WorldWideScience

Sample records for bromouracils

  1. Influence of bromouracil density labelling on viability of UV irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Brozmanova, J [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Influence of 5-bromouracil cultivation on cell viability and DNA synthesis in the Escherichia coli B/r thy/sup -/ trp/sup -/ Hcr/sup +/ and Escherichia coli C thy-321 strains was followed. It was found that a 120 min cultivation in the bromouracil medium (unirradiated cells) does not essentially influence the viability of the two investigated strains but has an inhibitory effect on DNA synthesis in cells of the E. coli B/r Hcr/sup +/ strain. However, cultivation with bromouracil after ultraviolet irradiation leads to a decreased surviving ability of the irradiated cells of both investigated strains. Repair of damage induced by ultraviolet radiation probably exhausts a considerable proportion of repair activity, so that additional injury produced by bromouracil cultivation cannot be liquidated immediately.

  2. Radiation damage in solid 5-halouracils. Electron spin resonance of single crystals of 5-bromouracil

    International Nuclear Information System (INIS)

    Oloff, H.; Huettermann, J.; Symons, M.C.R.

    1978-01-01

    Knowledge gained about halogen hyperfine interaction in radiation-induced free radicals formed at 300 K in a variety of 5-halouracil bases, together with the availability of crystal structure of 5-bromouracil aids in determination of the dominant radical structure. Details of its spectral parameters are presented, ESR spectra of single crystals of 5-bromouracil irradiated at 300K induce the presence of free radicals which indicate the loss of hydrogen from N 1 , confirming structure I as the dominant radical. The powder spectrum of 5-bromouracil measured after irradiation at 300K shows x features of radical I, but they appear superimposed by lines of another radical also involving bromine hyperfine interaction. These lines most probably belong to the hydrogen-addition radical II

  3. Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo.

    Science.gov (United States)

    Krasin, F; Hutchinson, F

    1978-01-01

    Supercircular gamma phage DNA with 10 bromouracils/100 thymine bases, irradiated with 313 nm light in Tris buffer and sedimented on alkaline and neutral gradients, showed 4.6 alkali-labile bonds per true single-strand break, in agreement with Hewitt and Marburger (1975 Photochem. Photobiol. 21:413). The same DNA irradiated in Escherichia coli host cells showed about the same number of breaks in alkaline gradients for equal fluence, but only 0.5 alkali-labile bond per true break. Similarly, E. coli DNA with bromouracil irradiated in the cells showed only 10--20% more breaks when denatured with 0.1 M NaOH than under neutral conditions with 9 M sodium perchlorate at 50 degrees C. These results show that true single-strand breaks occur more frequently than alkali-labile bonds after ultraviolet irradiation of DNA containing bromouracil in cells. PMID:367462

  4. Electron gain and electron loss radicals stabilized on the purine and pyrimidine of a cocrystal exhibiting base-base interstacking: ESR-ENDOR of X-irradiated adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.; Bernhard, W.A.

    1983-01-01

    The predominant free radicals trapped in cocrystals of adenosine:5-bromouracil X-irradiated at 12 0 K were identified by ESR-ENDOR spectroscopy and the radical reactions were followed upon annealing to 480 0 K. The dominant electron abstraction and electron addition products stabilized on the bases at 12 0 K are observed to be the bromouracil π-cation and the adenine π-cation and π-anion. The formation of an anion on bromouracil is inferred from the presence of a radical formed by deuterium addition to C 6 of bromouracil at higher temperatures. Above 40 0 K the bromouracil π-cation appears to decay by recombination and is reduced to undetectable levels at approx.170 0 K. Both adenine π-ions are also observed to decay within the same temperature range. Above 200 0 K hydrogen adducts are stabilized on the bases. Experiments using partially deuterated cocrystals indicate that the H-adducts are formed via both hydrogen addition and protonation of the respective anions. Two hydrogen abstraction radicals stabilized on the sugar residue are detectable at temperatures above 200 0 K, but these may be present at much lower temperatures. The results presented here question the generally accepted hypothesis that, in the presence of purine:pyrimidine stacking interactions, holes are predominantly transferred to the purines while electrns are predominantly transferred to the pyrimidines

  5. 5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy

    Science.gov (United States)

    Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.

