States)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  15. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  16. Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    D. Boavida; P. Abelha; I. Gulyurtlu; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2003-10-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{sup o}C above that of the bed. 15 refs., 8 figs., 8 tabs.

  17. Fluidised bed combustion system

    International Nuclear Information System (INIS)

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  18. Reactivity of coal chars prepared in a fluidised bed reactor at different burn-off degrees

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.H.; Arenillas, A.; Rubiera, F.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The main goal of this work has been to study the effect of the textural properties of coal chars, obtained from partially burned coal, on their reactivity to oxygen. A low volatile bituminous coal was used to prepare chars, with different levels of burn-off, in a bench-scale fluidised bed reactor. Textural characterisation of the samples was accomplished by measuring true (helium) and apparent (mercury) densities, and mercury porosimetry. An increase in the burn-off degree gave rise to a densification of the chars. Porosity development greatly changed during progressive burning of the samples. DTG burning profiles and isothermal gasification were utilised to estimate the reactivities of the precursor coal and its partially burned chars. Reactivity reached a maximum value at an intermediate burn-off and strongly decreased at higher burn-off degrees. (orig.)

  19. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed...... to be the controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in...

  20. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Science.gov (United States)

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  1. The effects of baffles and gas superficial velocity on a bubble fluidized bed reactor's applications

    International Nuclear Information System (INIS)

    Ghorbanpour, A.; Ghannadi Maragheh, M.; Mallah, M. H.

    2008-01-01

    Baffles are used for decreasing bubbles diameter in order to increase the conversion rate along the bubbling fluidized bed reactors. The appearance of this phenomenon is due to bursting of the bubbles during the pass of bubbles from baffles. In this work, a computerized modeling and simulation have been performed in order to obtain a fundamental knowledge of the influence of the baffles on the bubble diameter and the specific mass transfer area. The height of the bed is 5 meters and its diameter is 0.3 meter. Baffles are located at 1 and 2 meters from the bottom of the bed. A two phase model together with a comprehensive fluid dynamical description of bubbling fluidized is presented. The effects of baffles and gas superficial velocity on the operating behavior of fluidized bed reactors are considered. The results are compared to the previously reported documents, and the experiments which have been carried out. MATLAB software is used in this simulation

  2. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  3. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  4. Image analysis of bubble behavior in the pressurized fluidized bed using neutron radiograph

    International Nuclear Information System (INIS)

    Katoh, Yasuo; Miyamoto, Masahide; Miike, Hidetoshi; Kishimoto, Yasuyuki; Matsubayasi, Masahito; Mochiki, Kouichi.

    1996-01-01

    It is very important to know about the formation for bubble production growth and destruction. Because blowing gas nozzle decide the ability of the solid-gas fluidized bed system. For the pressurized 3-D fluidized bed, it was some interested in the bubble production and configuration which was taken place the interaction between bubble and particle under the pressurized condition. For the understanding of the three dimensional characteristics of production bubble under pressurized condition, the study of visualization of neutron radiograph seemed to be useful. In stead of typical X-ray visualization method, visualization of neutron radiograph method for observation of bubble behavior were carried out. Then an image analysis of it was done the same way as two dimension method P-system (PIAS-LA555WS Image Analysis). As the results, the characteristic of production bubble was more clear quantitatively, for example, the bubble production frequency, the bubble diameter and the bubble horizontal and vertical sizes so on. (author)

  5. Stabilization of ash from combustion of MSW in a fluidised bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Wilewska, Magda [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2004-06-01

    Due to restrictions against the land filling of combustible waste and directives from authorities that favour energy recovery from the waste, combustion of household waste is becoming more common. Even though combustion of MSW reduces the volume of waste to be handled by approximately 90%, it produces ash residues containing most of the metals present in the original fuel and a number of other species carried through the boiler or formed during combustion. The residues can be divided into three categories: 1. Stable, inert ash that can be utilised in, for example, construction applications 2. Ash that is stable enough to be land filled as nonhazardous waste 3. Ash that contains large amounts of soluble components and potentially toxic metal species. The regulations considering leaching of ash components set limits for the release of soluble salts and toxic metals. Some fly ashes show low leachability for metals but gives a salt release that is too close to the limit for total dissolved solids. Since fly ash from FBC boilers represent the largest volume of ash from these boilers there is a need for a simple and cheap treatment method that reduces the amount of soluble salts, i.e. NaCl, KCl etc, in the ash. After stabilisation, the ash is supposed to go into a more stable category. The aim of this project has been to investigate the applicability of a method to wash such an ash with water. The work included laboratory studies of the ash properties, the water washing process, filtration properties of the ash slurry and also tests of the method in pilot scale at a full scale boiler. This work has been concentrated towards the investigation of cyclone ash from a bubbling fluidised bed boiler in Lidkoeping fired with 100% household waste. Elemental composition of ash samples before and after washing/filtration was determined by AAS or ICP after a suitable dissolution of the sample. The mineralogy of ash samples was analysed using X-ray powder diffractometry. This method

  6. Dry formulations of the biocontrol agent Candida sake CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits.

    Science.gov (United States)

    Carbó, Anna; Torres, Rosario; Usall, Josep; Fons, Estanislau; Teixidó, Neus

    2017-08-01

    The biocontrol agent Candida sake CPA-1 is effective against several diseases. Consequently, the optimisation of a dry formulation of C. sake to improve its shelf life and manipulability is essential for increasing its potential with respect to future commercial applications. The present study aimed to optimise the conditions for making a dry formulation of C. sake using a fluidised bed drying system and then to determine the shelf life of the optimised formulation and its efficacy against Penicillium expansum on apples. The optimal conditions for the drying process were found to be 40 °C for 45 min and the use of potato starch as the carrier significantly enhanced the viability. However, none of the protective compounds tested increased the viability of the dried cells. A temperature of 25 °C for 10 min in phosphate buffer was considered as the optimum condition to recover the dried formulations. The dried formulations should be stored at 4 °C and air-packaged; moreover, shelf life assays indicated good results after 12 months of storage. The formulated products maintained their biocontrol efficacy. A fluidised bed drying system is a suitable process for dehydrating C. sake cells; moreover, the C. sake formulation is easy to pack, store and transport, and is a cost-effective process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  8. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    Science.gov (United States)

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  9. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  10. Measurements of dioxin emissions during co-firing in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; A.T. Crujeira; P. Abelha; I. Cabrita [INETI, Lisbon (Portugal). Departamento de Engenharia Energetica e Controle Ambiental

    2007-09-15

    The emissions of dioxins could be considerable when fuels with high chlorine content are used, particularly in fluidised beds due to constraints to use temperatures in the range 800-900{sup o}C for other considerations. However, mixing of fuels with different characteristics may lead to a reduction in dioxin emissions. Studies are currently being undertaken at the above-mentioned department in mixing fuels of varying chlorine and sulphur contents to monitor the emissions of dioxins both in the gas and solid phases. Furthermore, the influence of certain elements like Cu in the ash in the emissions of dioxins is also studied to verify the catalytic effect. The INETI pilot-scale test facility is used for the combustion work. Two different coals, namely Colombian and Polish, are used as the base fuel. The supplementary fuels for co-firing include MBM and straw pellets. The combustion temperature is maintained at about 800-830{sup o}C range without any limestone addition. The residence time of over 2 s is respected. Results obtained by far suggest that the presence of sulphur in both fuels have a very strong effect on the eventual emissions of dioxins and the synergy regarding to reduce the dioxins below the levels permitted is possible by mixing fuels based on their characteristics. The paper reports the results obtained and evaluates the effect of fuel nature and operating conditions on the emissions of dioxins. 34 refs., 8 figs., 12 tabs.

  11. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  12. Modelling transient 3D multi-phase criticality in fluidised granular materials - the FETCH code

    International Nuclear Information System (INIS)

    Pain, C.C.; Gomes, J.L.M.A.; Eaton, M.D.; Ziver, A.K.; Umpleby, A.P.; Oliveira, C.R.E. de; Goddard, A.J.H.

    2003-01-01

    The development and application of a generic model for modelling criticality in fluidised granular materials is described within the Finite Element Transient Criticality (FETCH) code - which models criticality transients in spatial and temporal detail from fundamental principles, as far as is currently possible. The neutronics model in FETCH solves the neutron transport in full phase space with a spherical harmonics angle of travel representation, multi-group in neutron energy, Crank Nicholson based in time stepping, and finite elements in space. The fluids representation coupled with the neutronics model is a two-fluid-granular-temperature model, also finite element fased. A separate fluid is used to represent the liquid/vapour gas and the solid fuel particle phases, respectively. Particle-particle, particle-wall interactions are modelled using a kinetic theory approach on an analogy between the motion of gas molecules subject to binary collisions and granular flows. This model has been extensively validated by comparison with fluidised bed experimental results. Gas-fluidised beds involve particles that are often extremely agitated (measured by granular temperature) and can thus be viewed as a particularly demanding application of the two-fluid model. Liquid fluidised systems are of criticality interest, but these can become demanding with the production of gases (e.g. radiolytic and water vapour) and large fluid/particle velocities in energetic transients. We present results from a test transient model in which fissile material ( 239 Pu) is presented as spherical granules subsiding in water, located in a tank initially at constant temperature and at two alternative over-pressures in order to verify the theoretical model implemented in FETCH. (author)

  13. Experimental Study of the Flooding and Appearance of a Bubble Bed on Top of a Countercurrent Packed-Bed Column

    Czech Academy of Sciences Publication Activity Database

    Jiřičný, Vladimír; Staněk, Vladimír; Svoboda, Petr; Ondráček, Jakub

    2001-01-01

    Roč. 40, č. 1 (2001), s. 407-412 ISSN 0888-5885 R&D Projects: GA ČR GA203/97/1174 Institutional research plan: CEZ:AV0Z4072921 Keywords : appearance * bubble-bed * packed bed column Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.351, year: 2001

  14. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Incineration as a treatment option for shredder light fractions (SLF) by a stationary fluidised bed combustion; Untersuchungen zur Verbrennung von Shredderleichtfraktionen in einer stationaeren Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Gaston

    2011-07-15

    In this paper the suitability of the stationary fluidised bed combustion as a treatment option for shredder light fractions (SLF) is discussed. This SLF, SLF coarse grain and SLF generated in a further mechanical treatment were burned. The results show a strong change in grain size distribution of the bed material during the combustion the SLF and SLF-coarse fractions. The formation of agglomerates significantly impaired the fluidization. The main reason for this effect is the high content of alkali and alkaline earth metals in the SLF. During the incineration of SLF generated by further mechanical treatment the change in grain size distribution declines much more slowly. This results from the separation of hard plastics with higher calcium contents during further mechanical processing. The tests also showed a complete burnout and a significant enrichment of metals in the solid combustion residues (fabric filter ash bed ash, cyclone ash). These residues represent a recycling concentrate, which needs to be open in the future. (orig.)

  16. Nano particle fluidisation in model 2-D and 3-D beds using high speed X-ray imaging and microtomography

    International Nuclear Information System (INIS)

    Gundogdu, O.; Jenneson, P. M.; Tuzun, U.

    2007-01-01

    Nanoparticles and nanocomposites have become a major focus of interest in science and technology due to exceptional properties they provide. However, handling and processing of ultra-fine powders is very challenging because they are extremely cohesive. Fluidization is one of techniques available to process powders. It has become increasingly important to understand how these nanoparticles can be handled and processed to benefit from their favourable properties. A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) X-ray imaging apparatus has been designed to study nanoparticles in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with X-ray microtomography. The X-ray microtomography technique provides valuable in situ, non-destructive structural information on the morphological changes that take place during fluidisation of powder samples

  17. Nano particle fluidisation in model 2-D and 3-D beds using high speed X-ray imaging and microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Surrey, Chemical and Process Engineering, School of Engineering (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Jenneson, P. M. [University of Surrey, Department of Physics, School of Electronics and Physical Sciences (United Kingdom); Tuzun, U. [University of Surrey, Chemical and Process Engineering, School of Engineering (United Kingdom)

    2007-04-15

    Nanoparticles and nanocomposites have become a major focus of interest in science and technology due to exceptional properties they provide. However, handling and processing of ultra-fine powders is very challenging because they are extremely cohesive. Fluidization is one of techniques available to process powders. It has become increasingly important to understand how these nanoparticles can be handled and processed to benefit from their favourable properties. A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) X-ray imaging apparatus has been designed to study nanoparticles in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with X-ray microtomography. The X-ray microtomography technique provides valuable in situ, non-destructive structural information on the morphological changes that take place during fluidisation of powder samples.

  18. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  19. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  20. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  1. Cofiring of difficult fuels: The effect of Ca-based sorbents on the gas chemistry in fluidised bed combustion; Kalsiumpohjaisten lisaeaineiden vaikutus leijukerrospolton kaasukemiaan vaikeiden polttoaineiden sekapoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Partanen, J.; Fabritius, M.; Elo, T.; Virta, A.K. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    The objective of this project is to establish the effects of Ca-based sorbents on sulphur, halogen and alkaline chemistry in fluidised bed combustion of difficult fuels, and to find out any restrictions on the use of these sorbents. The aim is to acquire sufficient knowledge to ensure the operational reliability of power plants and to minimise the emissions and costs of flue gas cleaning. The results enable the owner to anticipate necessary changes associated with slagging, fouling and emission control in the existing power plants, when there are plans to increase the range of fuels used. (orig.)

  2. An exploratory study of three-dimensional MP-PIC-based simulation of bubbling fluidized beds with and without baffles

    DEFF Research Database (Denmark)

    Yang, Shuai; Wu, Hao; Lin, Weigang

    2018-01-01

    In this study, the flow characteristics of Geldart A particles in a bubbling fluidized bed with and without perforated plates were simulated by the multiphase particle-in-cell (MP-PIC)-based Eulerian-Lagrangian method. A modified structure-based drag model was developed based on our previous work....... Other drag models including the Parker and Wen-Yu-Ergun drag models were also employed to investigate the effects of drag models on the simulation results. Although the modified structure-based drag model better predicts the gas-solid flow dynamics of a baffle-free bubbling fluidized bed in comparison...... with the experimental data, none of these drag models predict the gas-solid flow in a baffled bubbling fluidized bed sufficiently well because of the treatment of baffles in the Barracuda software. To improve the simulation accuracy, future versions of Barracuda should address the challenges of incorporating the bed...

  3. Fluid-bed methane proposed

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The first full scale plant for the production of methane from organic waste could be built in the next few years believes M.J. Nyns of the University of Louvain, Belgium, utilizing either expanded bed or fluidised bed systems, with more than one stage, in a continuous flow arrangement. Up to 8.0 m cubed gas/m cubed digester/day could be produced with residence times reduced to 34 hours.

  4. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor.

