WorldWideScience

Sample records for bronchoconstriction

  1. Exercise-Induced Bronchoconstriction (EIB)

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  2. Adenosine: a putative mediator of bronchoconstriction in asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.S.

    1987-01-01

    The protective effect of a muscarinic cholinergic antagonists, ipratropium bromide (IB) from inhaled adenosine- and methacholine-induced bronchoconstriction in asthma was studied. Inhaled IB protected from methacholine- but not adenosine-induced bronchoconstriction. Parasympathetically mediated bronchoconstriction is therefore unlikely to account for adenosine's airway effect in asthma. The capacity of theophylline, a bronchodilator and a competitive antagonist of adenosine at its cell surface receptors, to protect asthmatic subjects from adenosine- and histamine-induced bronchoconstriction was determined. Asthmatic airways are infiltrated with inflammatory cells. Human leucocytes prelabeled with (/sup 3/H)-adenine when activated with the calcium ionophore A23187 released labelled hypoxanthine, inosine and adenosine which was associated with a dose-related release of histamine. The chemotactic peptide f-MLP while inducing histamine release had an inconstant effect on release of label. In four of five experiments f-MLP produced a transient early increase in label release but in the remaining experiment no significant release was observed. Anti-human IgE failed to induce significant label release despite releasing histamine. Activated leucocytes are therefore a potential source of adenosine in asthma.

  3. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  4. Self-reported Symptoms after Induced and Inhibited Bronchoconstriction in Athletes

    Science.gov (United States)

    SIMPSON, ANDREW J.; ROMER, LEE M.; KIPPELEN, PASCALE

    2015-01-01

    ABSTRACT Purpose A change in the perception of respiratory symptoms after treatment with inhaled beta2 agonists is often used to aid diagnosis of exercise-induced bronchoconstriction (EIB). Our aim was to test the association between subjective ratings of respiratory symptoms and changes in airway caliber after induced and inhibited bronchoconstriction in athletes with EIB. Methods Eighty-five athletes with diagnosed or suspected EIB performed a eucapnic voluntary hyperpnea (EVH) challenge with dry air. Of the 45 athletes with hyperpnea-induced bronchoconstriction [i.e., post-EVH fall in forced expiratory volume in 1 s (FEV1) ≥10%, EVH−], 36 were randomized in a double-blind, placebo-controlled, crossover study. Terbutaline (0.5 mg) or placebo was administered by inhalation 15 min before EVH. Spirometry (for FEV1) was performed before and after EVH, and respiratory symptoms were recorded 15 min after EVH on visual analog scales. Results Terbutaline inhibited bronchoconstriction (i.e., maximal fall in FEV1 athletes, with an average degree of bronchoprotection of 53% (95% confidence interval [CI], 45% to 62%). Terbutaline reduced group mean symptom scores (P athletes who had less than 10% FEV1 fall after EVH in the terbutaline condition, almost half (48%) rated at least one respiratory symptom higher under terbutaline, and more than one quarter (28%) had a higher total symptom score under terbutaline. Conclusion Self-reports of respiratory symptoms in conditions of induced and inhibited bronchoconstriction do not correlate with changes in airway caliber in athletes with EIB. Therefore, subjective ratings of respiratory symptoms after treatment with inhaled beta2 agonists should not be used as the sole diagnostic tool for EIB in athletes. PMID:25710876

  5. Nonpharmacologic strategies to manage exercise-induced bronchoconstriction

    DEFF Research Database (Denmark)

    Dickinson, John; Amirav, Israel; Hostrup, Morten

    2018-01-01

    Pharmacologic management of exercise-induced bronchoconstriction (EIB) is the mainstay of preventative therapy. There are some nonpharmacologic interventions, however, that may assist the management of EIB. This review discusses these nonpharmacologic interventions and how they may be applied to ...

  6. Reversion of methacholine induced bronchoconstriction with inhaled diazepam in patients with asthma

    OpenAIRE

    Miric, Mirjana; Ristic, Sinisa; Joksimovic, Bojan N; Medenica, Snezana; Racic, Maja; Ristic, Slavica; Joksimovic, Vedrana R; Skipina, Mirjana

    2016-01-01

    Background: Benzodiazepines have a direct bronchodilatory effect. Methacholine is a non-selective muscarinic receptor agonist causing bronchoconstriction. Aim: To examine the effects of inhaled benzodiazepines, modulating bronchoconstriction induced by methacholine in patients with asthma. Patients and Methods: Twelve patients with well controlled asthma were studied. On the first day, after determining the initial values of pulmonary function, a dose response curve was carried out with progr...

  7. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices

    NARCIS (Netherlands)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I. Sophie T.; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-01-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced

  8. Nonpharmacologic Strategies to Manage Exercise-Induced Bronchoconstriction.

    Science.gov (United States)

    Dickinson, John; Amirav, Israel; Hostrup, Morten

    2018-05-01

    Pharmacologic management of exercise-induced bronchoconstriction (EIB) is the mainstay of preventative therapy. There are some nonpharmacologic interventions, however, that may assist the management of EIB. This review discusses these nonpharmacologic interventions and how they may be applied to patients and athletes with EIB. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The impact of exercise-induced bronchoconstriction on athletic performance

    DEFF Research Database (Denmark)

    Price, Oliver J; Hull, James H; Backer, Vibeke

    2014-01-01

    BACKGROUND: Exercise-induced bronchoconstriction (EIB) describes the phenomenon of transient airway narrowing in association with physical activity. Although it may seem likely that EIB would have a detrimental impact on athletic performance, this has yet to be established. OBJECTIVES: The aim of...

  10. Protective effect of oral terfenadine and not inhaled ipratropium on adenosine 5 '-monophosphate-induced bronchoconstriction in patients with COPD

    NARCIS (Netherlands)

    Rutgers, [No Value; Koeter, GH; Van der Mark, TW; Postma, DS

    Background Inhalation of adenosine 5'-monophosphate (AMP) causes bronchoconstriction in patients with asthma and in many patients with chronic obstructive pulmonary disease (COPD). In asthma, AMP-induced bronchoconstriction has been shown to be determined mainly by release of mast cell mediators,

  11. Involvement of A1 adenosine receptors and neural pathways in adenosine-induced bronchoconstriction in mice.

    Science.gov (United States)

    Hua, Xiaoyang; Erikson, Christopher J; Chason, Kelly D; Rosebrock, Craig N; Deshpande, Deepak A; Penn, Raymond B; Tilley, Stephen L

    2007-07-01

    High levels of adenosine can be measured from the lungs of asthmatics, and it is well recognized that aerosolized 5'AMP, the precursor of adenosine, elicits robust bronchoconstriction in patients with this disease. Characterization of mice with elevated adenosine levels secondary to the loss of adenosine deaminase (ADA) expression, the primary metabolic enzyme for adenosine, further support a role for this ubiquitous mediator in the pathogenesis of asthma. To begin to identify pathways by which adenosine can alter airway tone, we examined adenosine-induced bronchoconstriction in four mouse lines, each lacking one of the receptors for this nucleoside. We show, using direct measures of airway mechanics, that adenosine can increase airway resistance and that this increase in resistance is mediated by binding the A(1) receptor. Further examination of this response using pharmacologically, surgically, and genetically manipulated mice supports a model in which adenosine-induced bronchoconstriction occurs indirectly through the activation of sensory neurons.

  12. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    Science.gov (United States)

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  13. Lack of paradoxical bronchoconstriction after administration of tiotropium via Respimat® Soft Mist™ Inhaler in COPD

    Directory of Open Access Journals (Sweden)

    Hodder R

    2011-04-01

    Full Text Available Rick Hodder1, Demetri Pavia2, Angela Lee2, Eric Bateman31Divisions of Pulmonary and Critical Care, University of Ottawa, Ottawa, ON, Canada; 2Boehringer Ingelheim Limited, Bracknell, England, UK; 3Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South AfricaAbstract: Bronchoconstriction has been reported in asthma and chronic obstructive pulmonary disease (COPD patients after administration of some aqueous inhalation solutions. We investigated the incidence of this event during long-term clinical trials of tiotropium delivered via Respimat® Soft Mist™ Inhaler (SMI. We retrospectively analyzed pooled data from two identical Phase III clinical trials, in which 1990 patients with COPD received 48 weeks' treatment with once-daily tiotropium (5 or 10 µg or placebo inhaled via Respimat® SMI. We recorded the incidence of bronchospasm and of a range of respiratory events that could suggest bronchoconstriction during the first 30 minutes after inhalation of study treatment on each of the eight test days. No patients reported bronchospasm. Six patients (0.3% reported a combination of at least two events suggestive of bronchoconstriction, and 21 (1.1% reported either rescue medication use or a respiratory adverse event. Asymptomatic falls in forced expiratory volume in one second (FEV1 of ≥15% were recorded on all test days, with no change in incidence over time, and affected 8.2% of those in the tiotropium groups and 14.5% of those on placebo. In COPD patients receiving long-term treatment with tiotropium 5 or 10 µg via Respimat® SMI, no bronchospasm was recorded, and the number of events possibly indicative of paradoxical bronchoconstriction was very low.Keywords: inhalation device, bronchoconstriction, COPD, tiotropium

  14. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  15. Perception of Bronchoconstriction : A Complementary Disease Marker in Children with Asthma

    NARCIS (Netherlands)

    Nuijsink, Marianne; Hop, Wim C. J.; de Jongste, Johan C.; Sterk, Peter J.; Duiverman, Eric J.

    Introduction. Asthma guidelines use symptoms as the most important aspect of asthma control. Symptom perception varies widely between individuals. Over-perception as well as underperception of bronchoconstriction could have a negative effect on asthma management. We hypothesized that perception of

  16. Mild respiratory symptoms in asthmatic patients might not be due to bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Tarig H Merghani

    2017-01-01

    CONCLUSION: About 11% of asthmatic patients with mild respiratory symptoms who attended the respiratory clinic have no evidence of bronchoconstriction. Spirometry is an essential step for evaluation of every asthmatic patient who presents with respiratory symptoms.

  17. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    Science.gov (United States)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  18. Vitamins C and E for asthma and exercise-induced bronchoconstriction.

    Science.gov (United States)

    Wilkinson, Mark; Hart, Anna; Milan, Stephen J; Sugumar, Karnam

    2014-06-17

    The association between dietary antioxidants and asthma or exercise-induced bronchoconstriction (EIB) is not fully understood. Vitamin C and vitamin E are natural antioxidants that are predominantly present in fruits and vegetables; inadequate vitamin E intake is associated with airway inflammation. It has been postulated that the combination may be more beneficial than either single antioxidant for people with asthma and exercise-induced bronchoconstriction. To assess the effects of supplementation of vitamins C and E versus placebo (or no vitamin C and E supplementation) on exacerbations and health-related quality of life (HRQL) in adults and children with chronic asthma. To also examine the potential effects of vitamins C and E on exercise-induced bronchoconstriction in people with asthma and in people without a diagnosis of asthma who experience symptoms only on exercise. Trials were identified from the Cochrane Airways Review Group Specialised Register and from trial registry websites. Searches were conducted in September 2013. We included randomised controlled trials of adults and children with a diagnosis of asthma. We separately considered trials in which participants had received a diagnosis of exercise-induced bronchoconstriction (or exercise-induced asthma). Trials comparing vitamin C and E supplementation versus placebo were included. We included trials in which asthma management for treatment and control groups included similar background therapy. Short-term use of vitamins C and E at the time of exacerbation or for cold symptoms in people with asthma is outside the scope of this review. Two review authors independently screened the titles and abstracts of potential studies and subsequently screened full-text study reports for inclusion. We used standard methods as expected by The Cochrane Collaboration. It was not possible to aggregate the five included studies (214 participants). Four studies (206 participants) addressed the question of whether

  19. Mechanisms of exercise-induced bronchoconstriction in athletes: Current perspectives and future challenges.

    Science.gov (United States)

    Couto, M; Kurowski, M; Moreira, A; Bullens, D M A; Carlsen, K-H; Delgado, L; Kowalski, M L; Seys, S F

    2018-01-01

    The evidence of exercise-induced bronchoconstriction (EIB) without asthma (EIBw A ) occurring in athletes led to speculate about different endotypes inducing respiratory symptoms within athletes. Classical postulated mechanisms for bronchial obstruction in this population include the osmotic and the thermal hypotheses. More recently, the presence of epithelial injury and inflammation in the airways of athletes was demonstrated. In addition, neuronal activation has been suggested as a potential modulator of bronchoconstriction. Investigation of these emerging mechanisms is of major importance as EIB is a significant problem for both recreational and competitive athletes and is the most common chronic condition among Olympic athletes, with obvious implications for their competing performance, health and quality of life. Hereby, we summarize the latest achievements in this area and identify the current gaps of knowledge so that future research heads toward better defining the etiologic factors and mechanisms involved in development of EIB in elite athletes as well as essential aspects to ultimately propose preventive and therapeutic measures. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  20. More Relaxation by Deep Breath on Methacholine- Than on Exercise-Induced bronchoconstriction during the Routine Testing of Asthmatic Children

    Directory of Open Access Journals (Sweden)

    Iulia Ioan

    2017-10-01

    Full Text Available Deep inspiration (DI dilates normal airway precontracted with methacholine. The fact that this effect is diminished or absent in asthma could be explained by the presence of bronchial inflammation. The hypothesis was tested that DI induces more relaxation in methacholine induced bronchoconstriction—solely determined by the smooth muscle contraction—than in exercise induced bronchoconstriction, which is contributed to by both smooth muscle contraction and airway wall inflammation. The respiratory conductance (Grs response to DI was monitored in asthmatic children presenting a moderately positive airway response to challenge by methacholine (n = 36 or exercise (n = 37, and expressed as the post- to pre-DI Grs ratio (GrsDI. Both groups showed similar change in FEV1 after challenge and performed a DI of similar amplitude. GrsDI however was significantly larger in methacholine than in exercise induced bronchoconstriction (p < 0.02. The bronchodilatory effect of DI is thus less during exercise- than methacholine-induced bronchoconstriction. The observation is consistent with airway wall inflammation—that characterizes exercise induced bronchoconstriction—rendering the airways less responsive to DI. More generally, it is surmised that less relief of bronchoconstriction by DI is to be expected during indirect than direct airway challenge. The current suggestion that airway smooth muscle constriction and airway wall inflammation may result in opposing effects on the bronchomotor action of DI opens important perspective to the routine testing of asthmatic children. New crossover research protocols comparing the mechanical consequences of the DI maneuver are warranted during direct and indirect bronchial challenges.

  1. Acute relief of exercise-induced bronchoconstriction by inhaled formoterol in children with persistent asthma

    DEFF Research Database (Denmark)

    Hermansen, Mette Northman; Nielsen, Kim Gjerum; Buchvald, Frederik

    2006-01-01

    -controlled, crossover study of the immediate effect of formoterol, 9 microg, vs terbutaline, 0.5 mg, and placebo administered as dry powder at different study days. Exercise challenge test was used as a model of acute bronchoconstriction. PATIENTS: Twenty-four 7- to 15-year-old children with persistent asthma...

  2. A critical role of acute bronchoconstriction in the mortality associated with high-dose sarin inhalation: Effects of epinephrine and oxygen therapies

    Energy Technology Data Exchange (ETDEWEB)

    Gundavarapu, Sravanthi; Zhuang, Jianguo; Barrett, Edward G.; Xu, Fadi; Russell, Robert G.; Sopori, Mohan L., E-mail: msopori@lrri.org

    2014-01-15

    Sarin is an organophosphate nerve agent that is among the most lethal chemical toxins known to mankind. Because of its vaporization properties and ease and low cost of production, sarin is the nerve agent with a strong potential for use by terrorists and rouge nations. The primary route of sarin exposure is through inhalation and, depending on the dose, sarin leads to acute respiratory failure and death. The mechanism(s) of sarin-induced respiratory failure is poorly understood. Sarin irreversibly inhibits acetylcholine esterase, leading to excessive synaptic levels of acetylcholine and, we have previously shown that sarin causes marked ventilatory changes including weakened response to hypoxia. We now show that LD{sub 50} sarin inhalation causes severe bronchoconstriction in rats, leading to airway resistance, increased hypoxia-induced factor-1α, and severe lung epithelium injury. Transferring animals into 60% oxygen chambers after sarin exposure improved the survival from about 50% to 75% at 24 h; however, many animals died within hours after removal from the oxygen chambers. On the other hand, if LD{sub 50} sarin-exposed animals were administered the bronchodilator epinephrine, > 90% of the animals survived. Moreover, while both epinephrine and oxygen treatments moderated cardiorespiratory parameters, the proinflammatory cytokine surge, and elevated expression of hypoxia-induced factor-1α, only epinephrine consistently reduced the sarin-induced bronchoconstriction. These data suggest that severe bronchoconstriction is a critical factor in the mortality induced by LD{sub 50} sarin inhalation, and epinephrine may limit the ventilatory, inflammatory, and lethal effects of sarin. - Highlights: • Inhalation exposure of rats to LD{sub 50} sarin causes death through respiratory failure. • Severe bronchoconstriction is the major cause of sarin-induced respiratory failure. • Transfer of sarin exposed rats to 60% oxygen improves the mortality temporarily.

  3. Bronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide

    NARCIS (Netherlands)

    Ricciardolo, F. L.; Rado, V.; Fabbri, L. M.; Sterk, P. J.; Di Maria, G. U.; Geppetti, P.

    1999-01-01

    Gastroesophageal acid reflux into the airways can trigger asthma attacks. Indeed, citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We investigated the role of tachykinins, bradykinin, and nitric oxide (NO) on the citric

  4. Effects of oral cetirizine, a selective H1 antagonist, on allergen- and exercise-induced bronchoconstriction in subjects with asthma.

    LENUS (Irish Health Repository)

    Gong, H

    1990-03-01

    The protective efficacy of oral cetirizine, a selective and potent H1-receptor antagonist, against the immediate bronchoconstrictive response to allergen inhalation and exercise challenge was evaluated in 16 subjects with stable, predominantly mild asthma. The subjects underwent double-blind, crossover pretreatments in randomized order in two separate protocols with (1) three daily oral doses of 20 mg of cetirizine and placebo, followed by allergen inhalation, and (2) single oral doses of cetirizine (5, 10, and 20 mg), albuterol (4 mg), and placebo, followed by exercise with cold-air inhalation. Cetirizine failed to decrease bronchial sensitivity to inhaled allergen in eight of 10 subjects. Neither cetirizine nor albuterol uniformly inhibited exercise-induced bronchoconstriction. Serum concentrations of cetirizine were consistent with systemic H1-blocking activity. Modest bronchodilation occurred after administration of cetirizine and albuterol before exercise but not after the third dose of cetirizine in the allergen protocol. One subject developed moderate drowsiness during multiple dosing with cetirizine. Thus, cetirizine, in the doses studied, is not uniformly effective in preventing allergen- or exercise-induced bronchoconstriction. Histamine is one of many mediators participating in immediate asthmatic responses, and selective H1 antagonists do not completely block these airway events. However, cetirizine may still clinically benefit some patients with asthma, such as patients with allergic rhinitis or urticaria.

  5. Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness.

    Science.gov (United States)

    André-Grégoire, Gwennan; Dilasser, Florian; Chesné, Julie; Braza, Faouzi; Magnan, Antoine; Loirand, Gervaise; Sauzeau, Vincent

    2017-11-16

    The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca 2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C β2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca 2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation. Copyright © 2017 American Academy of Allergy, Asthma

  6. Randomized controlled trial of fish oil and montelukast and their combination on airway inflammation and hyperpnea-induced bronchoconstriction.

    Directory of Open Access Journals (Sweden)

    Sandra Tecklenburg-Lund

    2010-10-01

    Full Text Available Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB. The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH in asthmatics.In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20 and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10 or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10 taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20 underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily.While HIB was significantly inhibited (p0.017 between treatment groups; percent fall in forced expiratory volume in 1-sec was -18.4 ± 2.1%, -9.3±2.8%, -11.6 ± 2.8% and -10.8 ± 1.7% on usual diet (pre-treatment, fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p0.017 in these biomarkers between treatments.While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB.ClinicalTrials.gov NCT00676468.

  7. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Hermansen, Mette N; Nielsen, Kim G

    2005-01-01

    BACKGROUND: Exercise-induced bronchoconstriction (EIB) is of particular importance in children with asthma. It is an important measure of asthma control and should be monitored by exercise testing. However, exercise testing puts a large demand on health-care resources and is therefore not widely...... used in routine monitoring of pediatric asthma control. The fractional concentration of exhaled nitric oxide (FeNO) also reflects uncontrolled asthma. We hypothesized that FeNO may be used for prescreening of asthmatic children to exclude those with good asthma control unlikely to have EIB, thereby...... reducing the need for exercise testing. OBJECTIVE: The aim of this study was to estimate the value of FeNO as a predictor of EIB in asthmatic children. METHODS: Stable outpatient asthmatic school children performed standard exercise challenge tests and measurement of FeNO. RESULTS: FeNO and response...

  8. Non-genomic action of beclomethasone dipropionate on bronchoconstriction caused by leukotriene C4 in precision cut lung slices in the horse

    Directory of Open Access Journals (Sweden)

    Fugazzola Maria

    2012-09-01

    Full Text Available Abstract Background Glucocorticoids have been proven to be effective in the therapy of recurrent airway obstruction (RAO in horses via systemic as well as local (inhalative administration. Elective analysis of the effects of this drug on bronchoconstriction in viable lung tissue offers an insight into the mechanism of action of the inflammatory cascade occurring during RAO which is still unclear. The mechanism of action of steroids in treatment of RAO is thought to be induced through classical genomic pathways. We aimed at electively studying the effects of the glucocorticoid beclomethasone dipropionate on equine precision-cut lung slices (PCLS. PCLS were used to analyze ex-vivo effects of beclomethasone on inhibiting bronchoconstriction in the horse. The inhibiting effect was measured through instillation of a known mediator of inflammation and bronchoconstriction, leukotriene C4. For this, the accessory lobes of 13 horses subjected to euthanasia for reasons unrelated to the respiratory apparatus were used to obtain viable lung slices. Results After 30 minutes of PCLS incubation, beclomethasone showed to significantly inhibit the contraction of the bronchioles after instillation with leukotriene C4. The EC50 values of the two contraction curves (LTC4 with and without BDP differed significantly from each other (p = 0.002. The possibility of a non-genomic rapid mechanism of action seems likely since transcriptional activities require a longer lag period. Conclusions In human neuroendocrinology, high levels of glucocorticoids have been proven to function via a non-genomic mechanism of membrane receptors. The concentration of beclomethasone used on the lung slices in our study can be considered as high. This allows speculation about similar rapid non-genomic mechanisms of high-dosage inhaled glucocorticoids in the lower airways of horses. However, further assessment on a molecular basis is needed to confirm this.

  9. Effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes.

    Science.gov (United States)

    Bolger, C; Tufvesson, E; Anderson, S D; Devereux, G; Ayres, J G; Bjermer, L; Sue-Chu, M; Kippelen, P

    2011-10-01

    Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.

  10. Exercise-induced bronchoconstriction: The effects of montelukast, a leukotriene receptor antagonist

    Directory of Open Access Journals (Sweden)

    James P Kemp

    2009-11-01

    Full Text Available James P KempClinical Professor of Pediatrics, Division of Immunology and Allergy, University of California School of Medicine, San Diego, CA, USAAbstract: Exercise-induced bronchoconstriction (EIB is very common in both patients with asthma and those who are otherwise thought to be normal. The intensity of exercise as well as the type of exercise is important in producing symptoms. This may make some types of exercise such as swimming more suitable and extended running more difficult for patients with this condition. A better understanding of EIB will allow the physician to direct the patient towards a type of exercise and medications that can result in a more active lifestyle without the same concern for resulting symptoms. This is especially important for schoolchildren who are usually enrolled in physical education classes and elite athletes who may desire to participate in competitive sports. Fortunately several medications (short- and long-acting β2-agonists, cromolyn, nedocromil, inhaled corticosteroids, and more recently leukotriene modifiers have been shown to be effective in preventing or attenuating the effects of exercise in many patients. In addition, inhaled β2-agonists have been shown to quickly reverse the airway obstruction that develops in patients and continue to be the reliever medications of choice. Inhaled corticosteroids are increasingly being recommended as regular therapy now that the role of inflammation and airway injury has been identified in EIB. With the discovery that there is a release of mediators such as histamine and leukotrienes from cells in the airway following exercise with resulting airway obstruction in susceptible individuals, interest has turned to attenuating their effects with mediator antagonists especially those that block the effects of leukotrienes. Studies with an oral leukotriene antagonist, montelukast, have shown beneficial effects in adults and children aged as young as 6 years with EIB

  11. Sputum eosinophils and the response of exercise-induced bronchoconstriction to corticosteroid in asthma

    DEFF Research Database (Denmark)

    Duong, MyLinh; Subbarao, Padmaja; Adelroth, Ellinor

    2008-01-01

    BACKGROUND: The relationship between eosinophilic airway inflammation and exercise-induced bronchoconstriction (EIB), and the response to inhaled corticosteroid (ICS) therapy was examined. METHODS: Twenty-six steroid-naïve asthmatic patients with EIB were randomized to two parallel, double...... and sputum analysis were performed. RESULTS: Data were pooled and demonstrated that 10 subjects had baseline sputum eosinophilia >or= 5%. Only high-dose ICS therapy (ie, 160 and 320 microg) significantly attenuated the sputum eosinophil percentage. Sputum eosinophil percentage significantly correlated...... eosinophil counts. In contrast, high-dose ICS therapy provided a significantly greater improvement in EIB in subjects with sputum eosinophilia compared to those with an eosinophil count of eosinophilic groups in the magnitude of improvement in EIB was evident after the first...

  12. A Study To Assess The Prevalence Of Exercise-Induced Bronchoconstriction In Inter-County Hurling.

    LENUS (Irish Health Repository)

    Hunt, EB

    2017-11-01

    Exercise-Induced Bronchoconstriction (EIB) is an acute, transient airway narrowing occurring after exercise which may impact athletic performance. Studies report 10% of the general population and up to 90% of asthmatics experience EIB. Ninety-two players from three elite hurling squads underwent a spirometric field-based provocation test with real-time heart rate monitoring and lactate measurements to ensure adequate exertion. Players with a new diagnosis of EIB and those with a negative field-test but with a previous label of EIB or asthma underwent further reversibility testing and if negative, methacholine challenge. Eight (8.7%) of players had EIB, with one further athlete having asthma with a negative field test. Interestingly, only three out of 12 players who had previously been physician-labelled with EIB or asthma had their diagnosis objectively confirmed. Our study highlights the role of objective testing in EIB.

  13. Regional bronchoconstriction in asthma. 133Xenon washout scans following parenteral methacholine

    International Nuclear Information System (INIS)

    Riley, D.J.; Fisher, A.B.; Hansell, J.R.; Brody, J.S.

    1976-01-01

    To determine the influence of bronchoconstriction on the distribution of ventilation during an asthma attack, pulmonary clearance of 133 xenon was evaluated in four normal and eight asthmatic subjects within three to five minutes after intramuscular injection of methacholine. In asthmatics, administration of 4-10 mg methacholine resulted in a decrease of forced vital capacity of 28.5 +- 5.1 (SE) percent and a decrease in expiratory flow at 60 percent vital capacity of 44.2 +- 6.9 percent (P less than 0.001). The cumulative ventilation required to reach 50 percent of the pre-washout radioactivity increased from 3.6 +- 0.8 to 9.9 +- 1.6 L after administration of the drug (P less than 0.05). The normal subjects showed no ventilatory effects after receiving 10 mg methacholine. Comparison of clearance of 133 xenon from ten areas of lung (each representing approximately 6 percent of the surface area of one lung) showed that all areas were affected to approximately the same extent during drug-induced asthma. These findings suggest that parenteral methacholine is an effective way to demonstrate airway hyperreactivity and that the airway response to methacholine in asthmatics is relatively generalized throughout the lung

  14. Eficácia do formoterol na reversão imediata do broncoespasmo Efficacy of inhaled formoterol in reversing bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Adalberto Sperb Rubin

    2006-06-01

    Full Text Available OBJETIVO: Avaliar efetividade e rapidez de ação do formoterol liberado através de inalador para pó seco na reversão de broncoespasmo induzido pela metacolina. MÉTODOS: Avaliaram-se prospectivamente 84 pacientes com queda do volume expiratório forçado no primeiro segundo 20% após inalação de metacolina. Todos estavam sob investigação de sintomas respiratórios de etiologia não definida. Foram randomizados 41 pacientes para receber 200 mcg de fenoterol spray e 43 para receber 12 mcg de formoterol sob a forma de inalador de pó seco para reversão imediata do broncoespasmo. Avaliaram-se a queda no volume expiratório forçado no primeiro segundo inicial, dose provocadora de queda de 20% do volume expiratório forçado no primeiro segundo inicial, e volume expiratório forçado no primeiro segundo após cinco e dez minutos da administração dos fármacos. RESULTADOS: Não houve diferença significativa entre os grupos em relação ao sexo, idade, peso, altura, dose provocadora de queda de 20% do volume expiratório forçado no primeiro segundo, volume expiratório forçado no primeiro segundo inicial e pós-metacolina. A melhora do volume expiratório forçado no primeiro segundo após uso do broncodilatador foi de 34% (cinco minutos e 50,1% (dez minutos no primeiro grupo, e 46,5% (cinco minutos e 53,2% (dez minutos no segundo. CONCLUSÃO: O efeito broncodilatador do formoterol após cinco e dez minutos da indução de broncoespasmo pela metacolina foi similar ao do fenoterol. O formoterol, além de ser um broncodilatador de longa duração, tem também rápido início de ação, sugerindo que possa ser empregado como medicação de resgate nas crises de broncoespasmo.OBJECTIVE: To evaluate the effectiveness and onset of action of formoterol delivered by dry-powder inhaler in reversing methacholine-induced bronchoconstriction. METHODS: Patients presenting a drop in forced expiratory volume in one second > 20% after methacholine

  15. Perception of Exercise-Induced Bronchoconstriction in College Athletes.

    Science.gov (United States)

    Burnett, David M; Vardiman, John P; Deckert, Jake A; Ward, Jaimie L; Sharpe, Matthew R

    2016-07-01

    Exercise-induced bronchoconstriction (EIB) can lead to long-term respiratory illness and even death. EIB prevalence rates are both high and variable in college athletes. Also, prevalence rates may be underestimated due to ineffective screening. The purpose of this study is to investigate the prevalence of EIB and the perceived impact of EIB in college athletes via a self-report questionnaire. A self-report EIB questionnaire was administered to college athletes on 8 different sports teams. Information collected was used to identify athletes who self-reported: (1) a history of EIB and/or asthma, (2) respiratory symptoms during exercise, (3) medication use, and (4) concern about EIB. Results showed that 56 of 196 athletes (28.6%) self-reported a history of EIB or asthma. Over half (52%) reported a history of EIB/asthma or current EIB symptoms. Forty-six of the 140 athletes (32.9%) who did not report a history of EIB or asthma indicated symptoms of EIB during sports, training, or exercise. Fourteen of 56 athletes (25%) self-reporting a history of EIB or asthma did not report the use of a respiratory medication. Nineteen of 196 athletes (9.7%) reported being concerned that EIB was adversely affecting their sports performance. College athletes self-report a high prevalence of EIB or asthma. Although college athletes may not report a history of EIB or asthma, they indicate symptoms of EIB. A majority of athletes reported a history or current symptoms related to EIB or asthma. Many athletes with a history of EIB or asthma are not taking any asthma medication. Last, athletes report concern about EIB adversely affecting their sports performance. More work is needed using a combination of a screening questionnaire and standardized EIB testing to develop a validated tool for accurately screening and diagnosing EIB in college athletes. Copyright © 2016 by Daedalus Enterprises.