    2018-04-01

    Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.

  6. The effect of chloramphenicol, actinomycin D and 5-bromouracil on the synthesis of photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    S. Ficek

    2015-01-01

    Full Text Available The present study concerned the effect of chloramphenicol (100 μg/ml, actinomycin D (30 μg/ml, and 5-bromouracil (190 μg/ml on the accumulation of chlorophyll α, chlorophyll b, β-carotene and four fractions of xanthophylls (with the domination of: lutein, zeaxanthin, violaxanthin and neoxanthin in the primary bean leaves. The pigment content was determined in etiolated leaves after exposure to light for different lengths of time. It results from this study that chloramphenicol inhibits β-carotene synthesis more than do other pigments. The formation of xanthophylls and chlorophyll b is relatively less sensitive to the action of this antibiotic. Actinomycin D is also a somewhat more effective inhibitor of the accumulation of β-carotene than other pigments. In 5-bromouracil-treated leaves the accumulation of all carotenoids is inhibited almost to the same extent. These results suggest that the accumulation of chlorophyll b and xanthophylls is a little less dependent upon the activity of 70 S ribosomes in chloroplasts than the accumulation of chlorophyll α and β-carotene.

  7. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11 to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli, and the maximum average migration distance was measured to be 5 to 6 base distances

  8. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Hydrated electrons, e/sub aq/, were shown to react with BU in BU-DNA with the resultant release of bromide with G(-BR - ) = 0.519 +- 0.062. OH radicals were half as reactive as e/sub aq/ toward producing bromide from BU-DNA. O 2 , which has been shown to transfer charge to BU in aqueous solution, did not transfer charge to BU-DNA. The CO 2 radical was shown to cause the release of bromide from BU-DNA at least as effectively as e/sub aq/. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11% to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli., and the maximum average migration distance was measured to be 5 to 6 base distances

  9. Effect of 5-bromouracil and 5-bromo-2-deoxyuridine in combination with 8-azaadenine on UV sensitivity of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, H.E. (Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Mikrobiologie und Experimentelle Therapie); Golovinsky, E. (Bylgarska Akademiya na Naukite, Sofia)

    1983-01-01

    The presence of 5-bromouracil (BU) as well as 5-bromo-2-deoxyuridine (BUdR) in the cultivation media of bacteria results in the distinct increase of UV sensitivity. With the nucleic acid base analogue 8-azaadenine (8-AA) a similar effect was confirmed, however, not so pronounced. The combined action of BU or BUdR and 8-AA on Escherichia coli, Proteus mirabilis, Bacillus subtilis and Bacillus cereus was investigated. The sensitization effect of BUdR does not increase if 8-AA is present additionally during cultivation. On the contrary, a decrease of sensibilization occurs. This may be caused by the protective effect of the adenine derivative against UV irradiation, if it is present in the cell, but not incorporated into the DNA.

  10. Effect of 5-bromouracil and 5-bromo-2-deoxyuridine in combination with 8-azaadenine on UV sensitivity of bacteria

    International Nuclear Information System (INIS)

    Jacob, H.E.; Golovinsky, E.

    1983-01-01

    The presence of 5-bromouracil (BU) as well as 5-bromo-2-deoxyuridine (BUdR) in the cultivation media of bacteria results in the distinct increase of UV sensitivity. With the nucleic acid base analogue 8-azaadenine (8-AA) a similar effect was confirmed, however, not so pronounced. The combined action of BU or BUdR and 8-AA on Escherichia coli, Proteus mirabilis, Bacillus subtilis and Bacillus cereus was investigated. The sensitization effect of BUdR does not increase if 8-AA is present additionally during cultivation. On the contrary, a decrease of sensibilization occurs. This may be caused by the protective effect of the adenine derivative against UV irradiation, if it is present in the cell, but not incorporated into the DNA. (author)

  11. Photolysis of 5-bromouracil and some related compounds in solution. Pt. 6

    International Nuclear Information System (INIS)

    Campbell, J.M.; Sonntag, C. von; Schulte-Frohlinde, D.