    Science.gov (United States)

    Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type

  5. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, N. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)]. E-mail: ncsn@fct.unl.pt; Barbosa, R. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Lopes, M.H. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Mendes, B. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Abelha, P. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Gulyurtlu, I. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Santos Oliveira, J. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  6. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    International Nuclear Information System (INIS)

    Lapa, N.; Barbosa, R.; Lopes, M.H.; Mendes, B.; Abelha, P.; Gulyurtlu, I.; Santos Oliveira, J.

    2007-01-01

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  7. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Directory of Open Access Journals (Sweden)

    Hou Peggy

    2004-01-01

    Full Text Available Heat-exchanger tubes in fluidized bed combustors (FBCs often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  8. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Science.gov (United States)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  9. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  10. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    Directory of Open Access Journals (Sweden)

    Rogala Zbigniew

    2017-01-01

    Full Text Available Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP and Specific Cooling Power (SCP. In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC. It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  11. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  12. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A; Laatikainen-Luntama, J; Nieminen, M; Kurkela, E; Korhonen, J [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  13. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    Science.gov (United States)

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  14. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    Mohamed, H.S.; El Sourougy, M.R.; Faik, M.

    2009-01-01

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  15. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    International Nuclear Information System (INIS)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-01-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  16. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  17. Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process

    International Nuclear Information System (INIS)

    Youn, Pil-Sang; Choi, Jeong-Hoo

    2014-01-01

    Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (<1000 μm in diameter and 3090 kg/m 3 in apparent density) and fine (<100 μm in diameter and 4400 kg/m 3 in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed

  18. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  19. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2009-01-01

    A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control......-up principles by comparing simulation results with experimental temperature and humidity data obtained from inorganic salt coating of placebo cores in three pilot fluid bed scales being a 0.5kg small-scale (GEA Aeromatic-Fielder Strea-1), 4kg medium-scale (GEA Niro MP-1) and 24kg large-scale (GEA MP-2...

  20. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  1. Bed diameter effects and incipient slugging in gas fluidized beds

    International Nuclear Information System (INIS)

    Agarwal, P.K.

    1986-01-01

    The coalescence and growth of bubble swarms formed at the distributor of a fluidized bed gives rise to lateral as well as vertical distributions of bubble properties. However, existing models employ average bubble properties obtained largely from semi-empirical considerations. In a recent Paper, the author developed a bubble growth model based on a population balance approach. Analytical expressions were derived for the bubble characteristic distributions and averages. However, the model, developed for unconstrained growth, did not take into account the effect of the bed diameter and the possibility of slugging. In this Paper, the model is extended to take these aspects into account. A slugging criterion is also developed which is expected to be valid for the regime where incipient slugging depends on the bed height as well as the region where bed height does not significantly affect minimum slugging conditions

  2. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Ceccio, Steven [Univ. of Michigan, Ann Arbor, MI (United States); Curtis, Jennifer [Univ. of Florida, Gainesville, FL (United States)

    2011-04-15

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energy's open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  3. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  4. Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed.

    Science.gov (United States)

    Seo, Anette; Holm, Per; Schaefer, Torben

    2002-08-01

    This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.

  5. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  6. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin

    2011-01-30

    Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  9. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  10. Instability and the formation of bubbles and the plugs in fluidized beds

    Directory of Open Access Journals (Sweden)

    Piotr Schulz

    2004-01-01

    Full Text Available This is an review paper, particulary concentrate on results not many researches by reason that are explain in the text. We consider stability of disperse, two-phase flow (gas-solid particles or liquid-solid particles linear and non-linear. In particular we discuss the result of Anderson, Sundareson and Jackson (1995 [Anderson K., Sundareson S., Jackson R.: Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303 (1995, 327-366] that for vertical dispersion flow one- and two-dimensional, they attack problem growing disturbances directly by numerical integration of equations of motion from given initial conditions (using computer Cray C-90. In principle, this would allow authors to explore all aspects of dynamical behaviour of fluidized beds. It is interesting mechanism of periodic plug describing by Anderson et al. and attest by other researchers. Second part of paper is more general, dedicate the problem of linear stability of uniformly fluidized state ("fluidized bed". We make the most important stages of calculations (after to Jackson (2000 [Jackson R.: The Dynamics of Fluidized Particles. Cambridge University Press 2000] and demonstrate that the majority (but not all of fluidized beds with parameters having technical importance is unstable, or stable in narrow interval of wave numbers \\(k\\.

  11. Carbonation of Mg(OH){sub 2} in a pressurised fluidised bed for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, J.

    2012-07-01

    To date, a number of methods to accelerate natural weathering or in other words increase the CO{sub 2} uptake rate of various minerals have been suggested; commonly this is known as mineral carbonation or CO{sub 2} mineralisation. A brief literature review of recently published articles in this field is presented, showing that the interest in mineral carbonation is increasing. However, it should be noted that mineral carbonation is only one option in a larger portfolio of various carbon dioxide capture and storage (CCS) alternatives. Unlike many other options, the CO{sub 2} mineralisation option considered in this thesis is largely founded on the possibility to utilise the exothermic nature of magnesium carbonation and based on this notion, it has been divided into three steps. The first two steps are energy demanding, while the third step is energy 'negative', and in theory, the source of the energy required in the first two steps. Unfortunately, however, the energy demanded by the first two steps, Mg extraction and Mg(OH){sub 2} production, is (currently) much higher than what could be generated by the subsequent Mg(OH){sub 2} carbonation step. Nevertheless, opportunities to reduce the energy intensity of the process in question are still being investigated, and while an energy-neutral carbonation process might be difficult to achieve, energy requirements can still be rendered industrially acceptable (and comparable to or even better than for other CCS methods). The main focus of this thesis lies with the third step, Mg(OH){sub 2} carbonation, which is performed using a pressurised fluidised bed (PFB). The elevated CO{sub 2} pressure conditions (typically approx 20 bar) allow for the carbonation reaction to take place at higher temperatures (typically approx 500 deg C) than otherwise due to thermodynamic constraints on carbonate stability. The increase in reaction rate as a function of temperature follows the Arrhenius equation of exponential increase

  12. Bubbling fluidized bed boiler for Vanaja power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sormunen, R.; Haermae, P.; Vessonen, K.; Ketomaeki, A. [ed.

    1998-07-01

    At the Vanaja Power Plant, on the outskirts of Haemeenlinna, there have been changes which reflect the central goals in IVO`s product development work. At Vanaja, efficiency is combined with environmental friendliness. In the early 1980s, the plant was modernized to produce district heat in addition to electricity. At that time, along with the new gas turbine at the plant, the main fuel, coal, while remaining the fuel for the old boilers, was replaced by natural gas. This year a new type of bubbling fluidized bed boiler enabling continuous use of peat and trial use of biofuels along with coal was introduced at the plant. In addition to the Nordic countries, this kind of technology is required in central eastern Europe, where modernization of ageing power plants is being planned to achieve the best possible solutions in respect of production and the environment. IVO develops a new repair technique for underwater sites

  13. Contribution to the knowledge of spouted beds, including in particular an experimental study on the void fraction of the dense phase

    International Nuclear Information System (INIS)

    Eljas, Yves.

    1975-10-01

    The spouted bed is a gas-solid contact technique used to replace fluidisation when the solid particles are too large and too dense. Part one gives a bibliographical study on the aerodynamic aspect of spouted beds. Part two describes an experimental study of the void fraction distribution in a two-dimensional bed [fr

  14. DOLOMITE DESULFURIZATION BEHAVIOR IN A BUBBLING FLUIDIZED BED PILOT PLANT FOR HIGH ASH COAL

    Directory of Open Access Journals (Sweden)

    G. M. F. Gomes

    Full Text Available Abstract Although fluidized bed in situ desulphurization from coal combustion has been widely studied, there are aspects that remain under investigation. Additionally, few publications address Brazilian coal desulphurization via fluidized beds. This study used a 250 kWth bubbling fluidized bed pilot plant to analyze different aspects of the dolomite desulphurization of two Brazilian coals. Superficial velocities of 0.38 and 0.46 m/s, flue gas recycling, Ca/S molar ratios and elutriation were assessed. Results confirmed the influence of the Ca/S molar ratio and superficial velocity - SO2 conversion up to 60.5% was achieved for one coal type, and 70.9% was achieved for the other type. A recycling ratio of 54.6% could increase SO2 conversion up to 86.1%. Elutriation and collection of ashes and Ca-containing products did not present the same behavior because a lower wt. % of CaO was collected by the gas controlled mechanism compared to the ash.

  15. Ruedersdorf cement works substitutes raw material and fuel by means of a circulating fluidised bed; Roh- und Brennstoffsubstitution mit einer Zirkulierenden Wirbelschicht im Zementwerk Ruedersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Scur, P. [Ruedersdorfer Zement GmbH, Ruedersdorf (Germany)

    1998-09-01

    The purpose of the present paper is to point out the great potential the cement industry holds for the utilisation of waste materials. There are meanwhile sufficient studies and measuring results to demonstrate the environmental acceptability of the processes and products involved. The solution found for Ruedersdorf cement kiln of using a circulating a fluidised bed for waste utilisation is a good example of the potential still available for conserving natural resources and landfill area. Efficient industrial applications of this kind should become a future mainstay of the waste industry. [Deutsch] In dem vorliegenden Beitrag sollte gezeigt werden, dass die Zementindustrie ueber ein hohes Potential zur thermischen und stofflichen Verwertung von Abfallstoffen verfuegt. Es liegen ausreichende Untersuchungen und konkrete Messergebnisse vor, mit denen die Umweltvertraeglichkeit von Prozess und Produkt nachgewiesen werden kann. Die Loesung zur Abfallverwertung an der Ruedersdorfer Zementofenanlage mit Hilfe einer Zirkulierenden Wirbelschicht ist ein Beispiel fuer die Reserven zur Schonung natuerlicher Ressourcen und zur Einsparung von Deponieraeumen. Derartige sinnvolle industrielle Einsatzmoeglichkeiten sollten ein wichtiges Standbein fuer die zukuenftige Abfallwirtschaft sein. (orig.)

  16. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  17. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    Science.gov (United States)

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Low temperature CFB gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Fock, Martin W.

    2003-01-01

    %) particle separation by the hot secondary cyclone. The next LT-CFB experiment, currently under preparation, is expected to be on either municipal/industrial waste or animal manure. Eventually a 500 kW LT-CFB test plant scheduled for commission during summer 2003, and the anticipated primary LT......The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process aims at avoiding problems due to ash deposition and agglomeration when using difficult fuels such as agricultural biomass and many waste materials. This, as well as very simple gas cleaning, is achieved by pyrolysing...... the fuel at around 650?C in a CFB reaction chamber and subsequently gasifying the char at around 730oC in a slowly fluidised bubbling bed chamber located in the CFB particle recirculation path. In this paper the novel LT-CFB concept is further described together with the latest test results from the 50 k...

  19. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2018-05-31

    In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).

  20. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  1. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  2. Fluidised bed combustion: a new route to power and heat from coal

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, H D [Bergbau-Forschung G.m.b.H., Essen (Germany, F.R.)

    1978-02-01

    The functioning of fluidized-bed firings and their advantages with regard to SO/sub 2/ emissions are described. The principle of design of a fluidized-bed boiler and a gas/steam turbine power plant with fluidized-bed firing under pressure is outlined. The application and their economics in heat and power generation and marketing potential of fluidized-bed firings and their economics in heat and power generation is pointed out. The construction of waste-fired incinerators has already become possible, but there is still a lot of development work to be done until fluidized-bed firings can be used in central heatings, combined-cycle power plants, and large power plants.

  3. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior

    International Nuclear Information System (INIS)

    Zhou, Chunguang; Rosén, Christer; Engvall, Klas

    2016-01-01

    Highlights: • Dolomite is a superior material in preventing bed agglomeration. • Small molten ash particles deposited on magnesite at bed temperatures above 1000 °C. • The performance, when using magnesite, is sensitive to temperature disturbances. • The anti-agglomeration mechanisms of Ca- and Mg-bearing materials were discussed. - Abstract: In this study, the anti-agglomeration abilities of Ca- and Mg-containing bed materials, including dolomite and magnesite, in a pressurized bubbling fluidized bed gasifier using pine pellets and birch chips as feedstock, is investigated. The most typical bed material—silica sand—was also included as a reference for comparison. The sustainability of the operation was evaluated via analyzing the temperatures at different levels along the bed height. During the performances, the aim was to keep the temperature at the bottom zone of the reactor at around 870 °C. However, the success highly depends on the bed materials used in the bed and the temperature can vary significantly in case of agglomeration or bad mixing of bed materials and char particles. Both Glanshammar and Sala dolomites performed well with no observed agglomeration tendencies. In case of magnesite, the bed exhibited a high agglomeration tendency. Silica sand displayed the most severe agglomeration among all bed materials, even when birch chips with a low silica content was fed at a relatively low temperature. The solid samples of all the bed materials were inspected by light microscopy and Scanning Electron Microscopy (SEM). The Energy Dispersive Spectroscopy (EDS) detector was used to detect the elemental distribution in the surface. The crystal chemical structure was analyzed using X-ray Diffraction (XRD). Magnesite agglomerates glued together by big molten ash particles. There was no coating layer detected on magnesite particles at bed temperatures – below 870 °C. But when the temperature was above 1000 °C, a significant amount of small molten

  4. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R; Patrikainen, T; Heikkinen, R; Tiainen, M; Virtanen, M [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  5. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    International Nuclear Information System (INIS)

    Martínez-Lera, S.; Torrico, J.; Pallarés, J.; Gil, A.

    2013-01-01

    Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m 3 and cold gas efficiencies up to 60%

  6. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations.

    Science.gov (United States)

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.

  7. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  8. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.

    Science.gov (United States)

    Bahillo, A; Armesto, L; Cabanillas, A; Otero, J

    2004-01-01

    Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.

  9. Co-Fuelling of Peat with Meat and Bone Meal in a Pilot Scale Bubbling Bed Reactor

    Directory of Open Access Journals (Sweden)

    Markku Orjala

    2010-07-01

    Full Text Available Co-combustion performance trials of Meat and Bone Meal (MBM and peat were conducted using a bubbling fluidized bed (BFB reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m3 limit upon combustion of pure MBM. SO2 emissions were found to be over the limit of 50 mg/m3, while in all trials NOx emissions were below the limit of 300 mg/m3. The HCl content of the flue gases was found to vary near the limit of 30 mg/m3. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 °C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications.

  10. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  11. Combustion of cork waste in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Miranda, M.; Cabrita, I. [Dept. de Tecnologias de Combustao, ITE-INETI, Lisboa (Portugal); Abelha, P. [Coaltec e Ambiente, Lisboa (Portugal)

    1999-07-01

    There is currently an ongoing joint project between Portugal and Spain, which is being funded by the FAIR programme. The principal objective of the FAIR project is to investigate the application of the fluidised bed combustion (FBC) technology to burn cork wastes with the aim of overcoming the difficulties currently experienced in the cork processing industries. The combustion studies at INETI were carried out using the 300 kW{sub th} circulating fluidised bed facility. The combustor is square in cross section with each side being 0.3 m long. The combustor height is 5 m. The temperatures in the bed, the riser and that of the flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor passed through the recycling cyclone first to capture most of particulates elutriated out of the combustor. The solid particles were intermittently collected for analysis to determine the amount of carbon present, which helped the combustion efficiency to be calculated. Instantaneous measurements of O{sub 2}, CO, CO{sub 2}, NO{sub x}, N{sub 2}O and SO{sub 2} present levels in the flue gases were also carried out. The combustion tests were done with both the cork waste dust and granular virgin cork. The difference is that cork dust gets contaminated during the process due to the use of various additives. Most of the combustion took place in the riser where the temperature was at times up to 523 K above that of the bed. The unburned carbon level was low ranging from about 1.5 to 2.% suggesting that most of the particles burned to completion in the riser. (orig.)