  16. Improving screening and diagnosis of exercise-induced bronchoconstriction: a call to action.

    Science.gov (United States)

    Weiler, John M; Hallstrand, Teal S; Parsons, Jonathan P; Randolph, Christopher; Silvers, William S; Storms, William W; Bronstone, Amy

    2014-01-01

    This article summarizes the findings of an expert panel of nationally recognized allergists and pulmonologists who met to discuss how to improve detection and diagnosis of exercise-induced bronchoconstriction (EIB), a transient airway narrowing that occurs during and most often after exercise in people with and without underlying asthma. EIB is both commonly underdiagnosed and overdiagnosed. EIB underdiagnosis may result in habitual avoidance of sports and physical activity, chronic deconditioning, weight gain, poor asthma control, low self-esteem, and reduced quality of life. Routine use of a reliable and valid self-administered EIB screening questionnaire by professionals best positioned to screen large numbers of people could substantially improve the detection of EIB. The authors conducted a systematic review of the literature that evaluated the accuracy of EIB screening questionnaires that might be adopted for widespread EIB screening in the general population. Results of this review indicated that no existing EIB screening questionnaire had adequate sensitivity and specificity for this purpose. The authors present a call to action to develop a new EIB screening questionnaire, and discuss the rigorous qualitative and quantitative research necessary to develop and validate such an instrument, including key methodological pitfalls that must be avoided. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Allergies and Exercise-Induced Bronchoconstriction in a Youth Academy and Reserve Professional Soccer Team.

    Science.gov (United States)

    Bougault, Valérie; Drouard, François; Legall, Franck; Dupont, Grégory; Wallaert, Benoit

    2017-09-01

    A high prevalence of respiratory allergies and exercise-induced bronchoconstriction (EIB) has been reported among endurance athletes. This study was designed to analyze the frequency of sensitization to respiratory allergens and EIB in young soccer players. Prospective cohort design. Youth academy and reserve professional soccer team during the seasons 2012 to 2013 and 2013 to 2014. Eighty-five soccer players (mean age: 20 ± 4 years) participated. Players underwent skin prick tests (SPTs) during the seasons 2012 to 2013 and 2013 to 2014. Spirometry and a eucapnic voluntary hyperpnea test were performed on soccer players during the first season 2012 to 2013 (n = 51) to detect EIB. Two self-administered questionnaires on respiratory history and allergic symptoms (European Community Respiratory Health Survey and Allergy Questionnaire for Athletes) were also distributed during both seasons (n = 59). The number of positive SPTs, exercise-induced respiratory symptoms, presence of asthma, airway obstruction, and EIB. Forty-nine percent of players were sensitized to at least one respiratory allergen, 33% reported an allergic disease, 1 player presented airway obstruction at rest, and 16% presented EIB. Factors predictive of EIB were self-reported exercise-induced symptoms and sensitization to at least 5 allergens. Questioning players about exercise-induced respiratory symptoms and allergies as well as spirometry at the time of the inclusion medical checkup would improve management of respiratory health of soccer players and would constitute inexpensive preliminary screening to select players requiring indirect bronchial provocation test or SPTs. This study showed that despite low frequencies, EIB and allergies are underdiagnosed and undertreated in young soccer players.

  18. Exertional-induced bronchoconstriction: Comparison between cardiopulmonary exercise test and methacholine challenging test

    Directory of Open Access Journals (Sweden)

    Mostafa Ghanei

    2015-01-01

    Full Text Available Introduction: Exertional-induced bronchoconstriction is a condition in which the physical activity causes constriction of airways in patients with airway hyper- responsiveness. In this study, we tried to study and evaluate any relationship between the findings of cardiopulmonary exercise testing (CPET and the response to methacholine challenge test (MCT in patients with dyspnea after activity. Materials and Methods: Thirty patients with complaints of dyspnea following activity referred to "Lung Clinic" of Baqiyatallah Hospital but not suffering from asthma were entered into the study. The subjects were excluded from the study if: Suffering from any other pulmonary diseases, smoking more than 1 cigarette a week in the last year, having a history of smoking more than 10 packets of cigarettes/year, having respiratory infection in the past 4 weeks, having abnormal chest X-ray or electrocardiogram, and cannot discontinue the use of medicines interfering with bronchial provocation. Baseline spirometry was performed for all the patients, and the values of forced expiratory volume in 1 second (FEV1, forced vital capacity (FVC, and FEV/FVC were recorded. The MCT and then the CPET were performed on all patients. Results: The mean VO 2 (volume oxygen in patients with positive methacholine test (20.45 mL/kg/min was significantly lower than patients with negative MCT (28.69 mL/kg/min (P = 0.000. Respiratory rates per minute (RR and minute ventilation in the group with positive MCT (38.85 and 1.636 L were significantly lower than the group with negative methacholine test (46.78 and 2.114 L (P < 0.05. Also, the O 2 pulse rate in the group with negative methacholine test (116.27 mL/beat was significantly higher than the group with positive methacholine test (84.26 mL/beat (P < 0.001. Conclusion: Pulmonary response to exercise in patients with positive methacholine test is insufficient. The dead space ventilation in these patients has increased. Also, dynamic

  19. Prevalence of exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction in a general adolescent population.

    Science.gov (United States)

    Johansson, Henrik; Norlander, Katarina; Berglund, Lars; Janson, Christer; Malinovschi, Andrei; Nordvall, Lennart; Nordang, Leif; Emtner, Margareta

    2015-01-01

    Exercise-induced respiratory symptoms are common among adolescents. Exercise is a known stimulus for transient narrowing of the airways, such as exercise-induced bronchoconstriction (EIB) and exercise-induced laryngeal obstruction (EILO). Our aim was to investigate the prevalence of EIB and EILO in a general population of adolescents. In this cross-sectional study, a questionnaire on exercise-induced dyspnoea was sent to all adolescents born in 1997 and 1998 in Uppsala, Sweden (n=3838). A random subsample of 146 adolescents (99 with self-reported exercise-induced dyspnoea and 47 without this condition) underwent standardised treadmill exercise tests for EIB and EILO. The exercise test for EIB was performed while breathing dry air; a positive test was defined as a decrease of ≥10% in FEV1 from baseline. EILO was investigated using continuous laryngoscopy during exercise. The estimated prevalence of EIB and EILO in the total population was 19.2% and 5.7%, respectively. No gender differences were found. In adolescents with exercise-induced dyspnoea, 39.8% had EIB, 6% had EILO and 4.8% had both conditions. In this group, significantly more boys than girls had neither EIB nor EILO (64.7% vs 38.8%; p=0.026). There were no significant differences in body mass index, lung function, diagnosed asthma or medication between the participants with exercise-induced dyspnoea who had or did not have a positive EIB or EILO test result. Both EIB and EILO are common causes of exercise-induced dyspnoea in adolescents. EILO is equally common among girls and boys and can coexist with EIB. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Efeito do salbutamol liberado através de inalador de pó seco sobre o broncoespasmo induzido por metacolina Effects of salbutamol delivered by dry-powder inhaler on methacholine-induced bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Adalberto Sperb Rubin

    2004-06-01

    (MDIs are the drugs usually used for the reversal of methacholine-induced bronchoconstriction. The b2 agonists that are delivered by dry-powder inhaler (DPI can be an efficacious option. OBJECTIVE: To evaluate the effectiveness and speed of action of salbutamol delivered by DPI (Pulvinal; Butovent®, in comparison to salbutamol delivered by MDI, in reversing methacholine-induced bronchoconstriction. METHOD: Sixty successive methacholine-induced bronchoconstriction patients who presented a decrease of at least 20% in forced expiratory volume (FEV1 were evaluated prospectively. Of these 60 patients, we randomized 30 (first group to receive 200 mcg of salbutamol by MDI and 30 (second group to receive 200 mcg of salbutamol by DPI (Pulvinal. Both drugs were administered with the objective of reversing bronchoconstriction during the final phase of a bronchoprovocation test. The FEV1 values obtained at 1 and 5 minutes after bronchodilator administration were evaluated. RESULTS: The groups were comparable in gender distribution, age, weight, dose level provoking a 20% drop in FEV1 (first group: 1.3 mg; second group: 1.19 mg; p = 0.79 and post-methacholine FEV1 (first group: 2.03 l; second group: 1.99 l; p = 0.87, with no statistically significant differences between the two groups. In the first group (MDI, the mean increase in FEV1 was 16.2% (at 1 minute and 22.2% (at 5 minutes, and in the second group (DPI it was 17% (at 1 minute and 23.6% (at 5 minutes. There was no statistically significant difference between the groups (p = 0.8. CONCLUSION: The beta2-agonists delivered by DPI (Pulvinal present the same bronchodilator efficacy and speed of action as do those delivered by the more traditional MDI method.

  1. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  2. Trend in asthma severity in steroid naive asthmatic children in Benin ...

    African Journals Online (AJOL)

    Background: Asthma imposes heavy health burden on children and families worldwide. It is a chronic inflammatory airway disease and as such, treatment of the asthmatics is aimed at relieve of bronchoconstriction and inflammation. Until about a decade ago, emphasis was on the bronchoconstriction rather than the ...

  3. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma.

    Science.gov (United States)

    Phillips, Jonathan E; Renteria, Lorena; Burns, Lisa; Harris, Paul; Peng, Ruoqi; Bauer, Carla M T; Laine, Dramane; Stevenson, Christopher S

    2016-06-01

    In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation.

  4. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  6. Onset of relief of dyspnoea with budesonide/formoterol or salbutamol following methacholine-induced severe bronchoconstriction in adults with asthma: a double-blind, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Bantje Theo A

    2006-12-01

    Full Text Available Abstract Background The long-acting β2-agonist (LABA formoterol has an onset of effect comparable to that of salbutamol. Consequently, the combination of formoterol and budesonide in one inhaler, approved for maintenance use, can potentially be used for reliever therapy. This study compared the onset of relief from induced bronchospasm with a single dose of budesonide/formoterol versus standard salbutamol therapy in patients with asthma. Methods In this randomised, double-blind, placebo-controlled, cross-over study, 32 patients with asthma underwent a methacholine provocation test leading to a fall in forced expiratory volume in 1 second (FEV1 of ≥30% at enrolment (Visit 1 and three subsequent study visits (Visits 2–4. Immediately after each provocation at Visits 2–4, patients received one of three test treatments: one inhalation of budesonide/formoterol 160/4.5 μg (via Turbuhaler®, two inhalations of salbutamol 100 μg (via a pressurised metered-dose inhaler [pMDI] or placebo. All patients received each of the test treatments in a randomised order, after separate methacholine provocations. The effect of treatment on FEV1 and breathlessness (using the Borg scale was measured at 1, 3, 5, 10, 15, 20, 25 and 30 minutes after test treatment. Results Following methacholine provocation, Borg score increased from a baseline value of below 0.5 to 3.03, 3.31 and 3.50 before treatment with budesonide/formoterol, salbutamol and placebo, respectively. Budesonide/formoterol and salbutamol reversed methacholine-induced dyspnoea (breathlessness rapidly. At 1 minute after inhalation, statistically significant decreases in Borg score were observed for budesonide/formoterol and salbutamol (p = 0.0233 and p 1 (both active treatments p Conclusion Single doses of budesonide/formoterol and salbutamol both provided rapid relief of dyspnoea and reversal of severe airway obstruction in patients with asthma with experimentally induced bronchoconstriction. The

  7. Effect of inhaled formyl-methionyl-leucyl-phenylalanine on airway function.

    OpenAIRE

    Berend, N; Peters, M J; Armour, C L; Black, J L; Ward, H E

    1988-01-01

    Formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic, acylated tripeptide analogous to bacterial chemotactic factors, has been shown to cause bronchoconstriction in guinea pig, rabbit, and human airways in vitro. To determine whether FMLP causes bronchoconstriction in man in vivo, a preliminary study was undertaken in which five non-smokers (mean age 35 years, FEV1 94% (SEM 5%) predicted) and five smokers (mean age 34 years, FEV1 93% (6%) predicted) inhaled aerosols of FMLP. None of the ...

  8. Exercise-Induced Bronchoconstriction Quiz

    Science.gov (United States)

    ... Conditions Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual Allergist Education & Training Careers in ... Support the AAAAI Foundation Donate Utility navigation Español Journals Annual Meeting Member Login / My Membership Search navigation ...

  9. Exercise-Induced Bronchoconstriction Quiz

    Science.gov (United States)

    ... a world class swimmer who won six Olympic gold medals. Question 6 Even if I used my ... infection, temperatures are low, or pollen and air pollution levels are high. Learn more about asthma symptoms, ...

  10. Antitussive and antibronchoconstriction actions of fenspiride in guinea-pigs.

    Science.gov (United States)

    Laude, E A; Bee, D; Crambes, O; Howard, P

    1995-10-01

    Fenspiride is a nonsteroidal anti-inflammatory agent, which we have previously shown to have an in vivo antibronchoconstrictor action in guinea pigs. We have currently studied this action using the constrictors Substance P, neurokinin A, citric acid and capsaicin in anaesthetized guinea-pigs. Fenspiride has also been reported to produce a subjective improvement in cough in patients. We have used a conscious guinea-pig model of cough as a more definitive method to study the effect of fenspiride on capsaicin- and citric acid-induced cough. Aerosolized fenspiride (1 mg.mL-1) caused a 58% reversal of capsaicin-induced bronchoconstriction; and i.v. fenspiride (1mg.kg-1) a 45% reversal of citric acid induced bronchoconstriction. Substance P- and neurokinin A-induced bronchoconstriction were unaffected by 1 mg.kg-1 i.v. fenspiride. Aerosolized fenspiride (1, 3 and 10 mg.mL-1) administered for 4 min reduced citric acid (300 mM) induced cough, but 0.1 mg.mL-1 was without effect. Pretreatment with aerosolized fenspiride (10 mg.mL-1) caused a shift in the citric acid dose response curve to the right. For citric acid-induced cough, the duration of action of aerosolized fenspiride (10 mg.mL-1) was found to be 5 and 15 min post-treatment. Aerosolized capsaicin (30 microM) induced cough was also reduced by 3 and 10 mg.mL-1 aerosolized fenspiride, but no significant effect was found with 1 mg.mL-1. We conclude that aerosolized fenspiride reduces capsaicin- and citric acid-induced bronchoconstriction as well as induced cough in guinea-pigs in vivo. Whether a pathway common to both cough and bronchoconstriction is the site of action of fenspiride remains to be established. We postulate that fenspiride, acting as an antitussive and antibronchoconstrictor agent, would be beneficial in the clinical situation for those patients with hyperresponsive airways.

  11. Gender and perception of dyspnea: The role of the variation in the forced expiratory volume in one second

    Directory of Open Access Journals (Sweden)

    Carlos A. Nigro

    2010-08-01

    Full Text Available During bronchoconstriction women perceive more breathlessness than men. The aims of study were 1 to evaluate if quality of dyspnea in bronchoconstriction was different in women and men 2 to assess if gender difference in the perception of dyspnea could be related to the level of bronchoconstriction. 457 subjects (257 women inhaled methacholine to a 20% decrease in FEV1, or 32 mg/ml. Dyspnea was evaluated using the modified Borg scale and a list of expressions of dyspnea. Borg scores were recorded immediately before the challenge test baseline and at the maximum FEV1 decrease. The prevalence of descriptors of dyspnea reported by women and men was similar. Dyspnea was related to the level of FEV1 (ΔFEV1: OR 1.05, 95%CI 1.01-1.09, p 0.0095, females (OR 2.90, 95%CI 1.33-6.33, p 0.0072, younger subjects (OR 0.93, 95%CI 0.89- 0.97, p 0.0013 and body mass index (BMI (OR 1.11, 95%CI 1.01-1.23, p 0.023. As the FEV1 fell less than 20% from baseline, only the ΔFEV1 was significantly associated with dyspnea (ΔFEV1:OR 1.15, 95%CI 1.07- 1.24, p 0.0002. Instead, if the FEV1 fell higher ≥ 20%, the presence of dyspnea was related to the degree of bronchoconstriction (ΔFEV1: OR 1.04, 95%CI 1.01-1.09, p 0.0187, females (OR 3.02, 95%CI 1.36-6.72, p 0.0067, younger subjects (OR 0.92, 95%CI 0.88-0.96, p 0.0007 and BMI (OR 1.12, 95%CI 1.01-1.23, p 0.023. The quality of dyspnea during the bronchoconstriction was similar in women and men; women showed a higher perception of dyspnea than men only when the FEV1 fell more than 20% from baseline.

  12. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  13. Protective Role of Eosinophils and TNFa after Ozone Inhalation.

    Science.gov (United States)

    Fryer, Allison D; Jacoby, David B; Wicher, Sarah A

    2017-03-01

    Exposure to ozone induces deleterious responses in the airways that include shortness of breath, inflammation, and bronchoconstriction. People with asthma have increased airway sensitivity to ozone and other irritants. Dr. Allison Fryer and colleagues addressed how exposure to ozone affects the immune and physiological responses in guinea pigs. Guinea pigs are considered a useful animal model for studies of respiratory and physiological responses in humans; their response to airborne allergens is similar to that in humans and shares some features of allergic asthma. Fryer and colleagues had previously observed that within 24 hours of exposure, ozone not only induced bronchoconstriction but also stimulated the production of new cells in the bone marrow, where all white blood cells develop. As a result of ozone exposure, increased numbers of newly synthesized white blood cells, particularly eosinophils, moved into the blood and lungs. The central hypothesis of the current study was that newly synthesized eosinophils recruited to the lungs 3 days after ozone exposure were beneficial to the animals because they reduced ozoneinduced bronchoconstriction. The investigators also hypothesized that the beneficial effect seen in normal (nonsensitized) animals was lost in animals that had been injected with an allergen, ovalbumin (sensitized). They also planned to explore the effects of inhibitors of certain cytokines (cellsignaling molecules). Immune responses in sensitized animals are dominated by a Th2 pattern, which is characterized by the synthesis of cytokines (interleukin [IL]-4, IL-5, and IL-13) and the Th2 subset of CD4+ T lymphocytes and the cells they activate (predominantly eosinophils, and B lymphocytes that switch to making immunoglobulin E [IgE]). Thus, sensitized animals were used as a model of allergic humans, whose immune responses tend to be dominated by IgE. Fryer and colleagues exposed normal and sensitized (allergic) guinea pigs to 2 ppm ozone or filtered

  14. Anti-inflammatory and bronchodilatory constituents of leaf extracts of Anacardium occidentale L. in animal models.

    Science.gov (United States)

    Awakan, Oluwakemi Josephine; Malomo, Sylvia Omonirume; Adejare, Abdullahi Adeyinka; Igunnu, Adedoyin; Atolani, Olubunmi; Adebayo, Abiodun Humphrey; Owoyele, Bamidele Victor

    2018-01-01

    Anacardium occidentale L. leaf is useful in the treatment of inflammation and asthma, but the bioactive constituents responsible for these activities have not been characterized. Therefore, this study was aimed at identifying the bioactive constituent(s) of A. occidentale ethanolic leaf extract (AOEL) and its solvent-soluble portions, and evaluating their effects on histamine-induced paw edema and bronchoconstriction. The bronchodilatory effect was determined by measuring the percentage protection provided by plant extracts in the histamine-induced bronchoconstriction model in guinea pigs. The anti-inflammatory effect of the extracts on histamine-induced paw edema in rats was determined by measuring the increase in paw diameter, after which the percent edema inhibition was calculated. The extracts were analyzed using gas chromatography-mass spectrometry to identify the bioactive constituents. Column chromatography and Fourier transform infrared spectroscopy were used respectively to isolate and characterize the constituents. The bronchodilatory and anti-inflammatory activities of the isolated bioactive constituent were evaluated. Histamine induced bronchoconstriction in the guinea pigs and edema in the rat paw. AOEL, hexane-soluble portion of AOEL, ethyl acetate-soluble portion of AOEL, and chloroform-soluble portion of AOEL significantly increased bronchodilatory and anti-inflammatory activities (P 9-octadecenamide) was identified as the most abundant compound in the extracts and was isolated. Oleamide significantly increased bronchodilatory and anti-inflammatory activities by 32.97% and 98.41%, respectively (P < 0.05). These results indicate that oleamide is one of the bioactive constituents responsible for the bronchodilatory and anti-inflammatory activity of A. occidentale leaf, and can therefore be employed in the management of bronchoconstriction and inflammation. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights

  15. Testing for Exercise-Induced Bronchoconstriction

    DEFF Research Database (Denmark)

    Brannan, John D; Porsbjerg, Celeste

    2018-01-01

    of an individual who may be at risk during a recreational sporting activity or when exercising as an occupational duty. EIB can be identified with laboratory exercise testing or surrogate tests for EIB. These include eucapnic voluntary hyperpnea and osmotic stimuli (eg, inhaled mannitol) and offer improved...

  16. Treatment of exercise-induced bronchoconstriction

    DEFF Research Database (Denmark)

    Backer, Vibeke; Sverrild, Asger; Porsbjerg, Celeste

    2013-01-01

    impairment of performance to severe bronchospasm and a large reduction in FEV1. Treatment of EIB varies from daily to less frequent therapy, depending on the level of activity. In this article, the authors evaluate the treatment possibilities before, during, and after exercise. They also review medications...

  17. A novel model of IgE-mediated passive pulmonary anaphylaxis in rats.

    Directory of Open Access Journals (Sweden)

    Eva Wex

    Full Text Available Mast cells are central effector cells in allergic asthma and are augmented in the airways of asthma patients. Attenuating mast cell degranulation and with it the early asthmatic response is an important intervention point to inhibit bronchoconstriction, plasma exudation and tissue oedema formation. To validate the efficacy of novel pharmacological interventions, appropriate and practicable in vivo models reflecting mast cell-dependent mechanisms in the lung, are missing. Thus, we developed a novel model of passive pulmonary anaphylaxis in rats. Rats were passively sensitized by concurrent intratracheal and intradermal (ear application of an anti-DNP IgE antibody. Intravenous application of the antigen, DNP-BSA in combination with Evans blue dye, led to mast cell degranulation in both tissues. Quantification of mast cell degranulation in the lung was determined by (1 mediator release into bronchoalveolar lavage, (2 extravasation of Evans blue dye into tracheal and bronchial lung tissue and (3 invasive measurement of antigen-induced bronchoconstriction. Quantification of mast cell degranulation in the ear was determined by extravasation of Evans blue dye into ear tissue. We pharmacologically validated our model using the SYK inhibitor Fostamatinib, the H1-receptor antagonist Desloratadine, the mast cell stabilizer disodium cromoglycate (DSCG and the β2-adrenergic receptor agonist Formoterol. Fostamatinib was equally efficacious in lung and ear. Desloratadine effectively inhibited bronchoconstriction and ear vascular leakage, but was less effective against pulmonary vascular leakage, perhaps reflecting the differing roles for histamine receptor sub-types. DSCG attenuated both vascular leakage in the lung and bronchoconstriction, but with a very short duration of action. As an inhaled approach, Formoterol was more effective in the lung than in the ear. This model of passive pulmonary anaphylaxis provides a tissue relevant readout of early mast cell

  18. Mechanistic Studies Investigating the Role of Organophosphate Insecticide Exposure in the Development and Exacerbation of Asthma

    National Research Council Canada - National Science Library

    Spannhake, Ernst

    2004-01-01

    ...) with a low does of the organophosphate chlorpyrifos sc. Electrical stimulation of the vagus nerves caused frequency-dependent bronchoconstriction that was significantly potentiated in animals treated with chlorpyrifos...

  19. Mechanistic Studies Investigating the Role of Organophosphate Insecticide Exposure in the Development and Exacerbation of Asthma

    National Research Council Canada - National Science Library

    Fryer, Allison

    2003-01-01

    ...) with a low dose of the organophosphate,chlorpyrifos sc. Electrical stimulation of the vagus nerves caused frequency-dependent bronchoconstriction that was significantly potentiated in animals treated with chlorpyrifos...

  20. Structure Activity Relationship of Brevenal Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Allan Goodman

    2014-03-01

    Full Text Available Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction. Brevenal shows antagonistic behavior to the brevetoxins and shows beneficial attributes when administered alone. For example, in an asthmatic sheep model, brevenal has been shown to increase tracheal mucosal velocity, an attribute which has led to its development as a potential treatment for Cystic Fibrosis. The mechanism of action of brevenal is poorly understood and the exact binding site has not been elucidated. In an attempt to further understand the mechanism of action of brevenal and potentially develop a second generation drug candidate, a series of brevenal derivatives were prepared through modification of the aldehyde moiety. These derivatives include aliphatic, aromatic and heteroaromatic hydrazide derivatives. The brevenal derivatives were tested using in vitro synaptosome binding assays to determine the ability of the compounds to displace brevetoxin and brevenal from their native receptors. A sheep inhalation model was used to determine if instillation of the brevenal derivatives resulted in bronchoconstriction. Only small modifications were tolerated, with larger moieties leading to loss of affinity for the brevenal receptor and bronchoconstriction in the sheep model.

  1. Asthma in elite athletes: pathogenesis, diagnosis, differential diagnoses, and treatment

    DEFF Research Database (Denmark)

    Pedersen, Lars; Elers, Jimmi; Backer, Vibeke

    2011-01-01

    Elite athletes have a high prevalence of asthma and exercise-induced bronchoconstriction. Although respiratory symptoms can be suggestive of asthma, the diagnosis of asthma in elite athletes cannot be based solely on the presence or absence of symptoms; diagnosis should be based on objective...... measurements, such as the eucapnic voluntary hyperpnea test or exercise test. When considering that not all respiratory symptoms are due to asthma, other diagnoses should be considered. Certain regulations apply to elite athletes who require asthma medication for asthma. Knowledge of these regulations...... is essential when treating elite athletes. This article is aimed at physicians who diagnose and treat athletes with respiratory symptoms. It focuses on the pathogenesis of asthma and exercise-induced bronchoconstriction in elite athletes and how the diagnosis can be made. Furthermore, treatment of elite...

  2. PERCEPTION OF AIRWAY-OBSTRUCTION IN A RANDOM-POPULATION SAMPLE - RELATIONSHIP TO AIRWAY HYPERRESPONSIVENESS IN THE ABSENCE OF RESPIRATORY SYMPTOMS

    NARCIS (Netherlands)

    BRAND, PLP; RIJCKEN, B; SCHOUTEN, JP; KOETER, GH; WEISS, ST; POSTMA, DS

    Subjects with asymptomatic airway hyperresponsiveness in epidemiologic studies may have variable airway obstruction that is not perceived as dyspnea. We tested the hypothesis that such subjects are less likely to report an increase in dyspnea during histamine-induced bronchoconstriction than

  3. Effects of methacholine infusion on desflurane pharmacokinetics in piglets☆

    Science.gov (United States)

    Kozian, Alf; Kretzschmar, Moritz; Baumgardner, James E.; Schreiber, Jens; Hedenstierna, Göran; Larsson, Anders; Hachenberg, Thomas; Schilling, Thomas

    2015-01-01

    The data of a corresponding animal experiment demonstrates that nebulized methacholine (MCh) induced severe bronchoconstriction and significant inhomogeneous ventilation and pulmonary perfusion (V̇A/Q̇) distribution in pigs, which is similar to findings in human asthma. The inhalation of MCh induced bronchoconstriction and delayed both uptake and elimination of desflurane (Kretzschmar et al., 2015) [1]. The objective of the present data is to determine V̇A/Q̇ matching by Multiple Inert Gas Elimination Technique (MIGET) in piglets before and during methacholine- (MCh-) induced bronchoconstriction, induced by MCh infusion, and to assess the blood concentration profiles for desflurane (DES) by Micropore Membrane Inlet Mass Spectrometry (MMIMS). Healthy piglets (n=4) under general anesthesia were instrumented with arterial, central venous, and pulmonary artery lines. The airway was secured via median tracheostomy with an endotracheal tube, and animals were mechanically ventilated with intermittent positive pressure ventilation (IPPV) with a FiO2 of 0.4, tidal volume (VT)=10 ml/kg and PEEP of 5cmH2O using an open system. The determination of V.A/Q. was done by MIGET: before desflurane application and at plateau in both healthy state and during MCh infusion. Arterial blood was sampled at 0, 1, 2, 5, 10, 20, and 30 min during wash-in and washout, respectively. Bronchoconstriction was established by MCH infusion aiming at doubling the peak airway pressure, after which wash-in and washout of the anesthetic gas was repeated. Anesthesia gas concentrations were measured by MMIMS. Data were analyzed by ANOVA, paired t-test, and by nonparametric Friedman׳s test and Wilcoxon׳s matched pairs test. We measured airway pressures, pulmonary resistance, and mean paO2 as well as hemodynamic variables in all pigs before desflurane application and at plateau in both healthy state and during methacholine administration by infusion. By MIGET, fractional alveolar ventilation and

  4. Pharmacologic Strategies for Exercise-Induced Bronchospasm with a Focus on Athletes

    DEFF Research Database (Denmark)

    Backer, Vibeke; Mastronarde, John

    2018-01-01

    Exercise-induced bronchoconstriction (EIB) is the transient narrowing of the airways during and after exercise that occurs in response to increased ventilation in susceptible individuals. It occurs across the age spectrum in patients with underlying asthma and can occur in athletes without baseline...

  5. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  6. Terbutaline: level the playing field for inhaled β2-agonists by introducing a dosing and urine threshold

    DEFF Research Database (Denmark)

    Jacobson, Glenn A; Hostrup, Morten

    2017-01-01

    Terbutaline, a short-acting β2-agonist similar to salbutamol, is widely used in Europe in the treatment of asthma and exercise-induced bronchoconstriction. Unlike salbutamol, terbutaline requires therapeutic use exemption (TUE) for therapeutic inhaled use in competitive sport. There is now compel...

  7. Advances in the use of inhalation provocation tests in clinical evaluation

    NARCIS (Netherlands)

    Hargreave, F. E.; Ramsdale, E. H.; Sterk, P. J.; Juniper, E. F.

    1985-01-01

    Recent advances in the use of inhalation provocation tests in the clinical evaluation of asthma have been made with methacholine and histamine tests. The tests can be better standardized and the results more accurately interpreted. The ease of stimulation of bronchoconstriction by methacholine and

  8. Anaesthetic management of the child with co-existing pulmonary disease.

    Science.gov (United States)

    Lauer, R; Vadi, M; Mason, L

    2012-12-01

    Children with co-existing pulmonary disease have a wide range of clinical manifestations with significant implications for anaesthetists. Although there are a number of pulmonary diseases in children, this review focuses on two of the most common pulmonary disorders, asthma and bronchopulmonary dysplasia (BPD). These diseases share the physiology of bronchoconstriction and variably decreased flow in the airways, but also have unique physiological consequences. The anaesthetist can make a difference in outcomes with proper preoperative evaluation and appropriate preparation for surgery in the context of a team approach to perioperative care with implementation of a stepwise approach to disease management. An understanding of the importance of minimizing the risk for bronchoconstriction and having the tools at hand to treat it when necessary is paramount in the care of these patients. Unique challenges exist in the management of pulmonary hypertension in BPD patients. This review covers medical treatment, intraoperative management, and postoperative care for both patient populations.

  9. Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Science.gov (United States)

    Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita

    2014-01-01

    Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458

  10. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  11. Sensitivity of disease parameters to flexible budesonide/formoterol treatment in an allergic rat model.