    1974-01-01

    The steady state photolysis of 5-bromouracil (BU) in aqueous solution has been studied as a function of wavelength, pH, temperature, and hydrogen-donor concentration. Under all conditions studied, the primary reaction is shown to be C-Br bond cleavage followed by abstraction from the hydrogen-donor to give uracil and HBr. At pH > 12 further products are formed. In deoxygenated aqueous solution at pH 6, 20 0 C, and 254 nm, the quantum yield of BU consumption, PHI (-BU), is 1.8 x 10 -3 independent of hydrogen-donor type or concentration (e.g. 3 x 10 -2 to 2 m MeOH). With increasing pH, PHI (-BU) increases stepwise to 0.012 at pH 10 and to 0.28 at pH 14. pK-values calculated from these data are the same as ground state pK values. The results have been explained in terms of a homolytic dissociation of the C-Br bond of the excited BU followed by recombination or H atom abstraction by the radicals. At high hydrogen-donor concentration H atom abstraction can compete with cage recombination. A comparison has been made between BU photolysis in organic, hydrogen-donor solvents and BU photolysis within the DNA of bacteria or phages. (orig./HK) [de

  12. Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA

    Science.gov (United States)

    Hashiya, Fumitaka; Saha, Abhijit; Kizaki, Seiichiro; Li, Yue; Sugiyama, Hiroshi

    2014-01-01

    In a previous study, we found that 2-deoxyribonolactone is effectively generated in the specific 5-bromouracil (BrU)-substituted sequence 5′-(G/C)[A]n = 1,2BrUBrU-3′ and proposed that a formed uracil-5-yl radical mainly abstracts the C1′ hydrogen from the 5′-side of BrUBrU under 302-nm irradiation condition. In the present work, we performed photoirradiation of BrU-substituted DNA in the presence of a hydrogen donor, tetrahydrofuran, to quench the uracil-5-yl radical to uracil and then subjected the sample to uracil DNA glycosylase digestion. Slab gel sequence analysis indicated that uracil residues were formed at the hot-spot sequence of 5′-(G/C)[A]n = 1,2BrUBrU-3′ in 302-nm irradiation of BrU-substituted DNA. Furthermore, we found that the uracil residue was also formed at the reverse sequence 5′-BrUBrU[A]n = 1,2(G/C)-3′, which suggests that both 5′-(G/C)[A]n = 1,2BrUBrU-3′ and 5′-BrUBrU[A]n = 1,2(G/C)-3′ are hot-spot sequences for the formation of the uracil-5-yl radical. PMID:25398904

  13. Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA?

    International Nuclear Information System (INIS)

    Nese, C.; Yuan, Z.; Schuchmann, M.N.; Sonntag, C. von

    1992-01-01

    Electron transfer to 5-bromouracil (5-BrU) from nucleobase (N) electron adducts (and their protonated forms) has been studied by product analysis and pulse radiolysis. When an electron is transferred to 5-BrU, the ensuing 5-BrU radical anion rapidly loses a bromide ion; the uracilyl radical thus formed reacts with added t-butanol, yielding uracil. From the uracil yields measured as the function of [N]/[5-BrU] after γ-radiolysis of Ar-saturated solutions it is concluded that thymine and adenine electron adducts and their heteroatom-protonated forms transfer electrons quantitatively to 5-BrU. The data raise the question whether in DNA the guanine moiety may act as the ultimate sink of the electron in competition with other processes such as protonation at C(6) of the thymine electron adduct. (Author)

  14. Photochemical coupling of 5-bromouracil to tryptophan, tyrosine and histidine, peptide-like derivatives in aqueous fluid solution

    International Nuclear Information System (INIS)

    Dietz, T.M.; Koch, T.H.