  12. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology.

    Science.gov (United States)

    Sun, Yanmei; Wang, Shiwei; Niu, Junfeng

    2018-06-01

    Microbes play important roles during river remediation and the interaction mechanism illustration between microorganisms and sewage is of great significance to improve restoration technology. In this study, micro-nano bubble and submerged resin floating bed composite technology (MBSR) was firstly used to restore two black and stinking urban rivers. After restoration, the water pollution indices such as dissolved oxygen (DO), ammonia nitrogen (NH 4 + -N), total phosphorous (TP), chemical oxygen demand (COD Cr ), water clarity, and the number of facial coliform were significantly improved. Microbial community composition and relative abundance both varied and more aerobic microbes emerged after remediation. The microbial changes showed correlation with DO, NH 4 + -N, TP and COD Cr of the rivers. In summary, the MBSR treatment improved the physiochemical properties of the two black and stinking urban rivers probably through oxygen enrichment of micro-nano bubble and adsorption of submerged resin floating bed, which thereby stimulated functional microbes to degrade pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Discrete bubble modeling for a micro-structured bubble column

    NARCIS (Netherlands)

    Jain, D.; Lau, Y.M.; Kuipers, J.A.M.; Deen, N.G.

    2013-01-01

    Gas–liquid flows with solid catalyst particles are encountered in many applications in the chemical, petrochemical, pharmaceutical industries, etc. Most commonly, two reactor types are applied for large scale in the industry. They are slurry bubble column and trickle bed reactors. Both of these

  14. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  15. An Investigation of the Restitution Coefficient Impact on Simulating Sand-Char Mixing in a Bubbling Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Xinjun Zhao

    2017-05-01

    Full Text Available In the present work, the effect of the restitution coefficient on the numerical results for a binary mixture system of sand particles and char particles in a bubbling fluidized bed with a huge difference between the particles in terms of density and volume fraction has been studied based on two-fluid model along with the kinetic theory of granular flow. Results show that the effect of restitution coefficient on the flow characteristics varies in different regions of the bed, which is more evident for the top region of the bed. The restitution coefficient can be categorized into two classes. The restitution coefficients of 0.7 and 0.8 can be included into one class, whereas the restitution coefficient of 0.9 and 0.95 can be included into another class. Moreover, four vortices can be found in the time-averaged flow pattern distribution, which is very different from the result obtained for the binary system with the similar values between particles in density and volume fraction.

  16. Feasibility study - Lowered bed temperature in Fluidised Bed boilers for waste; Foerstudie - Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2009-01-15

    Waste incineration generally serves two purposes; 1) dispose of waste and 2) generation of heat and power. In the process of power production from waste fuels, the steam temperatures in super heaters are generally limited by the severe fouling and corrosion that occurs at elevated material temperatures, caused by high concentrations of alkali metals and chloride in the flue gas and fly ash. The overall aim of a continuation of present project is to determine if a reduced temperature of the bed zone in a fluidized bed waste incinerator reduces the amount of alkali chlorides in the flue gas. If so, a reduced bed temperature might enable increased steam temperature in super heaters, or, at unchanged steam temperature, improve the lifespan of the super heaters. The results from the project are of interest for plant owners wishing to improve performance of existing plants. The results may also be used to modify the design of future plants by boiler manufacturers. The aim of present pre-study was to determine how far the bed temperature can be reduced in a waste fired fluidized bed boiler in Boraas while maintaining a stable operation with sufficient combustion temperature in the freeboard to fulfil the directives of waste incineration. A continuation of the project will be based on the results from present study. The work is based on experiments at the test boiler. During the present study, no other measurements were performed apart from some sampling of bed material and ashes at different modes of operation. The experiments show that it is possible to alter the air and recycled flue gas in such a manner that the bed temperature is reduced from about 870 deg C to 700 deg C at 100% load and normal fuel mixture, while fulfilling the directive of 850 deg C at 2 seconds. Within normal variations of the fuel properties, however, the bed temperature increases to somewhat above 700 deg C if the fuel turns dry, while it falls below 650 deg C when the fuel turns wet. With

  17. Volatile organic compound adsorption in a gas-solid fluidized bed.

    Science.gov (United States)

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas

  18. Peach and apricot stone combustion in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Kaynak, B.; Atimtay, Aysel T. [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey); Topal, H. [Department of Mechanical Engineering, Engineering and Architecture Faculty, Gazi University, Ankara 06570 (Turkey)

    2005-07-25

    In this study, a bubbling fluidized bed combustor (BFBC) of 102 mm inside diameter and 900 mm height was used to investigate the combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry. A lignite coal was also burned in the same combustor. The combustion characteristics of the wastes were compared with that of a lignite coal that is most widely used in Turkey. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. By changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate), the variation of emissions of various pollutants was studied. Temperature distribution along the bed was measured with thermocouples. During the combustion tests, it was observed that the volatile matter from peach and apricot stones quickly volatilizes and mostly burn in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of fruit stones increases, the combustion takes place more in the freeboard region. The results of this study have shown that the combustion efficiencies ranged between 98.8% and 99.1% for coal, 96.0% and 97.5% for peach stone and 93.4% and 96.3% for apricot stones. The coal has zero CO emission, but biomass fuels have very high CO emission which indicates that a secondary air addition is required for the system. SO{sub 2} emission of the coal is around 2400-2800 mg/Nm{sup 3}, whereas the biomass fuels have zero SO{sub 2} emission. NO{sub x} emissions are all below the limits set by the Turkish Air Quality Control Regulation of 1986 (TAQCR) for all tests. As the results of combustion of two biomass fuels are compared with each other, peach stones gave lower CO and NO{sub x} emissions but the SO{sub 2} emissions are a little higher than for apricot stones. These results suggest that

  19. Reactions homogenes en phase gazeuse dans les lits fluidises

    Science.gov (United States)

    Laviolette, Jean-Philippe

    This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous

  20. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  1. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  2. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; I. Cabrita [Instituto Nacional de Engenharia, Lisbon (Portugal)

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  3. Fluidised bed technology – Applications and R&D in Southern Africa

    CSIR Research Space (South Africa)

    North, BC

    2007-06-28

    Full Text Available Bed area : 25 m2 Plant purpose : A 10 MW plant for the combustion of duff coal at greater than 98 % burnout to provide hot gases for drying slag. Subsequently also used for organic waste incineration. Project duration : 1988 to 1989 Current...

  4. Experience gained in pilot-scale and bench-scale fluidised beds processing

    CSIR Research Space (South Africa)

    Hadley, TD

    2006-02-01

    Full Text Available for clean coal technology thrust COMMISSIONED PLANTS Slagment Hot Gas Generator Client : Slagment Bed area : 25 m2 Plant purpose : A 10 MW plant for the combustion of duff coal at greater than 98% burnout to provide hot gases for the drying...

  5. Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan

    2012-11-01

    Combustion of a biomass with an enhanced content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. In this work, measures were investigated in order to decrease the risk of superheater corrosion by reducing gaseous KCl and the content of chlorine in deposits. The strategies applied were sulphation of KCl by sulphur/sulphate containing additives (i.e. elemental sulphur (S) and ammonium sulphate (AS)) and co-combustion with peat. Both sulphation of KCl and capture of potassium (K) in ash components can be of importance when peat is used. The experiments were mainly performed in a 12 MW circulation fluidised bed (CFB) boiler equipped for research purposes but also in a full-scale CFB boiler. The results were evaluated by means of IACM (on-line measurements of gaseous KCl), conventional gas analysis, deposit and corrosion probe measurements and ash analysis. Ammonium sulphate performed significantly better than elemental sulphur. Thus the presence of SO{sub 3} (i.e. AS) is of greater importance than that of SO{sub 2} (i.e. S) for sulphation of gaseous KCl and reduction of chlorine in deposits. Only a minor reduction of gaseous KCl was obtained during co-combustion with peat although chlorine in the deposits was greatly reduced. This reduction was supposedly due to capture of K by reactive components from the peat ash in parallel to sulphation of KCl. These compounds remained unidentified. The effect of volatile combustibles on the sulphation of gaseous KCl was investigated. The poorest sulphation was attained during injection of ammonium sulphate in the upper part of the combustion chamber during the lowest air excess ratio. The explanation for this is that SO{sub 3} was partly consumed by side reactions due to the presence of combustibles. These experimental results were supported by modelling, although the

  6. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed.

    Science.gov (United States)

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-18

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  7. A numerical study of cutting bubbles with a wire mesh

    NARCIS (Netherlands)

    Baltussen, M.W.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Gas-liquid-solid flows are frequently encountered in chemical, petrochemical and biochemical industries. To overcome the heat and mass transfer limitations in trickle bed reactors and bubble slurry columns, respectively, a micro-structured bubble column (MSBC) can serve as an attractive alternative.

  8. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1999-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  9. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  10. Tests with blast furnace slag as bed material in a 12 MW waste fired BFB boiler; Fullskalefoersoek med Hyttsand som baeddmaterial i 12 MW avfallseldad BFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Oehman, Marcus

    2004-11-01

    A full-scale trial has been performed at Saeverstaverket twin 12 MWth BFB boilers in Bollnaes using Hyttsand (a proprietary blast furnace slag) as bed material. The purpose has been to investigate if Hyttsand can be used as bed material in FB boilers for difficult types of fuels. Used fuel has been municipal waste, recovered wood fuel and different types of bio fuels. The test period was 19 days and nearly 100 tons of Hyttsand was used. The most important conclusions are: Good fluidisation can be achieved with Hyttsand as bed material. Hyttsand can fluidise without any changes in boiler settings. Hyttsand can also be mixed with Baskarpsand (a natural sand with over 90% SiO{sub 2}) and used as bed material without any negative changes to the boiler performance. Bed material make-up rate is reduced with up to 30 % when using Hyttsand compared to using Baskarpsand. Other conclusions are: Bed temperature increased slightly and bed temperature deviation decreased. Emissions was in general not affected, however emissions of SO{sub 2} increased slightly. More deposit containing more sulphur was formed on superheater surfaces when using Hyttsand. The increased amount of sulphur when using Hyttsand could be an effect of higher content of sulphur in the fuel or, which is more likely, that sulphur is released from Hyttsand and forms gaseous sulphurous gases. No significant change in produced amounts of fly-, cyclone- or bottom ash. Hyttsand and Baskarpsand had both similar coatings on their particles and similar agglomeration tendencies. There have been some start-up problems during the trials, including two more severe boiler disturbances, but most of these disturbances can be explained and avoided in the future. Previous investigations in laboratory scale using Hyttsand as bed material when firing different bio fuels have shown the advantage of Hyttsand with its higher resistance against a chemical reaction with alkali in the fuel ash compared to conventional bed materials

  11. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  12. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  13. Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash

    International Nuclear Information System (INIS)

    Martinez, Juan Daniel; Pineda, Tatiana; Lopez, Juan Pablo; Betancur, Mariluz

    2011-01-01

    Rice husk lean-combustion in a bubbling and atmospheric fluidized bed reactor (FBR) of 0.3 m diameter with expansion to 0.4 m in the freeboard zone and 3 m height was investigated. Experiment design - response surface methodology (RSM) - is used to evaluate both excess air and normal fluidizing velocity influence (independent and controllable variables), in the combustion efficiency (carbon transformation), bed and freeboard temperature and silica content in the ashes. Hot gases emissions (CO 2 , CO and NO x ), crystallographic structure and morphology of the ash are also shown. A cold fluidization study is also presented. The values implemented in the equipment operation, excess air in the range of 40-125% and normal fluidization velocities (0.13-0.15 Nm/s) show that the values near the lower limit, encourage bed temperatures around 750 o C with higher carbon transformation efficiencies around 98%. However, this condition deteriorated the amorphous potential of silica present in the ash. An opposite behavior was evidenced at the upper limit of the excess air. This thermochemical process in this type of reactor shows the technical feasibility to valorize RH producing hot gases and an amorphous siliceous raw material.

  14. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  15. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  16. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  17. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  18. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  19. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  20. Visualization of bed material movement in a simulated fluidized bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1999-01-01

    The bulk movement of fluidized bed material was visualized by neutron radiography by introducing tracers into the bed materials. The simulated fluidized bed consisted of aluminum plates, and the bed material was sand of 99.7% SiO 2 (mean diameter: 0.218 mm, density: 2555 kg/m 3 ). Both materials were almost transparent to neutrons. Then the sand was colored by the contamination of the sand coated by CdSO 4 . Tracer particles of about 2 mm diameter were made by the B 4 C, bonded by the vinyl resin. The tracer was about ten times as large as the particle of fluidized bed material, but the traceability was enough to observe the bed-material bulk movement owing to the large effective viscosity of the fluidized bed. The visualized images indicated that the bubbles and/or wakes were important mechanism of the behavior of the fluidized bed movement

  1. Computed and experimental motion picture determination of bubble and solids motion in a two-dimensional fluidized-bed with a jet and immersed obstacle

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Bouillard, J.; Gidaspow, D.

    1986-01-01

    Bubble and solids motion in a two-dimensional rectangular fluidized-bed having a high speed central jet with a rectangular obstacle above it and secondary air flow at minimum fluidization have been computer modeled. Computer generated motion pictures have been found to be necessary to analyze the computations since there are such a large number of time-dependent complex phenomena difficult to comprehend otherwise. Comparison of the computer generated motion pictures with high speed motion pictures of a flow visualization experiment reveal good agreement

  2. Numerical simulation of gas-solid flow in an interconnected fluidized bed

    Directory of Open Access Journals (Sweden)

    Canneto Giuseppe

    2015-01-01

    Full Text Available The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.

  3. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  4. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer

    NARCIS (Netherlands)

    Wang, J.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2009-01-01

    It is well known that two-fluid models (TFMs) can successfully predict the hydrodynamics of Geldart B and D particles. However, up to now, TFM have failed to accurately describe the hydrodynamics of Geldart A particles inside bubbling gas-fluidized beds: Researchers have reported that bed expansions

  5. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answers

    NARCIS (Netherlands)

    Wang, J.; Hoef, van der M.A.; Kuipers, J.A.M.