    Science.gov (United States)

    Brange, Charlotte; Smailagic, Amir; Jansson, Anne-Helene; Middleton, Brian; Miller-Larsson, Anna; Taylor, John D; Silberstein, David S; Lal, Harbans

    2009-02-01

    Clinical studies show that flexible dosing (maintenance and symptom-driven dose adjustments) of budesonide and formoterol (BUD/FORM) improves control of asthma exacerbations as compared to fixed maintenance dosing protocols (maintenance therapy) even when the latter utilize higher BUD/FORM doses. This suggests that dose-response relationships for certain pathobiologic mechanisms in asthma shift over time. Here, we have conducted animal studies to address this issue. (1) To test in an animal asthma-like model whether it is possible to achieve the same or greater pharmacological control over bronchoconstriction and airway/lung inflammation, and with less total drug used, by flexible BUD/FORM dosing (upward adjustment of doses) in association with allergen challenges. (2) To determine whether the benefit requires adjustment of both drug components. Rats sensitized on days 0 and 7 were challenged intratracheally with ovalbumin on days 14 and 21. On days 13-21, rats were treated intratracheally with fixed maintenance or flexible BUD/FORM combinations. On day 22, rats were challenged with methacholine and lungs were harvested for analysis. A flexible BUD/FORM dosing regimen (using 3.3 times less total drug than the fixed maintenance high dose regimen), delivered the same or greater reductions of excised lung gas volume (a measure of gas trapped in lung by bronchoconstriction) and lung weight (a measure of inflammatory oedema). When either BUD or FORM alone was increased on days of challenge, the benefit of the flexible dose upward adjustment was lost. Flexible dosing of the BUD/FORM combination improves the pharmacological inhibition of allergen-induced bronchoconstriction and an inflammatory oedema in an allergic asthma-like rat model.

  12. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    -dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  13. Effect of inhaled formyl-methionyl-leucyl-phenylalanine on airway function.

    Science.gov (United States)

    Berend, N; Peters, M J; Armour, C L; Black, J L; Ward, H E

    1988-01-01

    Formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic, acylated tripeptide analogous to bacterial chemotactic factors, has been shown to cause bronchoconstriction in guinea pig, rabbit, and human airways in vitro. To determine whether FMLP causes bronchoconstriction in man in vivo, a preliminary study was undertaken in which five non-smokers (mean age 35 years, FEV1 94% (SEM 5%) predicted) and five smokers (mean age 34 years, FEV1 93% (6%) predicted) inhaled aerosols of FMLP. None of the subjects showed airway hyperresponsiveness to histamine (the provocative concentrations of histamine causing a fall of greater than or equal to 20% in FEV1 (PC20) were over 8 mg/ml). FMLP dissolved in 50% dimethylsulphoxide and 50% saline in concentrations of 0, 0.06, 0.12, 0.25, 0.5, 1.0, 2.0, and 4.0 mg/ml was administered to the subjects by means of a French-Rosenthal dosimeter, FEV1 being recorded after inhalation of each concentration. Dose dependent falls in FEV1 occurred in five non-smokers (geometric mean 1.76, 95% confidence limits 0.87-3.53 mg/ml) and three smokers (0.23, 0.07-0.78 mg/ml), with two smokers not responding by 20% to the highest concentration of FMLP. On a separate day the FMLP dose-response curves were repeated after nebulisation of 500 micrograms of ipratropium bromide. The PC20 FMLP in the responders more than doubled. In six additional normal subjects a histamine inhalation test was performed before and four and 24 hours after inhalation of FMLP. All subjects remained unresponsive to histamine. These results show that FMLP is a potent bronchoconstrictor in some non-asthmatic individuals in vivo and this may be important in bronchoconstriction related to infection in patients with chronic obstructive lung disease.

  14. Effect of inhaled furosemide and torasemide on bronchial response to ultrasonically nebulized distilled water in asthmatic subjects.

    Science.gov (United States)

    Foresi, A; Pelucchi, A; Mastropasqua, B; Cavigioli, G; Carlesi, R M; Marazzini, L

    1992-08-01

    Inhaled furosemide has been shown to reduce the bronchoconstriction induced by several indirect stimuli, including ultrasonically nebulized distilled water (UNDW). Because the protective effect could be due to the inhibition of the Na(+)-2Cl(-)-K+ cotransport system of bronchial epithelium, we have compared the protective effect of inhaled furosemide with that of inhaled torasemide, a new and more potent loop diuretic, on UNDW-induced bronchoconstriction in a group of 12 asthmatic subjects. UNDW challenge was performed by constructing a stimulus-response curve with five increasing volume outputs of distilled water (from 0.5 to 5.2 ml/min) and the bronchial response expressed as the provocative output causing a 20% fall in FEV1 (PO20UNDW). On different days, each subject inhaled an equal dose (28 mg) of furosemide and torasemide in a randomized, double-blind, placebo-controlled study 5 min prior to an UNDW challenge. Furosemide and torasemide had no significant effect on resting lung function. The geometric mean value of PO20UNDW measured after placebo was 1.73 ml/min. This was significantly lower than that recorded after furosemide (4.25 ml/min; p < 0.025), but not after torasemide (3.05 ml/min; p = 0.07). Inhaled furosemide totally blocked bronchial response to UNDW in five subjects. In two of five subjects the response was also blocked by inhaled torasemide. A remarkable increase in diuresis was noted only after torasemide in most subjects. We conclude that inhaled furosemide has a better protective effect than does inhaled torasemide against UNDW-induced bronchoconstriction. However, the protective effect of furosemide is variable, with some asthmatic patients showing no change in bronchial response to UNDW.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Occupational asthma and rhinitis in workers from a lasamide production line

    Czech Academy of Sciences Publication Activity Database

    Klusáčková, P.; Lebedová, J.; Pelclová, D.; Šalandová, J.; Šenholdová, Z.; Navrátil, Tomáš

    2007-01-01

    Roč. 33, č. 1 (2007), s. 74-78 ISSN 0355-3140 R&D Projects: GA MZd NR8109 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,4-dichloro-5-chlorsulfonylbenzoic acid * 2,4-dichloro-5-sulfamoylbenzoic acid * bronchoconstriction * furosemide * rhinomanometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.387, year: 2007

  16. Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl amides as potent and long acting muscarinic antagonists.

    Science.gov (United States)

    Prat, Maria; Buil, María Antonia; Fernández, Maria Dolors; Tort, Laia; Monleón, Juan Manuel; Casals, Gaspar; Ferrer, Manuel; Castro, Jordi; Gavaldà, Amadeu; Miralpeix, Montserrat; Ramos, Israel; Vilella, Dolors; Huerta, Josep Maria; Espinosa, Sònia; Hernández, Begoña; Segarra, Victor; Córdoba, Mònica

    2015-04-15

    Novel quaternary ammonium derivatives of (3R)-quinuclidinyl amides have been identified as potent M3 muscarinic antagonists with a long duration of action in an in vivo model of bronchoconstriction. The synthesis, structure-activity relationships and biological evaluation of this series of compounds are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Exercise-induced bronchoconstriction : clinical studies in childhood asthma

    NARCIS (Netherlands)

    W.B. Hofstra (Winfried)

    1997-01-01

    textabstractAt present, astluna is regarded as a chronic inflammatory disorder of the airways, In susceptible individuals, asthma causes symptoms, that are usually associated with variable, but often reversible airflow obstmction. Astlulla is the most conunon lung disease in childhood, with

  18. Discovery of olodaterol, a novel inhaled beta2-adrenoceptor agonist with a 24 h bronchodilatory efficacy.

    Science.gov (United States)

    Bouyssou, Thierry; Hoenke, Christoph; Rudolf, Klaus; Lustenberger, Philipp; Pestel, Sabine; Sieger, Peter; Lotz, Ralf; Heine, Claudia; Büttner, Frank H; Schnapp, Andreas; Konetzki, Ingo

    2010-02-15

    Compound 4p was identified from a series of 6-hydroxy-4H-benzo[1,4]oxazin-3-ones as potent agonist of the human beta2-adrenoceptor with a high beta1/beta2-selectivity. A complete reversal of acetylcholine-induced bronchoconstriction which lasted over the whole study period of 5h was demonstrated for 4p in a guinea pig in vivo model without any signs of cardiovascular effects up to 10-fold above the first dose reaching 100% bronchoprotection. The enantiomerically pure (R)-form of 4p exerted a bronchodilatory efficacy over 24 h in dogs and guinea pigs in the absence of systemic pharmacodynamic effects. Formoterol which was tested as comparator in the same in vivo models of acetylcholine-induced bronchoconstriction did not retain efficacy after 24 h. In summary, the preclinical profile of compound (R)-4p (olodaterol, also known as BI 1744 CL) suggests a potential for once-daily dosing in man accompanied with an improved safety profile. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 2. Synthesis and structure-activity relationships of alpha,alpha-cycloalkylglycine sulfonamides.

    Science.gov (United States)

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Caciagli, Valerio; Catrambone, Fernando; D'Andrea, Piero; Felicetti, Patrizia; Gensini, Martina; Marastoni, Elena; Nannicini, Rossano; Paris, Marielle; Terracciano, Rosa; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2007-02-08

    Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.

  20. Biodegradation of Organophosphate Chemical Warfare Agents by Activated Sludge

    Science.gov (United States)

    2012-03-01

    bronchoconstriction Bladder (M) Urinary frequency, incontinence Cardiovascular system (M) Bradycardia, hypotension Cardiovascular system (N...conventional weapons: their cost and stability, simplicity of production, pound for pound potency and fear factor (Hill et al., 2008a). Compared to...Chemical agents, especially nerve agents, have a dramatic fear factor due to the symptoms they cause. Witnessing civilians violently convulsing

  1. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    Science.gov (United States)

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  2. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  3. Air quality and exercise-induced bronchoconstriction in elite athletes.

    Science.gov (United States)

    Rundell, Kenneth W; Sue-Chu, Malcolm

    2013-08-01

    A higher prevalence of airway hyperresponsiveness, airway remodeling, and asthma has been identified among athletes who compete and train in environmental conditions of cold dry air and/or high air pollution. Repeated long-duration exposure to cold/dry air at high minute ventilation rates can cause airway damage. Competition or training at venues close to busy roadways, or in indoor ice arenas or chlorinated swimming pools, harbors a risk for acute and chronic airway disorders from high pollutant exposure. This article discusses the effects of these harsh environments on the airways, and summarizes potential mechanisms and prevalence of airway disorders in elite athletes. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. [Measurement of bronchoconstrictive eicosanoids in chronic obstructive pulmonary disease].

    Science.gov (United States)

    Gross-Sondej, Iwona; Soja, Jerzy; Sładek, Krzysztof; Pulka, Grażyna; Skucha, Wojciech; Niżankowska-Mogilnicka, Ewa

    2012-01-01

    The aim of the study was the evaluation of the concentration of 9α11β prostaglandin F(2) - a stable metabolite of prostaglandin D(2) (PGD(2)) and leukotriene E(4) (LTE(4)) in stable and exacerbated COPD patients. 29 COPD patients aged 73 ± 8.34, mean FEV1 = 48.64 ± 15.75% of predictive value and 29 healthy controls aged 57.48 ± 10.86, mean FEV1 = 97.17 ± 13.81% of predictive value participated in this study. Samples of urine and blood were taken from COPD patients during exacerbation and in stable state of the disease; LTE(4) was determined in urine using commercial enzyme immunoassay (EIA) and 9α11β prostaglandin F(2) (9α11βPGF(2)) - stable metabolite of PGD(2) was evaluated in blood and urine using GC/MS. LTE(4) concentration in urine (677.15 vs. 436.4 pg/mg of creatinine; p = 0.035) and 9α11βPGF(2) in blood serum (5.35 vs. 3.07 pg/ml; p = 0.007) were significantly higher in exacerbated COPD patients than in control group. There was no difference in LTE(4) level in urine and 9α11βPGF2 in blood serum between exacerbated and stable COPD. The urinary 9α11βPGF(2) concentration did not differ between all studied groups. We found a positive correlation between smoking history and the urine LTE(4) level (r = 0.395; p = 0.002) as well as blood 9α11βPGF(2) concentration (r = 0.603; p = 0.001) in COPD patients. 9α11βPGF(2) and LTE(4) level in urine did not differ between the stable COPD group and the control group. We also did not find any difference between LTE4 level in urine and 9α11βPGF(2) in blood and urine between exacerbated and stable COPD. Finally, LTE(4) concentration in urine and 9α11βPGF(2) in blood occurred to be significantly higher in exacerbated COPD patients than in control group.

  5. Use of steroidal antiinflammatory drug provides further evidence for a potential role of PAF-acether in bronchial anaphylaxis.

    Science.gov (United States)

    Chignard, M; Le Còuedic, J P; Andersson, P; Brange, C

    1986-01-01

    We presently demonstrate that PAF-acether (1-O-alkyl-2-O-acetyl-sn-glycerol-3-phosphoryl-choline) is formed by sensitized guinea pig lungs upon in vitro antigenic challenge. Pretreatment of the animals with a steroidal antiinflammatory drug, budesonide, almost totally suppresses this biosynthesis. Since budesonide inhibits the anaphylactic bronchoconstriction in actively sensitized guinea pigs, these data strongly support the assumption that PAF-acether is a mediator of bronchial anaphylaxis.

  6. Response of Peripheral Blood Lymphocytes from RAO-affected Horses to b2-Agonist Stimulation

    OpenAIRE

    Werner Becker, Marianne Patricia

    2011-01-01

    Recurrent airway obstruction (RAO) affects middle-age horses, inducing bronchoconstriction and airway inflammation. β2-agonists like salbutamol are used as treatment, promoting airway smooth muscle (ASM) relaxation and bronchodilation. In addition to ASM, inflammatory cells express the β2-adrenoreceptors (β2-AR). In other species, β2-agonists promote peripheral blood lymphocyte (PBL) cytokine expression towards a pro-inflammatory phenotype. RAO horses are a good model for evaluating chron...

  7. Protective effect of budesonide/formoterol compared with formoterol, salbutamol and placebo on repeated provocations with inhaled AMP in patients with asthma: a randomised, double-blind, cross-over study

    Directory of Open Access Journals (Sweden)

    van der Woude Hanneke J

    2010-05-01

    Full Text Available Abstract Background The budesonide/formoterol combination is successfully used for fast relief of asthma symptoms in addition to its use as maintenance therapy. The temporarily increased corticosteroid dose during increasing inhaler use for symptom relief is likely to suppress any temporary increase in airway inflammation and may mitigate or prevent asthma exacerbations. The relative contribution of the budesonide and formoterol components to the improved asthma control is unclear. Methods The acute protective effect of inhaled budesonide was tested in a model of temporarily increased airway inflammation with repeated indirect airway challenges, mimicking an acute asthma exacerbation. A randomised, double-blind, cross-over study design was used. Asthmatic patients (n = 17, mean FEV1 95% of predicted who previously demonstrated a ≥30% fall in forced expiratory volume in 1 second (FEV1 after inhaling adenosine 5'-monophosphate (AMP, were challenged on four consecutive test days, with the same dose of AMP (at 09:00, 12:00 and 16:00 hours. Within 1 minute of the maximal AMP-induced bronchoconstriction at 09:00 hours, the patients inhaled one dose of either budesonide/formoterol (160/4.5 μg, formoterol (4.5 μg, salbutamol (2 × 100 μg or placebo. The protective effects of the randomised treatments were assessed by serial lung function measurements over the test day. Results In the AMP provocations at 3 and 7 hours after inhalation, the budesonide/formoterol combination provided a greater protective effect against AMP-induced bronchoconstriction compared with formoterol alone, salbutamol and placebo. In addition all three active treatments significantly increased FEV1 within 3 minutes of administration, at a time when inhaled AMP had induced the 30% fall in FEV1. Conclusions A single dose of budesonide/formoterol provided a greater protective effect against inhaled AMP-induced bronchoconstriction than formoterol alone, both at 3 and at 7 hours

  8. Basophil degranulation induced by cigarette smoking in man.

    OpenAIRE

    Walter, S; Walter, A

    1982-01-01

    There is some evidence that histamine could be a mediator of the immediate broncho-constriction that follows cigarette smoking. Since the chief reservoir of histamine in normal human blood is the basophil, we studied the acute effects of cigarette smoking on these cells. Capillary blood samples were obtained from 27 healthy young male smokers, before and 10 minutes after smoking. Basophils were collected and concentrated from these samples by a millipore membrane filter technique, stained wit...

  9. Airway responses to eucapnic hyperpnea, exercise, and methacholine in elite swimmers

    DEFF Research Database (Denmark)

    Pedersen, Lise; Winther, S.; Backer, V.

    2008-01-01

    Purpose: The International Olympic Committee Medical Commission (IOC-MC) requires athletes to provide the result of an objective test to support a diagnosis of asthma or exercise-induced bronchoconstriction (EIB) if they want to inhale a beta-2-agonist. The purpose of the study was to evaluate th...... of diagnosing EIB. We recommend performing the EVH test when diagnosing and evaluating EIB in elite swimmers and if EVH test negative then proceeding to a strenuous LBT Udgivelsesdato: 2008/9...

  10. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma

    DEFF Research Database (Denmark)

    Bisgaard, H

    2001-01-01

    , exudation of macromolecules and edema. The cysteinyl leukotrienes also have potent chemoattractant properties for eosinophils, causing an influx of eosinophils into the airway mucosa, which further fuels the inflammatory process. In addition, the cysteinyl leukotrienes are potent secretagogues and reduce...... and pranlukast inhibit bronchoconstriction in asthmatic patients undergoing allergen, exercise, cold air or aspirin challenge. They attenuate the hallmarks of asthmatic inflammation, including eosinophilia in the airway mucosa and peripheral blood. Moreover, exhaled nitric oxide concentrations, another correlate...

  11. Investigation of in vitro and in vivo anti-asthmatic properties of Siphonochilus aethiopicus

    CSIR Research Space (South Africa)

    Fouché, Gerda

    2011-01-01

    Full Text Available -induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram. Journal of Pharmacology and Experimental Therapeutics. 266, 306-13. Van Wyk, B., Van Oudtshoorn, B., Gericke, N., 2009. Medicinal... in the production of prostaglandins that was later confirmed by J?ger and Van Staden (2005) reporting an inhibitory effect of extracts from this plant on COX-1 activity. 5 Extracts from S. aethiopicus have also been associated with anti-infective activity...

  12. Gender and perception of dyspnea: The role of the variation in the forced expiratory volume in one second Género y percepción de disnea: el rol de la variación del volumen espiratorio forzado en un segundo

    Directory of Open Access Journals (Sweden)

    Carlos A. Nigro

    2010-08-01

    Full Text Available During bronchoconstriction women perceive more breathlessness than men. The aims of study were 1 to evaluate if quality of dyspnea in bronchoconstriction was different in women and men 2 to assess if gender difference in the perception of dyspnea could be related to the level of bronchoconstriction. 457 subjects (257 women inhaled methacholine to a 20% decrease in FEV1, or 32 mg/ml. Dyspnea was evaluated using the modified Borg scale and a list of expressions of dyspnea. Borg scores were recorded immediately before the challenge test baseline and at the maximum FEV1 decrease. The prevalence of descriptors of dyspnea reported by women and men was similar. Dyspnea was related to the level of FEV1 (ΔFEV1: OR 1.05, 95%CI 1.01-1.09, p 0.0095, females (OR 2.90, 95%CI 1.33-6.33, p 0.0072, younger subjects (OR 0.93, 95%CI 0.89- 0.97, p 0.0013 and body mass index (BMI (OR 1.11, 95%CI 1.01-1.23, p 0.023. As the FEV1 fell less than 20% from baseline, only the ΔFEV1 was significantly associated with dyspnea (ΔFEV1:OR 1.15, 95%CI 1.07- 1.24, p 0.0002. Instead, if the FEV1 fell higher ≥ 20%, the presence of dyspnea was related to the degree of bronchoconstriction (ΔFEV1: OR 1.04, 95%CI 1.01-1.09, p 0.0187, females (OR 3.02, 95%CI 1.36-6.72, p 0.0067, younger subjects (OR 0.92, 95%CI 0.88-0.96, p 0.0007 and BMI (OR 1.12, 95%CI 1.01-1.23, p 0.023. The quality of dyspnea during the bronchoconstriction was similar in women and men; women showed a higher perception of dyspnea than men only when the FEV1 fell more than 20% from baseline.Durante la broncoconstricción las mujeres perciben más disnea que los hombres. Los objetivos del estudio fueron evaluar: 1 si la calidad de la disnea durante la broncoconstricción fue diferente en mujeres y hombres, 2 si la diferencia entre sexos en la percepción de disnea podría relacionarse al nivel de broncoconstricción. 457 sujetos (257 mujeres inhalaron metacolina hasta un descenso del FEV1 ≥ 20% o 32 mg/ml. La

  13. Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Eastwood Peter R

    2010-01-01

    Full Text Available Abstract Background Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity. Heterogeneity can occur at different airway generations and at branching points in the bronchial tree. Whilst heterogeneity has been detected by previous experimental approaches, its spatial relationship either within or between airways is unknown. Methods In this study, distribution of airway narrowing responses across a portion of the porcine bronchial tree was determined in vitro. The portion comprised contiguous airways spanning bronchial generations (#3-11, including the associated side branches. We used a recent optical imaging technique, anatomical optical coherence tomography, to image the bronchial tree in three dimensions. Bronchoconstriction was produced by carbachol administered to either the adventitial or luminal surface of the airway. Luminal cross sectional area was measured before and at different time points after constriction to carbachol and airway narrowing calculated from the percent decrease in luminal cross sectional area. Results When administered to the adventitial surface, the degree of airway narrowing was progressively increased from proximal to distal generations (r = 0.80 to 0.98, P Conclusions Our findings demonstrate that the bronchial tree expresses intrinsic serial heterogeneity, such that narrowing increases from proximal to distal airways, a relationship that is influenced by the route of drug administration but not by structural variations accompanying branching sites.

  14. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    Science.gov (United States)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  15. Relief of dyspnoea by beta(2)-agonists after methacholine-induced bronchoconstriction

    NARCIS (Netherlands)

    van der Woude, HJ; Postma, DS; Politiek, MJ; Winter, TH; Aalbers, R

    Virtually all asthma patients use bronchodilators. Formoterol and salbutamol have a rapid onset of bronchodilating effect, whereas salmeterol acts slower. We studied the onset of improvement of dyspnoea sensation after inhalation with these bronchodilators and placebo to reverse a

  16. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  17. Can resistive breathing injure the lung? Implications for COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Vassilakopoulos T

    2016-09-01

    Full Text Available Theodoros Vassilakopoulos, Dimitrios Toumpanakis Pulmonary and Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Greece Abstract: In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction. The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. Keywords: resistive breathing, COPD, mechanotransduction, bronchoconstriction, inflammation

  18. Hypertrophic effect of inhaled beta -agonist with and without concurrent exercise training

    DEFF Research Database (Denmark)

    Jessen, Søren; Onslev, Johan; Lemminger, Anders

    2018-01-01

    INTRODUCTION: Due to a high prevalence of asthma and exercise-induced bronchoconstriction in elite athletes, there is a high use of beta2 -adrenoceptor agonists (beta2 -agonists) in the athletic population. While anabolic in rodents, no study has been able to detect hypertrophy in humans after...... chronic beta2 -agonist inhalation. METHODS: We investigated if inhaled beta2 -agonist, terbutaline, alters body composition and metabolic rate with and without concurrent exercise training in healthy young men. Sixty-seven participants completed a four-week intervention of daily terbutaline (8×0.5 mg...

  19. Neutrophil infiltration and release of IL-8 in airway mucosa from subjects with grain dust-induced occupational asthma.

    Science.gov (United States)

    Park, H S; Jung, K S; Hwang, S C; Nahm, D H; Yim, H E

    1998-06-01

    The immuno-pathological mechanism for occupational asthma induced by grain dust (GD) remains to be clarified. There have been few reports suggesting the involvement of neutrophils inducing bronchoconstriction after inhalation of GD. To further understand the role of neutrophil in the pathogenesis of GD-induced asthma. We studied the phenotype of leucocytes of the bronchial mucosa in patients with GD-induced asthma. Bronchial biopsy specimens were obtained by fibreoptic bronchoscopy from six subjects with GD-induced asthma. Six allergic asthma patients sensitive to house dust mite were enrolled as controls. Bronchial biopsy specimens were examined by immunohistochemistry with a panel of monoclonal antibodies to tryptase-containing mast cell (AA1), activated eosinophil (EG2), pan T-lymphocyte (CD3) and neutrophil elastase (NE). Induced sputum was collected before and after the GD-bronchoprovocation test. The IL-8 level in the sputum was measured using ELISA. There was a significant increase in the number of AA1+ and NE+ cells in bronchial mucosa of GD-induced asthma, compared with those of allergic asthma (P=0.01, P=0.01, respectively). No significant differences were observed in the number of EG2+ and CD3+ cells (P = 0.13, P=0.15, respectively). IL-8 was abundant in the sputum of all GD-induced asthma patients and significantly increased after the bronchial challenges compared with the baseline value (P = 0.03). These findings support the view that neutrophil recruitment together with mast cells may contribute to the bronchoconstriction induced by GD. A possible involvement of IL-8 was suggested.

  20. Assessment of long-term cultivated human precision-cut lung slices as an ex vivo system for evaluation of chronic cytotoxicity and functionality.

    Science.gov (United States)

    Neuhaus, Vanessa; Schaudien, Dirk; Golovina, Tatiana; Temann, Ulla-Angela; Thompson, Carolann; Lippmann, Torsten; Bersch, Claus; Pfennig, Olaf; Jonigk, Danny; Braubach, Peter; Fieguth, Hans-Gerd; Warnecke, Gregor; Yusibov, Vidadi; Sewald, Katherina; Braun, Armin

    2017-01-01

    Investigation of basic chronic inflammatory mechanisms and development of new therapeutics targeting the respiratory tract requires appropriate testing systems, including those to monitor long- persistence. Human precision-cut lung slices (PCLS) have been demonstrated to mimic the human respiratory tract and have potential of an alternative, ex-vivo system to replace or augment in-vitro testing and animal models. So far, most research on PCLS has been conducted for short cultivation periods (≤72 h), while analyses of slowly metabolized therapeutics require long-term survival of PCLS in culture. In the present study, we evaluated viability, physiology and structural integrity of PCLS cultured for up to 15 days. PCLS were cultured for 15 days and various parameters were assessed at different time points. Structural integrity and viability of cultured PCLS remained constant for 15 days. Moreover, bronchoconstriction was inducible over the whole period of cultivation, though with decreased sensitivity (EC 50 1d = 4 × 10 -8  M vs. EC 50 15d = 4 × 10 -6  M) and reduced maximum of initial airway area (1d = 0.5% vs. 15d = 18.7%). In contrast, even though still clearly inducible compared to medium control, LPS-induced TNF-α secretion decreased significantly from day 1 to day 15 of culture. Overall, though long-term cultivation of PCLS need further investigation for cytokine secretion, possibly on a cellular level, PCLS are feasible for bronchoconstriction studies and toxicity assays.

  1. Special considerations for adolescent athletic and asthmatic patients

    Directory of Open Access Journals (Sweden)

    Wuestenfeld JC

    2013-01-01

    Full Text Available Jan C Wuestenfeld,1,2 Bernd Wolfarth1,21Department of Preventive and Rehabilitative Sports Medicine, Technical University Munich (TUM, Munich, Germany; 2Institute for Applied Training Science (IAT, Leipzig, GermanyAbstract: Asthma is defined as a chronic inflammatory disorder of the airways with bronchial hyperresponsiveness and variable bronchoconstriction, and is one of the most common diseases in childhood and adolescence. Exercise-induced asthma-like symptoms and asthma are also frequently seen in highly trained athletes. Exercise-induced asthma (EIA and exercise-induced bronchoconstriction (EIB are found in 8%–10% of healthy school-aged children and in 35% of children with asthma. Highly increased ventilation, inhalation of cold, dry air and air pollutants (eg, chlorine are thought to be important triggers for EIA and EIB. EIA is often experienced concurrently with vocal cord dysfunction, which needs to be considered during the differential diagnosis. The pharmacological treatment of EIA is similar to the treatment of asthma in nonexercising adolescents. The therapy is based on anti-inflammatory drugs (eg, inhaled glucocorticosteroids and bronchodilators (eg, β2-agonists. The treatment of EIB is comparable to the treatment of EIA and leukotriene modifiers offer a new and promising treatment option, particularly in EIB. Generally, athletes may not use β2-agonists according to the prohibited list of the World Anti-Doping Agency (WADA. However, the WADA list contains specific β2-agonistic substances that are permitted to be used by inhalation.Keywords: exercise-induced asthma, exercise-induced bronchospasm, adolescents, asthma, athletes

  2. Asthma, surgery, and general anesthesia: a review.

    Science.gov (United States)

    Tirumalasetty, Jyothi; Grammer, Leslie C

    2006-05-01

    Over 20 million Americans are affected with asthma. Many will require some type of surgical procedure during which their asthma management should be optimized. Preoperative assessment of asthma should include a specialized history and physical as well as pulmonary function testing. In many asthmatic patients, treatment with systemic corticosteroids and bronchodilators is indicated to prevent the inflammation and bronchoconstriction associated with endotracheal intubation. The use of corticosteroids has not been shown to adversely affect wound healing or increase the rate of infections postoperatively. Preoperative systemic corticosteroids may be used safely in the majority of patients to decrease asthma-related morbidity.

  3. The effectiveness of the treatment of severe exercise-induced asthma in schoolchildren

    Directory of Open Access Journals (Sweden)

    M.N. Garas

    2017-03-01

    Full Text Available Background. Bronchial asthma is one of the most common chronic multifactorial diseases of the lungs. At least 10–12 % of patients with bronchial asthma are suffering from a severe form of the disease. One aspect of inadequate severe asthma control is its phenotypic heterogeneity, interest of experts increases to the problem of exercise-induced asthma. The purpose of the study was to increase efficiency of treatment for severe exercise-induced asthma in schoolchildren based on the analysis of the attack dynamics and to achieve disease control according to main inflammatometric and spirometric indices. Materials and methods. We examined 46 children with severe persistent bronchial asthma, in particular, 15 schoolchildren suffering from severe exercise-induced asthma, the second clinical group (comparison one consisted of 31 children suffering from severe type of the disease, with no signs of exercise-induced bronchoconstriction. Basic therapy effectiveness was determined prospectively by assessing the disease control using AST-test with an interval of 3 months. The severity of bronchial obstruction syndrome in patients on admission to hospital during exacerbation was assessed by score scale. Airway hyperresponsiveness was evaluated according to the results of bronchoprovocation with histamine. Results. Children of I clinical group had more significant manifestations of bronchial obstruction during the week of inpatient treatment than the comparison group of patients, including significantly more severe manifestations of bronchial obstruction were verified on 1st and 7th day of hospitalization. Due to the analysis of basic therapy effectiveness, only a quarter of I clinical group patients and a larger part of schoolchildren in comparison group achieved the partial control after a 3-month course of anti-inflammatory treatment. Eosinophilic inflammation was observed in most children with severe exercise-induced asthma (60.1 % and in 47.2 % of

  4. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    Science.gov (United States)

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  5. Airway resistance at maximum inhalation as a marker of asthma and airway hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    O'Connor George T

    2011-07-01

    Full Text Available Abstract Background Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin is abnormally elevated in subjects with airway hyperresponsiveness. Methods The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol and bronchoconstriction (methacholine. A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values. Results Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004. Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 min % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively. Also, 80% of the subjects with baseline Rmin min > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic. Conclusions These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.

  6. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics.