    1987-01-01

    Direct irradiation of 5-bromouracil (BU) in aqueous fluid solution in the presence of tryptophan (trp), tyrosine (tyr) or histidine (his) derivatives using a XeCl excimer laser at 308 nm yielded photocoupling of BU to the aromatic ring of each amino acid. Irradiation of BU at 308 nm most likely results in excitation of the n-π* transition, intersystem crossing to the triplet manifold, and coupling via electron transfer from the aromatic amino acid. The coupling observed was regiospecific between the 5-position of uracil (U) and the 2-position of the indole and phenol rings and the 5-position of the imidazole ring of the respective amino acids. Quantum yields of photocoupling to BU ranged from 1 x 10 -3 to 7 x 10 -3 and paralleled known rates of electron transfer and ionization potentials of the aromatic rings. The photocoupling between BU and some of the aromatic amino acid peptide-like derivatives possibly mimics photocrosslinking of BU-DNA to associated proteins, a potentially useful photoreaction for studying nucleic acid-protein interactions. Formation of crosslinks of the type proposed here might be detected by the characteristic fluorescence emission of the uracil amino acid adducts. (author)

  15. Effects of ionizing radiation in cocrystals of DNA model compounds: ESR-ENDOR studies of X-irradiated imidazole:barbital and adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.

    1982-01-01

    Electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques have been used to study radiation induced damage in cocrystalline complexes X-irradiated at 12 K. The study addresses the following questions: (1) whether radiation induced damage is stabilized preferentially on one of the components of the cocrystalline system; and (2) whether charge transfer occurs between purine and pyrimidine bases in hydrogen bonded or stacked configurations. The cocrystals used in this study are imidazole:5,5-diethylbarbituric acid (barbital) and adenosine:5-bromouracil (AR:BU). Results indicate that (1) preferential stability of radiation damage may be observed in a cocrystal even in the absence of stacking interactions; (2) in the presence of purine:pyrimidine stacking electron transfer may occur, but hole transfer is not likely to be the mechanism of redistribution of radiation damage in cocrystalline systems. The radiation chemistry of AR:BU is used as a model to predict the effects of ionizing radiation on DNA

  16. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  17. Effects of radiations on DNA and repair of the damage. Progress report, May 1, 1974--June 30, 1977

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1977-01-01

    Repair of DNA double-strand breaks produced by gamma rays takes place in E. coli. Such repair requires recA function and the presence of another DNA molecule of the same base sequence, so it may involve a recombination-like event. Ultraviolet light acting on DNA containing bromouracil produces doublestrand breaks by single photochemical events, and a simple model can explain this, as well as other results. Bromouracil mutagenesis of either E. coli or lambda phage does not involve the recA or red functions. Bromouracil mutagenesis is greatly increased in E. coli mutants such as uvrE, mutL, mutR and mutS, which are defective in mismatch repair. This, and other results, suggest that bromouracil mutagenesis occurs when cell enzymes fail to remove mismatched bases. Ultraviolet mutagenesis of lambda phage may be a useful model for the study of mutagenesis in cells, because the effects of lesions in the gene mutated (i.e. in the phage) and changes in enzyme systems (by treating the host cells) can be examined separately. Quantitative data support this approach

  18. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  19. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    Science.gov (United States)

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  20. Biophysical and biochemical studies of modification of damage to DNA

    International Nuclear Information System (INIS)

    Myers, L.S. Jr.; Warnick, A.