    2009-01-01

    It is well known that two-fluid models (TFMs) can successfully predict the hydrodynamics of Geldart B and D particles. However, up to now, TFM have failed to accurately describe the hydrodynamics of Geldart A particles inside bubbling gas-fluidized beds: Researchers have reported that bed expansions

  6. Fluidized bed reactor for processing particles coated with carbon

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1978-01-01

    The carbon coating of production returns of these particles first has to be removed before the heavy metal core released can be reprocessed. For reasons of criticality, removal of burnt-up particles downwards must be possible in the fluidized bed reactor even if the reactor diameter is greater than 800 mm, and the material temperatures must not exceed 650 0 C. It consists of an upper cylindrical and a lower conical part, where, according to the invention, the gas distributor heads in the conical part are situated in several planes above one another for the fluidisation and combustion gas and where they are evently distributed over the reactor crossection, so that an even flow profile is achieved over the reactor cross section. (HP) [de

  7. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  8. Effect of fluidization number on the combustion of simulated municipal solid waste in a fluidized bed

    International Nuclear Information System (INIS)

    Anwar Johari; Mutahharah, M.M.; Abdul, A.; Salema, A.; Kalantarifard, A.; Rozainee, M.

    2010-01-01

    The effect of fluidization number on the combustion of simulated municipal solid was in a fluidized bed was investigated. Simulated municipal solid waste was used a sample and it was formulated from major waste composition found in Malaysia which comprised of food waste, paper, plastic and vegetable waste. Proximate and ultimate analyses of the simulated were conducted and results showed its composition was similar to the actual Malaysian municipal solid waste composition. Combustion study was carried out in a rectangular fluidized bed with sand of mean particle size of 0.34 mm as a fluidising medium. The range of fluidization numbers investigated was 3 to 11 U mf . The combustion was carried out at stoichiometric condition (Air Factor = 1). Results showed that the best fluidization number was in the range of 5 to 7 U mf with 5 U mf being the most optimum in which the bed temperature was sustained in a much longer period. (author)

  9. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    Science.gov (United States)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  10. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.

    Science.gov (United States)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-03-01

    Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  12. Drying of materials in fluidized bed: mathematical modeling

    International Nuclear Information System (INIS)

    Wildhagen, Gloria Regina S.; Silva, Eder F.; Calcada, Luis A.; Massarani, Giulio

    2000-01-01

    A three phase mathematical model for drying process in a fluidized bed was established. This model representing a bubble, interstitial gas and solid phase was based on principles of mass and energy conservation and on empirical relations for heat and mass transfer between phases. A fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using alumina particles as a bed charge. A good agreement between the numerical and the experimental results were observed(author)

  13. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    Science.gov (United States)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (Uactive biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced

  14. Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas

    International Nuclear Information System (INIS)

    Choi, Jeong-Hoo; Yi, Chang-Keun; Jo, Sung-Ho; Ryu, Ho-Jung; Park, Young-Cheol

    2014-01-01

    We simulated a bubbling bed process capturing CO 2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 .deg. C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO 2 for solids circulation smaller than the minimum required one (G s, min ). However, it leveled off for solids circulation rate >G s, min . As the ratio of adsorber solids inventory to the total solids inventory (x w1 ) increased, the capture efficiency increased until x w1 =0.705, but decreased for x w1 >0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency

  15. Desulphurization in peat-fired circulating and bubbling fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kouvo, P. [Imatran Voima Oy, Vantaa (Finland); Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-12-31

    The new emission limit values for large combustion plants are under consideration both at the EU level and in Finland. Peat and wood are the only indigenous fuels of Finland. In 1995 appr. 8 % of electricity was produced with peat. The lower heating value of peat is around 10 MJ/kg. The moisture content varies between 35-55 % and sulphur content in dry solids between 0.15-0.35 %. The total peat power capacity of Finland in 1995 was 1400 MW. Because there was not enough information available about the desulphurization of the flue gases from peat-fired fluidized bed boilers, a group of Finnish companies and Ministry of Trade and Industry decided to carry out the full-scale desulphurisation study. In the project the desulphurization with limestone injection into the furnace of two types of peat-fired boilers were studied. The goal of the project was to investigate: what the technically and economically feasible emission level is by limestone injection in the fluidized bed combustion; how the limestone injection affects the other flue gas emissions and the fouling of the boiler and, what the economy of desulphurisation is. The tests were carried out at Kokkola and Kemi power plants in Finland. At Kokkola (108 MW{sub f}) circulating fluidized bed boiler, the emission limit of 200 mg/m{sup 3}n was leached at a Ca/S-molar ratio of appr. 10, with limestone containing 92 % of calcium carbonate, CaCO{sub 3}. At Kemi (267 MW{sub f}) bubbling fluidized bed boiler, the emission limit of 280 mg/m{sup 3}n with limestone containing appr. 95 % of CaCO{sub 3} was reached at a Ca/S-molar ratio of appr. 7.0. Emissions of NO{sub x}, N{sub 2}O, NH{sub 3} and dust after the ESP were not elevated due to the limestone feed. At the Kokkola power plant the NO{sub x} emissions varied from 300 to 400 mg/m{sup 3}n, and, at the Kemi power station the NO{sub x} emissions were around 200 mg/m{sup 3}n. The fouling of the Kemi boiler was found to be significant in the scheduled outage after the test

  16. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  17. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... areas between bed particles, ultimately led to bed agglomeration. The interfaces and the presence of gas bubbles in the cement suggest a bonding material with a high surface tension and a liquid state. The cement films originate by filling of irregularities on individual and partially agglomerated bed...

  19. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed

    NARCIS (Netherlands)

    Wang, J.; Hoef, van der M.A.; Kuipers, J.A.M.

    2010-01-01

    Characterizing regime transition in gas-fluidized beds is of fundamental importance for the successful applications of fluidization technology. In this study, we show that a state-of-the-art two-fluid model has the ability to correctly predict the transition from packed bed to fully bubbling

  20. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.

  1. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds

    NARCIS (Netherlands)

    Wang, Junwu; Hoef, van der M.A.; Kuipers, J.A.M.

    2010-01-01

    The minimum bubbling velocity, which demarcates the homogeneous and heterogeneous fluidization regimes, plays a pivotal role in gas fluidization of Geldart A particles. We systematically study the effect of gas and particle properties on the minimum bubbling velocity of Geldart A particles in

  2. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  3. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  4. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  5. Fluidized bed pyrolysis of HDPE: A study of the influence of operating variables and the main fluid dynamic parameters on the composition and production of gases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Lidia; Aguado, Alicia; Moral, Alberto [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Irusta, Ruben [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology

    2011-02-15

    In the present work, a preliminary study of the pyrolysis process of high density polyethylene (HDPE) in a fluidized bed is investigated in order to determine the influence between the fluid dynamic properties of the bed reactor and the amount and composition of the gases produced. As is known, fluidized bed technology is a very interesting option to apply in the pyrolysis field due to i) the lack of moving parts in the hot region that facilitates the maintenance of equipment, ii) the high surface area to volume ratio available in the bed, and iii) the high heat transfer coefficient reached which governs the reaction products. But, heat and mass transfer coefficients are strongly affected by the fluid dynamic properties of the bed. During the pyrolysis of HDPE, a fluid dynamic characterization of the bed particles that consist of char-coated sand of HDPE has been carried out. Parameters such as the minimum fluidizing velocity (u{sub mf}), terminal velocity (u{sub t}), bed height (h{sub f}), bed voidage ({epsilon}{sub f}), fraction of the bed occupied by bubbles ({delta}), bubble diameter (d{sub b}), bubble velocity (u{sub b}), the mass transfer coefficients between the bubble and the cloud (K{sub bc}) and between the cloud and the emulsion (K{sub ce}) were determined. Subsequently, the influence of major operating variables and the fluid dynamic parameters on the composition and the gas yield of the pyrolysis of HDPE were studied. (author)

  6. Organic emissions from co-combustion of RDF with wood chips and milled peat in a bubbling fluidized bed boiler

    International Nuclear Information System (INIS)

    Vesterinen, Raili; Flyktman, Martti

    1996-01-01

    Refuse derived fuel (RDF) has been burned with wood chips and milled peat in a 4 MW bubbling fluidized bed boiler. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in flue gases expressed as TCDD-equivalents were significantly below the emission limit 0.1 ng/m 3 n I-TEQ (11 % O 2 ). Also the PCDD/F-concentrations of fly ashes separated by an electrostatic precipitator are significantly below the 1 ng/g I-TEQ limit for agricultural soil in Germany. The carbon monoxide content was rather high, but typical for many small district heating plants. The concentrations of other chlorinated aromatic compounds were also low, in some tests below the detection limit. The concentrations of polyaromatic hydrocarbons (PAH) were rather high. The leachable metal content of the fly ash generated were analyzed using U.S. EPA TCLP test (Toxicity Characteristic Leaching Procedure). All concentrations fell below boundary levels. (author)

  7. Final stage of first super-critical 460 MW CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, Waldemar [PKE, Lagisza Power Plant (Poland); Goral, Damian [Foster Wheeler Energia Polska, Sosnowiec (Poland)

    2010-07-01

    Steam boilers with circulating fluidised bed combustion have been advanced in the past years and proved well as large-scale technology. A further step was the development and construction of a boiler with super-critical steam parameters and increased output. In 2002 the Polish utility Poludniowy Koncern Energetyczny SA awarded a contract to Foster Wheeler Energia Oy to erect a fluidised bed boiler for the Lagisza power plant. Construction of the 460 MW plant was started in 2006. The plant has been in commercial operation since 2009. (orig.)

  8. Aggregation capability of a fluidised layer of granular material during treatment of water with high DOC and low alkalinity

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Pivokonská, Lenka; Tomášková, Hana

    2008-01-01

    Roč. 8, č. 1 (2008), s. 9-17 ISSN 1606-9749 R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : water treatment * aggregation * fluidised layer * agitation Subject RIV: BK - Fluid Dynamics

  9. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  10. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  11. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  12. Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air

    International Nuclear Information System (INIS)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Fast pyrolysis of kraft lignin with partial (air) oxidation was studied in a bubbling fluidized bed reactor at reaction temperatures of 773 and 823 K. The bio-oil vapors were fractionated using a series of three condensers maintained at desired temperatures, providing a dry bio-oil with less than 1% water and over 96% of the total bio-oil energy. Oxygen feed was varied to study its effect on yield, composition, and energy recovery in the gas, char and oil products. The addition of oxygen to the pyrolysis process increased the production of gases such as CO and CO 2 . It also changed the dry bio-oil properties, reducing its heating value, increasing its oxygen content, reducing its average molecular weight and tar concentration, while increasing its phenolics concentration. The lower reaction temperature of 773 K was preferred for both dry bio-oil yield and quality. Autothermal operation of the pyrolysis process was achieved with an oxygen feed of 72 or 54 g per kg of biomass at the reaction temperatures of 773 and 823 K, respectively. Autothermal operation reduced both yield and total energy content of the dry bio-oil, with relative reductions of 24 and 20% for the yield, 28 and 23% for the energy content, at 773 and 823 K. - Highlights: • Autothermal pyrolysis of Kraft lignin is possible with introduction of air. • Under autothermal conditions, 24% of the dry bio-oil chemicals are lost at 773 K. • Partial oxidation helps produce more simple phenols and less pyrolytic lignin. • Bio-oil from lignin pyrolysis has a very high phenolics concentration

  13. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  14. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical

  15. Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells

    Directory of Open Access Journals (Sweden)

    Y.Q. Feng

    2010-09-01

    Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.

  16. Removal of SO2 with particles of dolomite limestone powder in a binary fluidized bed reactor with bubbling fluidization

    Directory of Open Access Journals (Sweden)

    R. Pisani Jr.

    2003-06-01

    Full Text Available In this work, SO2 was treated by reaction with dolomite limestone (24 µm in a fluidized bed reactor composed of 500-590 µm sand particles. The influence of operating temperature (500, 600, 700 and 800ºC, superficial gas velocity (0.8, 1.0 and 1.2 m/s and Ca/S molar ratio (1, 2 and 3 on SO2 removal efficiency for an inlet concentration of 1000 ppm was examined. Removal of the pollutant was found to be dependent on temperature and Ca/S molar ratio, particularly at 700 and 800ºC. A maximum removal of 76% was achieved at a velocity of 0.8 m/s, a temperature of 800°C and a Ca/S of 3. The main residence time of the powder particles was determined by integrating normalized gas concentration curves as a function of time; the values found ranged from 4.1 to 14.4 min. It was concluded that the reactor operated in bubbling fluidization under every operational condition.

  17. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.

  18. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  19. Lits fluidisés pour l'industrie chimique. Extrapolation et amélioration des catalyseurs. Première partie : Etudes et modèles. Enseignements issus des pilotes Fluidized Beds in Chemical Industry. Scale Up and Catalysts Improvement. First Part: Studies, Models, Learning from Pilot Plants

    Directory of Open Access Journals (Sweden)

    Botton R.

    2006-12-01

    est intitulée Études théoriques, réalités expérimentales, suggestions . Les bulles des lits fluidisés ont fait l'objet de très nombreux travaux, dont les résultats sont très souvent explicités sous la forme de modèles mécanistiques à un paramètre qui est le diamètre des bulles. Pour confronter ces modèles à l'expérience, une relation est établie entre le diamètre des bulles et la vitesse minimum de fluidisation de comportement. Des suggestions sont alors faites pour améliorer les modèles, et l'on propose des conclusions générales sur les lits fluidisés. The firsts catalytic fluidized beds appear near 1942 in petroleum industry and near 1960 in chemical industry. We only consider very high performances chemical fluidized bed reactors (> 99%. In the past, they were developed through the use of very expensive pilot plants of about 0. 5 m diameter and 10 in high. We will demonstrate that direct scale up from laboratory data is possible. This possibility gives also a simple method to improve catalysts used into operating units and opens fluidized bed technique to products that need only low production. Presentation is made with three articles:- In the first, Studies, Models, Learning from Pilot Plants : after a description of the major scale-up problems, studies to solve then are summarized. Then scale-up works of two processes with the use of about 0. 5 m diameter pilot plant are given. From the results it is deduced the possible performances of a catalytic fluidized bed and how to operate to obtain then. - In the second*, Scale up with Only Laboratory Data , it is experimentally demonstrated that the information's scale-up can be obtained in a laboratory. A strategy to obtain them is suggested. An another result of theses experimental studies is that all physical properties of catalytic fluidized bed depends of only one parameter. It is called comportment incipient fluidization velocity . - In the third*, Theoretical Studies, Experimental

  20. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  1. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  2. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  3. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S; Krumm, W [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  4. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    International Nuclear Information System (INIS)

    Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru

    2009-01-01

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  5. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-06-21

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  6. Coarse grid simulation of bed expansion characteristics of industrial-scale gas–solid bubbling fluidized beds

    NARCIS (Netherlands)

    Wang, J.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2010-01-01

    Two-fluid modeling of the hydrodynamics of industrial-scale gas-fluidized beds proves a long-standing challenge for both engineers and scientists. In this study, we suggest a simple method to modify currently available drag correlations to allow for the effect of unresolved sub-grid scale

  7. Tests of Bed Agglomeration Tendency Using a Rotating Furnace; Roterugn foer bedoemning av sintringsbenaegenhet

    Energy Technology Data Exchange (ETDEWEB)

    Larfeldt, Jenny; Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-08-01

    Bed sintering is a well known problem in fluidised bed boilers. In order to avoid bed sintering the bed material turn over ratio is high which leads a high consumption of bed material. This work aims at developing and evaluating a method for testing the bed agglomeration tendency of a FB bed material by using a rotating furnace. A rotating furnace has been designed and tests have shown that three temperatures describing the increasing agglomeration tendency can be evaluated; TA when several particles stick to each other and to the crucible wall, TB when half of the material sticks to the wall and TC when almost all the material forms a ball in the crucible. Comparison with bed agglomeration tests has shown that TA is between 80 deg C to 130 deg C lower than the bed agglomeration temperature from fluid bed tests. It is shown that TB is closer to the bed agglomeration temperature and finally that the temperature TC is higher than the bed agglomeration temperature. It is concluded that in the rotating furnace sticking of particles is visualised early, and that this sticking will not cause defluidisation of the bed until more than half of the material in the crucible is sticky. Repeated tests has been performed at a heating rate of 5 deg/minute and a rotating speed of 12 rpm and a furnace inclination of 20 deg was found to give distinct results in the evaluation. The evaluation has shown to be reproducible at lower temperatures. At higher temperatures, around 1,000 deg C, the evaluation was complicated by a poor picture quality which probably can be improved by proper cooling of the camera. It has also been shown that sticking of material in the rotating furnace could be detected at relatively low temperatures of 750 deg C that disappeared at higher temperatures. This is likely to be explained by melting salts that evaporates as temperature increase. At even higher temperatures the sticking reappeared until a ball was formed in the crucible. The latter sticking is

  8. Heat transfer between a fluidized bed and an immersed horizontal tube

    International Nuclear Information System (INIS)

    Beasley, D.E.; Figliola, R.S.