    Science.gov (United States)

    Mastalerz, Lucyna; Januszek, Rafał; Kaszuba, Marek; Wójcik, Krzysztof; Celejewska-Wójcik, Natalia; Gielicz, Anna; Plutecka, Hanna; Oleś, Krzysztof; Stręk, Paweł; Sanak, Marek

    2015-09-01

    Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Halotyrosine Antibody that Detects Increased Protein Modifications in Asthma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Hallstrand, Teal S.; Daly, Don S.; Matzke, Melissa M.; Nair, Parameswaran; Bigelow, Diana J.; Pounds, Joel G.; Zangar, Richard C.

    2014-01-31

    Background-Airway inflammation plays an important pathophysiological role in asthma. Eosinophils produce hypobromite and bromotyrosine while neutrophils produce hypochlorite and chlorotyrosine. Objective-To evaluate halotyrosine modifications of individual airway proteins as a marker of inflammation in asthma using an antibody-based assay. Methods-We developed a novel monoclonal antibody (BTK-94C) that binds halogenated tyrosine residues, and used this antibody in a custom enzyme-linked immunosorbent assay (ELISA) microarray platform to examine halotyrosine levels in 23 proteins in three independent sets of sputum samples (52 samples total). Results-In 15 subjects with either no asthma, or with asthma characterized by high or low sputum eosinophil counts, we found associations between increased halotyrosine levels of at least three proteins and severity of airway hyperresponsiveness (AHR). Treatment with mepolizumab in 17 patients with sputum eosinophilia markedly reduced the sputum eosinophilia and significantly reduced halotyrosine levels in one sputum protein. Further analysis of 10 subjects with neutrophilic asthma and 10 health controls demonstrated a broad increase in halotyrosine in the patients with airway neutrophilia. Conclusions-Significantly higher levels of halotyrosine are associated with asthma in the asthma phenotypes we examined. The halotyrosine levels correlated with indirect AHR in the form of exercise-induced bronchoconstriction. Clinical Implication-An antibody-based assay for tyrosine halogenation in specific proteins may prove useful for assessing airway inflammation in asthma. Capsule Summary-An antibody to measure protein monobrominated tyrosine and other halotyrosine modifications was developed and used to evaluate halogenation in specific proteins in the airways for the first time. Associations were found between levels of halotyrosine and exercise-induced bronchoconstriction, and eosinophil and neutrophil inflammation in sputum from

  8. Mechanisms of pollution-induced airway disease: in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Peden, D.B. [Univ. of North Carolina School of Medicine, Center for Environmental Medicine and Lung Biology, North Carolina (United States)

    1997-12-31

    Several studies have investigated the effects of ozone, sulphur dioxide (SO{sub 2}), and nitrogen dioxide (NO{sub 2}) on lung function in normal and asthmatic subjects. Decreased lung function has been observed with ozone levels as low as 0.15 ppm - this effect is concentration dependent and is exacerbated by exercise. A number of lines of evidence suggest that the effect on lung function is mediated, at lest in part, by neural mechanisms. In both normals and asthmatics, ozone has been shown to induce neutrophilic inflammation, with increased levels of several inflammatory mediators, including prostaglandin E{sub 2}. However, in normal subjects, none of the markers of inflammation correlate with changes in lung function. The lung function changes in asthmatics may be associated with inflammatory effects; alternatively, ozone may prime the airways for an increased response to subsequently inhaled allergen. Indeed, an influx of both polymorphonucleocytes and eosinophils has been observed in asthmatic patients after ozone exposure. It has been suggested that the effect of ozone on classic allergen-induced bronchoconstriction may be more significant than any direct effect of this pollutant in asthmatics. SO{sub 2} does not appear to affect lung function in normal subjects, but may induce bronchoconstriction in asthmatics. Nasal breathing, which is often impaired in asthmatics, reduces the pulmonary effects of SO{sub 2}, since this water-soluble gas is absorbed by the nasal mucosa. NO{sub 2} may also influence lung function in asthmatics, but further research is warranted. SO{sub 2} and NO{sub 2} alone do not seem to have a priming effect in asthmatics, but a combination of these two gases has resulted in a heightened sensitivity to subsequently inhaled allergen. (au)

  9. [Effectiveness of fenspiride in patients with chronic obstructive bronchitis].

    Science.gov (United States)

    Shorokhova, T D; Medvedeva, I V; Lapik, S V; Solov'eva, O G; Gracheva, E Iu; Iusupova, R S

    2001-01-01

    Patients with chronic obstructive pulmonary disease of moderate severity were investigated for two months for assessment of fenspiride activity. Examination of the patients (age 42.6 +/- 5.3) took place before and after fenspiride therapy. In comparison to the control group, fenspiride patients showed improvement of external respiration function: FEV 1, FVC, FEF 50-75, PEF increased. Dienic conjugates, malonic dialdehyde levels decreased, alpha-tocopherol in platelet membranes rose, functional activity of platelets fell. Side effects were rare and not serious. It is concluded that fenspiride has an antiinflammatory effect, reduces bronchoconstriction and depresses platelet aggregation, is well tolerated. Fenspiride is an effective drug for the treatment of moderate chronic obstructive bronchitis.

  10. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma.

    Science.gov (United States)

    Nguyen, Dan-Vinh; Linderholm, Angela; Haczku, Angela; Kenyon, Nicholas

    2017-12-01

    Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma. Published by Elsevier Inc.

  11. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    Science.gov (United States)

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  12. Effect of ipratropium bromide in bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Taskar V

    1992-07-01

    Full Text Available The effect of inhalation of ipratropium bromide was evaluated in 20 patients with bronchial asthma. It was observed that there was no significant improvement in the forced vital capacity and the forced expired volume in one second, while there was significant improvement in the peak expiratory flow rate (PEFR measured at 9 pm, after inhalation of 2 puffs of ipratropium bromide aerosol (0.02mg/puff three to four times a day for 2 weeks. Since PEFR is a measure of large airway function and cholinergic mechanisms are primarily involved for airflow obstruction at large airways, improvement in PEFR by ipratropium bromide highlights its role as a useful bronchodilator in patients in whom vagal reflexes are responsible for the provocation of bronchoconstriction.

  13. Effects of cysteinyl leukotrienes and leukotriene receptor antagonists on markers of inflammation

    DEFF Research Database (Denmark)

    Sampson, Anthony P; Pizzichini, Emilio; Bisgaard, Hans

    2003-01-01

    mediators in a wide range of diseases, implying that their biological activities reach far beyond acute bronchoconstriction, the activity traditionally ascribed to them. The validity of examining sputum for "biomarkers" has improved the understanding of asthma pathophysiology, optimization of asthma......The understanding that asthma pathophysiology includes an inflammatory component has spurred the more aggressive use of anti-inflammatory therapies and created a need for effective tools to measure inflammation. Biomarkers of airway inflammation proposed are obtained by methods that are direct...... but highly invasive (bronchial biopsy, bronchoalveolar lavage), moderately direct, and less invasive (indirect sputum, exhaled air, breath condensate) or indirect and least invasive (blood, urine). Several studies described in this review have implicated the cysteinyl leukotrienes (CysLTs) as inflammatory...

  14. Relaxation of soman-induced contracture of airway smooth muscle in vitro. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, M.G.; Moore, D.H.; Adler, M.

    1992-12-31

    A possible role for beta-adrenergic agonists in the management of bronchoconstriction resulting from exposure to anticholinesterase compounds was investigated in vitro in canine tracheal smooth muscle. Norepinephrine, salbutamol and isoproterenol produced partial relaxation of soman-induced contractures. However, the relaxation induced was not sustained; muscle tensions returned to pretreatment levels within minutes despite the continued presence of beta-agonists. Increasing cAMP levels with the non beta-agonist bronchodilators such as thoophylline, a phosphodiesterase inhibitor, or forskolin, a specific stimulator of adenylate cyclase, resulted in more complete and longer lasting relaxation, suggesting that beta-adrenoceptor desensitization may contribute to the failure by beta-agonists to produce sustained relaxation. Nerve agents, Soman, Toxicity, Airway smooth muscle, In vitro, Physiology, Effects.

  15. Treatment of exercise-induced asthma, respiratory and allergic disorders in sports and the relationship to doping: Part II of the report from the Joint Task Force of European Respiratory Society (ERS) and European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA(2)LEN.

    Science.gov (United States)

    Carlsen, K H; Anderson, S D; Bjermer, L; Bonini, S; Brusasco, V; Canonica, W; Cummiskey, J; Delgado, L; Del Giacco, S R; Drobnic, F; Haahtela, T; Larsson, K; Palange, P; Popov, T; van Cauwenberge, P

    2008-05-01

    The aims of part II is to review the current recommended treatment of exercise-induced asthma (EIA), respiratory and allergic disorders in sports, to review the evidence on possible improvement of performance in sports by asthma drugs and to make recommendations for their treatment. The literature cited with respect to the treatment of exercise induced asthma in athletes (and in asthma patients) is mainly based upon the systematic review given by Larsson et al. (Larsson K, Carlsen KH, Bonini S. Anti-asthmatic drugs: treatment of athletes and exercise-induced bronchoconstriction. In: Carlsen KH, Delgado L, Del Giacco S, editors. Diagnosis, prevention and treatment of exercise-related asthma, respiratory and allergic disorders in sports. Sheffield, UK: European Respiratory Journals Ltd, 2005:73-88) during the work of the Task Force. To assess the evidence of the literature regarding use of beta(2)-agonists related to athletic performance, the Task Force searched Medline for relevant papers up to November 2006 using the present search words: asthma, bronchial responsiveness, exercise-induced bronchoconstriction, athletes, sports, performance and beta(2)-agonists. Evidence level and grades of recommendation were assessed according to Sign criteria. Treatment recommendations for EIA and bronchial hyper-responsiveness in athletes are set forth with special reference to controller and reliever medications. Evidence for lack of improvement of exercise performance by inhaled beta(2)-agonists in healthy athletes serves as a basis for permitting their use. There is a lack of evidence of treatment effects of asthma drugs on EIA and bronchial hyper-responsiveness in athletes whereas extensive documentation exists in treatment of EIA in patients with asthma. The documentation on lack of improvement on performance by common asthma drugs as inhaled beta(2)-agonists with relationship to sports in healthy individuals is of high evidence, level (1+). Exercise induced asthma should be

  16. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    Science.gov (United States)

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT 1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT 2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT 2 receptor-mediated LTC 4 -induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC 4 is rapidly converted to LTD 4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC 4 -induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT 1 receptor antagonist, but not by BayCysLT 2 RA, a CysLT 2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT 2 RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC 4 -/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC 4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC 4 -induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC 4 -induced air-trapping was weak, treatment with BayCysLT 2 RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT 2 RA completely suppressed LTC 4 -induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT 2 receptors mediate LTC 4 -induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT 2 receptors contribute to asthmatic response involving air-trapping. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dyspnea assessment and adverse events during sputum induction in COPD

    Directory of Open Access Journals (Sweden)

    Moschandreas Joanna

    2006-06-01

    Full Text Available Abstract Background The inhalation of normal or hypertonic saline during sputum induction (SI may act as an indirect bronchoconstrictive stimulus leading to dyspnea and lung function deterioration. Our aim was to assess dyspnea and adverse events in COPD patients who undergo SI following a safety protocol. Methods Sputum was induced by normal and hypertonic (4.5% saline solution in 65 patients with COPD of varying severity. In order to minimize saline-induced bronchoconstriction a protocol based on the European Respiratory Society sputum induction Task group report was followed. Dyspnea change was scored using the Borg scale and lung function was assessed by spirometry and oximetry. Results Borg score changes [median(IQR 1.5(0–2] were observed during SI in 40 subjects; 16 patients required temporary discontinuation of the procedure due to dyspnea-general discomfort and 2 did not complete the session due to dyspnea-wheezing. The change in Borg dyspnea score was significantly correlated with oxygen saturation and heart rate changes and with discontinuation of the procedure due to undesired symptoms. 19 subjects presented an hyperresponsive reaction (decline>20% from baseline FEV1. No significant correlation between Borg changes and FEV1decline was found. Patients with advanced COPD presented significantly greater Borg and oxygen saturation changes than patients with less severe disease (p = 0.02 and p = 0.001, respectively. Baseline FEV1, oxygen saturation and 6MWT demonstrated significant diagnostic values in distinguishing subjects who develop an adverse physiologic reaction during the procedure. Conclusion COPD patients undergoing SI following a safety protocol do not experience major adverse events. Dyspnea and oxygen desaturation is more likely to occur in patients with disease in advanced stages, leading to short discontinuation or less frequently to termination of the procedure. Baseline FEV1, oxygen saturation and 6MWT may have a

  18. X-ray diagnosis of bronchial obstruction in chronic pneumonia

    International Nuclear Information System (INIS)

    Mamilyaev, R.M.

    1981-01-01

    Combined radiobronchological examination of patients with chronic pneumonia in the phase of reverse development of the disease has been performed. Severity, localization and extent of bronchial obstruction have been studied, depending on the phase of chronic pneumonia and aspects of lung tissue alterations. Bronchial lesions characteristic of chronic pneumonia were defined, as well as importance of x-ray examination methods for bronchial obstruction diagnosis. Three types of bronchial obstruction were distinguished: bronchoconstriction, bronchodilatation and their combination. With regard to the character and severity of bronchial and pulmonary tissue lesions 3 variants of chronic pneumonia are offered to be differentiated: bronchitic, bronchoectatic, and abscess-forming. The main significance in diagnosis of chronic pneumonia is attributed to combined x-ray examination, which also includes radiobronchological investigation in the first two variants of the disease [ru

  19. Pharmacological basis for the medicinal use of cardamom in asthma

    Directory of Open Access Journals (Sweden)

    Arif ullah Khan

    2011-03-01

    Full Text Available Cardamom (Elettaria cardamomum is widely used in folk medicine for the treatment of asthma. This study describes its airways relaxant potential, with elucidation of possible underlying mechanism. Crude extract of cardamom which tested positive for alkaloids, flavonoids, saponins, sterols and tannins, when tested against carbachol-mediated bronchoconstriction in rats under anesthesia, it dose-dependently (10-100 mg/kg suppressed the carbachol (1 µmol/kg-evoked increase in the inspiratory pressure. In isolated rabbit trachea tissues, crude extract of cardamom caused relaxation of both carbachol (1 µM and high K+ (80 mM-induced contractions, like that caused by verapamil, suggesting its Ca++ channel blockade action. These results indicate that cardamom exhibits bronchodilatory effect, mediated through Ca++ antagonist mechanism, which provides sound mechanistic background for its medicinal use in asthma.

  20. Common causes of dyspnoea in athletes: a practical approach for diagnosis and management

    Directory of Open Access Journals (Sweden)

    James M. Smoliga

    2016-06-01

    Dyspnoea during exercise is a common chief complaint in athletes and active individuals. It is not uncommon for dyspnoeic athletes to be diagnosed with asthma, “exercise-induced asthma” or exercise-induced bronchoconstriction based on their symptoms, but this strategy regularly leads to misdiagnosis and improper patient management. Dyspnoea during exercise can ultimately be caused by numerous respiratory and nonrespiratory conditions, ranging from nonpathological to potentially fatal in severity. As, such it is important for healthcare providers to be familiar with the many factors that can cause dyspnoea during exercise in seemingly otherwise-healthy individuals and have a general understanding of the clinical approach to this patient population. This article reviews common conditions that ultimately cause athletes to report dyspnoea and associated symptoms, and provides insight for developing an efficient diagnostic plan.

  1. Quantifying parenchymal tethering in a finite element simulation of a human lung slice under bronchoconstriction.

    Science.gov (United States)

    Breen, Barbara J; Donovan, Graham M; Sneyd, James; Tawhai, Merryn H

    2012-08-15

    Airway hyper-responsiveness (AHR), a hallmark of asthma, is a highly complex phenomenon characterised by multiple processes manifesting over a large range of length and time scales. Multiscale computational models have been derived to embody the experimental understanding of AHR. While current models differ in their derivation, a common assumption is that the increase in parenchymal tethering pressure P(teth) during airway constriction can be described using the model proposed by Lai-Fook (1979), which is based on intact lung experimental data for elastic moduli over a range of inflation pressures. Here we reexamine this relationship for consistency with a nonlinear elastic material law that has been parameterised to the pressure-volume behaviour of the intact lung. We show that the nonlinear law and Lai-Fook's relationship are consistent for small constrictions, but diverge when the constriction becomes large. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The effect of body posture during medication inhalation on exercise induced bronchoconstriction in asthmatic children

    NARCIS (Netherlands)

    Visser, R.; Wind, M.; de Graaf, B.J.; de Jong, F.H.; van der Palen, Jacobus Adrianus Maria; Thio, B.J.

    2015-01-01

    RATIONALE: Inhaling medication in a standard body posture leads to impaction of particles in the sharp angle of the upper airway. Stretching the upper airway by extending the neck in a forward leaning body posture may improve pulmonary deposition. A single dose of inhaled corticosteroids (ICS)

  3. [Bronchial inflammation during chronic bronchitis, importance of fenspiride].

    Science.gov (United States)

    Melloni, B

    2002-09-01

    PATHOPHYSIOLOGY OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): Chronic inflammation of the upper airways, pulmonary parenchyma and pulmonary vasculature is the characteristic feature of COPD. Two mechanisms besides inflammation are also involved: oxidative stress and imbalance between proteinases and antiproteinases. Cellular infiltration of the upper airways involved neutrophils, macrophages, T lymphocytes and eosinophils. Inflammatory mediators appear to play a crucial role in the interaction between inflammation and obstruction. PROPERTIES OF FENSPIRIDE: A nonsteroidal drug, fenspiride, exhibits interesting properties documented in vitro: anti-bronchoconstriction activity, anti-secretory activity, and anti-inflammatory activity (reduction in the activity of phospholipase A2 and release of proinflammatory leukotriens). Two french clinical trials have studied the efficacy of fenspiride in patients with acute excerbation or stable COPD and have demonstrated an improvement in the group treated with fenspiride compared with the placebo group.

  4. Response localization of the pharmacological agents histamine and salbutamol along the respiratory system by forced oscillations in asthmatic subjects.

    Science.gov (United States)

    Wouters, E F; Polko, A H; Visser, B F

    1989-01-01

    The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.

  5. Beta-blockers: friend or foe in asthma?

    Directory of Open Access Journals (Sweden)

    Arboe B

    2013-07-01

    Full Text Available Bente Arboe, Charlotte Suppli UlrikDepartment of Pulmonary Medicine, Hvidovre Hospital and University of Copenhagen, Hvidovre, DenmarkBackground and aim: Recently, β-blockers have been suggested as a potential maintenance treatment option for asthma. The aim of this review is to provide an overview of the current knowledge of the potential benefits and risks of β-blocker therapy for asthma.Method: Systematic literature review.Results: No significant increase in the number of patients requiring rescue oral corticosteroid for an exacerbation of asthma has been observed after initiation of β-blocker treatment. Patients with mild to moderate reactive airway disease, probably both asthma and chronic obstructive pulmonary disease, may have a limited fall in forced expiratory volume in 1 second (FEV1 following single-dose administration of β-blocker, whereas no change in FEV1 has been reported following long-term administration. In a murine model of asthma, long-term administration of β-blockers resulted in a decrease in airway hyperresponsiveness, suggesting an anti-inflammatory effect. In keeping with this, long-term administration of a nonselective β-blocker to steroid-naïve asthma patients has shown a dose-dependent improvement in airway hyperresponsiveness, and either an asymptomatic fall in FEV1 or no significant change in FEV1. Furthermore, available studies show that bronchoconstriction induced by inhaled methacholine is reversed by salbutamol in patients on regular therapy with a β-blocker. On the other hand, a recent placebo-controlled trial of propranolol and tiotropium bromide added to inhaled corticosteroids revealed no effect on airway hyperresponsiveness and a small, not statistically significant, fall in FEV1 in patients classified as having mild to moderate asthma.Conclusion: The available, although limited, evidence suggests that a dose-escalating model of β-blocker therapy to patients with asthma is well tolerated, does not

  6. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Boivin, Alexis; Bau, Sébastien

    2017-08-01

    Measurement of worker exposure to a thoracic health-related aerosol fraction is necessary in a number of occupational situations. This is the case of workplaces with atmospheres polluted by fibrous particles, such as cotton dust or asbestos, and by particles inducing irritation or bronchoconstriction such as acid mists or flour dust. Three personal and two static thoracic aerosol samplers were tested under laboratory conditions. Sampling efficiency with respect to particle aerodynamic diameter was measured in a horizontal low wind tunnel and in a vertical calm air chamber. Sampling performance was evaluated against conventional thoracic penetration. Three of the tested samplers performed well, when sampling the thoracic aerosol at nominal flow rate and two others performed well at optimized flow rate. The limit of flow rate optimization was found when using cyclone samplers. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. Airway dysfunction in elite swimmers: prevalence, impact, and challenges

    Directory of Open Access Journals (Sweden)

    Lomax M

    2016-05-01

    Full Text Available Mitch Lomax Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK Abstract: The prevalence of airway dysfunction in elite swimmers is among the highest in elite athletes. The traditional view that swimmers naturally gravitate toward swimming because of preexisting respiratory disorders has been challenged. There is now sufficient evidence that the higher prevalence of bronchial tone disorders in elite swimmers is not the result of a natural selection bias. Rather, the combined effects of repeated chlorine by-product exposure and chronic endurance training can lead to airway dysfunction and atopy. This review will detail the underpinning causes of airway dysfunction observed in elite swimmers. It will also show that airway dysfunction does not prevent success in elite level swimming. Neither does it inhibit lung growth and might be partially reversible when elite swimmers retire from competition. Keywords: exercise, aquatic athletes, bronchoconstriction

  8. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn

    2018-01-01

    Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β2 -agonists are frequently used to counteract exercise......-induced bronchoconstriction, but the effects β2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomized 21 trained men to four weeks of high intensity training with (HIT + β2 A) or without (HIT) daily inhalation of β2 -agonist (terbutaline, 4 mg...... (P ≤ 0.01) and exercise performance (11.6 vs. 6.1%, P ≤ 0.05) in HIT + β2 A compared to HIT. These findings indicate that daily β2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome...

  9. Functional high-resolution computed tomography of pulmonary vascular and airway reactions. Experimental results. Funktionelle HR-CT der Lunge. Experimentelle Untersuchungen pulmonaler Gefaess- und Atemwegsreaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Herold, C.J. (Universitaetsklinik fuer Radiodiagnostik, Vienna (Austria) Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology); Brown, R.H. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Anesthesiology and Intensive Care Medicine Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Physiology); Wetzel, R.C.; Herold, S.M. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Anesthesiology and Intensive Care Medicine); Zeerhouni, E.A. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology)

    1993-03-01

    We describe the use of high-resolution computed tomography (HRCT) for assessment of the function of pulmonary vessels and airways. With its excellent spatial resolution, HRCT is able to demonstrate pulmonary structures as small as 300 [mu]m and can be used to monitor changes following various stimuli. HRCT also provides information about structures smaller than 300 [mu]m through measurement of parenchymal background density. To date, sequential, spiral and ultrafast HRCT techniques have been used in a variety of challenges to gather information about the anatomical correlates of traditional physiological measurements, thus making anatomical-physiological correlation possible. HRCT of bronchial reactivity can demonstrate the location and time course of aerosol-induced broncho-constriction and may show changes not apparent on spirometry. HRCT of the pulmonary vascular system visualized adaptations of vessels during hypoxia and intravascular volume loading and elucidates cardiorespiratory interactions. Experimental studies provide a basis for potential clinical applications of this method. (orig.).

  10. Functional high-resolution computed tomography of pulmonary vascular and airway reactions

    International Nuclear Information System (INIS)

    Herold, C.J.; Johns Hopkins Medical Institutions, Baltimore, MD; Brown, R.H.; Johns Hopkins Medical Institutions, Baltimore, MD; Johns Hopkins Medical Institutions, Baltimore, MD; Wetzel, R.C.; Herold, S.M.; Zeerhouni, E.A.

    1993-01-01

    We describe the use of high-resolution computed tomography (HRCT) for assessment of the function of pulmonary vessels and airways. With its excellent spatial resolution, HRCT is able to demonstrate pulmonary structures as small as 300 μm and can be used to monitor changes following various stimuli. HRCT also provides information about structures smaller than 300 μm through measurement of parenchymal background density. To date, sequential, spiral and ultrafast HRCT techniques have been used in a variety of challenges to gather information about the anatomical correlates of traditional physiological measurements, thus making anatomical-physiological correlation possible. HRCT of bronchial reactivity can demonstrate the location and time course of aerosol-induced broncho-constriction and may show changes not apparent on spirometry. HRCT of the pulmonary vascular system visualized adaptations of vessels during hypoxia and intravascular volume loading and elucidates cardiorespiratory interactions. Experimental studies provide a basis for potential clinical applications of this method. (orig.) [de

  11. β2 agonists in athletes. An ergogenic aid? = β2 agonistas en deportistas. ¿Una ayuda ergogénica?

    Directory of Open Access Journals (Sweden)

    Ospina Uribe, Carlos Fernando

    2013-01-01

    Full Text Available Asthma is a chronic disorder of the airways with bronchial hyperresponsiveness and bronchoconstriction. Exercise can trigger asthma symptoms; this condition is known as exerciseinduced bronchospasm (EIB. Asthma is common in Olympic athletes who therefore use β2 agonists to prevent and treat its episodes. These drugs are preferably supplied by inhalation. In sports, the use of β2 agonists is restricted by anti-doping regulation, arguing that these drugs have the potential to improve physical performance, which can result in a competitive advantage. β2 agonists are prohibited by the WADA (World Anti-Doping Agency, except salbutamol (maximum dose: 1.600 μg over 24 hours and salmeterol. Oral administration of salbutamol can induce ergogenic effects in athletes. It has been documented that when given orally β2 agonists can improve performance in endurance disciplines, increase muscle strength and improve anaerobic power. However, according to scientific evidence, inhaled β2 agonists do not have a relevant performance-enhancing effect in nonasthmatic athletes.

  12. Gastro-Oesophageal Reflux in Noncystic Fibrosis Bronchiectasis

    Directory of Open Access Journals (Sweden)

    Annemarie L. Lee

    2011-01-01

    Full Text Available The clinical presentation of noncystic fibrosis bronchiectasis may be complicated by concomitant conditions, including gastro-oesophageal reflux (GOR. Increased acidic GOR is principally caused by gastro-oesophageal junction incompetence and may arise from lower oesophageal sphincter hypotension, including transient relaxations, hiatus hernia, and oesophageal dysmotility. Specific pathophysiological features which are characteristic of respiratory diseases including coughing may further increase the risk of GOR in bronchiectasis. Reflux may impact on lung disease severity by two mechanisms, reflex bronchoconstriction and pulmonary microaspiration. Symptomatic and clinically silent reflux has been detected in bronchiectasis, with the prevalence of 26 to 75%. The cause and effect relationship has not been established, but preliminary reports suggest that GOR may influence the severity of bronchiectasis. Further studies examining the implications of GOR in this condition, including its effect across the disease spectrum using a combination of diagnostic tools, will clarify the clinical significance of this comorbidity.

  13. Effects of a cold environment and of ammonia on the toxicity of sulfuric acid mist to guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Pattle, R E; Burgess, F; Cullumbine, H

    1956-01-01

    Exposure of guinea pigs for 8 hr to H/sub 2/SO/sub 4/ mist (2.7 ..mu..m MMD) yielded an LC/sub 50/ of 6.8 ppM. Animals either became dyspneic within 3 hr and died within 8 hr or suffered little effect during exposure. Some animals were particularly resistant. LC/sub 50/ for mist of 0.8 ..mu..m MMD was 14.9 ppM at room temperature (20/sup 0/C) and 11.7 ppM at 0/sup 0/C. Decrease was significant at 2% level. That cold especially affects more resistant animals is suggested. No evidence for tolerance was observed. Ammonium carbonate (NH/sub 3/ to neutralize mist) negated mortal effect of mist sufficient to produce > 50% mortality. Fatal effect was laryngeal spasm and bronchoconstriction. Pathology included emphysematous lungs. No pathological findings were observed in animals surviving short LC/sub 50/, but prolonged exposure produced slowly-repairable pathological lesions including capillary engorgement (perhaps sequel to bronchospasm).

  14. Life-threatening asthma attack during prolonged fingolimod treatment: case report

    Directory of Open Access Journals (Sweden)

    Zecca C

    2014-07-01

    Full Text Available Chiara Zecca,1,* Matteo Caporro,1,* Sandor Györik,2 Claudio Gobbi11Neurocenter of Southern Switzerland, Department of Neurology, Ospedale Regionale di Lugano, Lugano, Switzerland; 2Department of Internal Medicine, Ospedale Regionale di Bellinzona, Bellinzona, Switzerland*These authors contributed equally to this workBackground: Fingolimod (FTY mediates bronchoconstriction by interacting with sphingosine-1-phosphate receptors. The majority of the reported adverse respiratory events occur during the first weeks of treatment.Case presentation: A 49-year-old woman developed a life-threatening asthma attack after 6 months of continuous FTY treatment. The adverse event required prolonged hospitalization, and the patient recovered without sequelae after FTY interruption. A history of previous airway hyperreactivity and a concurrent viral respiratory infection possibly acted as predisposing factors.Conclusion: This first description of a severe, life-threatening asthma attack during prolonged FTY treatment suggests the need for long-term clinical surveillance, especially in patients with known predisposing factors.Keywords: multiple sclerosis, bronchial hyper-reactivity

  15. Exercise induced asthma and endogenous opioids.

    Science.gov (United States)

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  16. Field versus race pace conditions to provoke exercise-induced bronchoconstriction in elite swimmers: Influence of training background

    Directory of Open Access Journals (Sweden)

    Michael D. Kennedy

    2017-06-01

    Conclusion: All conditions have poor sensitivity to diagnose EIB and total accumulated ventilation (distance swum did not influence AHR. These results also indicate that elite swimmers, despite many risk factors, are not limited by respiratory function in race conditions. It is proposed that the swim field test not be used for AHR assessment in swimmers due to too high relative humidity.

  17. [Anaesthesia for patients with obstructive airway diseases].

    Science.gov (United States)

    Groeben, H; Keller, V; Silvanus, M T

    2014-01-01

    Obstructive lung diseases like asthma or chronic obstructive lung diseases have a high prevalence and are one of the four most frequent causes of death. Obstructive lung diseases can be significantly influenced by the choice of anesthetic techniques and anesthetic agents. Basically, the severity of the COPD and the degree of bronchial hyperreactivity will determine the perioperative anesthetic risk. This risk has to be assessed by a thorough preoperative evaluation and will give the rationale on which to decide for the adequate anaesthetic technique. In particular, airway instrumentation can cause severe reflex bronchoconstriction. The use of regional anaesthesia alone or in combination with general anaesthesia can help to avoid airway irritation and leads to reduced postoperative complications. Prophylactic antiobstructive treatment, volatile anesthetics, propofol, opioids, and an adequate choice of muscle relaxants minimize the anesthetic risk, when general anesthesia is required In case, despite all precautions intra-operative bronchospasm occurs, deepening of anaesthesia, repeated administration of beta2-adrenergic agents and parasympatholytics, and a single systemic dose of corticosteroids represent the main treatment options.

  18. [Comparison of epidural anesthesia and general anesthesia for patients with bronchial asthma].