    1976-01-01

    Progress is reported on the following research projects: tests of a proposed chemical mechanism by which incorporated 5-bromouracil may sensitize DNA to ionizing radiation; a serologic determination of uridine in irradiatd BU-substituted DNA; and reactivity of aminothiol radioprotectants with hydrated electrons and hydroxyl radicals

  1. Ultraviolet irradiation of nucleic acids and related compounds. Final progress report

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-01-01

    Progress is reported on the following research projects: photohydration of pyrimidine derivatives; thymine dimerization; uv-induced formation of pyrimidinyl radicals; formation of a coupled product by irradiation of 5-bromouracil derivatives; studies on pyrimidine adducts; molecular aggregates-puddle formation hypothesis of pyrimidine photodimerization; and topochemical studies of structures of dimers and of crystalline arrangements

  2. Effects of radiations on DNA and repair of the damage. Progress report, May 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1977-01-01

    Last year's report that repair of DNA double-strand breaks from gamma rays occurs in E. coli was verified by additional experiments. Such repair requires recA function and the presence of another DNA molecule of the same base sequence, so it may involve a recombination-like event. Ultraviolet light acting on DNA containing bromouracil produces double-strand breaks by single photochemical events, and a single model can explain this as well as other results. Strains of E. coli which are unusually mutable by bromouracil--uvrE, mutL, mutR, mutS, are defective in mismatch repair. This strengthens the suggestion in last year's report that such mutagenesis occurs when enzymes responsible for the removal of mismatched bases are unable to remove all the mismatches. Ultraviolet mutagenesis of lambda phage may be a useful model for the study of mutagenesis in cells, because the effects of lesions in the gene mutated (i.e., in the phage) and changes in enzyme systems (by treating the host cells) can be examined separately. Quantitative data support this approach

  3. Prevention of 5-fluorouracil-caused growth inhibition in Sordaria fimicola.

    Science.gov (United States)

    Schoen, H F; Berech, J

    1977-02-01

    Growth (dry weight accumulation) of Sordaria fimicola in standing liquid culture (sucrose-nitrate-salts-vitamins) is inhibited by the presence of 5 muM 5-fluorouracil in the medium. This inhibition is completely prevented by uracil, deoxyuridine, and 5-bromouracil, partly prevented (40 to 90% of growth observed without 5-fluorouracil) by uridine, thymidine, and 5-bromodeoxyuridine, and slightly prevented by trifluorothymine, cytosine, cytidine, deoxycytidine, and 5-methylcytosine (all at 0.5 to 1 mM). Thymidine and thymine riboside were without any apparent effect. Growth is also inhibited by 0.2 mM 6-azauracil, and this inhibition was completely prevented by uracil and uridine, partly prevented by deoxyuridine, 5-bromouracil, cytidine, and 5-methylcytosine, and slightly prevented by thymine, thymidine, 5-bromodeoxyuridine, cytosine, and deoxycytidine. The data suggest that the observed inhibition of growth by 5-fluorouracil is due to inhibition of both ribonucleic acid and deoxyribonucleic acid synthesis. The data also allow inferences concerning pyrimidine interconversions in S. fimicola; i.e., thymine can be anabolized to thymidylic acid without first being demethylated, although demethylation appears to occur also.

  4. Effects of some inhibitors of protein synthesis on the chloroplast fine structure, CO2 fixation and the Hill reaction activity

    Directory of Open Access Journals (Sweden)

    S. Więckowski

    2015-01-01

    Full Text Available A comparative study concerning the effects of chloramphenicol (100 μg ml-1, actidione (10 μg ml-1, 5-bromouracil (190 μg ml-1, actinomycin D (30 μg ml-1 and DL-ethionine (800 μg ml-1 on the chloroplast fine structure, 14CO2 incorporation and the Hill reaction activity was the subject of the experiments presented in this paper. The experiments were conducted on bean seedlings under the conditions when chlorophyll accumulation was inhibited only partially. The results obtained indicate that chloromphenicol is responsible for the reduction of the number of grana per section of plastid and for the formation of numerous vesicles in the stroma. In the presence of actidione, actinomycin D or DL-ethionine the lamellae are poorly differentiated into .stroma and granum regions and there occur disturbances in the typical orientation of lamellae within chloroplasts. Only in the presence of 5-bromouracil the development of chloroplast structure resemble that in control plants. A comparison of the results obtained with those published earlier (Więckowski et al., 1974; Ficek and Więckowski, 1974 shows that such processes as assimilatory pigment accumulation, the rate of CO2 fixation, the Hill reaction activity, and the development of lamellar system are suppressed in a different extent by the inhibitors used.