    1986-01-01

    Reliable predictions will require a better understanding of the heat transfer mechanisms and bed hydrodynamics in the neighborhood of the submerged surface. In this investigation measurements of the instantaneous heat transfer between a submerged surface and a gas fluidized bed operating in the bubbling regime are presented. The experimental results are compared to existing predictive models for the particle convective and the overall heat transfer coefficients. For the range of particle size and flow velocity studied, the particle convective component of heat transfer dominates the overall heat transfer between the bed and the submerged surface. Experimental studies into particle size distribution effects on heat transfer suggest that mixtures augment the bed to surface heat transfer. Documentation of bed particle size distribution is necessary if heat transfer data are to be compared or predicted

  9. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  10. Hydrodynamic studies in designing of fluidized bed system

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Syed Nasaruddin Syed Idris

    2002-01-01

    Fluidized bed process have been used mostly in the petroleum and paper industries, and for processing nuclear wastes, spent cook liquor, wood chips, and sewage sludge disposal. Even at MINT some of the equipment available used this principal. Before we use or purchase this equipment, it is very grateful if we could understand how the system has been designed. The hydrodynamic fluidization studies is very important in designing of fluidized bed system especially in determining the minimum fluidizing velocity, terminal velocity, flexibility of operation, slugging condition, bubble size and velocity, and transport disengaging height. They can be determined either by calculation or experimentation. This paper will highlight the hydrodynamic study that need to be performed in designing of fluidized bed system so that its can be used appropriately. (Author)

  11. Heat transfer in a membrane assisted fluidized bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, Sander; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidized bed operated in the bubbling fluidization regime was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged

  12. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  13. Effects of water vapor pretreatment time and reaction temperature on CO(2) capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor.

    Science.gov (United States)

    Seo, Yongwon; Jo, Sung-Ho; Ryu, Chong Kul; Yi, Chang-Keun

    2007-10-01

    CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.

  14. Investigation of combustion of coal briquettes in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    This paper discusses the results obtained from an experimental combustion work undertaken to investigate the behaviour of multicomponent briquettes, prepared by mixing two different particle sizes of coal and two different types of binder species. single briquettes were burned over a wide range of temperatures in a laboratory scale fluidised bed combustor facility. Nitrogen (NO{sub x}, and N{sub 2}O) and Sulphur (SO{sub 2}) oxides emissions resulting from the combustion of these briquettes were constantly monitored during the time of burning. The levels of O{sub 2}, CO{sub 2} and CO were also recorded during the same period. Experimental results showed that coal particle size influenced burn-out times and emissions levels of some of gaseous species. The hinder type was also found to have a major influence on the emissions of different pollutants.The temperature was observed to significantly influence the extent of the effects of the other operating parameters studied.

  15. Co-firing of biomass and other wastes in fluidised bed systems

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, H.; Boavida, D.; Abelha, P. [INETI/DEECA, Lisboa (Portugal); Werther, J.; Hartge, E.-U.; Wischnewski, R. [TU Hamburg-Harburg (Georgia); Leckner, B.; Amand, L.-E.; Davidsson, K. [Chalmers Univ. of Technology (Sweden); Salatino, P.; Chirone, R.; Scala, F.; Urciuolo, M. [Dipartimento di Ingegneria Chimica, Universita di Napoli Frederico II and Istituto di Ricerche sulla Combustione (Italy); Oliveira, J.F.; Lapa, N.

    2006-07-01

    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported.

  16. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  17. Chaotic hydrodynamics of fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Van der Stappen, M.L.M. [Unit Process and Systems Engineering, Advanced Manufacturing Technology Group, Unilever Research Laboratorium, Vlaardingen (Netherlands)

    1996-12-31

    The major goals of this thesis are: (1) to develop and evaluate an analysis method based on techniques from non-linear chaos theory to characterize the nonlinear hydrodynamics of gas-solids fluidized beds quantitatively; and (2) to determine the dependence of the chaotic invariants on the operating conditions and investigate how the chaos analysis method can be profitably applied to improve scale-up and design of gas-solids fluidized bed reactors. Chaos theory is introduced in chapter 2 with emphasis on analysis techniques for (experimental) time series, known from literature at the start of this work (1990-1991). In chapter 3, the testing of existing and newly developed techniques on both model and fluidized bed data is described. This leads to the development of the chaos analysis method to analyze measured pressure fluctuations time series of a fluidized bed. Following, in chapter 4, this method is tested and all choices for the parameters are evaluated. The influence of the experimental parameters and external disturbances on the measurements and analysis results is discussed and quantified. The result is a chaos measurement and analysis protocol, which is further used in this work. In chapter 5, the applications to fluidized beds are discussed. It is shown that the entropy is a good measure for the characterization of the dynamical behavior of gas-solids bubbling/slugging fluidized beds. Entropy is applied to characterize the influence of the operating conditions, to assess regime transitions and to analyze dimensionless similar beds of different scale. Quantitative design correlations that relate entropy to the operating parameters (including the bed diameter) are described. Finally, it is discussed how the results of this work might be used in scaling up the chaotic dynamics of fluidized beds. The overall conclusions and outlook from this work are presented in chapter 6. 182 refs.

  18. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  19. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  20. Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    McRae, C.; Snape, C.E.; Fallick, A.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1998-07-01

    To establish the scope for applying gas chromatography-isotope ratio mass spectrometry ({sup {delta}-13}C GC-IRMS) to molecular recognition problems in coal utilisation, {sup 13}C/{sup 12}C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs) as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (-23 to -25 parts per thousand) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2-3 parts per thousand. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonization, are still heavier (by 2-3 parts per thousand) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank.

  1. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    Science.gov (United States)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  2. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  3. Numerical modeling of carbon dioxide chemisorption in sodium hydroxide solution in a micro-structured bubble column

    NARCIS (Netherlands)

    Jain, D.; Kuipers, J.A.M.; Deen, N.G.

    2015-01-01

    Gas-liquid flows with solid catalyst particles are encountered in many applications in the chemical, petrochemical, and pharmaceutical industries. Most commonly, two reactor types, slurry bubble column (SBC) and trickle bed (TB) reactors are applied for large scale in the industry. Both of these

  4. ANALYSIS OF TRICKLE BED AND PACKED BUBBLE COLUMN BIOREACTORS FOR COMBINED CARBON OXIDATION AND NITRIFICATION

    Directory of Open Access Journals (Sweden)

    Iliuta I.

    2002-01-01

    Full Text Available Biological removal of nitrogen and carbon by combined nitrification-oxidation in gas-liquid trickle-bed reactors (TBRs and packed bubble columns (PBCs was analyzed theoretically using a transient two-dimensional model. The model describes TBR and PBC performances at steady state as well as their transient response to a pulse or step increase in inlet methanol and NH4+-nitrogen concentrations. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the piston-dispersion-exchange model was used to interpret the residence time distribution curves obtained. Gas-liquid mass transfer parameters were determined by a stationary method based on the least-squares fit of the calculated concentration profiles in gas phase to the experimental values. Analysis of steady-state performances showed that under like operating conditions, the TBR outperforms the PBC in terms of conversions. A pulse change in the inlet methanol or NH4+-nitrogen concentration causes a negligible transient change in the outlet methanol concentration and a negligible or high transient change in the outlet NH4+-nitrogen concentration. A step change in the inlet methanol concentration causes the negligible transient change in the methanol outlet concentration and a relatively important transient change in the NH4+-nitrogen outlet concentration. A step increase in the NH4+-nitrogen inlet concentration induces a drastic transient change in the NH4+-nitrogen outlet concentration but a negligible transient change in the methanol outlet concentration.

  5. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  6. A model established of a 'Embryo' bubble growing-up some visible bubble in bubble chamber and its primary theory calculation

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong

    2006-01-01

    A model of a 'embryo' bubble growing up a visible bubble in the bubble chamber is established. Through primary theory calculation it is shown that the 'embryo' bubble is not only absorbing quantity of heat, but also some molecules get into the 'embryo' bubble from its environment. It is explained reasonably that the radius of bubbles in bubble camber is different for the same energies of neutrons and proton. The track of neutron in bubble camber is long and thin, and the track of proton in bubble camber is wide and short. It is explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. It is also explained reasonably that there are a little different radius of the bubbles of a track at the some region. It can be predicted theoretically that there should be big bubbles to burst when incident particles enter the bubble chamber at first. The sensitivity and the detective efficiency of bubble camber can be enhanced by choosing appropriate work matter. (authors)

  7. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  8. Improving Drinking Water Quality by Remineralisation.

    Science.gov (United States)

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  9. Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2013-01-01

    Full Text Available The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB, primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent’s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour, bed particles and water, have been carried out. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in the fluidized bed

  10. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Science.gov (United States)

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  11. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  12. Femtosecond laser-assisted deep anterior lamellar keratoplasty in phototherapeutic keratectomy versus the big-bubble technique in keratoconus

    Directory of Open Access Journals (Sweden)

    Jarbas Pereira de Macedo

    2018-05-01

    Full Text Available AIM: To compare the functional and anatomic results of femtosecond laser (FSL-assisted deep anterior lamellar keratoplasty (DALK associated with phototherapeutic keratectomy (PTK and FSL-assisted DALK performed using the big-bubble technique in keratoconus. METHODS: During the first phase of the study, an electron microscopy histopathology pilot study was conducted that included four unsuitable donor corneas divided into two groups: in FSL group, FSL lamellar cuts were performed on two corneas and in FSL+PTK group, PTK was performed at the stromal beds of two corneas after FSL lamellar cuts were made. During the second phase of the study, a randomized clinical trial was conducted that included two treatment groups of patients with keratoconus: group 1 (n=14 eyes underwent FSL-assisted DALK associated with PTK and group 2 (n=12 eyes underwent FSL-assisted DALK associated with the big-bubble technique. The main outcome measures were the postoperative visual acuity (VA and optical coherence tomography (OCT measurements, confocal microscopic findings, and contrast sensitivity. RESULTS: In the pilot study, histopathology showed a more regular stromal bed in the FSL+PTK group. In the clinical trial, group 1 had significantly worse best spectacle-corrected VA and contrast sensitivity (P<0.05 for both comparisons. The residual stromal bed measured by OCT was significantly (P<0.05 thicker in group 1. Confocal microscopy detected opacities only at the donor-receptor interface in group 1. CONCLUSION: Patients with keratoconus treated with FSL-assisted DALK performed using the big-bubble technique fare better than treated with FSL-assisted DALK associated with PTK.

  13. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  14. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  15. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  16. Interaction of a bubble and a bubble cluster in an ultrasonic field

    International Nuclear Information System (INIS)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  18. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    Science.gov (United States)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  19. The burning of automotive shredder residue (ASR) using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    Abelha, Pedro; Gulyurtlu, Ibrahim; Lopes, H.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2005-07-01

    The objective of this work was to demonstrate the feasibility and the environmental performance of FBC technology to burn a fluff fraction of an ASR from a Portuguese vehicle dismantling plant. The combustion studies were carried out on the pilot installation at INETI. The results obtained suggest that the Portuguese ASR has a very high mineral content (70%) and the combustion had to be sustained with the use of an auxiliary fuel (propane); the combustion efficiency was very high; the gaseous pollutants could easily be controlled below the permitted limits and sulphur and chlorine emissions were low. ASR could give rise to fluidising problems due to the accumulation of ashes in the bed; therefore, it is essential that a more efficient metal separation method be used during dismantling process; there was an enrichment of heavy metals (Pb, Cu, Mn and Zn) on ashes retained in the cyclones, specially in the smaller particle size range (less than 10 m); however, the ashes did not have a tendency for leaching.

  20. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  1. Modeling bubble heat transfer in gas-solid fluidized beds using DEM

    NARCIS (Netherlands)

    Patil, A.V.; Peters, E.A.J.F.; Kolkman, T.; Kuipers, J.A.M.

    2014-01-01

    Discrete element method (DEM) simulations of a pseudo 2-D fluidized bed at non-isothermal conditions are presented. First implementation details are discussed. This is followed by a validation study where heating of a packed column by a flow of heated fluid is considered. Next hot gas injected into

  2. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  3. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Science.gov (United States)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  4. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    International Nuclear Information System (INIS)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-01-01

    Highlights: ► Significant GHG reductions are possible by efficient WtE technologies. ► CHP and high power-to-heat ratio provide significant GHG savings. ► N 2 O and coal mine type are important in LCA GHG emissions of FBC co-combustion. ► Substituting coal and fuel oil by waste is beneficial in electricity and heat production. ► Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO 2 -eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  5. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  6. CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system

    International Nuclear Information System (INIS)

    Harichandan, Atal Bihari; Shamim, Tariq

    2014-01-01

    Highlights: • Computational study of the fuel reactor of chemical looping combustion technology. • The results yield better understanding of the bubble hydrodynamics in fuel reactor. • Increasing the reactor bed length increases the conversion rate. • Small oxygen carrier particles improves the conversion rate. - Abstract: This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO 4 and H 2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant

  7. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  8. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  9. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  10. Air gasification of agricultural waste in a fluidized bed gasifier: hydrogen production performance

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ab Karim Ghani, W. A.; Moghadam, R. A.; Mohd Salleh, M. A. [Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Alias, A. B. [Chemical Engineering, Universiti Teknologi MARA Malaysia, 54500 Shah Alam, Selangor (Malaysia)

    2009-07-01

    Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900 {sup o}C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900 {sup o}C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidising velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced. (author)

  11. Rational equity bubbles

    OpenAIRE

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  12. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  13. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  14. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    Three-dimensional Computational Fluid Dynamics (CFD) simulations of Circulating Fluidized Beds (CFB's) have been performed. The computations are performed using a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phases. The turbulent motion...... implemented in the CFD code FLOTRACS-MP-3D. The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). Comparison between measured and simulated time-averaged ozone concentration at different elevations in the riser...