    Science.gov (United States)

    Kasaba, T; Suga, R; Matsuoka, H; Iwasaki, T; Hidaka, N; Takasaki, M

    2000-10-01

    We prospectively investigated the incidence of asthmatic attacks in 94 patients (1.5%) who were diagnosed as definite asthma. We separated the patients into three groups: epidural anesthesia (n = 10) including combined spinal/epidural anesthesia (n = 7), combined epidural and general anesthesia (n = 23), and general anesthesia (n = 54). General anesthesia was induced with propofol or midazolam and maintained with N2O and O2 with sevoflurane in adults. Patients who underwent epidural anesthesia and combined spinal and epidural anesthesia showed no asthmatic attacks. The incidence of bronchospasm with combined epidural and general anesthesia was 2/23. The incidence of bronchospasm with general anesthesia was 4/54. Bronchoconstriction occurred after tracheal intubation in 5 patients except in one patient, in whom it occurred after induction of anesthesia with midazolam. All episodes of bronchospasm in the operative period were treated successfully. The frequency of bronchospasm did not depend on the severity of asthmatic symptoms or the chronic use of bronchodilators before operation. These findings suggest that tracheal intubation, not the choice of anesthetic, plays an important role in the pathogenesis of bronchospasm.

  19. Human mast cell and airway smooth muscle cell interactions: implications for asthma.

    Science.gov (United States)

    Page, S; Ammit, A J; Black, J L; Armour, C L

    2001-12-01

    Asthma is characterized by inflammation, hyperresponsiveness, and remodeling of the airway. Human mast cells (HMCs) play a central role in all of these changes by releasing mediators that cause exaggerated bronchoconstriction, induce human airway smooth muscle (HASM) cell proliferation, and recruit and activate inflammatory cells. Moreover, the number of HMCs present on asthmatic HASM is increased compared with that on nonasthmatic HASM. HASM cells also have the potential to actively participate in the inflammatory process by synthesizing cytokines and chemokines and expressing surface molecules, which have the capacity to perpetuate the inflammatory mechanisms present in asthma. This review specifically examines how the mediators of HMCs have the capacity to modulate many functions of HASM; how the synthetic function of HASM, particularly through the release and expression of stem cell factor, has the potential to influence HMC number and activation in an extraordinarily potent and proinflammatory manner; and how these interactions between HMCs and HASM have potential consequences for airway structure and inflammation relevant to the disease process of asthma.

  20. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Directory of Open Access Journals (Sweden)

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  1. Pulmonary embolism. Clinical relevance, requirements for diagnostic and therapeutic strategies

    International Nuclear Information System (INIS)

    Nowak, F.G.; Halbfass, P.; Hoffmann, E.

    2007-01-01

    In the population the annual incidence of pulmonary embolism amounts to 1.3-2.8 per 1000 at the age of 65-89 years. Mortality reaches about 17% within the first 3 months. Acute pulmonary embolism is characterized by an increase in pulmonary arterial pressure and an impairment of the pulmonary gas exchange. Elevation of the right cardiac pressure up to right heart decompensation may follow. In addition, hypoxemia, hyperventilation, dead space ventilation, right to left shunting, bronchoconstriction, and vasoconstriction may occur. Clinical examination, ECG, laboratory findings such as elevated D-dimer, blood gas analysis, ultrasound examination of the veins of the lower extremities, and transthoracic echocardiography are acutely available diagnostic methods of an emergency department. In addition, extensive diagnostic procedures like pulmonary scintigraphy and pulmonary angiography may be required. The aim is to get a definite diagnosis as quickly as possible to direct therapy. In acute pulmonary embolism with cardiac shock, monitoring and stabilization of the circulatory function as well as an appropriate anticoagulant therapy are essential. In some cases surgery or a local fibrinolytic intervention is indicated. (orig.) [de

  2. Protective effect of ketotifen and disodium cromoglycate against bronchoconstriction induced by aspirin, benzoic acid or tartrazine in intolerant asthmatics.

    Science.gov (United States)

    Wüthrich, B

    1979-01-01

    Oral challenge tests with acetylsalicylic acid, tartrazine or benzoic acid were performed in 7 intolerant asthmatic patients after a 3-day treatment with either orally taken ketotifen (1 mg twice daily) or inhaled disodium cromoglycate (20 mg four times daily) at random. Protection was noted with ketotifen in 5, with DSCG in 3 patients. On the evaluation of the mean percentage of the maximum decline in the forced expiratory volume in 1 sec (FEV1) only ketotifen afforded significant protection statistically (p less than 0.05). All the intolerant asthmatics studies showed, as an immunological abnormity, a slight, but significant decrease of the C1-inhibitor levels. Moreover, in three out of these the alpha 1-antitrypsin serum values were under the lower normal range.

  3. The effect of cisatracurium and rocuronium on lung function in anesthetized children.

    Science.gov (United States)

    Yang, Charles I; Fine, Gavin F; Jooste, Edmund H; Mutich, Rebecca; Walczak, Stephen A; Motoyama, Etsuro K

    2013-12-01

    Neuromuscular blocking drugs have been implicated in intraoperative bronchoconstrictive episodes. We examined the effects of clinically relevant doses of cisatracurium and rocuronium on the lung mechanics of pediatric subjects. We hypothesized that cisatracurium and rocuronium would have bronchoconstrictive effects. We studied ASA physical status I and II pediatric subjects having elective dental or urological procedures, requiring general anesthesia with endotracheal intubations with either cisatracurium or rocuronium. Pulmonary function tests were performed before and after neuromuscular blocking drug dosing and again after albuterol administration. Using forced deflation and passive deflation techniques, forced vital capacity (FVC) and maximum expiratory flow rate at 10% (MEF10) of FVC were obtained. Fractional changes from the baseline were used to compare subjects. Changes in MEF10 of >30% were considered clinically significant. A Shapiro-Wilk test, paired t test, and Wilcoxon rank sum test were used to analyze the data. Twenty-five subjects (median age = 5.25 years; range = 9 months-9.9 years) were studied; 12 subjects received cisatracurium and 13 subjects received rocuronium. Data are shown as mean proportional change ± SD or, in the case of not normally distributed, median proportional change (first, third quartile) with P values. In the cisatracurium group, there were no differences between baseline and postneuromuscular blocker administration in the fractional change from the baselines of FVC (1.00 ± 0.04, P = 0.5), but there was a significant decrease in MEF10 (0.80 ± 0.18, P = 0.002). In the rocuronium group, there were small yet significant decreases of FVC (0.99 [first quartile 0.97, third quartile 1], P = 0.02) and significant decreases in MEF10 (0.78 ± 0.26, P = 0.008). After administration of albuterol in the cisatracurium group, FVC increased slightly but significantly from baseline values (1.02 ± 0.02, P = 0.005). MEF10 increased

  4. Occupational asthma and IgE sensitization to grain dust.

    Science.gov (United States)

    Park, H S; Nahm, D H; Suh, C H; Kwon, O Y; Kim, K S; Lee, S W; Chung, H K

    1998-06-01

    To evaluate type I hypersensitivity to grain dust (GD), its prevalence and relationship to respiratory dysfunction, we studied clinical and immunologic features, including skin prick tests (SPT), serum specific IgE, and bronchoprovocation tests of 43 employees working in the animal feed industry. To further characterize IgE-mediated reaction, SDS-PAGE and electroblot studies were performed. Our survey revealed that 15 (34.9%) subjects had work-related skin response (> or =2+ of A/H ratio) to GD, thirteen (30.2%) had high specific IgE antibody against GD. The specific IgE antibody was detected more frequently in symptomatic workers (40%) than in asymptomatic workers (11%). Significant association was found between specific IgE antibody and atopy or smoking (pdust mite, storage mite and corn dust. Immunoblot analysis showed 8 IgE binding components within GD ranging from 13.5 to 142.5 kDa. Two bands (13.5, 33 kDa) were bound to the IgE from more than 50% of the 14 sera tested. In conclusion, these findings suggest that GD inhalation could induce IgE-mediated bronchoconstriction in exposed workers.

  5. Effects of Flavin7 on allergen induced hyperreactivity of airways

    Directory of Open Access Journals (Sweden)

    Franova S

    2009-12-01

    Full Text Available Abstract Some studies have suggested that the polyphenolic compounds might reduce the occurrence of asthma symptoms. The aim of our experiments was to evaluate the effects of 21 days of the flavonoid Flavin7 administration on experimentally induced airway inflammation in ovalbumin-sensitized guinea pigs. We assessed tracheal smooth muscle reactivity by an in vitro muscle-strip method; changes in airway resistance by an in vivo plethysmographic method; histological picture of tracheal tissue; and the levels of interleukin 4 (IL-4, and interleukin 5 (IL-5 in bronchoalveolar lavage fluid (BALF. Histological investigation of tracheal tissue and the concentrations of the inflammatory cytokines IL-4 and IL-5 in BALF were used as indices of airway inflammation. Administration of Flavin7 caused a significant decrease of specific airway resistance after histamine nebulization and a decline in tracheal smooth muscle contraction amplitude in response to bronchoconstricting mediators. Flavin7 minimized the degree of inflammation estimated on the basis of eosinophil calculation and IL-4 and IL-5 concentrations. In conclusion, administration of Flavin7 showed bronchodilating and anti-inflammatory effects on allergen-induced airway inflammation.

  6. Nonsteroidal Anti-Inflammatory Drug Hypersensitivity in Preschool Children

    Directory of Open Access Journals (Sweden)

    Kidon Mona

    2007-12-01

    Full Text Available Although extensively studied in adults, nonsteroidal anti-inflammatory drug (NSAID hypersensitivity in children, especially in young children, remains poorly defined. Pediatricians, prescribing antipyretics for children, rarely encounter significant problems, but the few epidemiologic studies performed show conflicting results. Although it is clear that some patients with acetylsalicylic acid (ASA-sensitive asthma have their clinical onset of disease in childhood and bronchoconstriction after ASA challenge is seen in 0 to 22% of asthmatic children so challenged, ibuprofen at antipyretic doses may cause acute respiratory problems only in a very small number of mild to moderate asthmatics. The recently elucidated mechanism of action of acetaminophen may explain some occurrences of adverse reactions in patients with cross-reactive NSAID hypersensitivity on the basis of its inhibitory activity on the newly described enzyme, cyclooxygenase (COX-3. This nonspecific sensitivity to inhibition of COX is most likely genetically determined and shows a remarkable association with atopic disease even in the very young age group and possibly an increased predilection in specific ethnic groups. This review summarizes state-of-the-art published data on NSAID hypersensitivity in preschool children.

  7. Morphological and functional determinants of fluoxetine (Prozac)-induced pulmonary disease in an experimental model.

    Science.gov (United States)

    Capelozzi, Marco A; Leick-Maldonado, Edna A; Parra, Edwin R; Martins, Mílton A; Tibério, Iolanda F L C; Capelozzi, Vera L

    2007-05-14

    Fluoxetine treatment effects were determined by evaluating respiratory mechanics (elastance/resistance) and exhaled nitric oxide, as well as mononuclear and polymorphonuclear cell recruitment into the lungs, in an experimental guinea pig model. Guinea pigs were divided into four groups: Fl (fluoxetine only, n=7); Fl+Sw (fluoxetine and forced swimming, n=7); Ns+Sw (normal saline and forced swimming, n=8); and Ns (normal saline only, n=8). Treated animals received oral fluoxetine (10 mg/(kg day)) for 30 consecutive days. On day 31, all animals were anesthetized and mechanically ventilated so that respiratory system elastance and resistance, as well exhaled nitric oxide, could be determined. The lungs were then excised en bloc for histological and immunohistochemical evaluation. Forced swimming induced bronchodilation in untreated animals and bronchoconstriction in fluoxetine-treated animals. Fluoxetine treatment was also associated with mononuclear infiltration (predominantly into alveolar walls) and neutrophil recruitment. In addition, levels of exhaled nitric oxide, an inflammatory marker, were higher in fluoxetine-treated animals. Swimming-induced stress also amplified mononuclear cell recruitment to the lungs. These results show that, in this experimental model, fluoxetine treatment reproduces the pathology of chronic interstitial pneumonia in humans.

  8. Selectivity of beta-adrenergic stimulating and blocking agents.

    Science.gov (United States)

    Löfdahl, C G; Svedmyr, N

    1984-01-01

    Studies have been performed to answer two questions: whether there are subgroups of beta 2-receptors separating effects in bronchial and skeletal muscle and whether beta 1-receptors in asthmatic airways mediate bronchoconstriction. Asthmatic patients have been studied in randomised cross-over trials. Effects on FEV1, heart rate and skeletal muscle tremor have been monitored. In some experimental studies, two new compounds, D2343 and QH-25, have shown a selectivity for beta 2-receptors in bronchial muscle compared to skeletal muscle. Studies in asthmatics did not confirm this. Thus, the beta 2-receptors in the two organs appear to be identical. The clinical effect of beta 1-receptors in the the airways was studied by giving selective beta 1-receptor blocking agents. It was shown that pafenolol , a beta-blocker more beta 1-selective than metoprolol, had less effect on FEV1 than metoprolol given in equipotent beta 1-blocking doses. Beta 1-receptor stimulation with a new selective beta 1-stimulating agent, prenalterol, did not give bronchodilation in doses which gave a significant increase of heart rate. Thus, beta 1-receptors do not contribute to bronchodilation in asthmatic patients.

  9. Theoretical modeling of fine-particle deposition in 3-dimensional bronchial bifurcations

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.; Liao, N.S.

    1978-01-01

    A theoretical model is developed for the prediction of the peak to average particle deposition flux in the human bronchial airways. The model involves the determination of the peak flux by a round-nose 2-dimensional bifurcation channel and the average deposition flux by a curved-tube model. The ''hot-spot'' effect for all generations in the human respiratory system is estimated. Hot spots are usually associated with the sites of bronchoconstriction or even chronic bronchitis and lung cancer. Recent studies indicate that lung cancer in smokers may be caused by the deposition of radioactive particles produced by the burning of tobacco leaves. High local concentrations of Po-210 have been measured in epithelium from bronchial bifurcations of smokes. This Po-210 is the radioactive daughter of Pb-210 which is produced from a long chain of radioactive decay starting from uranium in the fertilizer-enriched soil. It is found that the peak deposition flux is higher than the average deposition flux by a factor ranging between 5 and 30, depending on the generation number. The importance of this peak to average deposition flux ratio on consideration of environmental safety studies is discussed

  10. Relationship between regional ventilation and aerosol deposition in tidal breathing

    Energy Technology Data Exchange (ETDEWEB)

    Trajan, M.; Logus, J.W.; Enns, E.G.; Man, S.F.

    1984-07-01

    The regional distribution of the deposition of 1.2 micron particles of 99mTc sulfur colloid inhaled by tidal breathing was compared with the distribution of ventilation as measured by a 133Xe washout technique. Twelve subjects were studied, 6 with normal pulmonary function tests, 5 with air-flow limitation, and 1 with unilateral phrenic nerve paralysis. Both xenon and aerosol were inhaled at tidal volume by the subjects while seated upright. A large field gamma camera acquired posterior scans. Thirteen experiments were also done on 7 dogs: 1 with extrathoracic obstruction of the airway to 1 lung, and 12 with bronchoconstriction from the instillation of methacholine chloride into the airways of a lower lobe. Two of these dogs were studied with a gamma camera system, and the others were studied with a Picker multi-probe system. Both in humans and in dogs, an increase in time constant, which indicated a decrease in ventilation, was associated with an increase in peripheral aerosol deposition when normalized for ventilation. It is suggested that the increased residence time is responsible for the increased deposition in regions that received lesser ventilation.

  11. Relationship between regional ventilation and aerosol deposition in tidal breathing

    International Nuclear Information System (INIS)

    Trajan, M.; Logus, J.W.; Enns, E.G.; Man, S.F.

    1984-01-01

    The regional distribution of the deposition of 1.2 micron particles of 99mTc sulfur colloid inhaled by tidal breathing was compared with the distribution of ventilation as measured by a 133Xe washout technique. Twelve subjects were studied, 6 with normal pulmonary function tests, 5 with air-flow limitation, and 1 with unilateral phrenic nerve paralysis. Both xenon and aerosol were inhaled at tidal volume by the subjects while seated upright. A large field gamma camera acquired posterior scans. Thirteen experiments were also done on 7 dogs: 1 with extrathoracic obstruction of the airway to 1 lung, and 12 with bronchoconstriction from the instillation of methacholine chloride into the airways of a lower lobe. Two of these dogs were studied with a gamma camera system, and the others were studied with a Picker multi-probe system. Both in humans and in dogs, an increase in time constant, which indicated a decrease in ventilation, was associated with an increase in peripheral aerosol deposition when normalized for ventilation. It is suggested that the increased residence time is responsible for the increased deposition in regions that received lesser ventilation

  12. Purinergic Signaling in Mast Cell Degranulation and Asthma

    Directory of Open Access Journals (Sweden)

    Zhan-Guo Gao

    2017-12-01

    Full Text Available Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.

  13. Efficiency and limitations of the upper airway mucosa as an air conditioner evaluated from the mechanisms of bronchoconstriction in asthmatic subjects.

    Science.gov (United States)

    Konno, A; Terada, N; Okamoto, Y; Togawa, K

    1985-01-01

    To elucidate a limit to the efficiency of the upper airway mucosa as an air conditioner, the temperatures of the inspiratory air and mucosa were measured in the cervical trachea. Both of them were affected only minimally by change of atmospheric air temperature during resting nose breathing, but were affected greatly by change of mode of breathing. During hyperventilation through the mouth, when the atmospheric air temperature was 1 degree C, a temperature difference of 9 degrees C was noted between inspiratory air in the cervical trachea and body temperature, together with a mucosal temperature fall by 1.86 +/- 0.61 degree C. Wearing of a mask caused a rise of 3 degrees C in the inspiratory air temperature in the cervical trachea.

  14. Non-invasive ventilation in severe asthma attack, its possibilities and problems.

    Science.gov (United States)

    Murase, K; Tomii, K; Chin, K; Niimi, A; Ishihara, K; Mishima, M

    2011-06-01

    Asthma attack is characterized by episodic attacks of cough, dyspnea and wheeze occurring due to bronchoconstriction, airway hyperresponsiveness and mucous hypersecretion. Although nationwide clinical guidelines have been published to establish the standard care of asthma, choices in the treatment of fatal asthma attacks remain of clinical significance. Especially, in a severe asthma attack, despite the application of conventional medical treatment, respiratory management is critical. Even though non-invasive ventilation (NIV) has been shown to be effective in a wide variety of clinical settings, reports of NIV in asthmatic patients are scarce. According to a few prospective clinical trials reporting promising results in favour of the use of NIV in a severe asthma attack, a trial of NIV prior to invasive mechanical ventilation seems acceptable and may benefit patients by decreasing the need for intubation and by supporting pharmaceutical treatments. Although selecting the appropriate patients for NIV use is a key factor in successful NIV application, how to distinguish such patients is quite controversial. Larger high quality clinical trails are urgently required to confirm the benefits of NIV to patients with severe asthma attack. In this article, we focus on the body of evidence supporting the use of NIV in asthma attacks and discuss its advantages as well its problems.

  15. Application of the Virtual Bronchoscopy in Children with Suspected Aspiration of the Foreign Body - Case Report

    Directory of Open Access Journals (Sweden)

    Kostic Gordana

    2016-12-01

    Full Text Available In diagnosing the aspiration of the foreign body (AFB in children most important are: medical history, clinical signs and positive radiography of the lungs. Common dilemmas in the diff erential diagnosis are life-threatening asthma attacks or difficult pneumonia. Conventional rigid bronchoscopy (RB is not recommended as a routine method. Virtual bronchoscopy (VB can be a diagnostic tool for solving dilemmas. Fiber-optic bronchoscopy (FOB has a therapeutic stake in severe cases. Herein, we describe a girl, at the age of 6, who was hospitalized due to rapid bronchoconstriction and based on the anamnesis, clinical symptoms and physical fi ndings the suspicion was that she aspirated the foreign body. Due to the poor general condition and possible sequel, the idea of RB was dropped out. Multidetector computed tomography of the chest and VB was performed and AFB was not found. Due to positive epidemiological situation, virus H1N1 was excluded. FOB established that the foreign body does not exist in the airways. During bronchoscopy numerous castings are aspirated from the peripheral airways which lead to faster final recovery. With additional procedures, the diagnosis of asthma was confirmed and for girl that was the first attack. Along with inhaled corticosteroids as prevention she feels well.

  16. Volatile anesthetics for status asthmaticus in pediatric patients: a comprehensive review and case series.

    Science.gov (United States)

    Carrié, Sabrina; Anderson, Thomas Anthony

    2015-05-01

    Status asthmaticus is an acute, intractable asthma attack refractory to standard interventions that can lead to progressive respiratory failure. Successful management requires a fundamental understanding of the disease process, its clinical presentation, and proper evaluation. Treatment must be instituted early and is aimed at reversing the airway inflammation, bronchoconstriction, and hyper-reactivity that often lead to lower airway obstruction, impaired ventilation, and oxygenation. Most patients are effectively treated with standard therapy including beta2-adrenergic agonists and corticosteroids. Others necessitate adjunctive therapies and escalation to noninvasive ventilation or intubation. We will review the pathophysiology, evaluation, and treatment options for pediatric patients presenting with status asthmaticus with a particular focus on refractory status asthmaticus treated with volatile anesthetics. In addition, we include a proven approach to the management of these patients in the critical care setting, which requires close coordination between critical care and anesthesia providers. We present a case series of three patients, two of which have the longest reported cases of continuous isoflurane use in status asthmaticus. This series was obtained from a retrospective chart review and highlights the efficacy of the volatile anesthetic, isoflurane, in three pediatric patients with refractory life-threatening status asthmaticus. © 2015 John Wiley & Sons Ltd.

  17. A comparison of the effect of intramuscular diclofenac, ketorolac or piroxicam on postoperative pain following laparoscopy.

    Science.gov (United States)

    O'Hanlon, J. J.; Beers, H.; Huss, B. K.; Milligan, K. R.

    1996-01-01

    Sixty patients presenting for in-patient gynaecological laparoscopic surgery were randomly allocated to receive either diclofenac 75 mg (n = 20), ketorolac 30 mg (n = 20) or piroxicam 20 mg (n = 20) as an intra-muscular injection immediately after induction of anaesthesia. Postoperative visual analogue scores over the first 24 hours, using a 10 cm scale, ranged from 3.2-0.5 in the diclofenac group, 2.7-0.85 in the ketorolac group and 2.8-0.5 in the piroxicam group. The scores did not differ significantly between the three groups (p > 0.05). Mean time (SD) to first analgesia was 27(94) minutes in the piroxicam group, 16 (30) minutes in the diclofenac group and 62 (120) minutes in the piroxicam group. Six out of twenty patients in the diclofenac group required further analgesia compared to nine out of twenty in the other two drug groups. This difference was not significant. There were no reports of increased bleeding, bronchoconstriction, bleeding from the upper gastrointestinal tract, renal impairment or pain from the intra-muscular injection site in any of the groups. The administration of a non-steroidal anti-inflammatory drug to patients presenting for laparoscopic surgery reduces postoperative pain. There were no obvious differences between the agents used. PMID:8686101

  18. Inhaled ammonium persulphate inhibits non-adrenergic, non-cholinergic relaxations in the guinea pig isolated trachea.

    Science.gov (United States)

    Dellabianca, A; Faniglione, M; De Angelis, S; Colucci, M; Cervio, M; Balestra, B; Tonini, S; Candura, S M

    2010-01-01

    Persulphates can act both as irritants and sensitizers in inducing occupational asthma. A dysfunction of nervous control regulating the airway tone has been hypothesized as a mechanism underlying bronchoconstriction in asthma. It was the aim of this study to investigate whether inhaled ammonium persulphate affects the non-adrenergic, non-cholinergic (NANC) inhibitory innervation, the cholinergic nerve-mediated contraction or the muscular response to the spasmogens, carbachol or histamine, in the guinea pig epithelium-free, isolated trachea. Male guinea pigs inhaled aerosols containing ammonium persulphate (10 mg/m(3) for 30 min for 5 days during 3 weeks). Control animals inhaled saline aerosol. NANC relaxations to electrical field stimulation at 3 Hz were evaluated in whole tracheal segments as intraluminal pressure changes. Drugs inactivating peptide transmission, nitric oxide synthase, carbon monoxide production by haem oxygenase-2 and soluble guanylyl cyclase were used to assess the involvement of various inhibitory neurotransmitters. Carbachol and histamine cumulative concentration-response curves were obtained. In both groups, nitric oxide and carbon monoxide participated to the same extent as inhibitory neurotransmitters. In exposed animals, the tracheal NANC relaxations were reduced to 45.9 +/- 12.1% (p guinea pig airways. This may represent a novel mechanism contributing to persulphate-induced asthma. Copyright 2009 S. Karger AG, Basel.

  19. Effect of Nebivolol on tone of tracheal muscle of guinea pig

    International Nuclear Information System (INIS)

    Shaukat, A.; Sharif, M.; Najmi, M.H.

    2015-01-01

    Background: The use of β-blockers is limited by adverse effects such as bronchospasm in asthmatics. Third generation beta-blockers such as nebivolol may show better tolerability in asthmatic subjects because they lack β-blocker induced bronchoconstriction. Method: Effects of nebivolol on the tracheal muscle strips prepared from ovalbumin-sensitised guinea pigs of both sexes were studied. Two sets of experiments were designed after dividing the animals randomly into two groups. Using oxygenated Krebs-Henseleit solution as the nutrient medium, the trachealis muscle activity was measured with isometric force displacement transducer and recorded on 4-channel Oscillograph. Results: Nebivolol 10(-6) M did not produce significant effect on contractions evoked by histamine in concentrations ranging from 10/su -7/ M to 10/sup -3/ M. The mean of amplitude of contraction for different concentrations of histamine were calculated and compared with the group treated with histamine only. Mean of amplitude of contraction, percent responses and percent deviations when compared with the control group were insignificant (p>0.05). Conclusion: Nebivolol did not affect the tone of airway smooth muscle in ovalbumin-sensitised guinea pigs. Nebivolol may be considered safe in patients with airway disease however, further clinical evaluation and exploratory work is required. (author)

  20. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    International Nuclear Information System (INIS)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A.

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: 1) increased negative intrathoracic pressure swings (-25±1 cmH 2 O) induced by an inspiratory resistance; 2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and 3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au)

  1. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    Science.gov (United States)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  2. Bronchial Thermoplasty in Asthma

    Directory of Open Access Journals (Sweden)

    Wayne Mitzner

    2006-01-01

    Full Text Available In this review we discuss the potential of a new procedure, termed Bronchial Thermoplasty to prevent serious consequences resulting from excessive airway narrowing. The most important factor in minimizing an asthmatic attack is limiting the degree of smooth muscle shortening. The premise that airway smooth muscle can be either inactivated or obliterated without any long-term alteration of other lung tissues, and that airway function will remain normal, albeit with reduced bronchoconstriction, has now been demonstrated in dogs, a subset of normal subjects, and mild asthmatics. Bronchial Thermoplasty may thus develop into a useful clinical procedure to effectively impair the ability for airway smooth muscle to reach the levels of pathologic narrowing that characterizes an asthma attack. It may also enable more successful treatment of asthma patients who are unresponsive to more conventional therapies. Whether this will remain stable for the lifetime of the patient still remains to be determined, but at the present time, there are no indications that the smooth muscle contractility will return. This successful preliminary experience showing that Bronchial Thermoplasty could be safely performed in patients with asthma has led to an ongoing clinical trial at a number of sites in Europe and North America designed to examine the effectiveness of this procedure in subjects with moderately severe asthma.

  3. Effect of fenspiride, a non-steroidal antiinflammatory agent, on neurogenic mucus secretion in ferret trachea in vitro.

    Science.gov (United States)

    Khawaja, A M; Liu, Y C; Rogers, D F

    1999-01-01

    Neural mechanisms contribute to control of mucus secretion in the airways. Fenspiride is a non-steroidal antiinflammatory agent which has a variety of actions, including inhibition of neurogenic bronchoconstriction. The effect of fenspiride on neurally-mediated mucus secretion was investigated in vitro in electrically-stimulated ferret trachea, using(35)SO(4)as a mucus marker. Cholinergic secretory responses were isolated using adrenoceptor and tachykinin receptor antagonists. Tachykinin responses were isolated using cholinoceptor and adrenoceptor antagonists. Electrical stimulation increased cholinergic secretion by;90% and tachykininergic secretion by;40%. Fenspiride (1 microM-1 mM) tended to inhibit cholinergic secretion in a concentration-dependent manner, although only at 1 mM was inhibition (by 87%) significant. Inhibition by fenspiride of tachykininergic secretion was not concentration-dependent, and again significant inhibition (by 85%) was only at 1 mM. Inhibition was not due to loss of tissue viability, as assessed by restitution of secretory response after washout. Fenspiride also inhibited secretion induced by acetylcholine, but did not inhibit substance P-induced secretion. Histamine receptor antagonists increased basal secretion by 164%, whereas fenspiride did not affect basal secretion. We conclude that, in ferret trachea in vitro, fenspiride inhibits neurally-mediated mucus secretion, with antimuscarinic action the most plausible mechanism of action, but not necessarily the only mechanism. Copyright 1999 Academic Press.

  4. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  5. Safety and efficacy of Regadenoson in myocardial perfusion imaging (MPI) stress tests: A review

    Science.gov (United States)

    Ahmed, Ambereen

    2018-02-01

    Myocardial perfusion imaging (MPI) tests are often used to help diagnose coronary heart disease (CAD). The tests usually involve applying stress, such as hard physical exercise together with administration of vasodilators, to the patients. To date, many of these tests use non-selective A2A adenosine receptor agonists which, however, can be associated with highly undesirable and life-threatening side effects such as chest pain, dyspnea, severe bronchoconstriction and atrioventricular conduction anomalies. Regadenoson is a relatively new, highly selective A2A adenosine receptor agonist, suitable for use in MPI tests which exhibits far fewer adverse side effects and, unlike others testing agents, can be used without the necessity of excessive concomitant exercise. Also, the dose of regadenoson required is not dependent upon patient weight or renal impairment, and it can be rapidly administered by i.v. Injection. Regadenoson use in MPI testing thus has the potential as a simplified, relatively safe, time-saving and cost-effective method for helping diagnose CAD. The present study was designed to review several articles on the safety, efficacy, and suitability of regadenoson in MPI testing for CAD. Overall, the combined studies demonstrated that use of regadenoson in conjunction with low-level exercise in MPI is a highly efficient and relatively safe test for CAD, especially for more severe health-compromised patients.

  6. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  7. Anesthesia and ventilation strategies in children with asthma: part II - intraoperative management.

    Science.gov (United States)

    Regli, Adrian; von Ungern-Sternberg, Britta S

    2014-06-01

    As asthma is a frequent disease especially in children, anesthetists are increasingly providing anesthesia for children requiring elective surgery with well controlled asthma but also for those requiring urgent surgery with poorly controlled or undiagnosed asthma. This second part of this two-part review details the medical and ventilatory management throughout the perioperative period in general but also includes the perioperative management of acute bronchospasm and asthma exacerbations in children with asthma. Multiple observational trials assessing perioperative respiratory adverse events in healthy and asthmatic children provide the basis for identifying risk reduction strategies. Mainly, animal experiments and to a small extent clinical data have advanced our understanding of how anesthetic agents effect bronchial smooth muscle tone and blunt reflex bronchoconstriction. Asthma treatment outside anesthesia is well founded on a large body of evidence.Perioperative prevention strategies have increasingly been studied. However, evidence on the perioperative management, including mechanical ventilation strategies of asthmatic children, is still only fair, and further research is required. To minimize the considerable risk of perioperative respiratory adverse events in asthmatic children, perioperative management should be based on two main pillars: the preoperative optimization of asthma treatment (please refer to the first part of this two-part review) and - the focus of this second part of this review - the optimization of anesthesia management in order to optimize lung function and minimize bronchial hyperreactivity in the perioperative period.