  5. Genotoxic effects of 5-bromouracil on cytomorphological characters ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... treated with different concentrations of 5-BU. ... seedling survival, seedling height, pollen fertility, days to flowering, days to maturity, number of leaves ... medicinal plant belonging to the family Asteraceae, ... important for curing mouth, breast, and face cancer .... of pollen grains resulting from a mother cell.

  6. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil

    Czech Academy of Sciences Publication Activity Database

    Poštulka, J.; Slavíček, P.; Fedor, Juraj; Fárník, Michal; Kočišek, Jaroslav

    2017-01-01

    Roč. 121, č. 38 (2017), s. 8965-8974 ISSN 1520-6106 R&D Projects: GA ČR GJ16-10995Y; GA ČR(CZ) GA17-04068S Institutional support: RVO:61388955 Keywords : Aromatic compounds * Electrons * Energy transfer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  7. Effects of Auger cascades of bromine induced by K-shell photoionization on plasmid DNA, bacteriophages, E.coli and yeast cells

    International Nuclear Information System (INIS)

    Maezawa, Hiroshi; Ito, Takashi

    1988-01-01

    When bromouracil-labelled E.coli cells were irradiated with X-rays cells killing was enhanced above the absorption edge, 13.49 keV, by 8% as compared with 12.40 keV (below the edge) only in the presence of 7.8% DMSO. In the case of dried BrdU-labelled T1 phage, a larger (about 26%) enhancing effect was observed. This would partly be due to the incomplete suppression of radical mediated process in E.coli cells. Various degrees of energy-dependent enhancement observed in the different biological systems are discussed both from the induced number of Auger events and from the increased energy absorption due to the presence of Br atoms in the system. (author)

  8. Effects of radiations on DNA and repair of the damage. Progress report, February 1, 1974--February 28, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    A number of the factors involved in extracting very large DNA from E. coli cells were analyzed and experimental parameters determined for some of them. Based on these results, processes were developed whereby DNA comparable in size to the entire E. coli genomes was extracted and characterized by sedimentation on neutral sucrose gradients. Some measurements were made of the dependence of mutation in bacteriophage lambda on both phage and host cell genes specifying recombinational processes. For mutation of the phage both by ultraviolet light and the base analog bromouracil, the observed rate depends on the state of the red system in the phage. For mutation of lambda by ultraviolet light, the dependence on the rec system in the E. coli host cell, found previously by others, was confirmed. (U.S.)

  9. Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

    International Nuclear Information System (INIS)

    Kiritani, Reiko; Asano, Takeyoshi; Fujita, Shin-ichi; Dohmaru, Takaaki; Kawanishi, Tetsuro

    1986-01-01

    Syntheses of [5- 2 H]-, [6- 2 H]-uracil and [5- 2 H]-, [6- 2 H]-cytosine were investigated. The catalytic reaction of uracil or cytosine with 2 H 2 gas in alkaline media gave rise to [6- 2 H]-compounds almost exclusively. On the other hand, the reaction of 5-bromouracil or 5-bromocytosine with 2 H 2 gas gave rise to a mixture of [5- 2 H]-, [6- 2 H]- and [5- 2 H, 6- 2 H]-compounds depending on the experimental conditions. By controlling the temperature, the pressure of 2 H 2 gas and the amount of catalyst, [5- 2 H]-uracil and [5- 2 H]-cytosine were obtained. The isotopic distribution in each product was measured by 1 H NMR spectroscopy combined with an HPLC method. (author)