  15. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  16. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  17. Bubbling away

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  18. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  19. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed......, the gas interchange coefficient, the bubble size and the bubble rise velocity. The most important combustion parameters were the rate of CO and CH4 combustion and the fraction of CO produced from char combustion. By using a rate of production analysis, the important reactions in the NO model were...

  20. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  1. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  2. Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach

    Directory of Open Access Journals (Sweden)

    M. Peglow

    2005-06-01

    Full Text Available In this paper a model for fluidized bed spray agglomeration is presented. To describe the processes of heat and mass transfer, a physical based model is derived. The model takes evaporation process from the wetted particles as well as the effects of transfer phenomena between suspension gas and bypass gas into account. The change of particle size distribution during agglomeration, modeled by population balances, is linked to the heat and mass transfer model. A new technique is derived to extract agglomeration and nucleation rates from experimental data. Comparisons of experiments and simulations are presented.

  3. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  4. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  5. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  6. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  7. Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2014-06-01

    Full Text Available parameters on energy and exergy characteristics and exergy losses. International Journal of Energy Research 2006; 30: 203-219. [24] Ziebik A, stanek W. Energy and exergy system analysis of thermal improvements of blast-furnace plants. International... in the riser column of a pressurized circulating fluidized bed. International Journal of Energy Research 2006; 30: 149-162. [27] Cihan A, Hacihafizoglu O, Kahveci K. Energy-exergy analysis and modenization suggestions for a combined-cycle power plant...

  8. Bubbling away

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  9. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  10. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  11. Fluidized-bed combustion of refuse-derived fuels; Verbrennung von Ersatzbrennstoff in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrecht, D.; Wolff, H.-J.; Matzmohr, R. [Universitaet Rostock (Germany). Institut fuer Energie und Umwelttechnik

    2004-07-01

    The experiments in the SWSF DN 400 test facility were to prove that combustion in a stationary, bubbling fluidized bed is an economically and ecologically feasible technology for treating the high-calorific fractions of waste materials conditioned in a mechanical and biological treatment system. This comprised the following tasks: Proof of the long-term suitability and availability of the selected fluidized-bed process; Reduction or prevention of emissions by primary, in-process measures in accordance with the specifications of the German Nuisance Control Ordinance (17. BImSchV); No secondary (additive) off-gas purification stages apart from a mechanical dedusting stage. The combustion off-gas of the fluidized-bed combustor were used for heat and power generation in a steam generator connected in series with the furnace. (orig.)

  12. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  13. Unsteady void measurements within debris beds using high speed X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E., E-mail: Laurien@ike.uni-stuttgart.de; Stürzel, T., E-mail: thilo.stuerzel@stihl.de; Zhou, M., E-mail: mi.zhou@ike.uni-stuttgart.de

    2017-02-15

    Highlights: • A high speed X-ray tomography facility has been built for the investigation on two-phase flow. • The two-phase flow through beds of packed plastic spheres has been investigated in the facility. • 3D-reconstructions from the measurements show the fluxes in the two-phase flow. • The gas fraction has been calculated from the reconstruction and used for validation of the modeling. • A new bed with closest regular spheres arrangement has been manufactured by 3D-plotter and used in the measurement. - Abstract: Two-phase flow and boiling within debris beds representing a destroyed reactor core after a severe accident with core fragmentation can be simulated by using the porous media approach. In this approach, a local pressure drop and the heat transfer between the solid debris particles and the two-phase flow is modelled with the help flow-pattern maps, in which the boundaries between bubbly, slug, and annular flow are assumed. In order to support further understanding of these flows we have developed a very fast X-ray measurement device to visualize the 3D-void distribution within particle beds or porous media, which are otherwise un-accessible internally. The experimental setup uses a scanned electron beam directed in circles on a tungsten target to generate the X-rays. The particle bed, which has a diameter of 70 mm, is located between this target and a field of 256 X-ray detectors, which are arranged on a circle concentric to the target. The void distribution is reconstructed numerically from the attenuation of signals, which penetrates the particle bed and the two-phase flow inside. A 3D frame rate of up to 1000 Hz can be reached. The spatial resolution is such that bubbles with a diameter > 1.7 mm can be detected. We have investigated two-phase flows air/water through beds of packed plastic spheres (diameter between 3 and 15 mm) as well as through plastic beds, which were manufactured using a ‘3D-plotter’. Flow patterns can be

  14. Lagisza, world's largest CFB boiler, begins commercial operation

    Energy Technology Data Exchange (ETDEWEB)

    Nuortimo, K. [Foster Wheeler, Varkaus (Finland)

    2010-04-15

    Early operating experience with the Lagisza circulating fluidised bed (CFB) boiler in Poland - the world's largest such boiler to date, and also the first one with supercritical steam conditions - has been positive. 3 figs., 4 tabs.

  15. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  16. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    Science.gov (United States)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  17. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  18. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  19. Thermal valorization of post-consumer film waste in a bubbling bed gasifier.

    Science.gov (United States)

    Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A

    2013-07-01

    The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  1. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  2. Leaching Behavior of Circulating Fluidised Bed MSWI Air Pollution Control Residue in Washing Process

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-09-01

    Full Text Available In this study, air pollution control (APC residue is conducted with water washing process to reduce its chloride content. A novel electrical conductivily (EC measurement method is proposed to monitor the dynamic change of chloride concentrations in leachate as well as the chloride content of the residue. The method equally applies to various washing processes with different washing time, liquid/solid ratio and washing frequency. The results show that washing effectively extracts chloride salts from APC residues, including those from circulating fluidized bed (CFB municipal solid waste incineration (MSWI. The most appropriate liquid/solid ratio and washing time in the first washing are found to be around 4 L water per kg of APC residue and 30 min, respectively, and washing twice is required to obtain maximum dissolution. The pH value is the major controlling factor of the heavy metals speciation in leachate, while chloride concentration also affects the speciation of Cd. Water washing causes no perceptible transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs from the APC residue to leachate. The chloride concentration is strongly related with electrical conductivity (EC, as well as with the concentrations of calcium, sodium and potassium of washing water. Their regression analyses specify that soluble chloride salts and EC could act as an indirect indicator to monitor the change of chloride concentration and remaining chloride content, thus, contributing to the selection of the optimal washing conditions.

  3. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  4. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  6. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    Science.gov (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  8. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers

    International Nuclear Information System (INIS)

    Gao, Hongtao; Liu, Bingbing; Yan, Yuying

    2017-01-01

    A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.

  9. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  10. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  11. Textural properties of chars as determined by petrographic analysis: comparison between air-blown, oxygen-blown and oxygen-enriched gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2012-11-01

    Full Text Available In this study, the textural properties of chars generated from a vitrinite, high ash coal in a fluidised bed gasifier under air-blown, oxygen-blown and oxygen-enriched conditions were determined by detailed petrographic analysis. The char samples...

  12. Optimization of the bubble radius in a moving single bubble sonoluminescence

    International Nuclear Information System (INIS)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  13. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  14. Dynamics of bubble-bubble interaction in sheared low-viscosity magma imaged by X-ray computed micro-tomography

    Science.gov (United States)

    Helo, C.; Flaws, A.; Hess, K.-U.; Franz, A.; Clague, D. A.; Dingwell, D. B.

    2012-04-01

    X-ray computed tomography of vesicles in basaltic pyroclastic glass fragments has been used to investigate the syn-eruptive shear environment and resulting bubble-bubble interaction during mild pyroclastic eruptions in a mid-ocean ridge environment. We have imaged vesicles present in two different types of pyroclastic fragments produced by mildly explosive activity on Axial Seamount, limu o Pele, that is, thin glass films often described as bubble walls, and tube scoria fragments. Rapid quenching of the glass has prevented extensive bubble relaxation preserving the syn-eruptive geometry of the bubbles in these fragments. Isolated, ellipsoid-shaped vesicles in low-vesicular limu o Pele indicate deformation in a simple shear environment. Under these shear conditions higher vesiculated parts of the erupting magma show strong bubble-bubble interactions partially leading to coalscence and formation of tubular vesicles. These tubular vesicles can reach significant lengths, exceeding the dimensions of the small glass fragments (2 mm). Their unreformed radius can be more then one order of magnitude larger than that of the isolated vesicles in the limu o Pele fragments. We can distinguish two principle modes of interaction based on the relative orientation of the bubbles. Interaction along the sidewalls of two bubbles, and tip-to-tip interaction. At interdistances of less than a few tens of micrometre, interaction of the sidewalls results in deformation of the bubbles to more irregular shapes, with depressions caused by close, small bubbles or in some cases bubbles being partially mantled around tubular bubbles. This often leads to a more close packing of bubbles. At distances of less than a few microns, the melt films between the bubbles destabilize leading to coalescence. This mechanism appears to involve a bulging of the larger bubble into the smaller, followed by melt film rapture and coalescence. The complete digestion of one bubble by the other is the slow rate

  15. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  16. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  17. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  18. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    International Nuclear Information System (INIS)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon; Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M.

    2015-01-01

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters

  19. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe

    2004-09-01

    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  20. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  1. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  2. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  3. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  4. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  5. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  6. Combustion of gases released from peat or biomass in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-01

    Temperature and gas concentration experiments have been conducted to determine at what temperature carbon monoxide, methane and propane begin to react within the particulate phase of a bubbling fluidized bed. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 50 mm surrounded by an electric heater. Two different natural quartz sands were used (d{sub p} =0.35 mm and 0.6 mm). The bed height used varied between 100 and 260 mm (in unfluidized state). A porous plate distributor, made of kaowool, was used to avoid jets appearing at the distributor. The bed was operated at incipient fluidization (u = 5.9-9 cm/s). The bed temperatures used ranged from 600 deg C to 850 deg C. It was found that carbon monoxide, methane and propane react inside a fluidized bed, but often other conditions than temperature have a considerable effect on the rate of the reaction. The critical temperature was found to be 650 deg C for propane and carbon monoxide and 700 deg C for methane. With under-stoichiometric mixture of carbon monoxide and air the heat release can be over 2.5 MW/m{sup 3} when bed temperature is 650 deg C. According to these experiments it is obvious that the reaction mechanism for carbon monoxide oxidation inside a fluidized bed differs greatly from that of gas phase only. The results of our more than 1300 test runs show clearly the varying effects of the different bed materials. Even with the same bed material totally different results can be obtained. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies was conducted with both fresh bed particles and used bed particles. Also the effect of commonly used ingredients, like limestone and dolomite, was tested. A global model for carbon monoxide oxidation inside a fluidized bed was introduced. The model was tested against measured data from the laboratory-scale fluidized bed test rig. (Abstract Truncated)

  7. Bubble transport in bifurcations

    Science.gov (United States)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  8. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  9. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S.; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  10. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  11. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  12. Bubble propagation on a rail: a concept for sorting bubbles by size

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  13. Boiler control using on-line determination of moisture content for incoming fuel; Forskning kring pannstyrning med on-line fukthaltsmaetning paa biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Avelin, Anders; Dahlquist, Erik; Moden, Per Erik

    2008-10-15

    Incoming fuels to the biomass fueled boiler are the main source for uncertainties in the combustion process. Fuel quality has large impact on the combustion and the heat transfer in the boiler. There are several possibilities to control the boiler when the bed temperature varies. Flue gas recirculation is one of the variables used for control of the bed temperature in the boiler. Another parameter to use for controlling the bed temperature is to adjust the humidification of the combustion air. The parameter with the major influence on the bed temperature is the amount of primary air. These three parameters are all used as control variables for control of the bed temperature. One part of the study has been to investigate how much and how fast each parameter influences bed temperature and how the information of the moisture content in the incoming fuel can be used for feed-forward information for controlling bed temperature. At the reception terminal all the incoming deliveries are registered with quality and moisture content. This study has also investigated how to use the information about the moisture content of incoming fuel, based on NIR measurements on the fuel transported in to the boiler, and the fluctuation of the bed temperature. Another question is how to connect this information for the bed control. This part of the study is used to evaluate if the information to the operators about the moisture content from the NIR has affect on the variation of the bed temperature. A process model has been developed of the Bubbling Fluidised Bed boiler (BFB) that is one of the boilers at the power plant in Eskilstuna. The model has been used to analyze the process. Process models have become more common and important in the heat and power industry. Nowadays process models are used for training of the staff in simulators of the real plant and for offline tests of control systems

  14. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  15. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  16. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  17. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    Science.gov (United States)

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  18. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  19. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  20. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  1. Bidirectional cinematography of steam-bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz.

  2. Bidirectional cinematography of steam-bubble growth

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz

  3. An equation of motion for bubble growth

    International Nuclear Information System (INIS)

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  4. Measures for simultaneous minimisation of alkali related operating problems; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, Kent; Eskilsson, David; Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Kassman, Haakan; Steenari, Britt-Marie; Aamand, Lars-Erik

    2006-12-15

    reduced chlorine content in the deposits. Ammonium sulphate was more effective than elemental sulphur on the basis of added sulphur. However, no significantly positive effect was observed on the bed agglomeration. The risk for both agglomeration and deposits problems were reduced during co-combustion with sewage sludge. Further results from the experiments at Chalmers revealed that the effect of changing bed material was dependent on the type of bed material chosen. The blast furnace sand had a greater effect than olivine sand when reducing the risk of bed agglomeration. The content of alkali chlorides in the flue gas and in deposits were doubled when changing the bed material to olivine sand, compared to the reference case (a silica sand named silversand). Even in the experiments with blast furnace sand, the alkali chloride content in the deposits increased, but not as much as in the case with olivine sand. According to approximate estimations, the costs of the various measures will be in the range of 3-30 SEK/MWh. Simultaneous addition of sulphur and kaolin is an interesting approach which will be investigated in stage 2. Within the project A5-505, laboratory experiments were performed in a 5 kW bubbling fluidised bed reactor where the tendencies of bed agglomeration for wheat straw, red canary grass, industrial hemp were studied in combination with different commercial bed materials. The results showed that straw had the greatest agglomeration tendency followed by red canary grass and industrial hemp. Furthermore the experiments showed that the fuel ash appeared in the bed as sticky separate ash particles and that the composition of the bed material had no significant effect on the agglomeration tendencies of the different fuels

  5. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  6. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  7. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  8. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  9. Nuttier bubbles

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  10. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  11. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Science.gov (United States)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  12. Fluidized bed gasification of sugar cane bagasse. Influence on gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, E.; Aleman, Y. [Univ. of las Villas, Santa Clara (Cuba). Biomass Thermoconversion group/CETA; Arauzo, J.; Gea, G. [Univ. of Zaragoza (Spain). Chemical and Environmental Engineering Dept.