  8. LUNG FUNCTION TESTING IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Matjaž Fležar

    2004-03-01

    Full Text Available Background. Lung function testing in children above five years old is standardised similarly as is in adult population (1. Nevertheless bronchial provocation testing can be more hazardous since the calibre and reactivity of childhood airway is different. We analysed the frequency of different lung function testing procedures and addressed the safety issues of bronchial provocation testing in children.Methods. We analysed lung function testing results in 517 children, older than 5 years, tested in our laboratory in threeyear period. Spirometry was done in every patient, metacholine provocation test was used as a part of diagnostic work-up in suspected asthma. In case of airway obstruction, bronchodilator test with salbutamol was used instead of a metacholine provocation test.Results. The most common procedure in children was spirometry with bronchial provocation test as a part of diagnostic work-up of obstructive syndrome (mostly asthma. 291 children required metacholine test and 153 tests were interpreted as positive. The decline in expiratory flows (forced expiratory flow in first second – FEV1 in positive tests was greater than in adult population as was the dose of metacholine, needed to induce bronchoconstriction. The compliance of children was better than in adults.Conclusions. Lung function testing in children is reliable and safe and can be done in a well-standardised laboratory that follows the regulations of such testing in adults.

  9. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A. (Dept. of Respiratory Medicine, Westmead Hospital, Westmead, NSW (Australia))

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: (1) increased negative intrathoracic pressure swings (-25[+-]1 cmH[sub 2]O) induced by an inspiratory resistance; (2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and (3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au).

  10. The mechanisms of intractable asthma

    Directory of Open Access Journals (Sweden)

    Stephen T Holgate

    1996-01-01

    Full Text Available Overwhelming evidence now points to asthma as a chronic inflammatory disease involving the airways. The T lymphocyte takes primacy in driving the inflammatory response through upregulation of cytokines, specifically those encoded in the IL-4 gene cluster: IL-4 and IL-13 (IgE isotype switching; IL-3, IL-5 and GM-CSF (eosinophil and basophil recruitment; and IL-9 (mast cell maturation. Additional cytokines of importance include TNFa and a range of related C-x-C and C-C cytokines. Although allergens are involved in initiating the Th-2 T-cell response, other factors are likely to operate that expand and maintain the inflammatory reaction. These include a potential role for superantigens and autoimmune mechanisms as well as the recruitment of accessory cytokine producing cells, especially mast cells and eosinophils. Leucocytes recruited from the microvasculature through interactions with specific adhesion molecules release an array of mediators, which in addition to causing bronchoconstriction also lead to damage to the epithelium and underlying structures. Neutral proteases from mast cells, metalloproteases from eosinophils and an array of mediators from the formed elements of the airway all contribute to the tissue destruction remodelling process. It was concluded that asthma is a dynamic disease process involving an interplay between inflammation and repair processes and that the differing proportions of these could account for the various disease phenotypes associated with severity and progression.

  11. Tidal breathing flow measurement in awake young children by using impedance pneumography.

    Science.gov (United States)

    Seppä, Ville-Pekka; Pelkonen, Anna S; Kotaniemi-Syrjänen, Anne; Mäkelä, Mika J; Viik, Jari; Malmberg, L Pekka

    2013-12-01

    Characteristics of tidal breathing (TB) relate to lung function and may be assessed even in young children. Thus far, the accuracy of impedance pneumography (IP) in recording TB flows in young children with or without bronchial obstruction has not been evaluated. The aim of this study was to evaluate the agreement between IP and direct flow measurement with pneumotachograph (PNT) in assessing TB flow and flow-derived indices relating to airway obstruction in young children. Tidal flow was recorded for 1 min simultaneously with IP and PNT during different phases of a bronchial challenge test with methacholine in 21 wheezy children aged 3 to 7 years. The agreement of IP with PNT was found to be excellent in direct flow signal comparison, the mean deviation from linearity ranging from 2.4 to 3.1% of tidal peak inspiratory flow. Methacholine-induced bronchoconstriction or consecutive bronchodilation induced only minor changes in the agreement. Between IP and PNT, the obstruction-related tidal flow indices were equally repeatable, and agreement was found to be high, with intraclass correlation coefficients for T PTEF/T E, V PTEF/V E, and parameter S being 0.94, 0.91, and 0.68, respectively. Methacholine-induced changes in tidal flow indices showed significant associations with changes in mechanical impedance of the respiratory system assessed by the oscillometric technique, with the highest correlation found in V PTEF/V E (r = -0.54; P tidal airflow profiles in young children with wheezing disorders.

  12. Effect of fenspiride on pulmonary function in the rat and guinea pig.

    Science.gov (United States)

    Bee, D; Laude, E A; Emery, C J; Howard, P

    1995-03-01

    1. Fenspiride is an anti-inflammatory agent that may have a role in reversible obstructive airways disease. Small, but significant, improvements have been seen in airways function and arterial oxygen tension in patients with mild chronic obstructive pulmonary disease. These changes have been attributed to the anti-inflammatory properties of the drug. However, airways function can be improved by other means, e.g. improved ventilation/perfusion ratio or reduced airways resistance. The possibility that fenspiride may have actions other than anti-inflammatory was investigated in two animal species. 2. In the rat, actions on the pulmonary circulation were investigated in the isolated perfused lung, but fenspiride proved to be a poor pulmonary vasodilator, showing only a small reversal of the raised pulmonary artery pressure induced by hypoxia. 3. Ventilation was measured in the anaesthetized rat using whole-body plethysmography. Fenspiride caused no increase in ventilation or changes in arterial blood gases. However, a profound hypotensive action was observed with high doses. 4. The possibility that a decrease in airways resistance (R(aw)) might occur with fenspiride was investigated in anaesthetized guinea pigs. Capsaicin (30 mumol/l) was used to increase baseline R(aw) through bronchoconstriction. Fenspiride gave a dose-dependent partial reversal of the raised R(aw), and its administration by aerosol proved as efficacious as the intravenous route. In addition, the hypotensive side-effect found with intravenous injection was alleviated by aerosolized fenspiride.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Exercise-Induced Bronchospasm and Allergy

    Directory of Open Access Journals (Sweden)

    Serena Caggiano

    2017-06-01

    Full Text Available Sport is an essential part of childhood, with precious and acknowledged positive health effects but the impact of exercise-induced bronchoconstriction (EIB significantly reduces participation in physical activity. It is important to recognize EIB, differentiating EIB with or without asthma if the transient narrowing of the airways after exercise is associated with asthmatic symptoms or not, in the way to select the most appropriate treatment among the many treatment options available today. Therapy is prescribed based on symptoms severity but diagnosis of EIB is established by changes in lung function provoked by exercise evaluating by direct and indirect tests. Sometimes, in younger children it is difficult to obtain the registration of difference between the preexercise forced expiratory volume in the first second (FEV1 value and the lowest FEV1 value recorded within 30 min after exercise, defined as the gold standard, but interrupter resistance, in association with spirometry, has been showed to be a valid alternative in preschool age. Atopy is the main risk factor, as demonstrated by epidemiologic data showing that among the estimated pediatric population with EIB up to 40% of them have allergic rhinitis and 30% of these patients may develop adult asthma, according with atopic march. Adopting the right treatment and prevention, selecting sports with no marked hyperventilation and excessive cooling of the airways, children with EIB can be able to take part in physical activity like all others.

  14. PHARMACOGENOMICS OF PROSTAGLANDIN AND LEUKOTRIENE RECEPTORS

    Directory of Open Access Journals (Sweden)

    José Antonio Cornejo-García

    2016-09-01

    Full Text Available Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs, have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs and leukotrienes (LTs are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesised through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2; mast cell maturation, eosinophil recruitment and allergic responses (PTGD2; vascular and respiratory smooth muscle contraction (PTGF2, and inhibition of platelet aggregation (PTGI2. LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs (LTC4, LTD4 and LTE4 induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.

  15. Different effects of deep inspirations on central and peripheral airways in healthy and allergen-challenged mice

    Directory of Open Access Journals (Sweden)

    Dahlén Sven-Erik

    2008-02-01

    Full Text Available Abstract Background Deep inspirations (DI have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation. Methods Balb/c mice were sensitized to ovalbumin (OVA and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics. Results DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 ± 0.3 to 2.8 ± 0.1 cmH2O·s·mL-1 in healthy mice and 5.1 ± 0.3 to 3.5 ± 0.3 cmH2O·s·mL-1 in acute airway inflammation (both P P P P P Conclusion We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.

  16. Bronchodilatory effect of deep inspiration in freshly isolated sheep lungs.

    Science.gov (United States)

    Wong, William D; Wang, Lu; Paré, Peter D; Seow, Chun Y

    2017-02-01

    Taking a big breath is known to reverse bronchoconstriction induced by bronchochallenge in healthy subjects; this bronchodilatory effect of deep inspiration (DI) is diminished in asthmatics. The mechanism underlying the DI effect is not clear. Observations from experiments using isolated airway smooth muscle (ASM) preparations and airway segments suggest that straining of ASM due to DI could lead to bronchodilation, possibly due to strain-induced reduction in ASM contractility. However, factors external to the lung cannot be excluded as potential causes for the DI effect. Neural reflex initiated by stretch receptors in the lung are known to inhibit the broncho-motor tone and enhance vasodilatation; the former directly reduces airway resistance, and the latter facilitates removal of contractile agonists through the bronchial circulation. If the DI effect is solely mediated by factors extrinsic to the lung, the DI effect would be absent in isolated, nonperfused lungs. Here we examined the DI effect in freshly isolated, nonperfused sheep lungs. We found that imposition of DI on isolated lungs resulted in significant bronchodilation, that this DI effect was present only after the lungs were challenged with a contractile agonist (acetylcholine or histamine), and that the effect was independent of the difference in lung volume observed pre- and post-DI. We conclude that a significant portion of the bronchodilatory DI effect stems from factors internal to the lung related to the activation of ASM. Copyright © 2017 the American Physiological Society.

  17. Fibromyalgia as a cause of uncontrolled asthma: a case-control multicenter study.

    Science.gov (United States)

    Martinez-Moragon, Eva; Plaza, Vicente; Torres, Isabel; Rosado, Ana; Urrutia, Isabel; Casas, Xavier; Hinojosa, Belen; Blanco-Aparicio, Marina; Delgado, Julio; Quirce, Santiago; Sabadell, Carles; Cebollero, Pilar; Muñoz-Fernández, Ana

    2017-12-01

    Fibromyalgia can affect the control of asthma when both diseases are present in a single patient. To characterize asthma in patients with concomitant fibromyalgia to assess whether fibromyalgia is an independent factor of asthma severity that influences poor asthma control. We also evaluated how dyspnea is perceived by patients in order to demonstrate that alterations in the perception of airway obstruction may be responsible for poor asthma control. This was a cross-sectional case-control multicenter study, in which 56 patients in the asthma and fibromyalgia group were matched to 36 asthmatics by sex, approximate age, and asthma severity level. All patients were women. Study variables included the Asthma Control Test (ACT), the Mini Asthma Quality of Life Questionnaire (MiniAQLQ), the Nijmegen hyperventilation syndrome questionnaire, the Hospital Anxiety and Depression Scale, and perception of dyspnea after acute bronchoconstriction. Although patients in both study groups showed similar asthma severity and use of anti-asthmatic drugs, patients in the asthma and fibromyalgia group showed lower scores on the ACT and MiniAQLQ questionnaires, and higher scores of anxiety and depression as well as hyperventilation compared to asthma patients without fibromyalgia. All these differences were statistically significant. Fibromyalgia in patients with asthma influences poor control of the respiratory disease and is associated with altered perception of dyspnea, hyperventilation syndrome, high prevalence of depression and anxiety, and impaired quality of life. Fibromyalgia may be considered a risk factor for uncontrolled asthma in patients suffering from asthma and fibromyalgia concomitantly.

  18. Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis.

    Science.gov (United States)

    Amit, A; Saxena, V S; Pratibha, N; D'Souza, P; Bagchi, M; Bagchi, D; Stohs, S J

    2003-01-01

    Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.

  19. Respiratory Effects of Sarafotoxins from the Venom of Different Atractaspis Genus Snake Species

    Directory of Open Access Journals (Sweden)

    Stéphanie Malaquin

    2016-07-01

    Full Text Available Sarafotoxins (SRTX are endothelin-like peptides extracted from the venom of snakes belonging to the Atractaspididae family. A recent in vivo study on anesthetized and ventilated animals showed that sarafotoxin-b (SRTX-b, extracted from the venom of Atractaspis engaddensis, decreases cardiac output by inducing left ventricular dysfunction while sarafotoxin-m (SRTX-m, extracted from the venom of Atractaspis microlepidota microlepidota, induces right ventricular dysfunction with increased airway pressure. The aim of the present experimental study was to compare the respiratory effects of SRTX-m and SRTX-b. Male Wistar rats were anesthetized, tracheotomized and mechanically ventilated. They received either a 1 LD50 IV bolus of SRTX-b (n = 5 or 1 LD50 of SRTX-m (n = 5. The low-frequency forced oscillation technique was used to measure respiratory impedance. Airway resistance (Raw, parenchymal damping (G and elastance (H were determined from impedance data, before and 5 min after SRTX injection. SRTX-m and SRTX-b injections induced acute hypoxia and metabolic acidosis with an increased anion gap. Both toxins markedly increased Raw, G and H, but with a much greater effect of SRTX-b on H, which may have been due to pulmonary edema in addition to bronchoconstriction. Therefore, despite their structural analogy, these two toxins exert different effects on respiratory function. These results emphasize the role of the C-terminal extension in the in vivo effect of these toxins.

  20. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    Science.gov (United States)

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  1. Plasma adrenomedullin levels in children with asthma: any relation with atopic dermatitis?

    Science.gov (United States)

    Kucukosmanoglu, E; Keskin, O; Karcin, M; Cekmen, M; Balat, A

    2012-01-01

    Asthma is a chronic, inflammatory disease of the airway, and adrenomedullin (ADM) may have some effects against bronchoconstriction. However, the role(s) of ADM in asthmatic children have not been evaluated yet. The aims of this study were to determine if there are any changes in plasma ADM levels during acute asthma attack, and to search for any association between allergen sensitivity and ADM level in asthmatic children. Twenty-seven children with acute asthma attack, ranging in age from 5 to 15 years were investigated and compared with 20 controls. Plasma ADM levels (ng/mL) were measured by ELISA method. No significant difference was found in ADM levels between the controls and patients in either the acute attack or remission period. Plasma ADM levels were significantly higher in the acute attack (p=0.043) compared to the remission period in patients who were considered as having a "severe attack" according to GINA (Global Initiative for Asthma) classification. There were statistically significant correlations between the patients' AlaTOP and Food Panel 7 levels and plasma ADM levels in the acute attack period (p=0.010, p=0.001, respectively). The ADM levels in patients with a history of atopic dermatitis were significantly higher in the acute attack period compared to those without a history of atopic dermatitis (p=0.007). We speculate that ADM may have a role in children with atopic dermatitis, and may also have a role in the immuno-inflammatory process of asthma. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  2. Antitussive, expectorant and analgesic effects of the ethanol seed extract of Picralima nitida (Stapf) Th. & H. Durand.

    Science.gov (United States)

    Dapaah, Gabriel; Koffuor, George Asumeng; Mante, Priscilla Kolibea; Ben, Inemesit Okon

    2016-01-01

    Picralima nitida is used traditionally for management of cough. This study, therefore, investigated the antitussive, expectorant, and analgesic properties of the ethanolic seed extract of Picralima nitida (PNE), and ascertained its safety for use. Presence of secondary metabolites, and safety of PNE (10-2000 mg/kg) were evaluated by preliminary phytochemical screening, and by Irwin's test respectively. Percentage reduction in cough count, percentage increase in latency of cough, and percentage protection offered by PNE were established by the citric acid-induced cough, acetylcholine- and Histamine-induced bronchoconstriction models. Dunkin-Hartley guinea pigs were treated with 100-500 mg/kg PNE or reference drugs, dihydrocodiene, atropine, mepyramine. Expectorant property of PNE (100-1000 mg/kg) was determined using the tracheal phenol red secretion; with ammonium chloride as a reference medication. Percentage maximal possible analgesic effect in the tail immersion test and the total nociceptive score in acetic acid-induced abdominal writhes, after treatment of BALB/c mice with PNE (100-500 mg/kg), diclofenac, and morphine were also estimated. Phytochemical screening revealed the presence of tannins, alkaloids, glycosides, saponins, steroids, terpenoids and anthraquinones. PNEdid not cause any extract-related physical, pharmacological and CNS toxicities or mortality; sedation was observed at doses 1000-2000 mg/kg. It showed significant dose-dependent reduction in cough count, and increased cough latency. PNE (1000 mg/kg) enhanced tracheal phenol red secretion. PNE (100-500 mg/kg) significantly and dose dependently increased tail withdrawal latencies, and nociceptive score. PNE has antitussive, expectorant, and analgesic properties, with an LD50>2000 mg/kg.

  3. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs

    Science.gov (United States)

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico

    2016-01-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (β2 agonists or muscarinic receptor antagonists), suggesting that the observed hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the anti-inflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs. PMID:26837703

  4. Impaired Bronchoprotection Is Not Induced by Increased Smooth Muscle Mass in Chronic Treatment In Vivo with Formoterol in Asthmatic Mouse Model

    Directory of Open Access Journals (Sweden)

    W Luo

    2014-09-01

    Full Text Available Objective: Inhaling β2-adrenoceptor agonist is first-line asthma treatment, which is used for both acute relief and prevention of bronchoconstriction. However, chronic use of β-agonists results in impaired bronchoprotection and increasing occurrences of severe asthma exacerbation, even death in clinical practice. The mechanism of β-adrenoceptor hyposensitivity has not been thoroughly elucidated thus far. Bronchial smooth muscle contraction induces airway narrowing and also mediates airway inflammation. Moreover, bronchial smooth muscle mass significantly increases in asthmatics. We aimed to establish an asthmatic model that demonstrated that formoterol induced impaired bronchoprotection and to see whether increased smooth muscle mass played a role in it. Methods: We combined routine allergen challenging (seven weeks with repeated application of formoterol, formoterol plus budesonide or physiological saline in allergen-sensitized BALB/c mouse. The bronchoprotection mediated by β-agonist was measured in five consecutive weeks. Smooth muscle mass was shown by morphometric analysis, and α-actin expression was detected by western blot. Results: The trend of bronchoprotection was wavy in drug interventional groups, which initially increased and then decreased. Chronic treatment with formoterol significantly impaired bronchoprotection. According to the morphometric analysis and α-actin expression, no significant difference was detected in smooth muscle mass in all groups. Conclusion: This experiment successfully established that a chronic asthmatic mouse model, which manifested typical features of asthmatic patients, with chronic use of formoterol, results in a loss of bronchoprotection. No significant difference was detected in smooth muscle mass in all groups, which implied some subcellular signalling changes may be the key points.

  5. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile.

    Directory of Open Access Journals (Sweden)

    Rie Yamamoto

    Full Text Available Sphingosine-1-phosphate (S1P is a biologically active sphingolipid that acts through the members of a family of five G protein-coupled receptors (S1P1-S1P5. S1P1 is a major regulator of lymphocyte trafficking, and fingolimod, whose active metabolite fingolimod phosphate acts as a nonselective S1P receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating the lymphocyte trafficking by inducing down regulation of lymphocyte S1P1. Here, we detail the pharmacological profile of 5-{5-[3-(trifluoromethyl-4-{[(2S-1,1,1-trifluoropropan-2-yl]oxy}phenyl]-1,2,4-oxadiazol-3-yl}-1H-benzimidazole (ASP4058, a novel next-generation S1P receptor agonist selective for S1P1 and S1P5. ASP4058 preferentially activates S1P1 and S1P5 compared with S1P2, 3, 4 in GTPγS binding assays in vitro. Oral administration of ASP4058 reduced the number of peripheral lymphocytes and inhibited the development of experimental autoimmune encephalomyelitis (EAE in Lewis rats. Further, ASP4058 prevented relapse of disease in a mouse model of relapsing-remitting EAE. Although these immunomodulatory effects were comparable to those of fingolimod, ASP4058 showed a wider safety margin than fingolimod for bradycardia and bronchoconstriction in rodents. These observations suggest that ASP4058 represents a new therapeutic option for treating multiple sclerosis that is safer than nonselective S1P receptor agonists such as fingolimod.

  7. Inhalation of the nerve gas sarin impairs ventilatory responses to hypercapnia and hypoxia in rats

    International Nuclear Information System (INIS)

    Zhuang Jianguo; Xu Fadi; Campen, Matthew J.; Zhang Cancan; Pena-Philippides, Juan C.; Sopori, Mohan L.

    2008-01-01

    Sarin, a highly toxic nerve gas, is believed to cause bronchoconstriction and even death primarily through respiratory failure; however, the mechanism underlying the respiratory failure is not fully understood. The goals of this study were to ascertain whether sarin affects baseline ventilation (V E ) and V E chemoreflexes as well as airway resistance and, if so, whether these changes are reversible. Four groups of F344 rats were exposed to vehicle (VEH) or sarin at 2.5, 3.5, and 4.0 mg h m -3 (SL, SM, and SH, respectively). V E and V E responses to hypercapnia (7% CO 2 ) or hypoxia (10% O 2 ) were measured by plethysmography at 2 h and 1, 2, and 5 days after VEH or sarin exposure. Total pulmonary resistance (R L ) also was measured in anesthetized VEH- and SH-exposed animals 2 h after exposure. Our results showed that within 2 h after exposure 11% of the SM- and 52% of the SH- exposed groups died. Although the SM and SH significantly decreased hypercapnic and hypoxic V E to similar levels (64 and 69%), SH induced greater respiratory impairment, characterized by lower baseline V E (30%; P E impairment recovered within 1-2 days after sarin exposure; interestingly, SH did not significantly affect baseline R L . Moreover, sarin induced body tremors that were unrelated to the changes in the V E responses. Thus, LC 50 sarin causes a reversible impairment of V E that is not dependent on the sarin-induced body tremors and not associated with changes in R L

  8. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  9. Bronchial hyperresponsiveness testing in athletes of the Swiss Paralympic team

    Science.gov (United States)

    2013-01-01

    Background The aim of this study was to assess airway hyperresponsiveness to eucapnic voluntary hyperventilation and dry powder mannitol challenge in athletes aiming to participate at the Paralympic Games 2008 in Beijing, especially in athletes with spinal cord injury. Methods Forty-four athletes with a disability (27 with paraplegia (group 1), 3 with tetraplegia (group 2) and 14 with other disabilities such as blindness or single limb amputations (group 3) performed spirometry, skin prick testing, measurement of exhaled nitric oxide, eucapnic voluntary hyperventilation challenge test (EVH) and mannitol challenge test (MCT). A fall in FEV1 of ≥10% in either challenge test was deemed positive for exercise-induced bronchoconstriction. Results Fourteen (32%) athletes were atopic and 7 (16%) had a history of physician-diagnosed asthma. Absolute lung function values were significantly lower in patients of group 1 and 2 compared to group 3. Nine (20%) athletes were positive to EVH (8 paraplegics, 1 tetraplegic), and 8 (18%) athletes were positive to MCT (7 paraplegics, 1 tetraplegic). Fourteen (22.7%) subjects were positive to at least one challenge; only three athletes were positive to both tests. None of the athletes in group 3 had a positive test. Both challenge tests showed a significant association with physician-diagnosed asthma status (p = 0.0001). The positive and negative predictive value to diagnose physician-diagnosed asthma was 89% and 91% for EHV, and 75% and 86% for MCT, respectively. Conclusion EVH and MCT can be used to identify, but especially exclude asthma in Paralympic athletes. PMID:23845126

  10. Nocturnal thoracoabdominal asynchrony in house dust mite-sensitive nonhuman primates

    Directory of Open Access Journals (Sweden)

    XiaoJia Wang

    2010-07-01

    Full Text Available XiaoJia Wang, Shaun Reece, Stephen Olmstead, Robert L Wardle, Michael R Van ScottDepartment of Physiology, East Carolina University, Greenville, North Carolina, USAAbstract: Nocturnal bronchoconstriction is a common symptom of asthma in humans, but is poorly documented in animal models. Thoracoabdominal asynchrony (TAA is a noninvasive clinical indication of airway obstruction. In this study, respiratory inductive plethysmography (RIP was used to document nocturnal TAA in house dust mite (HDM-sensitive Cynomolgus macaques. Dynamic compliance (Cdyn and lung resistance (RL measured in anesthetized ­animals at rest and following exposure to HDM allergen, methacholine, and albuterol were highly ­correlated with three RIP parameters associated with TAA, ie, phase angle of the rib cage and abdomen waveforms (PhAng, baseline effort phase relation (eBPRL and effort phase relation (ePhRL. Twenty-one allergic subjects were challenged with HDM early in the morning, and eBPRL and ePhRL were monitored for 20 hours after provocation. Fifteen of the allergic subjects exhibited gradual increases in eBPRL and ePhRL between midnight and 6 am, with peak activity at 4 am. However, as in humans, this nocturnal response was highly variable both between subjects and within subjects over time. The results document that TAA in this nonhuman primate model of asthma is highly correlated with Cdyn and RL, and demonstrate that animals exhibiting acute responses to allergen exposure during the day also exhibit nocturnal TAA.Keywords: nocturnal asthma, late phase asthmatic response, respiratory inductive plethysmography

  11. Acute effect of insulin on guinea pig airways and its amelioration by pre-treatment with salbutamol

    International Nuclear Information System (INIS)

    Sharif, M.; Khan, B. T.; Anwar, M. A.

    2014-01-01

    Objective: To study the magnitude of insulin-mediated airway hyper-reactivity and to explore the protective effects of salbutamol in inhibiting the insulin-induced airway hyper-responsiveness on tracheal smooth muscle of guinea pigs in vitro. Methods: The quasi-experimental study was conducted at the Pharmacology Department of Army Medical College, Rawalpindi, in collaboration with the Centre for Research in Experimental and Applied Medicine from December 2011 to July 2012. It used 18 healthy Dunkin Hartely guinea pigs of either gender. Effects of increasing concentrations of histamine (10-8-10-3M), insulin (10-8-10-3 M) and insulin pre-treated with salbutamol (10-6 M) were observed on isolated tracheal strip of guinea pig in vitro by constructing cumulative concentration response curves. The tracheal smooth muscle contractions were recorded with Transducer on Four Channel Oscillograph. Mean and standard error of mean were calculated. SPSS 16 was used for statistical analysis. Results: Histamine and insulin produced a concentration-dependent reversible contraction of isolated tracheal muscle of guinea pig. The mean of maximum amplitudes of contraction with histamine, insulin and insulin pre-treated with salbutamol were 92. 1.20 mm, 35+-1.13 mm and 14.55+-0.62 mm respectively. Salbutamol shifted the concentration response curve of insulin to the right and downwards. Conclusions: Salbutamol significantly reduced the insulin mediated airway hyper-reactivity in guinea pigs, suggesting that pre-treatment of inhaled insulin with salbutamol may have clinical implication in the amelioration of its potential respiratory adverse effects such as bronchoconstriction. (author)

  12. Ginger (Zingiber officinale) as an Analgesic and Ergogenic Aid in Sport: A Systemic Review.

    Science.gov (United States)

    Wilson, Patrick B

    2015-10-01

    Ginger is a popular spice used to treat a variety of maladies, including pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used by athletes to manage and prevent pain; unfortunately, NSAIDs contribute to substantial adverse effects, including gastrointestinal (GI) dysfunction, exercise-induced bronchoconstriction, hyponatremia, impairment of connective tissue remodeling, endurance competition withdrawal, and cardiovascular disease. Ginger, however, may act as a promoter of GI integrity and as a bronchodilator. Given these potentially positive effects of ginger, a systematic review of randomized trials was performed to assess the evidence for ginger as an analgesic and ergogenic aid for exercise training and sport. Among 7 studies examining ginger as an analgesic, the evidence indicates that roughly 2 g·d(-1) of ginger may modestly reduce muscle pain stemming from eccentric resistance exercise and prolonged running, particularly if taken for a minimum of 5 days. Among 9 studies examining ginger as an ergogenic aid, no discernable effects on body composition, metabolic rate, oxygen consumption, isometric force generation, or perceived exertion were observed. Limited data suggest that ginger may accelerate recovery of maximal strength after eccentric resistance exercise and reduce the inflammatory response to cardiorespiratory exercise. Major limitations to the research include the use of untrained individuals, insufficient reporting on adverse events, and no direct comparisons with NSAID ingestion. While ginger taken over 1-2 weeks may reduce pain from eccentric resistance exercise and prolonged running, more research is needed to evaluate its safety and efficacy as an analgesic for a wide range of athletic endeavors.

  13. The effects of aminophylline infusion in the treatment of children with acute asthma exacerbation. Evaluation with 81mKr ventilation scintigraphy

    International Nuclear Information System (INIS)

    Matsubara, Yasuko; Shimada, Takao

    1998-01-01

    The use of intravenous aminophylline in the treatment of children with acute asthma remains controversial. Most authors suggest that aminophylline be used with caution because of its poor efficacy with adverse reactions and instead recommend other drugs, such as β 2 -adrenergic agonists and glucocorticoids. However other studies have reported the benefits of aminophylline, and current Japanese guidelines for the management of asthma recommend its use. Here, we have evaluated the efficacy of aminophylline infusion in children with acute asthma exacerbations. Twenty children with acute asthma exacerbations were given an infusion of 5 mg/kg of aminophylline over 5 minutes, 30 minutes after the same volume of normal saline had been infused as a control. 81m Kr ventilation scintigraphy was done sequentially, and lung function was measured with spirometry before and after each infusion. Side effects were also evaluated with a questionnaire. Ventilation images obtained with 81m Kr scintigraphy, which initially showed widespread ventilatory defects caused by bronchoconstriction, decreased 54.9% after aminophylline infusion (p 81m Kr bolus inhalation procedure, also showed significant improvement (p<0.0001). These improvement were accompanied by improvements in lung function as assessed with forced expiratory volume in 1 second (p<0.01) and maximum expiratory flow rates at 25% (p<0.001) and 50% (p<0.001). No serious adverse reactions were recognized in any subjects. Our results show that aminophylline is a useful bronchodilator which decreased ventilatory imbalance and improves lung function in both central and peripheral airways. (author)

  14. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor.

    Science.gov (United States)

    Lazarinis, Nikolaos; Bood, Johan; Gomez, Cristina; Kolmert, Johan; Lantz, Ann-Sofie; Gyllfors, Pär; Davis, Andy; Wheelock, Craig E; Dahlén, Sven-Erik; Dahlén, Barbro

    2018-03-05

    Leukotriene (LT) E 4 is the final active metabolite among the cysteinyl leukotrienes (CysLTs). Animal studies have identified a distinct LTE 4 receptor, suggesting that current cysteinyl leukotriene type 1 (CysLT 1 ) receptor antagonists can provide incomplete inhibition of CysLT responses. We tested this hypothesis by assessing the influence of the CysLT 1 antagonist montelukast on responses induced by means of inhalation of LTE 4 in asthmatic patients. Fourteen patients with mild intermittent asthma and 2 patients with aspirin-exacerbated respiratory disease received 20 mg of montelukast twice daily and placebo for 5 to 7 days in a randomized, double-blind, crossover study (NCT01841164). The PD 20 value was determined at the end of each treatment period based on an increasing dose challenge. Measurements included lipid mediators in urine and sputum cells 4 hours after LTE 4 challenge. Montelukast completely blocked LTE 4 -induced bronchoconstriction. Despite tolerating an at least 10 times higher dose of LTE 4 after montelukast, there was no difference in the percentage of eosinophils in sputum. Urinary excretion of all major lipid mediators increased after LTE 4 inhalation. Montelukast blocked release of the mast cell product prostaglandin (PG) D 2 , as well as release of PGF 2α and thromboxane (Tx) A 2 , but not increased excretion of PGE 2 and its metabolites or isoprostanes. LTE 4 induces airflow obstruction and mast cell activation through the CysLT 1 receptor. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Platelet activating factor-acylhydrolase (PAF-ase) activity is higher in serum of men than women and is related to levels of low density lipoprotein (LDL)

    International Nuclear Information System (INIS)

    Farr, R.S.; Howell, S.E.; Wardlow, M.L.