  10. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  11. Reaction of Br/sub 3/. /sup 2 -/ with 2-deoxy-D-ribose. A preferred attack at C-1

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B J; Schulte-Frohlinde, D; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-06-01

    In the photolysis of 5-bromouracil containing DNA Br atoms are expected intermediates. In order to evaluate the possible site of attack of the Br atom at the sugar moiety of DNA the reaction of 2-deoxy-D-Ribose with the Br atom (complexed with two bromide ions) was investigated. Hydroxyl radicals generated by the radiolysis of N/sub 2/O saturated aqueous solutions were converted into Br/sub 3/./sup 2 -/-radicals by 1 M bromide ions. Br/sub 3/./sup 2 -/-reacts with 2-deoxy-D-ribose (k = 3.7 x 10/sup 4/M/sup -1/s/sup -1/, pulse radiolysis). The major product is 2-deoxy-D-erythro-pentonic acid (G = 2.4, ..gamma..-radiolysis). It is formed by hydrogen abstraction from C-1 and oxidation of this radical by other radicals. An alternative route via the radical at C-2 is neglible. It follows that Br/sub 3/./sup 2 -/ reacts preferentially at C-1 of 2-deoxy-D-ribose.

  12. Experimental thermochemical study of fluoro-, chloro-, and bromo-derivatives of uracil

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Amaral, Luísa M.P.F.; Szterner, Piotr

    2012-01-01

    Highlights: ► Combustion calorimetry was used to determine Δ f H m ∘ (cr) of halo derivatives of uracil. ► Gas-phase Δ f H m ∘ of the studied compounds have been derived. ► The influence of the halogen atoms on the enthalpic stability of the halo-uracils is discussed. - Abstract: The values of the standard molar enthalpies of formation, of 5-fluorouracil, 5-chlorouracil, 5-bromouracil, and 6-chlorouracil, in the crystalline phase, at T = 298.15 K, were derived from the standard massic energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The combination of the derived values of the standard molar enthalpies of formation, in the crystalline phase, and the literature values of the standard molar enthalpies of sublimation, allowed the calculation of the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, which are interpreted in terms of the influence of the halogen atoms upon the enthalpic stability of the halogen derivatives of uracil.

  13. Induction of protein X in Escherichia coli

    International Nuclear Information System (INIS)

    Little, J.W.; Hanawalt, P.C.

    1977-01-01

    The authors have examined some of the treatments that might induce protein X and they have, in particular, tested the hypothesis that DNA degradation products play an essential role in the induction process. UV irradiation, nalidixic acid treatment, or thymine starvation result in protein X synthesis in wild type strains. However, UV irradiation, unlike nalidixic acid, also induced protein X in recB strains, in which little DNA degradation occurs. The presence of DNA fragments resulting from hostcontrolled restriction of phage lambda DNA did not affect protein X synthesis. It was concluded that no causal relationship exists bewteen the production of DNA fragments and induction of protein X. The presence of the plasmid R 46, which confers enhanced mutagenesis and UV resistance on its host, did not affect protein X synthesis. Growth in the presence of 5-bromouracil, which does not result in production of degradation fragments, resulted eventually in a low rate of protein X synthesis. In dnaA mutants, deficient in the initiation of new rounds of replication, UV irradiation induced protein X, again unlike nalidixic acid. Thus, the inhibition of active replication forks is not an essential requirement for protein X induction. (orig./MG) [de

  14. Radiation-induced electron migration in nucleic acids

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-01-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to non-random types of damage along DNA manifested distal to the sites of the initial energy deposition. Radiation-induced electron migration in nucleic acids has been examined using oligonucleotides containing 5-bromouracil (5-BrU). Interaction of 5-BrU with solvated electrons results in release of bromide ions and formation of uracil-5-yl radicals. Monitoring either bromide ion release or uracil formation provides an opportunity to study electron migration processes in model nucleic acid systems. Using this approach we have discovered that electron migration along oligonucleotides is significantly influenced by the base sequence and strandedness. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution, which compares with mean migration distances of 6-10 bp for Escherichia coli DNA irradiated in solution and 5.5 bp for E. coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along a double-stranded oligonucleotide containing a region of purine bases adjacent to the 5-BrU moiety. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation. (Author)

  15. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood

    International Nuclear Information System (INIS)

    Pero, R.W.; Johnson, D.; Olsson, A.