    1999-07-01

    Air and steam gasification of biomass has been studied at different temperatures. The experiments have been carried out in a bench scale plant. It consists of an atmospheric bubbling fluidized bed gasifier heated by an electric furnace. The gasification process have been carried out at high heating rates and low residence time of the gases. The biomass used has been Cuban sugar cane bagasse. Three operating parameters have been evaluated to improve the gas composition: Equivalence Ratio (E.R.) in the range of 0.15 to 0.55; the bed temperature from 780 to 920 deg C; and steam/biomass ratio (S/B) from 0.1 g/g to 0.5 g/g. The results obtained show the effect of these operating parameters in gas composition and the conditions to obtain higher yield to gas and else the maximum energy.

  13. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  14. Computing bubble-points of CO

    NARCIS (Netherlands)

    Ramdin, M.; Balaji, S.P.; Vicent Luna, J.M.; Torres-Knoop, A; Chen, Q.; Dubbeldam, D.; Calero, S; de Loos, T.W.; Vlugt, T.J.H.

    2016-01-01

    Computing bubble-points of multicomponent mixtures using Monte Carlo simulations is a non-trivial task. A new method is used to compute gas compositions from a known temperature, bubble-point pressure, and liquid composition. Monte Carlo simulations are used to calculate the bubble-points of

  15. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  16. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression

    International Nuclear Information System (INIS)

    Chappell, M A; Payne, S J

    2006-01-01

    Under decompression, bubbles can form in the human body, and these can be found both within the body tissues and the bloodstream. Mathematical models for the growth of both types of bubbles have previously been presented, but they have not been coupled together. This work thus explores the interaction between the growth of tissue and blood-borne bubbles under decompression, specifically looking at the extent to which they compete for the common resource of inert gas held in solution in the tissues. The influence of tissue bubbles is found to be significant for densities as low as 10 ml -1 for tissues which are poorly perfused. However, the effects of formation of bubbles in the blood are not found until the density of bubble production sites reaches 10 6 ml -1 . From comparison of the model predictions with experimental evidence for bubbles produced in animals and man under decompression, it is concluded that the density of tissue bubbles is likely to have a significant effect on the number of bubbles produced in the blood. However, the density of nucleation sites in the blood is unlikely to be sufficiently high in humans for the formation of bubbles in the blood to have a significant impact on the growth of the bubbles in the tissue

  17. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  18. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  20. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 10, Impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Forskningscenter Risoe (Denmark)

    2000-03-01

    Modern technologies like high-pressure water washout and Fluidised Bed Combustion provide safe and environmentally acceptable solutions for demilitarisation. The environmental impact from the traditional techniques Open Burning and Open Detonation can be drastically reduced. High-pressure water washout in combination with Fluidised Bed Combustion and NO{sub x}-reduction using urea-injection is the best well-demonstrated technology considered in this study. This technology can be used for large/medium sized calibre munitions, but additional removal of NO{sub x} from the flue gases is required in order to comply with European emission standards. It has been made credible at existing Rotary Kilns used for hazardous waste in general can be used also for incineration of de-sensitised, down sized munitions (slurries), with a similar performance with respect to environmental and safety aspects as Fluidised Bed Combustion. Using a Closed Detonation chamber with flue-gas cleaning has important environmental advantages compared to Open Burning and Open Detonation, especially for small munitions (e.g. fuzes, antipersonnel mines, pyrotechnics). However, because Closed Detonation is labour-intensive and requires operation of complex, pressurised systems, it poses more risk on the personnel. For that reason, it is recommended to develop other systems to demilitarise small munitions. It appears that the air pollution emissions from transport of munitions to disposal facilities is significant compared to the process emissions of the 'cleanest' technologies. Similarly, risks related to transport (due to ordinary accidents involving trucks) are not dominating, but cannot be ignored compared to process risks. These considerations need to be included when comparing less sophisticated local or mobile facilities with central facilities having advanced flue gas cleaning. (au)

  1. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  2. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  3. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  4. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  5. Manipulating bubbles with secondary Bjerknes forces

    International Nuclear Information System (INIS)

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  6. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  7. Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    João Cardoso

    2017-11-01

    Full Text Available The present study investigates the hydrodynamics and heat transfer behavior of municipal solid waste (MSW gasification in a pilot scale bubbling fluidized bed reactor. A multiphase 2-D numerical model following an Eulerian-Eulerian approach within the FLUENT framework was implemented. User defined functions (UDFs were coupled to improve hydrodynamics and heat transfer phenomena, and to minimize deviations between the experimental and numerical results. A grid independence study was accomplished through comparison of the bed volume fraction profiles and by reasoning the grid accuracy and computational cost. The standard deviation concept was used to determine the mixing quality indexes. Simulated results showed that UDFs improvements increased the accuracy of the mathematical model. Smaller size ratio of the MSW-dolomite mixture revealed a more uniform mixing, and larger ratios enhanced segregation. Also, increased superficial gas velocity promoted the solid particles mixing. Heat transfer within the fluidized bed showed strong dependence on the MSW solid particles sizes, with smaller particles revealing a more effective process.

  8. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    This report covers work that has been carried out in the combustion chemistry group at the Dept. of Environmental Inorganic Chemistry, Chalmers, within the STEM project 12859-1, during the period 2000-07-01 to 2002-06-30. The work was comprised of the following parts: Sulphur chemistry under pressurised and atmospheric conditions; Gas/solid reactions related to sintering and fouling; Chemistry of volatile metals in combustion; Ash leaching properties; Theoretical modelling of the interactions between ions in a solution and mineral surfaces; Some related issues and co-operations with other departments. The work on sulphur chemistry has been a central issue in our group and it has now been finalised with a PhD thesis discussing some aspects of the sulphation of limestone under pressurised conditions. The influence of a number of parameters on the sulphation efficiency was investigated and compared with similar studies under atmospheric conditions. In a special study it was shown that the influence of alternating calcining - non-calcining conditions on the conversion was substantial. In addition, the oxidation of CaS and sulphided limestone was studied and a regeneration method for the sulphide sorbent was proposed. In the project part concerning gas - solid reactions that are relevant to sintering and fouling, the application of an on-line measurement technique for the study of alkali metal capture by kaolin or other sorbents is described. A new reactor set-up has been constructed and the initial results from this set up are promising. The chemistry of cadmium in combustion of MSW and biomass is the object of a PhD project. This work has been concentrated on the task of identifying Cd-compounds in fly ash samples. It has now come to a point where enough data has been collected to make it possible to give an indication about the Cd speciation in some ash types. In MSW ash particles, cadmium seem to occur mainly as chloride, oxide and sulphate. The work will continue with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  9. Sustainable nitrification in fluidised bed reactor with immobilised ...

    African Journals Online (AJOL)

    2012-02-01

    Feb 1, 2012 ... polyacrylamide, polystyrene, polyurethane and polyethylene glycol, have been .... and photographed under ultraviolet light. The representative ..... ited NOB population in immobilised pellets, the degradation of NH4. +-N by ...

  10. Reactive Gas Solids Flow in Circulating Fluidised Beds

    DEFF Research Database (Denmark)

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly

    2005-01-01

    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas...

  11. Sustainable nitrification in fluidised bed reactor with immobilised ...

    African Journals Online (AJOL)

    TOC concentration above 800 mg·ℓ-1 was not able to cause the inhibition of the heterotrophs over the nitrifiers. PCR-DGGE results indicated the presence of Nitrosomonas (ammonia-oxidising bacteria) and Nitrobacter (nitrite-oxidising bacteria) in the immobilised pellets. Keywords: bioimmobilisation, ammonium, partial ...

  12. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  13. Studies on the inhomogeneous core density of a fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hagen, T.H.J.J.; Van Dam, H.; Hoogenboom, J.E.; Khotylev, V.A. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.; Harteveld, W.; Mudde, R.F.

    1997-12-31

    Results are reported on the expected time dependent core density profile of a fluidized-bed nuclear fission reactor. Core densities have been measured in a test facility by the gamma-transmission technique. Bubble and particle-cluster sizes, positions, velocities and frequencies could be determined. Neutronic studies have been performed on the influence of core voids on reactivity using Monte-Carlo and neutron-transport codes. Fuel-particle importance has been determined. Point-kinetic parameters have been calculated for linking reactivity perturbations to power fluctuations. (author)

  14. Model simulation for high-temperature gas desulphurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Tonini; Zaccagnini; Berg; Vitolo; Tartarelli; Zeppi (Struttura Informatica, Florence (Italy))

    1993-01-01

    Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials in the removal of sulphur compounds from hot coal gas in power generation operations. A mathematical model for the sulfidation phase in fixed, moving and fluidised bed reactors has been developed. This paper presents kinetic models of spherical sorbent particles applicable to all reactor configurations and a mathematical model limited to the moving bed reactor. 10 refs., 5 figs.

  15. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  16. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2012-01-01

    Full Text Available Here we show an intriguing phenomenon in the bubble electrospinning process that the ruptured film might be stripped upwards by an electronic force to form a very thin and long plate-like strip, which might been received in the metal receiver as discontinuous backbone-like wrinkled materials, rather than smooth nano-fibers or microspheres. The processes are called the bubble electrospinning. The electronic force can be replaced by a blowing air, and the process is called as the blown bubble spinning. We demonstrate that the size and thickness of the ruptured film are the crucial parameters that are necessary to understand the various observations including beads and nanoporous materials. We identify the conditions required for a ruptured film to form discontinuous structure, and a critical width of the ruptured film to form a cylindrical fiber, above which a long and thin plate-like strip might be obtained, and a criterion for oscillatory jet diameter, which leads to bead morphology of the obtained fibers. The space of the adjacent beads depends on the fiber size. We anticipate our assay to be a starting point for more sophisticated study of the bubble electrospinning and the blown bubble spinning and for mass-production of both nanofibers and nanoscale discontinuous materials.

  17. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  18. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  19. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    International Nuclear Information System (INIS)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A.; Cunha Filho, Jurandyr S.; Motta, Mauricio S.

    2011-01-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  20. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  1. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  2. Bubbles in the self-accelerating universe

    International Nuclear Information System (INIS)

    Izumi, Keisuke; Tanaka, Takahiro; Koyama, Kazuya; Pujolas, Oriol

    2007-01-01

    We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane, while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches

  3. Slowing down bubbles with sound

    Science.gov (United States)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  4. When Will Occur the Crude Oil Bubbles?

    International Nuclear Information System (INIS)

    Su, Chi-Wei; Li, Zheng-Zheng; Chang, Hsu-Ling; Lobonţ, Oana-Ramona

    2017-01-01

    In this paper, we apply a recursive unit root test to investigate whether there exist multiple bubbles in crude oil price. The method is best suited for a practical implementation of a time series and delivers a consistent date-stamping strategy for the origination and termination of multiple bubbles. The empirical result indicates that there exist six bubbles during 1986–2016 when the oil price deviate from its intrinsic value based on market fundamentals. Specifically, oil price contains the fundamentals and bubble components. The dates of the bubbles correspond to specific events in the politics and financial markets. The authorities should actively fight speculative bubbles or just observe their evolutions and speculation activities may decrease, which is favour of the stabilisation of the staple commodities including crude oil price. These findings have important economic and policy implications to recognise the cause of bubbles and take corresponding measures to reduce the impact on the real economy cause of the fluctuation of crude oil price. - Highlights: • Investigate multiple bubbles in crude oil price. • Indicate six bubbles deviate from its intrinsic value based on market fundamentals. • The bubbles correspond to specific events in the politics and financial markets. • Reduce the impact on the real economy cause of the fluctuation of crude oil price.

  5. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    International Nuclear Information System (INIS)

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-01-01

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H 2 O 2 production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H 2 O 2 was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H 2 O 2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L −1 of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h

  6. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  7. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  8. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  9. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    Science.gov (United States)

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Single DNA denaturation and bubble dynamics

    International Nuclear Information System (INIS)

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  11. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  13. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  14. Characterization of residues from waste combustion in fluidized bed boilers. Evaluation report

    International Nuclear Information System (INIS)

    Hagman, U.; Elander, P.

    1996-04-01

    In this report a thorough characterization of the solid residues from municipal solid waste combustion in a Kvaerner EnviroPower bubbling fluidized bed boiler in Lidkoeping, is presented. Three different end products are generated, namely bottom ash, cyclone ash, and filter ash. The bottom ash, consisting of bed ash and hopper ash, is screened and useful bed material recycled. In the characterization, also the primary constituents bed ash and hopper ash have been included. A chemical characterization have been performed including total inorganic contents, content of unburnt matter, leaching behaviour (availability tests, column tests, pH-static tests) and leaching tests according to certain standards for classification (AFX31-210, DIN38414, TCLP). Physical characterization have included grain size distribution, grain density, compaction properties and stabilization of cyclone ash with subsequent testing of comprehensive strength and saturated hydraulic conductivity. From an environmental point of view, the quality of the bottom ash and probably the cyclone ash from fluidized bed combustion as determined in this study, indicate a potential for utilization. Utilization of the bottom ash could be accepted in certain countries, e.g. France, according to their current limit values. In other countries, e.g. Sweden, no general limit values are given and utilization have to be applied for in each case. The judgement is then based, not only on total contents in the residue and its leaching behaviour, but also on the specific environmental conditions at the site. 7 refs, 17 figs, 12 tabs

  15. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  16. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  17. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  18. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  19. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  20. On the mobility of fission-gas bubbles

    International Nuclear Information System (INIS)

    Nichols, F.A.; Ronchi, C.

    1986-01-01

    The importance of bubble migration in fuel swelling and fission-product release remains a controversial topic in spite of a great deal of research. For steady state analyses some authors ignore bubble motion totally, whereas others use mobilities (based on out-of-pile measurements) which are far below the theoretical diffusion-control predictions. Under transient conditions some continue to use zero or low bubble mobilities, whereas others invoke higher mobilities. Experimental information on mobility of bubbles under irradiation conditions is very limited, but supports the theoretical values for bubble sizes above 1 μm. The authors discuss here some interesting new results which may provide direct evidence for in-pile mobilities comparable with surface-diffusion control predictions for much smaller bubbles (<20nm), where out-of-pile studies indicate greatly reduced mobilities. A brief summary is presented of information available for bubble mobilities, both in- and out-of-pile

  1. The production of sinterable uranium dioxide from ammonium diuranate

    International Nuclear Information System (INIS)

    Fane, A.G.; Le Page, A.H.