    1986-01-01

    PAF-ase is a specific serum enzyme that inactivates PAF by hydrolyzing acetate from the sn-2 position of the glycerol backbone. A reproducible PAF-ase activity assay was developed. A unit is based on the amount of serum required to release 3.61 +/- 0.042 pm 3 H-acetate from 10 pm 3 H-labeled PAF after incubation for 1 hr at 37 0 C. Assays on two single reference serums repeated 7 days were 0.63 +/- 0.013 U and 1.33 +/- 0.031 U. Serum from 20 normal men and 20 normal premenopausal women had significantly different (p = <0.001) levels of 1.32 +/- 0.072 U and 0.97 +/- 0.051 U respectively. They previously reported that PAF-ase is associated with B-lipoprotein. Therefore, total cholesterol (TC), LDL and high density lipoproteins (HDL) were determined on these 40 serums. Regression analysis revealed PAF-ase units were correlated with LDL (r = 0.740; p = < 0.001) and, parenthetically, with the TC (r = 0.620; p = < 0.001) but not with HDL. These correlations were similar for men and women. Thus, serum PAF-ase was partially controlled by serum LDL levels and the higher PAF-ase levels in serum from men were due in part to higher (p = < 0.01) LDL levels in men (147.6 +/- 6.9 mg/dl) as contrasted to women (119.0 +/- 7.6 mg/dl). PAF is a potent inflammatory, bronchoconstrictive and hypotensive agent. These data indicate that sex and serum LDL levels of subjects must be considered during future studies of the role of PAF vs PAF-ase in different disease states

  16. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    Science.gov (United States)

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  17. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    Science.gov (United States)

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Budesonide/formoterol and formoterol provide similar rapid relief in patients with acute asthma showing refractoriness to salbutamol

    Directory of Open Access Journals (Sweden)

    Lombardi DM

    2006-01-01

    Full Text Available Abstract Background To compare the efficacy and safety of budesonide/formoterol (Symbicort® with formoterol (Oxis® in the treatment of patients with acute asthma who showed evidence of refractoriness to short-acting β2-agonist therapy. Methods In a 3 hour, randomized, double-blind study, a total of 115 patients with acute asthma (mean FEV1 40% of predicted normal and a refractory response to salbutamol (mean reversibility 2% of predicted normal after inhalation of 400 μg, were randomized to receive either budesonide/formoterol (320/9 μg, 2 inhalations at t = -5 minutes and 2 inhalations at 0 minutes [total dose 1280/36 μg] or formoterol (9 μg, 2 inhalations at t = -5 minutes and 2 inhalations at 0 minutes [total dose 36 μg]. The primary efficacy variable was the average FEV1 from the first intake of study medication to the measurement at 90 minutes. Secondary endpoints included changes in FEV1 at other timepoints and change in respiratory rate at 180 minutes. Treatment success, treatment failure and patient assessment of the effectiveness of the study medication were also measured. Results FEV1 increased after administration of the study medication in both treatment groups. No statistically significant difference between the treatment groups was apparent for the primary outcome variable, or for any of the other efficacy endpoints. There were no statistically significant between-group differences for treatment success, treatment failure or patient assessment of medication effectiveness. Both treatments were well tolerated. Conclusion Budesonide/formoterol and formoterol provided similarly rapid relief of acute bronchoconstriction in patients with asthma who showed evidence of refractoriness to a short-acting β2-agonist.

  19. Deterioration of epithelium mediated mechanisms in diabetic-antigen sensitized airways of guinea pigs.

    Science.gov (United States)

    Bano, Saidullah; Swati, Omanwar; Kambadur, Muralidhar; Mohammad, Fahim

    2016-01-01

    The onset of diabetes causes disruption of respiratory epithelial mediators. The present study investigates whether diabetes modifies the epithelium mediated bronchial responses in hyper-reactive airway smooth muscle (ASM) primarily through nitric oxide (NO), cyclooxygenase (COX), and epithelium derived hyperpolarizing factor (EpDHF) pathways. Experimental model of guinea pigs having hyper-reactive airways with or without diabetes were developed. The responses of tracheal rings to cumulative concentrations of acetylcholine (ACh) and isoproterenol (IP) in the presence and absence of epithelium and before and after incubation with NO, K + ATP and COX inhibitors, N-(ω)-Nitro-L-arginine methyl ester (L-NAME; 100 μM), glybenclamide (10 μM) and indomethacin (100 μM) were assessed. In diabetic guinea pigs with hyper-reactive airways, a decrease in ACh induced bronchoconstriction was observed after epithelium removal and after incubation with L-NAME/indomethacin, suggesting damage to NO/COX pathways. Hyper-reactivity did not alter the response of trachea to ACh but affected the response to IP which was further reduced in hyper-reactive animals with diabetes. The ASM response to IP after glybenclamide treatment did not alter in hyper-reactive guinea pigs and diabetic guinea pigs with hyper-reactive airways, suggesting damage to the EpDHF pathway. Treatment with indomethacin reduced IP response in the hyper-reactive model, and did not produce any change in diabetic model with hyper-reactive airways, indicating further disruption of the COX pathway. EpDHF pathway is damaged in hyper-reactive guinea pigs and in diabetic guinea pigs with hyper-reactive airways. Diabetes further aggravates the NO and COX mediated pathways in diabetic guinea pigs with hyper-reactive airways.

  20. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs.

    Science.gov (United States)

    Cheng, Yan-Mei; Cao, Ai-Li; Zheng, Jian-Pu; Wang, Hong-Wei; Sun, Yong-Shun; Liu, Chun-Fang; Zhang, Bei-Bei; Wang, Yi; Zhu, Sheng-Liang; Wu, Da-Zheng

    2014-11-01

    Gastroesophageal reflux is a common disorder closely related to chronic airway diseases, such as chronic cough, asthma, chronic bronchitis, and chronic obstructive disease. Indeed, gastroesophageal acid reflux into the respiratory tract causes bronchoconstriction, but the underlying mechanisms have still not been clarified. This study aimed to elucidate functional changes of bronchial smooth muscles (BSMs) isolated from guinea pigs in an animal model of gastroesophageal reflux. The marked airway inflammation, hyperresponsiveness and remodeling were observed after guinea pigs were exposed to intraesophageal HCl infusion for 14 days. In addition, contractile responses to acetylcholine (ACh), KCl, electrical field stimulation, and extracellular Ca(2+) were greater in guinea pigs infused with HCl compared with control groups. The L-type voltage-dependent Ca(2+) channels (L-VDCC) blocker, nicardipine, significantly inhibited ACh- and Ca(2+)-enhanced BSM contractions in guinea pigs infused with HCl. The Rho-kinase inhibitor, Y27632, attenuated ACh-enhanced BSM contractions in guinea pigs infused with HCl. Moreover, mRNA and protein expressions for muscarinic M2 and M3 receptors, RhoA, and L-VDCC in BSM were detected by real-time PCR and Western blot. Expressions of mRNA and protein for muscarinic M3 receptors, RhoA, and L-VDCC were greater than in BSM of HCl-infused guinea pigs, whereas levels of muscarinic M2 receptors were unchanged. We demonstrate that acid infusion to the lower esophagus and, subsequently, microaspiration into the respiratory tract in guinea pigs leads to airway hyperresponsiveness and overactive BSM. Functional and molecular results indicate that overactive BSM is the reason for enhancement of extracellular Ca(2+) influx via L-VDCC and Ca(2+) sensitization through Rho-kinase signaling.

  1. The potential role of omega-3 fatty acids supplements in increasing athletic performance

    Directory of Open Access Journals (Sweden)

    Șerban GLIGOR

    2017-03-01

    Full Text Available Polyunsaturated omega-3 and omega-6 fatty acids are essential fatty acids that cannot be produced by the body itself and therefore must be provided through nutrition. Omega-6 and particularly omega-3 fatty acids have important roles in the organism, contributing to the maintenance and promotion of health. The optimal proportion of omega-6/omega-3 fatty acids is 2:1, or even better 1:1. They are involved in normal growth and development, play a role in the prevention of coronary and cardiovascular diseases, of diabetes mellitus, of arterial hypertension, arthritis and cancer. Omega-3 fatty acids mainly have an anti-inflammatory effect, but also act as hypolipidemic and antithrombotic agents. A potential role of omega-3 fatty acids is that of increasing physical performance. Their role in the physical activity refers on one side to the global health of athletes and on the other side to their anti-inflammatory effect, as high intensity physical exercise induces increased free-radical production and microtraumas, with the induction of an inflammatory status. The anti-inflammatory effect of these fatty acids manifests through an increased production of endogenous antioxidant enzymes, through decreasing the production of prostaglandins metabolites, decreasing the production of leukotriene B4, etc. They are also effective on reducing muscle pain post eccentric exercise and on decreasing the severity of bronchoconstriction induced by exercise, as well as improving pulmonary function variables. In conclusion it seems that supplementing diets with omega-3 fatty acids, apart from having benefic effects on health and on the prevention and management of certain affections, proves to be a beneficial for physical activity and athletic performance.

  2. The effects of aminophylline infusion in the treatment of children with acute asthma exacerbation. Evaluation with {sup 81m}Kr ventilation scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Yasuko; Shimada, Takao [Jikei Univ., Tokyo (Japan). School of Medicine

    1998-09-01

    The use of intravenous aminophylline in the treatment of children with acute asthma remains controversial. Most authors suggest that aminophylline be used with caution because of its poor efficacy with adverse reactions and instead recommend other drugs, such as {beta}{sub 2}-adrenergic agonists and glucocorticoids. However other studies have reported the benefits of aminophylline, and current Japanese guidelines for the management of asthma recommend its use. Here, we have evaluated the efficacy of aminophylline infusion in children with acute asthma exacerbations. Twenty children with acute asthma exacerbations were given an infusion of 5 mg/kg of aminophylline over 5 minutes, 30 minutes after the same volume of normal saline had been infused as a control. {sup 81m}Kr ventilation scintigraphy was done sequentially, and lung function was measured with spirometry before and after each infusion. Side effects were also evaluated with a questionnaire. Ventilation images obtained with {sup 81m}Kr scintigraphy, which initially showed widespread ventilatory defects caused by bronchoconstriction, decreased 54.9% after aminophylline infusion (p<0.0001). Ventilatory defects, caused by both central and peripheral airway disturbances and confirmed with the {sup 81m}Kr bolus inhalation procedure, also showed significant improvement (p<0.0001). These improvement were accompanied by improvements in lung function as assessed with forced expiratory volume in 1 second (p<0.01) and maximum expiratory flow rates at 25% (p<0.001) and 50% (p<0.001). No serious adverse reactions were recognized in any subjects. Our results show that aminophylline is a useful bronchodilator which decreased ventilatory imbalance and improves lung function in both central and peripheral airways. (author)

  3. Effect of a syringe aspiration technique versus a mechanical suction technique and use of N-butylscopolammonium bromide on the quantity and quality of bronchoalveolar lavage fluid samples obtained from horses with the summer pasture endophenotype of equine asthma.

    Science.gov (United States)

    Bowser, Jacquelyn E; Costa, Lais R R; Rodil, Alba U; Lopp, Christine T; Johnson, Melanie E; Wills, Robert W; Swiderski, Cyprianna E

    2018-03-01

    OBJECTIVE To evaluate the effect of 2 bronchoalveolar lavage (BAL) sampling techniques and the use of N-butylscopolammonium bromide (NBB) on the quantity and quality of BAL fluid (BALF) samples obtained from horses with the summer pasture endophenotype of equine asthma. ANIMALS 8 horses with the summer pasture endophenotype of equine asthma. PROCEDURES BAL was performed bilaterally (right and left lung sites) with a flexible videoendoscope passed through the left or right nasal passage. During lavage of the first lung site, a BALF sample was collected by means of either gentle syringe aspiration or mechanical suction with a pressure-regulated wall-mounted suction pump. The endoscope was then maneuvered into the contralateral lung site, and lavage was performed with the alternate fluid retrieval technique. For each horse, BAL was performed bilaterally once with and once without premedication with NBB (21-day interval). The BALF samples retrieved were evaluated for volume, total cell count, differential cell count, RBC count, and total protein concentration. RESULTS Use of syringe aspiration significantly increased total BALF volume (mean volume increase, 40 mL [approx 7.5% yield]) and decreased total RBC count (mean decrease, 142 cells/μL), compared with use of mechanical suction. The BALF nucleated cell count and differential cell count did not differ between BAL procedures. Use of NBB had no effect on BALF retrieval. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that retrieval of BALF by syringe aspiration may increase yield and reduce barotrauma in horses at increased risk of bronchoconstriction and bronchiolar collapse. Further studies to determine the usefulness of NBB and other bronchodilators during BAL procedures in horses are warranted.

  4. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes.

    Science.gov (United States)

    Stanford, Kristin I; Mickleborough, Timothy D; Ray, Shahla; Lindley, Martin R; Koceja, David M; Stager, Joel M

    2006-04-01

    The main aim of this study was to investigate whether there is a relationship between menstrual cycle phase and exercise-induced bronchoconstriction (EIB) in female athletes with mild atopic asthma. Seven eumenorrheic subjects with regular 28-day menstrual cycles were exercised to volitional exhaustion on day 5 [mid-follicular (FOL)] and day 21 [mid-luteal (LUT)] of their menstrual cycle. Pulmonary function tests were conducted pre- and post-exercise. The maximal percentage decline in post-exercise forced expiratory volume in 1 s (FEV(1)) and forced expiratory flow from 25 to 75% of forced vital capacity (FEF(25-75%)) was significantly greater (Pphase) (-17.35+/-2.32 and -26.28+/-6.04%, respectively), when salivary progesterone concentration was highest, compared to day 5 (mid-FOL phase) (-12.81+/-3.35 and -17.23+/-8.20%, respectively), when salivary progesterone concentration was lowest. The deterioration in the severity of EIB during the mid-LUT phase was accompanied by worsening asthma symptoms and increased bronchodilator use. There was a negative correlation between the percent change in pre- to post-exercise FEV(1) and salivary progesterone concentration. However, no such correlation was found between salivary estradiol and the percentage change in pre- to post-exercise FEV(1). This study has shown for the first time that menstrual cycle phase is an important determinant of the severity of EIB in female athletes with mild atopic asthma. Female asthmatic athletes may need to adjust their training and competition schedules to their menstrual cycle and to consider the potential negative effects of the LUT phase of the menstrual cycle on exercise performance.

  5. Effects of cigarette smoke on methacholine- and AMP-induced air trapping in asthmatics.

    Science.gov (United States)

    Prieto, Luis; Palop, Julio; Llusar, Ruth; Herrera, Susana; Perez-Frances, Carmen; Lanuza, Amparo; Aguilar, Daniela

    2015-02-01

    Abstract Objective: No information is available on the effect of cigarette smoke on bronchoconstrictor-induced air trapping in asthma. The aim of this study was to evaluate the additional influence of smoking on methacholine- and adenosine 5'-monophosphate (AMP)-induced air trapping in subjects with asthma. Airway responsiveness to methacholine and AMP, bronchial (J'awNO) and alveolar (CANO) nitric oxide (NO) and exhaled breath condensate pH were measured in 68 adults (23 current smokers with asthma, 23 non-smokers with asthma and 22 current or former smokers with chronic obstructive pulmonary disease; COPD). The degree of air trapping induced by each bronchoconstrictor agent was expressed by the percent fall in forced vital capacity (FVC) at a 20% fall in forced expiratory volume in 1 s relative to FVC after saline inhalation (ΔFVC%). The ΔFVC% for AMP was higher in both smokers with asthma and patients with COPD than in non-smokers with asthma (p<0.001). By contrast, ΔFVC% for methacholine was similar in the three groups of subjects (p=0.69). In smokers with asthma, but not in the other two groups, there was a correlation between the residual volume/total lung capacity at baseline and the ΔFVC% induced by each bronchoconstrictor agent. Mean values for J'awNO were higher in non-smokers with asthma than in the other two groups (p<0.05). The results of this study suggest that factors underlying bronchoconstriction induced by indirect agonists are different in smokers and non-smokers with asthma. These observations might be clinically relevant, because triggers that frequently induce bronchial obstruction in the real world act by an indirect mechanism.

  6. Pitfalls in the diagnosis of carcinoid syndrome

    Directory of Open Access Journals (Sweden)

    Dorota Kaczmarska-Turek

    2016-06-01

    Full Text Available Background . Carcinoid syndrome (CS is a rare syndrome, most commonly associated with neuroendocrine neoplasms (NEN s of the small intestine. Carcinoid syndrome consists of diarrhea, vomiting, abdominal pain, cutaneous flushing, teleangiectasias, bronchoconstriction and increased perspiration. Diagnosis of carcinoid syndrome remains a challenge and it is often delayed. Objectives . The aim of this study was to characterize patients with CS and define the most sensitive, primary diagnostic tools for CS . Material and methods. 26 consecutive patients admitted to the Department because of carcinoid-like symptoms. Diagnosis of CS was based on clinical findings and laboratory data (levels of 5-hydroxyindoloacetic acid. Diagnosis of NEN was based on laboratory findings, imaging studies (US , CT , Gallium-68-DOTA TATE PET -CT and histopathological analysis. CS due to NEN was diagnosed in 16 subjects (NEN –CS . Results . The most common symptoms in non-NEN were increased perspiration, flushes and diarrhea. CgA was elevated (40%; n = 4 in this group. However, elevated levels of 5-HIAA and liver lesions were not presented. In the NEN –CS symptoms were reported more often: flush (93.7%; n = 15, diarrhea (87.5%; n = 14, abdominal pain and teleangiectasis (81.2%; n = 13. Elevated CgA and 5-HIAA were noted in 87.5% (n = 14 and 81.2% (n = 13 respectively. US and CT revealed liver metastases in all patients. The mean duration of symptoms before diagnosis was 28.6 months. Conclusions . The combination of several symptoms of carcinoid syndrome and liver lesion in easily available abdominal imaging (US and/or CT should prompt physicians to quick referral to centres specialized in the diagnosis and treatment of NEN.

  7. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    Science.gov (United States)

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  8. Termoplastia brônquica: relato do primeiro tratamento endoscópico de asma na América Latina Bronchial thermoplasty: report on the first endoscopic treatment for asthma in Latin America

    Directory of Open Access Journals (Sweden)

    Adalberto Sperb Rubin

    2008-01-01

    Full Text Available A termoplastia brônquica é um novo procedimento broncoscópico que libera energia por radiofreqüência nas vias aéreas, com potencial redução da broncoconstrição causada pela contratura da musculatura lisa. Relatamos o caso de um homem de 48 anos, portador de asma persistente moderada, submetido à termoplastia brônquica. O tratamento aumentou o volume expiratório forçado no primeiro segundo, aumentou o número de dias livres de sintomas, reduziu o uso da medicação de resgate e melhorou o escore no questionário de Juniper Asthma Quality of Life Scale. A termoplastia brônquica foi bem tolerada e segura. Esta foi a primeira termoplastia brônquica na América Latina, com resultados estimulantes após 12 meses quanto ao seu potencial benefício em asmáticos pouco controlados.Bronchial thermoplasty is a new bronchoscopic procedure that delivers radiofrequency energy to the airway and potentially reduces the smooth muscle-mediated bronchoconstriction. We report the case of a 48-year-old man with persistent moderate asthma submitted to bronchial thermoplasty. The treatment increased the forced expiratory volume in one second, increased the number of symptom-free days, reduced the use of relief medications, and improved the Juniper Asthma Quality of Life Scale score. In this patient, bronchial thermoplasty was well tolerated and safe. This was the first bronchial thermoplasty performed in Latin America. At 12 months after the procedure, the results were encouraging in terms of its potential benefits in patients with difficult-to-control asthma.

  9. Effects of oral methylprednisolone and inhaled salbutamol in the decrease of wheezing in patients with asthma after tracheal intubation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Airway instrumentation in patients with bronchial hyperreactivity, may evoke life-threatening asthma attack and a good strategy for the prevention of bronchospasm"nhas not been defined. In a randomized, prospective, placebo-controlled study, it was determined whether prophylaxis with either inhaled salbutamol-or combined inhaled salbutamol and oral methylprednisolone improves lung functions and prevents wheezing after intubation. Methods: Thirty one patients with partially reversible airway obstruction (airway resistance> 180%, forced expiratory volume in 1 second [FEV1] < 70% of predicted value, and FEV1 increase> 12% after two puffs of salbutamol were randomized to receive daily either 3-2 puffs (0.2 mg of salbutamol (n =16 or 3-2 puffs (0.2 mg of salbutamol and 40 mg of methylprednisolone (n = 15 orally for 5 days. In all patients lung function was evaluated daily and wheezing changes was assessed before and 5 minutes after tracheal intubation. Results: Both salbutamol and combined inhaled salbutamol and oral methylprednisolone treatment significantly improved airway resistance and FEV1 to a steady state, with no difference between groups. When a single-dose of salbutamol pre-induction or prolonged salbutamol treatment was employed, most patients (8 of 10 and 7 of 9 experienced wheezing after intubation. In contrast, only one patient of those who received both salbutamol and methylprednisolone experienced wheezing (P = 0.0058. Conclusions: Pretreatment with either salbutamol or combined inhaled salbutamol and oral methylprednisolone significantly improves lung function and decreases the incidence of wheezing after tracheal intubation. Methylprednisolone decreases incidence of wheezing more than salbutamol. Therefore, in patients with bronchial hyper reactivity, preoperative treatment with both methylprednisolone and salbutamol minimizes intubation-evoked broncho-constriction.

  10. Adverse respiratory effect of acute β-blocker exposure in asthma: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Morales, Daniel R; Jackson, Cathy; Lipworth, Brian J; Donnan, Peter T; Guthrie, Bruce

    2014-04-01

    β-Blockers are avoided in asthma over concerns regarding acute bronchoconstriction. Risk is greatest following acute exposure, including the potential for antagonism of β2-agonist rescue therapy. A systematic review of databases was performed to identify all randomized, blinded, placebo-controlled clinical trials evaluating acute β-blocker exposure in asthma. Effect estimates for changes in respiratory function, symptoms, and β2-agonist response were pooled using random effects meta-analysis with heterogeneity investigated. Acute selective β-blockers in the doses given caused a mean change in FEV1 of −6.9% (95% CI, −8.5 to −5.2), a fall in FEV1 of ≥20% in one in eight patients (P=.03), symptoms affecting one in 33 patients (P=.18), and attenuation of concomitant β2-agonist response of −10.2% (95% CI, −14.0 to −6.4). Corresponding values for acute nonselective β-blockers in the doses given were −10.2% (95% CI, −14.7 to −5.6), one in nine patients (P=.02), one in 13 patients (P=.14), and −20.0% (95% CI, −29.4 to −10.7). Following investigation of heterogeneity, clear differences were found for celiprolol and labetalol. A dose-response relationship was demonstrated for selective β-blockers. Selective β-blockers are better tolerated but not completely risk-free. Risk from acute exposure may be mitigated using the smallest dose possible and β-blockers with greater β1-selectivity. β-Blocker-induced bronchospasm responded partially to β2-agonists in the doses given with response blunted more by nonselective β-blockers than selective β-blockers. Use of β-blockers in asthma could possibly be based upon a risk assessment on an individual patient basis.

  11. Technetium-99m DTPA inhalation scintigraphy in patients treated with fluoxetine and maprotiline: preliminary results

    International Nuclear Information System (INIS)

    Kaya, G.C.; Durak, H.; Oezdogan, Oe.; Sayit, E.; Degirmenci, B.; Derebek, E.

    2000-01-01

    Drug-metabolising enzymatic activities have been detected in tracheobronchiolar, bronchiolar and alveolar regions in the lungs. Induction of phospholipidosis by amine drugs such as clorphentermine has also been shown. This study aimed to investigate the effect of fluoxetine and maprotiline, which contain amine groups in their structure, on pulmonary epithelial membrane permeability. Twenty-seven patients (mean age 36±12 years) with various psychiatric problems, of whom 17 were treated with fluoxetine and 10 with maprotiline, were included in this study. Technetium-99m diethylene triamine penta-acetic acid (DTPA) aerosol inhalation scintigraphy was performed before and after 4-6 weeks of therapy. Following the inhalation of 1480 MBq 99m Tc-DTPA for 3 min, lung images in a 64 x 64 matrix were obtained every minute for 30 min. Regions of interest were drawn around the periphery of the lungs and on the major airways. Clearance half-times (T 1/2 ) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. There was no difference between the clearance rates of 99m Tc-DTPA before and after therapy for either the fluoxetine or the maprotiline group. After therapy, a significant decrease in PI was found in patients treated with fluoxetine (PI values before and after therapy: 0.53±0.03 and 0.49±0.05 respectively, P≤0.05). This finding might have been due to the induction of increased synaptic serotonin (5-HT) by fluoxetine, which acts by inhibiting the re-uptake of 5-HT on presynaptic membranes. Bronchoconstriction of small and medium airways may be caused by direct and indirect effects of 5-HT on smooth muscle contraction. (orig.)

  12. Technetium-99m DTPA inhalation scintigraphy in patients treated with fluoxetine and maprotiline: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, G.C.; Durak, H.; Oezdogan, Oe.; Sayit, E.; Degirmenci, B.; Derebek, E. [Dokuz Eyluel Univ., Izmir (Turkey). School of Medicine; Yemez, B.; Turhal, Ue. [Dept. of Psychiatry, Dokuz Eylul Univ. School of Medicine, Izmir (Turkey)

    2000-09-01

    Drug-metabolising enzymatic activities have been detected in tracheobronchiolar, bronchiolar and alveolar regions in the lungs. Induction of phospholipidosis by amine drugs such as clorphentermine has also been shown. This study aimed to investigate the effect of fluoxetine and maprotiline, which contain amine groups in their structure, on pulmonary epithelial membrane permeability. Twenty-seven patients (mean age 36{+-}12 years) with various psychiatric problems, of whom 17 were treated with fluoxetine and 10 with maprotiline, were included in this study. Technetium-99m diethylene triamine penta-acetic acid (DTPA) aerosol inhalation scintigraphy was performed before and after 4-6 weeks of therapy. Following the inhalation of 1480 MBq {sup 99m}Tc-DTPA for 3 min, lung images in a 64 x 64 matrix were obtained every minute for 30 min. Regions of interest were drawn around the periphery of the lungs and on the major airways. Clearance half-times (T{sub 1/2}) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. There was no difference between the clearance rates of {sup 99m}Tc-DTPA before and after therapy for either the fluoxetine or the maprotiline group. After therapy, a significant decrease in PI was found in patients treated with fluoxetine (PI values before and after therapy: 0.53{+-}0.03 and 0.49{+-}0.05 respectively, P{<=}0.05). This finding might have been due to the induction of increased synaptic serotonin (5-HT) by fluoxetine, which acts by inhibiting the re-uptake of 5-HT on presynaptic membranes. Bronchoconstriction of small and medium airways may be caused by direct and indirect effects of 5-HT on smooth muscle contraction. (orig.)

  13. Pulmonary function responses to ozone in smokers with a limited smoking history

    International Nuclear Information System (INIS)

    Bates, Melissa L.; Brenza, Timothy M.; Ben-Jebria, Abdellaziz; Bascom, Rebecca; Eldridge, Marlowe W.; Ultman, James S.

    2014-01-01

    In non-smokers, ozone (O 3 ) inhalation causes decreases in forced expiratory volume (FEV 1 ) and dead space (V D ) and increases the slope of the alveolar plateau (S N ). We previously described a population of smokers with a limited smoking history that had enhanced responsiveness to brief O 3 boluses and aimed to determine if responsiveness to continuous exposure was also enhanced. Thirty smokers (19 M, 11 F, 24 ± 4 years, 6 ± 4 total years smoking,4 ± 2 packs/week) and 30 non-smokers (17 M, 13 F, 25 ± 6 years) exercised for 1 h on a cycle ergometer while breathing 0.30 ppm O 3 . Smokers and non-smokers were equally responsive in terms of FEV 1 (− 9.5 ± 1.8% vs − 8.7 ± 1.9%). Smokers alone were responsive in terms of V D (− 6.1 ± 1.2%) and S N (9.1 ± 3.4%). There was no difference in total delivered dose. Dead space ventilation (V D /V T ) was not initially different between the two groups, but increased in the non-smokers (16.4 ± 2.8%) during the exposure, suggesting that the inhaled dose may be distributed more peripherally in smokers. We also conclude that these cigarette smokers retain their airway responsiveness to O 3 and, uniquely, experience changes in V D that lead to heterogeneity in airway morphometry and an increase in S N . - Highlights: • We previously found lung function responses to O 3 bolus exposure in smokers. • Here, we describe their responsiveness to continuous O 3 exposure with exercise. • Spirometry and capnography were used to assess pulmonary function changes. • Enhanced bronchoconstriction in smokers increases parenchymal delivery of O 3

  14. Overcoming beta-agonist tolerance: high dose salbutamol and ipratropium bromide. Two randomised controlled trials

    Directory of Open Access Journals (Sweden)

    Haney Sarah

    2007-03-01

    Full Text Available Abstract Background Asthmatics treated with long-acting beta-agonists have a reduced bronchodilator response to moderate doses of inhaled short acting beta-agonists during acute bronchoconstriction. It is not known if the response to higher doses of nebulised beta-agonists or other bronchodilators is impaired. We assessed the effect of long-acting beta-agonist treatment on the response to 5 mg nebulised salbutamol and to ipratropium bromide. Methods Two double-blind, placebo-controlled, crossover studies of inhaled formoterol 12 μg twice daily in patients with asthma. High-dose salbutamol: 36 hours after the last dose of 1 week of formoterol or placebo treatment, 11 subjects inhaled methacholine to produce a 20% fall in FEV1. Salbutamol 5 mg was then administered via nebuliser and the FEV1 was monitored for 20 minutes. Ipratropium: 36 hours after the last dose of 1 week of formoterol or placebo treatment, 11 subjects inhaled 4.5% saline to produce a 20% fall in FEV1. Salbutamol 200 μg or ipratropium bromide 40 μg was then inhaled and the FEV1 was monitored for 30 minutes. Four study arms compared the response to each bronchodilator after formoterol and placebo. Analyses compared the area under the bronchodilator response curves, adjusting for changes in pre-challenge FEV1, dose of provocational agent and FEV1 fall during the challenge procedure. Results The response to nebulised salbutamol was 15% lower after formoterol therapy compared to placebo (95% confidence 5 to 25%, p = 0.008. The response to ipratropium was unchanged. Conclusion Long-acting beta-agonist treatment induces tolerance to the bronchodilator effect of beta-agonists, which is not overcome by higher dose nebulised salbutamol. However, the bronchodilator response to ipratropium bromide is unaffected.

  15. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Directory of Open Access Journals (Sweden)

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  16. Perceived exercise limitation in asthma: The role of disease severity, overweight, and physical activity in children.

    Science.gov (United States)

    Westergren, Thomas; Berntsen, Sveinung; Lødrup Carlsen, Karin C; Mowinckel, Petter; Håland, Geir; Fegran, Liv; Carlsen, Kai-Håkon

    2017-02-01

    Children with asthma may be less physically active than their healthy peers. We aimed to investigate whether perceived exercise limitation (EL) was associated with lung function or bronchial hyper-responsiveness (BHR), socioeconomic factors, prenatal smoking, overweight, allergic disease, asthma severity, or physical activity (PA). The 302 children with asthma from the 10-year examination of the Environment and Childhood Asthma birth cohort study underwent a clinical examination including perceived EL (structured interview of child and parent(s)), measure of overweight (body mass index by sex and age passing through 25 kg/m 2 or above at 18 years), exercise-induced bronchoconstriction (forced expiratory volume in one-second (FEV 1 ) pre- and post-exercise), methacholine bronchial challenge (severe BHR; provocative dose causing ≥20% decrease in FEV 1 ≤ 1 μmol), and asthma severity score (dose of controller medication and exacerbations last 12 months). Multivariate logistic regression analyses were conducted to assess associations with perceived EL. In the final model explaining 30.1%, asthma severity score (OR: 1.49, (1.32, 1.67)) and overweight (OR: 2.35 (1.14, 4.82)) only were significantly associated with perceived EL. Excluding asthma severity and allergic disease, severe BHR (OR: 2.82 (1.38, 5.76)) or maximal reduction in FEV 1 post-exercise (OR: 1.48 (1.10, 1.98)) and overweight (OR: 2.15 (1.13, 4.08) and 2.53 (1.27, 5.03)) explained 9.7% and 8.4% of perceived EL, respectively. Perceived EL in children with asthma was independently associated with asthma severity and overweight, the latter doubling the probability of perceived EL irrespectively of asthma severity, allergy status, socioeconomic factors, prenatal smoking, or PA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF effects

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Fedan

    2013-10-01

    Full Text Available In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF, which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated, perfused tracheas (IPT. Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG chloride, Na gluconate (Glu, NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4' diisothiocyano 2,2' stilbenedisulfonic acid (DIDS inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro 9 (2 hydroxy 3 nonyladenine (EHNA, actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium .

  18. Efeito do tratamento clínico de um corredor de longa distância com broncoespasmo induzido pelo exercício: relato de caso Effect of clinical treatment of a long distance runner presenting exercise-induced bronchoespasm: a case report

    Directory of Open Access Journals (Sweden)

    Renata Nakata Teixeira

    2009-04-01

    Full Text Available O broncoespasmo induzido pelo exercício (BIE é uma condição que se caracteriza pelo estreitamento transitório das vias aéreas durante ou após o esforço físico e afeta principalmente portadores de asma. Em atletas profissionais que praticam esportes de alta intensidade, a prevalência também é alta; no entanto, seu diagnóstico permanece subestimado. O presente estudo descreve o caso de um atleta do sexo masculino, 23 anos, corredor de longa distância sem histórico de asma, que após um teste gradual de exercício apresentou chiado no peito e queda da função pulmonar. Após um teste específico, o atleta foi diagnosticado como BIE positivo. Iniciou-se, então, um tratamento clínico com broncodilatador e após 30 dias verificou-se melhora importante em seu consumo máximo de oxigênio, obtido no pico do esforço (VO2 pico.Exercise induced bronchoconstriction (EIB is characterized by a transient airway constriction during or after vigorous physical activity. This clinical condition is more prevalent in asthmatic patients. The prevalence of EIB in competitive athletes is high; however, EIB is under-diagnosed in this specific athlete population. The present study described a case report of a male 23 year-old long distance runner who, despite not presenting previous asthma history, presented chest squeak and decline on spirometric performance after a cardiopulmonary exercise testing. After specific testing, the athlete was diagnosed as positive EIB. A clinical treatment with bronchodilator was then initiated and after 30 days an important increase in his oxygen uptake peak (VO2peak was observed.

  19. Acute exposure to realistic acid fog: effects on respiratory function and airway responsiveness in asthmatics.

    Science.gov (United States)

    Leduc, D; Fally, S; De Vuyst, P; Wollast, R; Yernault, J C

    1995-11-01

    Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fogs with physical and chemical characteristics similar to those of natural fogs assessed in this urban area. Fogwater was sampled using a screen collector where droplets are collected by inertial impaction and chemical content of fogwater was assessed by measurement of conductivity, pH, visible colorimetry, high pressure liquid chromatography, and atomic absorption spectrophotometry over a period of one year. The fogwater composition was dominated by NH4+ and SO4- ions. First we evaluated the possible effect of fog acidity alone. For this purpose 14 subjects with asthma were exposed at rest for 1 hr [mass median aerodynamic diameter to a large-particle (MMAD), 9 microns] aerosol with H2SO4 concentration of 500 micrograms/m3 (pH 2.5) and osmolarity of 300 mOsm. We did not observe significant change in pulmonary function or bronchial responsiveness to metacholine. In the second part of the work, 10 asthmatic subjects were exposed to acid fog (MMAD, 7 microns) containing sulfate and ammonium ions (major ions recovered in naturally occurring fogs) with pH 3.5 and osmolarity 30 mOsm. Again, pulmonary function and bronchial reactivity were not modified after inhalation of this fog. It was concluded that short-term exposure to acid fog reproducing acidity and hypoosmolarity of natural polluted fogs does not induce bronchoconstriction and does not change bronchial responsiveness in asthmatics.

  20. Suppression of the cough reflex by α2-adrenergic receptor agonists in the rabbit

    Science.gov (United States)

    Cinelli, Elenia; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2013-01-01

    The α2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80–120 μg/kg) or tizanidine (150–300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG. PMID:24400133

  1. Pulmonary response to ozone: Reaction of bronchus-associated lymphoid tissue and lymph node lymphocytes in the rat

    International Nuclear Information System (INIS)

    Dziedzic, D.; Wright, E.S.; Sargent, N.E.

    1990-01-01

    The purpose of this work is to assess the effect of ozone, a reactive product of environmental photochemical oxidation, on lymphocytes of the lung. We exposed male Fischer rats to ozone at a concentration of 0.5 ppm for 20 hr/day for 1-14 days. Animals were treated with radioactive thymidine and were sacrificed at Day 1, 2, 3, 7, or 14 of exposure. Lungs and mediastinal lymph nodes were removed and prepared for histologic examination, evaluation of labeling indexes, and morphometric measurement. We examined two components of the lymphocyte response of the lung: the airway-related response, represented by the reaction of the bronchus-associated lymphoid tissue (BALT), and the deep lung-related response, represented by reaction of the mediastinal lymph node. Lymphocytes of both the BALT and the mediastinal lymph node showed elevated radioactive thymidine uptake; however, no evidence of cell death was observed at either site. The cells of the specialized epithelium covering the BALT (lymphoepithelium) showed increased vacuolization, indicating altered cellular function. The average size of BALTs was unchanged by ozone exposure. Under experimental conditions ozone can affect a variety of cells in the lung including bronchial epithelial cells, macrophages, and Type 1 cells. We have shown for the first time that in addition to these cells, the rat BALT also proliferates in response to ozone. In addition we confirm previous work in the mouse which shows that the mediastinal lymph node reacts as well. The airways can be affected by inflammation, can be targets of infection, and can respond to chemical irritants with bronchoconstrictive responses. They are an important target organ for hypersensitivity responses and are a primary site for pulmonary cancer formation. A role for lymphocytes has been implicated in each of these processes

  2. Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2018-05-01

    Full Text Available Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF, thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1, prostaglandin E2 (PGE2, interleukin (IL-10, and transforming growth factor (TGF-β1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes, and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-β, modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel

  3. Recovery benefits of using a heat and moisture exchange mask during sprint exercise in cold temperatures.

    Science.gov (United States)

    Seifert, John G; Frost, Jeremy; St Cyr, John A

    2017-01-01

    Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.

  4. Pulmonary function responses to ozone in smokers with a limited smoking history

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Melissa L., E-mail: mlbates@pediatrics.wisc.edu [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Pediatrics, Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); Brenza, Timothy M. [Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Ben-Jebria, Abdellaziz [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bascom, Rebecca [Division of Pulmonary, Allergy and Critical Care Medicine, Penn State College of Medicine, Hershey, PA 17033 (United States); Eldridge, Marlowe W. [Department of Pediatrics, Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53792 (United States); Department of Bioengineering, University of Wisconsin-Madison, Madison, WI 53792 (United States); Ultman, James S. [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-07-01

    In non-smokers, ozone (O{sub 3}) inhalation causes decreases in forced expiratory volume (FEV{sub 1}) and dead space (V{sub D}) and increases the slope of the alveolar plateau (S{sub N}). We previously described a population of smokers with a limited smoking history that had enhanced responsiveness to brief O{sub 3} boluses and aimed to determine if responsiveness to continuous exposure was also enhanced. Thirty smokers (19 M, 11 F, 24 ± 4 years, 6 ± 4 total years smoking,4 ± 2 packs/week) and 30 non-smokers (17 M, 13 F, 25 ± 6 years) exercised for 1 h on a cycle ergometer while breathing 0.30 ppm O{sub 3}. Smokers and non-smokers were equally responsive in terms of FEV{sub 1} (− 9.5 ± 1.8% vs − 8.7 ± 1.9%). Smokers alone were responsive in terms of V{sub D} (− 6.1 ± 1.2%) and S{sub N} (9.1 ± 3.4%). There was no difference in total delivered dose. Dead space ventilation (V{sub D}/V{sub T}) was not initially different between the two groups, but increased in the non-smokers (16.4 ± 2.8%) during the exposure, suggesting that the inhaled dose may be distributed more peripherally in smokers. We also conclude that these cigarette smokers retain their airway responsiveness to O{sub 3} and, uniquely, experience changes in V{sub D} that lead to heterogeneity in airway morphometry and an increase in S{sub N}. - Highlights: • We previously found lung function responses to O{sub 3} bolus exposure in smokers. • Here, we describe their responsiveness to continuous O{sub 3} exposure with exercise. • Spirometry and capnography were used to assess pulmonary function changes. • Enhanced bronchoconstriction in smokers increases parenchymal delivery of O{sub 3}.

  5. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  6. The Effects of Short-Term Propofol and Dexmedetomidine on Lung Mechanics, Histology, and Biological Markers in Experimental Obesity.

    Science.gov (United States)

    Heil, Luciana Boavista Barros; Santos, Cíntia L; Santos, Raquel S; Samary, Cynthia S; Cavalcanti, Vinicius C M; Araújo, Mariana M P N; Poggio, Hananda; Maia, Lígia de A; Trevenzoli, Isis Hara; Pelosi, Paolo; Fernandes, Fatima C; Villela, Nivaldo R; Silva, Pedro L; Rocco, Patricia R M

    2016-04-01

    Administering anesthetics to the obese population requires caution because of a variety of reasons including possible interactions with the inflammatory process observed in obese patients. Propofol and dexmedetomidine have protective effects on pulmonary function and are widely used in short- and long-term sedation, particularly in intensive care unit settings in lean and obese subjects. However, the functional and biological effects of these drugs in obesity require further elucidation. In a model of diet-induced obesity, we compared the short-term effects of dexmedetomidine versus propofol on lung mechanics and histology, as well as biological markers of inflammation and oxidative stress modulation in obesity. Wistar rats (n = 56) were randomly fed a standard diet (lean) or experimental diet (obese) for 12 weeks. After this period, obese animals received sodium thiopental intraperitoneally and were randomly allocated into 4 subgroups: (1) nonventilated (n = 4) for molecular biology analysis only (control); (2) sodium thiopental (n = 8); (3) propofol (n = 8); and (4) dexmedetomidine (n = 8), which received continuous IV administration of the corresponding agents and were mechanically ventilated (tidal volume = 6 mL/kg body weight, fraction of inspired oxygen = 0.4, positive end-expiratory pressure = 3 cm H2O) for 1 hour. Compared with lean animals, obese rats did not present increased body weight but had higher total body and trunk fat percentages, airway resistance, and interleukin-6 levels in the lung tissue (P = 0.02, P = 0.0027, and P = 0.01, respectively). In obese rats, propofol, but not dexmedetomidine, yielded increased airway resistance, bronchoconstriction index (P = 0.016, P = 0.02, respectively), tumor necrosis factor-α, and interleukin-6 levels, as well as lower levels of nuclear factor-erythroid 2-related factor-2 and glutathione peroxidase (P = 0.001, Bonferroni-corrected t test). In this model of diet-induced obesity, a 1-hour propofol infusion

  7. ASM-024, a piperazinium compound, promotes the in vitro relaxation of β2-adrenoreceptor desensitized tracheas.

    Science.gov (United States)

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-Adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024

  8. The protective effect of a beta 2 agonist against excessive airway narrowing in response to bronchoconstrictor stimuli in asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Bel, E. H.; Zwinderman, A. H.; Timmers, M. C.; Dijkman, J. H.; Sterk, P. J.

    1991-01-01

    Beta 2 agonists reduce airway hypersensitivity to bronchoconstrictor stimuli acutely in patients with asthma and chronic obstructive lung disease. To determine whether these drugs also protect against excessive airway narrowing, the effect of inhaled salbutamol on the position and shape of the dose-response curves for histamine or methacholine was investigated in 12 patients with asthma and 11 with chronic obstructive lung disease. After pretreatment with salbutamol (200 or 400 micrograms) or placebo in a double blind manner dose-response curves for inhaled histamine and methacholine were obtained by a standard method on six days in random order. Airway sensitivity was defined as the concentration of histamine or methacholine causing a 20% fall in FEV1 (PC20). A maximal response plateau on the log dose-response curve was considered to be present if two or more data points for FEV1 fell within a 5% response range. In the absence of a plateau, the test was continued until a predetermined level of severe bronchoconstriction was reached. Salbutamol caused an acute increase in FEV1 (mean increase 11.5% predicted in asthma, 7.2% in chronic obstructive lung disease), and increase in PC20 (mean 15 fold in asthma, fivefold in chronic obstructive lung disease), and an increase in the slope of the dose-response curves in both groups. In subjects in whom a plateau of FEV1 response could be measured salbutamol did not change the level of the plateau. In subjects without a plateau salbutamol did not lead to the development of a plateau, despite achieving a median FEV1 of 44% predicted in asthma and 39% in chronic obstructive lung disease. These results show that, although beta 2 agonists acutely reduce the airway response to a given strength of bronchoconstrictor stimulus, they do not protect against excessive airflow obstruction if there is exposure to relatively strong stimuli. This, together with the steepening of the dose-response curve, could be a disadvantage of beta 2

  9. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Timmerman J André B

    2006-03-01

    Full Text Available Abstract House dust mite allergens (HDM cause bronchoconstriction in asthma patients and induce an inflammatory response in the lungs due to the release of cytokines, chemokines and additional mediators. The mechanism how HDM components achieve this is largely unknown. The objective of this study was to assess whether HDM components of Dermatophagoides pteronissinus with protease activity (Der p 1 and unknown enzymatic activity (Der p 2, Der p 5 induce biological responses in a human airway-derived epithelial cell line (A549, and if so, to elucidate the underlying mechanism(s of action. A549 cells were incubated with HDM extract, Der p 1, recombinant Der p 2 and recombinant Der p 5. Cell desquamation was assessed by microscopy. The proinflammatory cytokines, IL-6 and IL-8, were measured by ELISA. Intracellular Ca2+ levels were assessed in A549 cells and in mouse fibroblasts expressing the human protease activated receptor (PAR1, PAR2 or PAR4. HDM extract, Der p 1 and Der p 5 dose-dependently increased the production of IL-6 and IL-8. Added simultaneously, Der p 1 and Der p 5 further increased the production of IL-6 and IL-8. The action of Der p 1 was blocked by cysteine-protease inhibitors, while that of Der p 5 couldn't be blocked by either serine- or cysteine protease inhibitors. Der p 5 only induced cell shrinking, whereas HDM extract and Der p1 also induced cell desquamation. Der p 2 had no effect on A549 cells. Der p 1's protease activity causes desquamation and induced the release of IL6 and IL-8 by a mechanism independent of Ca2+ mobilisation and PAR activation. Der p 5 exerts a protease-independent activation of A549 that involves Ca2+ mobilisation and also leads to the production of these cytokines. Together, our data indicate that allergens present in HDM extracts can trigger protease-dependent and protease-independent signalling pathways in A549 cells.

  10. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    International Nuclear Information System (INIS)

    Trifilieff, Alexandre; Ethell, Brian T.; Sykes, David A.; Watson, Kenny J.; Collingwood, Steve; Charlton, Steven J.; Kent, Toby C.

    2015-01-01

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED 50 values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M 2 muscarinic receptor occupancy, which predicted significantly higher M 2 receptor blockade at ED 50 doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED 50 doses for bronchoprotection we model systemic M 2 receptor occupancy. • Glycopyrrolate demonstrates lower M 2 occupancy at

  11. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    Energy Technology Data Exchange (ETDEWEB)

    Trifilieff, Alexandre; Ethell, Brian T. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Sykes, David A. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Watson, Kenny J.; Collingwood, Steve [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Charlton, Steven J. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Kent, Toby C., E-mail: tobykent@me.com [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom)

    2015-08-15

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M

  12. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    induced by hypocapnic bronchoconstriction.

  13. Association of serum Clara cell protein CC16 with respiratory infections and immune response to respiratory pathogens in elite athletes.

    Science.gov (United States)

    Kurowski, Marcin; Jurczyk, Janusz; Jarzębska, Marzanna; Moskwa, Sylwia; Makowska, Joanna S; Krysztofiak, Hubert; Kowalski, Marek L

    2014-04-15

    Respiratory epithelium integrity impairment caused by intensive exercise may lead to exercise-induced bronchoconstriction. Clara cell protein (CC16) has anti-inflammatory properties and its serum level reflects changes in epithelium integrity and airway inflammation. This study aimed to investigate serum CC16 in elite athletes and to seek associations of CC16 with asthma or allergy, respiratory tract infections (RTIs) and immune response to respiratory pathogens. The study was performed in 203 Olympic athletes. Control groups comprised 53 healthy subjects and 49 mild allergic asthmatics. Serum levels of CC16 and IgG against respiratory viruses and Mycoplasma pneumoniae were assessed. Allergy questionnaire for athletes was used to determine symptoms and exercise pattern. Current versions of ARIA and GINA guidelines were used when diagnosing allergic rhinitis and asthma, respectively. Asthma was diagnosed in 13.3% athletes, of whom 55.6% had concomitant allergic rhinitis. Allergic rhinitis without asthma was diagnosed in 14.8% of athletes. Mean CC16 concentration was significantly lower in athletes versus healthy controls and mild asthmatics. Athletes reporting frequent RTIs had significantly lower serum CC16 and the risk of frequent RTIs was more than 2-fold higher in athletes with low serum CC16 (defined as equal to or less than 4.99 ng/ml). Athletes had significantly higher anti-adenovirus IgG than healthy controls while only non-atopic athletes had anti-parainfluenza virus IgG significantly lower than controls. In all athletes weak correlation of serum CC16 and anti-parainfluenza virus IgG was present (R = 0.20, p athletes a weak positive correlations of CC16 with IgG specific for respiratory syncytial virus (R = 0.29, p = 0.009), parainfluenza virus (R = 0.31, p = 0.01) and adenovirus (R = 0.27, p = 0.02) were seen as well. Regular high-load exercise is associated with decrease in serum CC16 levels. Athletes with decreased CC16 are

  14. Modeling of the Nitric Oxide Transport in the Human Lungs.

    Science.gov (United States)

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  15. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs.

    Science.gov (United States)

    Lutchen, K R; Jackson, A C

    1990-05-01

    The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel

  16. Intoxication aiguë sévère par les pesticides organophosphorés: à propos de 28 cas

    Directory of Open Access Journals (Sweden)

    Ali Derkaoui

    2011-03-01

    une insuffisance respiratoire de mécanismes multiples: encombrement bronchique réalisant une véritable noyade interne, bronchoconstriction, paralysie des muscles respiratoires, œdème pulmonaire d’évolution gravissime

  17. Study of exon 12 polymorphism of the human thromboxane synthase (CYP5A1) gene in Egyptian stroke patients

    International Nuclear Information System (INIS)

    Soliman, S.E.T.; Zaater, M.K.

    2010-01-01

    Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed screening for the prevalence of exon12 polymorphism of the human Thromboxane synthase (CYP5A1) gene among Egyptian normal and stroke patients. Using sequence-specific PCR, we examined the allelic prevalence in 70 Egyptian patients with ischemic strokes and in 70 controls. In addition, we compared the CYP5A1 allelic prevalence in 30 patients with stroke recurrence despite Aspirin use, in comparison with patients who have not experienced recurrent stroke while taking Aspirin. The frequencies of the CYP5A1*9 mutant (substitution of guanine by adenine near the heme-binding catalytic domain) and of the wild-type allele were 0.197(19.7%) and 0.803 (80.3%) respectively; they did not differ significantly between stroke patients and controls. The CYP5A1*9 mutant was significantly more prevalent among stroke patients with history of previous cerebrovascular attacks; even after adjusting for the common risk factors for cardiovascular disease (odds ratio (OR)1.73, 95%, confidence interval ( CI) 1.10-2.73; p=0.017). Among stroke patients, the presence of the CYP5A1 wild type allele was more frequent among the hypertensives (OR 1.68, 95% CI, 1.01-2.79; p=0.045), and less frequent among the diabetics (OR 0.55, 95%, CI 0.36-0.84; p=0.006). Also among stroke patients, the CYP5A1*9 mutant was significantly more prevalent among those, who failed secondary Aspirin prophylaxis compared to those with successful secondary Aspirin prophylaxis (OR 1.49, 95%, CI 1.06-2.11). This study provides evidence for high prevalence of the CYP5A1*9 mutant

  18. Exploratory study comparing dysautonomia between asthmatic and non-asthmatic elite swimmers

    Directory of Open Access Journals (Sweden)

    M. Couto

    2015-01-01

    Full Text Available Background: Dysautonomia has been independently associated with training and exercise-induced bronchoconstriction. In addition, neurogenic airway inflammation was recently associated with swimmers-asthma. We aimed to assess the relation between autonomic nervous system and airway responsiveness of asthmatic elite swimmers. Methods: Twenty-seven elite swimmers, 11 of whom had asthma, were enrolled in this exploratory cross-sectional study. All performed spirometry with bronchodilation, skin prick tests and methacholine challenge according to the guidelines. Pupillometry was performed using PLR-200™ Pupillometer. One pupil light response curve for each eye was recorded and the mean values of pupil's maximal and minimal diameters, percentage of constriction, average and maximum constriction velocities (parasympathetic parameters, dilation velocity, and total time to recover 75% of the initial size (sympathetic parameters were used for analysis. Asthma was defined using IOC-MC criteria; subjects were divided into airway hyperesponsiveness (AHR severity according to methacholine PD20 in: no AHR, borderline, mild, moderate and severe AHR. Differences for pupillary parameters between groups and after categorization by AHR severity were assessed using SPSS 20.0 (p ≤ 0.05. In individuals with clinically relevant AHR, correlation between PD20 and pupillary parameters was investigated with Spearman's correlation test. Results: No statistically significant differences were observed between asthmatic and non-asthmatic swimmers regarding parasympathetic parameters. When stratified by AHR, maximal and minimal diameters and percentage of constriction were significantly lower among those with severe AHR. Among swimmers with clinically relevant AHR (n = 18, PD20 correlated with parasympathetic activity: maximal (r = 0.67, p = 0.002 and minimal diameters (r = 0.75, p < 0.001, percentage of constriction (r

  19. Acute Organophosphate Poisonings: Therapeutic Dilemmas and New Potential Therapeutic Agents

    International Nuclear Information System (INIS)

    Vucinic, S.; Jovanovic, D.; Vucinic, Z.; Todorovic, V.; Segrt, Z.

    2007-01-01

    It has been six decades since synthesis of organophosphates, but this chapter has not yet come to a closure. Toxic effects of organophosphates are well known and the current therapeutic scheme includes supportive therapy and antidotes. There is a dilemma on whether and when to apply gastric lavage and activated charcoal. According to Position Statement (by EAPCCT) it should be applied only if the patient presents within one hour of ingestion, with potentially lethal ingested dose. Atropine, a competitive antagonist of acetylcholine at m-receptors, which antagonizes bronchosecretion and bronchoconstriction, is the corner stone of acute organophosphate poisoning therapy. There were many attempts to find a more efficient drug, including glycopyrrolate which has been used even in clinical trials, but it still can not replace atropine. The only dilemma about atropine usage which still exists, concerns usage of high atropine dose and scheme of application. The most efficient atropinization is achieved with bolus doses of 1-2mg of atropine i.v push, with repeating the dose on each 5 minutes until signs of atropinization are registered. Diazepam, with its GABA stabilizing effect, reduces central nervous system damage and central respiratory weakness. Oximes reactivate phosphorylated acetylcholinesterase, which still has not gone ageing, reducing acetylcholine concentration and cholinergic crisis. These effects are clearly demonstrated in experimental conditions, but the clinical significance of oximes is still unclear and there are still those who question oxime therapy. For those who approve it, oxime dosage, duration of therapy, the choice of oxime for certain OP is still an open issue. We need new, more efficient antidotes, and those that are in use are only the small part of the therapy which could be used. Experimental studies show favorable therapeutic effect of many agents, but none of them has been introduced in standard treatment of OPI poisoning in the last 30

  20. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens - focus on cotton dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2015-01-01

    accumulation of platelets in pulmonary capillaries initiating an acute and chronic inflammation resulting in endothelial cell damage and extravasation of cells and fluids into the lung interstitium. These changes cause bronchoconstriction, the decrement of lung function expressed as reduction of forced expiratory volume in one second (FEV1) and/or diffusion capacity, increase in the airway hyperreactivity and subjective symptoms such as fever, airway irritation and chest tightness. The conclusions from these experiments, performed mostly 2-3 decades ago, did not loose their actuality until recently as so far no other cotton dust component was identified as a more important work-related hazard than bacterial endotoxin. Though also other microbial and plant constituents are considered as potential causative agents of byssinosis, the endotoxin produced by Pantoea agglomerans and other Gram-negative bacteria present in cotton dust is still regarded as a major cause of this mysterious disease.

  1. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    that cause accumulation of platelets in pulmonary capillaries initiating an acute and chronic inflammation resulting in endothelial cell damage and extravasation of cells and fluids into the lung interstitium. These changes cause bronchoconstriction, the decrement of lung function expressed as reduction of forced expiratory volume in one second (FEV1 and/or diffusion capacity, increase in the airway hyperreactivity and subjective symptoms such as fever, airway irritation and chest tightness. The conclusions from these experiments, performed mostly 2-3 decades ago, did not loose their actuality until recently as so far no other cotton dust component was identified as a more important work-related hazard than bacterial endotoxin. Though also other microbial and plant constituents are considered as potential causative agents of byssinosis, the endotoxin produced by Pantoea agglomerans and other Gram-negative bacteria present in cotton dust is still regarded as a major cause of this mysterious disease.

  2. Pantoea agglomerans : a marvelous bacterium of evil and good. Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    that cause accumulation of platelets in pulmonary capillaries initiating an acute and chronic inflammation resulting in endothelial cell damage and extravasation of cells and fluids into the lung interstitium. These changes cause bronchoconstriction, the decrement of lung function expressed as reduction of forced expiratory volume in one second (FEV1 and/or diffusion capacity, increase in the airway hyperreactivity and subjective symptoms such as fever, airway irritation and chest tightness. The conclusions from these experiments, performed mostly 2-3 decades ago, did not loose their actuality until recently as so far no other cotton dust component was identified as a more important work-related hazard than bacterial endotoxin. Though also other microbial and plant constituents are considered as potential causative agents of byssinosis, the endotoxin produced by Pantoea agglomerans and other Gram-negative bacteria present in cotton dust is still regarded as a major cause of this mysterious disease.

  3. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    Science.gov (United States)

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P

  4. Avaliação da hiperresponsividade brônquica à solução salina hipertônica em crianças e adolescentes Bronchial hyperresponsiveness to hypertonic saline challenge in children and adolescents

    Directory of Open Access Journals (Sweden)

    Paulo Kussek

    2006-06-01

    Full Text Available OBJETIVO: Avaliar a hiperresponsividade brônquica à solução salina hipertônica a 4,5% como método alternativo a outros agentes broncoconstritores e sua relação com a sensibilização alérgica do paciente. MÉTODOS: Estudo transversal, experimental, com 85 indivíduos assim distribuídos: 45 no grupo de asmáticos e 17 no grupo controle não asmáticos e não alérgicos, que completaram o teste. Para nebulizar a solução salina hipertônica foi utilizado um nebulizador ultra-sônico de grande volume, sucessivamente durante 0,5, 1, 2, 4 e 8 minutos até haver queda > 15% em relação ao volume expiratório forçado no primeiro segundo basal. A dosagem de imunoglobulina E específica ao Dermatophagoides pteronyssinus por ImmunoCap foi considerada positiva quando > 0,35 kU/L. RESULTADOS: No grupo de asmáticos, 36 apresentaram queda média do volume expiratório forçado no primeiro segundo de 27,4% após nebulização de solução salina hipertônica. Nenhum do grupo controle (imunoglobulina E OBJECTIVE: To assess airway hyperresponsiveness to 4.5% hypertonic saline solution in comparison to that obtained through challenge with other bronchoconstriction agents and in relation to patient allergic sensitization. METHODS: A cross-sectional, experimental study was conducted, initially involving 85 subjects. After exclusions, the final sample consisted of 62 patients, divided into two groups: a study group of those with asthma (n = 45 and a control group of those with no asthma or allergies (n = 17. Hypertonic saline was nebulized using an ultrasonic nebulizer and administered successively for 0.5, 1, 2, 4 and 8 minutes until a drop in forced expiratory volume in one second of = 15% was achieved in relation to the baseline value. The level of specific immunoglobulin E to Dermatophagoides pteronyssinus level was determined by ImmunoCAP assay and was considered positive when > 0.35 kU/L. RESULTS: In the 36 asthma group subjects presenting a

  5. O volume expiratório forçado no primeiro segundo não é suficiente para avaliar resposta broncodilatadora em doença pulmonar obstrutiva crônica Measuring forced expiratory volume in one second alone is not an accurate method of assessing response to bronchodilators in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Felícia de Moraes Branco Tavares

    2005-10-01

    , residual volume, airway resistance and specific airway conductance. METHODS: A total of 64 patients with chronic obstructive pulmonary disease were submitted to whole body plethysmography, and reversibility of bronchoconstriction after the administration 400 µg of fenoterol was quantified. RESULTS: A response in forced expiratory volume in one second was observed in 31% of the patients. Excluding patients presenting a response in forced expiratory volume in one second, 5% presented responses in 5 of the other 6 parameters, 10% presented responses in 4 parameters, 17.5% in 3 parameters, 27.5% in 2 parameters, and 25% in only 1 parameter. CONCLUSION: When included in the evaluation of bronchodilator response together with forced expiratory volume in one second, static lung volumes, airway resistance and airway conductance allowed a broader evaluation of those patients presenting a functional pharmacodynamic response. These results are in accordance with the observation that bronchodilator use provides clinical improvement and relief of dyspnea to many patients with chronic obstructive pulmonary disease, even to those in whom such treatment leads to no improvement in forced expiratory volume in one second.

  6. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    Science.gov (United States)

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2017-09-19

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE 4 ) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. To evaluate the efficacy and safety of oral PDE 4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. We included RCTs if they compared oral PDE 4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE 4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV 1 ) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27