    1975-02-01

    The development of a 0.13 m diameter pulsed fluidised bed reactor for the continuous production of sinterable uranium dioxide from ammonium diuranate is described. Calcination-reduction at 670 to 680 0 C produced powders with surface areas of 4 to 6 m 2 g -1 giving pellet densities in excess of 10.6 g cm -3 . Sinterability was relatively insensitive to changes in operating conditions, provided the availability of hydrogen was adequate, for gas flow rates in the range 0.95 to 1.4 l S -1 , pulse frequencies of 0.5 and 0.75 Hz and mean residence times of the solids from 0.6 to 1.4 hours. Sinterability was shown to be improved either by use of higher input concentrations, or by use of a secondary flow of hydrogen (about 5 per cent of input) fed into the powder collection system and flowing countercurrent to the UO 2 product. The maximum throughput of 17 kg UO 2 h -1 (0.6 hours mean residence time) required only 120 per cent of the stoichiometric requirement at an input concentration of 50 vol.per cent with secondary hydrogen flow. Results are given for studies of the kinetics of reduction of calcined ammonia diuranate in hydrogen and the residence time distribution of solids in a pulsed fluidised bed. Estimates based on these data suggested that the overall conversion of ammonium diuranate to uranium dioxide in the continuously operated pulsed fluidised bed reactor was in excess of 99 per cent. Continuous stabilisation of the UO 2 product was demonstrated at 12 kg h -1 or UO 2 , in a 0.15 m diameter glass stabiliser, using 10 vol.per cent air in nitrogen and a temperature of about 50 0 C. (author)

  2. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  3. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  4. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.H.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I. [INETI, Lisbon (Portugal)

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC with the aim of characterizating the ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  5. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed.

    Science.gov (United States)

    Helena Lopes, M; Abelha, P; Lapa, N; Oliveira, J S; Cabrita, I; Gulyurtlu, I

    2003-01-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  6. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    International Nuclear Information System (INIS)

    Helena Lopes, M.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I.

    2003-01-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials

  7. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    Full text: In this study, air bubble motion in stagnant water condition in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature

  8. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    In this study, air bubble motion in stagnant water condition in a vertical pipe of 4.6 cm diameter is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature. (author)

  9. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  10. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  11. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  12. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  14. Bifurcation scenarios for bubbling transition.

    Science.gov (United States)

    Zimin, Aleksey V; Hunt, Brian R; Ott, Edward

    2003-01-01

    Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.

  15. The Minnaert bubble: an acoustic approach

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  16. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  17. A bubble detection system for propellant filling pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng [Robotics Institute, Beihang University, 100191 Beijing (China)

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  18. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  19. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yangming [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Wenhua [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-10-15

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H{sub 2}O{sub 2} production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H{sub 2}O{sub 2} was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H{sub 2}O{sub 2} generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L{sup −1} of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h.

  20. Interferometric measurement of film thickness during bubble blowing

    Science.gov (United States)

    Wang, Z.; Mandracchia, B.; Ferraro, V.; Tammaro, D.; Di Maio, E.; Maffettone, P. L.; Ferraro, P.

    2017-06-01

    In this paper, we propose digital holography in transmission configuration as an effective method to measure the time-dependent thickness of polymeric films during bubble blowing. We designed a complete set of experiments to measure bubble thickness, including the evaluation of the refractive index of the polymer solution. We report the measurement of thickness distribution along the film during the bubble formation process until the bubble`s rupture. Based on those data, the variation range and variation trend of bubble film thickness are clearly measured during the process of expansion to fracture is indicated.

  1. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  2. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  3. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  4. Non-intuitive bubble effects in reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1991-01-01

    Most people know a lot about bubbles, including how they rise in liquids and the way they appear when the cap is removed from a bottle of carbonated beverage. A lot of bubble knowledge is obtained from bubbling air through water in aquariums to keep the fish alive and happy, or watching scuba divers feed the sharks in large glass tanks at the local zoo. But innocent bubbles can be sources of structural loadings and sometimes destructive fluid behavior. In fact, there are many non-intuitive effects associated with bubbles which have been discovered by experiments and analyses. It has been necessary to design various reactor and containment components in the nuclear energy industry to accommodate the fact that bubbles can expand like compressed springs, or oscillate, or collapse abruptly, and create structural loads. This paper describes several important phenomena associated with bubble action in nuclear reactor and containment systems and the associated loads exerted. An awareness of these effects can help to avoid unwelcome surprises in general thermal-hydraulic applications when a system is disturbed by bubble behavior. Major topics discussed include expanding and collapsing submerged bubbles, steam chugging and ringout, bubble shattering, surprising hot bubble action in a saturated pool, bubble effects on fluid-structure-interaction, waterhammer from collapsing bubble in pipes, and vapor bubble effects on sound speed in saturated mixtures

  5. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  6. Improved combustion performance of waste-fired FB-boilers -The influence of the dynamics of the bed on the air-/fuel interaction; Foerbaettrad foerbraenningsprestanda vid avfallsfoerbraenning i FB-pannor -Baeddynamikens inverkan paa luft-/braensleomblandningen

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johanna (Hoegskolan i Boraas (Sweden)); Pallares, David; Thunman, Henrik; Johnsson, Filip (Chalmers (Sweden)); Andersson, Bengt-Aake (E.on/Hoegskolan i Boraas (Sweden)); Victoren, Anders (Metso Power AB (Sweden)); Johansson, Andreas (SP, Boraas (Sweden))

    2010-07-01

    One of the key benefits of fluidized bed combustion is that the bed - through mixing of fuel and air and accumulated heat - facilitates combustion at low stoichiometry and with low emissions. Even so, it is not unusual that waste-fired FB-boilers are operated at 6-8% oxygen that corresponds to 30-40% higher flows of gas than theoretically needed. In addition to that and in comparison to grate furnaces, FB-boiler can cause high pressure drop losses because of the fluidization of the bottom bed, which in turn are associated with high costs for power (fans). This work aims therefore at increasing the knowledge for how the dynamics of the bed affects the air and fuel mixture. Methods to explain and characterize the phenomenon have been derived within this work showing: - Distribution of air in a bed for various cases and the influence of pressure drop, bed height and fluidization velocity - A semi-empiric method to calculate an even bubble distribution - The relation between fluidization and fuel distribution for various fluidization flows and fuels - Dispersion rates for various fuels - Volatilization rates for waste in relation to biomass The result can be useful when optimizing units, for instance through finding as low pressure drops as possible with an even bubble distribution, low risk for sintering and unwanted emissions. The work has thereby reached its ultimate goal of increasing the generic knowledge about waste combustion in FB-boiler

  7. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  8. Identification of defluidization region in a gas-solid fluidized bed using a method based on pressure fluctuation measurements

    Directory of Open Access Journals (Sweden)

    M. R. Parise

    2009-09-01

    Full Text Available Industrial applications that involve fluidized bed operations must prevent the undesirable phenomenon of partial or complete bed defluidization. Defluidization can be avoided by increasing the gas velocity and/or, in some cases, changing the solid feed conditions in the system, provided that the changes in the hydrodynamics of the flow are detected early enough. The use of a technique that can perform an early detection of the defluidization condition in industrial applications is important, in order to avoid the loss of efficiency or even an undesirable shutting down of the process. The objective of this work is to show the application of a method for early detection of the condition where the bed is tending to the defluidization, in a gas-solid fluidized bed flow. The method is based on pressure fluctuation measurements. Experimental tests are carried out using two solid particles: microcrystalline cellulose and sand. Results show that the proposed method is efficient in detecting the fluidization condition in a conventional bubbling bed regime. The potential of application of the technique is also shown for the control of the defluidization phenomenon in industry.

  9. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  10. The interaction between multiple bubbles and the free surface

    International Nuclear Information System (INIS)

    Zhang Aman; Yao Xiongliang

    2008-01-01

    The flow is assumed to be potential, and a boundary integral method is used to solve the Laplace equation for the velocity potential to investigate the shape and the position of the bubble. A 3D code to study the bubble dynamics is developed, and the calculation results agree well with the experimental data. Numerical analyses are carried out for the interaction between multiple bubbles near the free surface including in-phase and out-of-phase bubbles. The calculation result shows that the bubble period increases with the decrease of the distance between bubble centres because of the depression effect between multiple bubbles. The depression has no relationship with the free surface and it is more apparent for out-of-phase bubbles. There are great differences in dynamic behaviour between the in-phase bubbles and the out-of-phase bubbles due to the depression effect. Furthermore, the interaction among eight bubbles is simulated with a three-dimensional model, and the evolving process and the relevant physical phenomena are presented. These phenomena can give a reference to the future work on the power of bubbles induced by multiple charges exploding simultaneously or continuously

  11. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  12. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  14. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  15. Cap Bubble Drift Velocity in a Confined Test Section

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  16. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  17. The behavior of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Helena M.; Abelha, P.; Cabrita, I. [INETI-DEECA, Lisboa (Portugal); Lapa, N.; Oliveira, J.S. [UNL-Ubia, Monte de Caparica (Portugal)

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FRC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their reactor further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out, and the amount of unburned carbon leaving the combustor but captured in the cyclone was large enough to ensure substantial retention of mercury at low temperatures, and, hence, could contribute to an improvement of the mercury release, which still remains an issue of great concern to resolve during combustion of waste materials.

  18. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  19. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  20. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  1. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  2. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  3. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  4. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  5. Structure and kinematics of bubble flow

    International Nuclear Information System (INIS)

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  6. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  7. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  8. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  9. On Bubble Rising in Countercurrent Flow

    Czech Academy of Sciences Publication Activity Database

    Večeř, M.; Leštinský, P.; Wichterle, K.; Růžička, Marek

    2012-01-01

    Roč. 10, č. 2012 (2012), A30 ISSN 1542-6580 R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0069 Institutional support: RVO:67985858 Keywords : ellipsoidal bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.790, year: 2011

  10. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  11. Formation of soap bubbles by gas jet

    OpenAIRE

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  12. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  13. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  14. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  15. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  16. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    OpenAIRE

    Bauman, Spenser; Fomitchev-Zamilov, Max

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...

  17. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  18. Sonoluminescing Air Bubbles Rectify Argon

    NARCIS (Netherlands)

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  19. A note on effects of rational bubble on portfolios

    Science.gov (United States)

    Wang, Chan; Nie, Pu-yan

    2018-02-01

    In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.

  20. Bubble fusion: Preliminary estimates

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  1. CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    SONGBAI CHENG

    2013-06-01

    Full Text Available During a hypothetical core-disruptive accident (CDA in a sodium-cooled fast reactor (SFR, degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA and Kyushu University (Japan. The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

  2. Characteristics of Self-Leveling Behavior of Debris Beds in A Series of Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Songbai; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu [Japan Atomic Energy Agency, Ibaraki (Japan); Yuya, Nakamura; Bin, Zhang; Tatsuya, Matsumoto; Koji, Morita [Kyushu Univ., Fukuoka (Japan)

    2013-06-15

    During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

  3. Characteristics of Self-Leveling Behavior of Debris Beds in A Series of Experiments

    International Nuclear Information System (INIS)

    Cheng, Songbai; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu; Yuya, Nakamura; Bin, Zhang; Tatsuya, Matsumoto; Koji, Morita

    2013-01-01

    During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes

  4. From Rising Bubble to RNA/DNA and Bacteria

    Science.gov (United States)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  5. Application of coalescence and breakup models in a discrete bubble model for bubble columns

    NARCIS (Netherlands)

    van den Hengel, E.I.V.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this work, a discrete bubble model (DBM) is used to investigate the hydrodynamics, coalescence, and breakup occurring in a bubble column. The DBM, originally developed by Delnoij et al. (Chem. Eng. Sci. 1997, 52, 1429-1458; Chem. Eng. Sci. 1999, 54, 2217-2226),1,2 was extended to incorporate

  6. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  7. Theoretical aspects of appearing of bubbles in economy

    Directory of Open Access Journals (Sweden)

    Pronoza Pavlo V.

    2014-01-01

    Full Text Available The article considers theoretical aspects of appearing of bubbles in economy. It analyses vies of scientists regarding the essence of this phenomenon and, with the help of content analysis, specifies the essence of the bubble notion in economy. It considers main stages of appearance of such bubbles. It offers classification of their types. It analyses pre-requisites of appearance of bubbles in economy and their features. It considers main existing approaches to detection and modelling appearance of bubbles. It proves that bubbles negatively influence economy of the countries, that is why, the problem of their detection and prevention is one of the central problems in the process of development of policy of state regulation of economy.

  8. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  9. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  10. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  11. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    Aluminum is one of our most important materials and finds major use in transportation (e.g. aircraft) and packaging (e.g. beverage cans). According to International Aluminium Institute statistics (www.world-aluminium.org) 23.46 million metric tons of aluminum were produced last year in the electrolytic cells used to make this metal, continuing an increase seen over the previous four years and sustained for the first half of this year. 23% of this ?primary? production was in North America. A smaller, yet important, source of the nation?s aluminum is ''secondary production'', that is the recycling of aluminum products such as beverage cans. The Aluminum Association reports that 51.4 billion beverage cans were recycled in the U.S. last year (compared to 98.9 billion new cans shipped). Whether from primary or secondary production, it is typically necessary to treat the aluminum to remove small quantities of impurities or unwanted alloying agents before the metal can be further processed and sold. In the case of primary aluminum it is the removal of trace impurities such as sodium that is needed; in the case of recycled aluminum it is the removal of alloy constituents, such as magnesium which is, after aluminum, the principal metal used in beverage cans. The procedure commonly used is known as ''gas fluxing'' and entails bubbling a reactive mixture of chlorine and argon through the molten metal. The intent is that the chlorine react with the impurities to form compounds that can easily separate from the aluminum. Unfortunately a fraction of the chlorine forms volatile aluminum chloride that leaves the fluxing unit. This represents a loss of aluminum product; furthermore the aluminum chloride can react with atmospheric moisture to form hydrogen chloride gas with impact on workers and the environment. Some of these emissions are controlled by bag houses but some escape. For example EPA's Toxic Release Inventory for 1997 has stack emissions of chlorides and chlorine

  12. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  13. Comparison of cavitation bubbles evolution in viscous media

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2018-01-01

    Full Text Available There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  14. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  15. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  16. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  17. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  18. IMPLEMENTATION OF SERIAL AND PARALLEL BUBBLE SORT ON FPGA

    Directory of Open Access Journals (Sweden)

    Dwi Marhaendro Jati Purnomo

    2016-06-01

    Full Text Available Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble sort performed faster than serial bubble sort

  19. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  20. Inertial collapse of bubble pairs near a solid surface

    Science.gov (United States)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  1. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  2. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  3. Fast Initialization of Bubble-Memory Systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  4. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  5. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  7. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  8. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  9. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  10. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  11. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  12. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    Science.gov (United States)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  13. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  14. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  15. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  16. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  17. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  18. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  19. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  20. How Stressful Is "Deep Bubbling"?

    Science.gov (United States)

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.