    1984-01-01

    The interference of platelets with the estimation of unscheduled DNA synthesis in human peripheral mononuclear leukocytes following genotoxic exposure was studied. A 96% reduction in the unscheduled DNA synthesis value was achieved by incubating [ 3 H]thymidine with platelet-rich plasma for 5 hr at 37 degrees. Using radioactive thymine-containing compounds, together with quantitative analyses based on thin-layer and ion-exchange chromatographies, we have shown that thymidine was converted to thymine which, in turn, was converted to dihydrothymine in platelet-rich plasma. The enzymes responsible were separated from platelet lysates by gel filtration and were identified as thymidine phosphorylase and dihydrothymine dehydrogenase. The phosphorylase reversibly catalyzed the formation of thymine from thymidine and converted bromodeoxyuridine to bromouracil. The dehydrogenase reversibly catalyzed the interconversion of thymine and dihydrothymine in a reaction dependent on NADP(H), and it was inhibited by diazouracil and by thymine. Nearly all the thymidine-catabolizing activity found in whole blood samples supplied exogenously with thymidine was accounted for by the platelets. Since most genetic toxicological tests that use blood samples do not involve removing platelets from the blood cell cultures, then it is concluded that precautions should be taken in the future to determine the influence of platelets on these test systems. This is particularly true for methods dependent on thymidine pulses such as unscheduled DNA synthesis, or those dependent on bromodeoxyuridine, such as sister chromatid exchanges, since this nucleoside is also a substrate for thymidine phosphorylase

  16. FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil

    Czech Academy of Sciences Publication Activity Database

    Rastogi, V.K.; Palafox, M. A.; Mittal, L.; Peica, N.; Keifer, W.; Lang, Kamil; Ojha, S.P.

    2007-01-01

    Roč. 38, č. 10 (2007), s. 1227-1241 ISSN 0377-0486 Institutional research plan: CEZ:AV0Z40320502 Keywords : FTIR and FT-Raman spectra * density functional computations * molecular geometry Subject RIV: CA - Inorganic Chemistry Impact factor: 3.514, year: 2007

  17. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches?

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    In this study, we have theoretically demonstrated the intrinsic ability of the wobble G·T(w)/G*·T*(w)/G·T(w1)/G·T(w2) and Watson-Crick-like G*·T(WC) DNA base mispairs to interconvert into each other via the DPT tautomerization. We have established that among all these transitions, only one single G·T(w) ↔ G*·T(WC) pathway is eligible from a biological perspective. It involves short-lived intermediate - the G·T*(WC) base mispair - and is governed by the planar, highly stable, and zwitterionic [Formula: see text] transition state stabilized by the participation of the unique pattern of the five intermolecular O6(+)H⋯O4(-), O6(+)H⋯N3(-), N1(+)H⋯N3(-), N1(+)H⋯O2(-), and N2(+)H⋯O2(-) H-bonds. This non-dissociative G·T(w) ↔ G*·T(WC) tautomerization occurs without opening of the pair: Bases within mispair remain connected by 14 different patterns of the specific intermolecular interactions that successively change each other along the IRC. Novel kinetically controlled mechanism of the thermodynamically non-equilibrium spontaneous point GT/TG incorporation errors has been suggested. The mutagenic effect of the analogues of the nucleotide bases, in particular 5-bromouracil, can be attributed to the decreasing of the barrier of the acquisition by the wobble pair containing these compounds of the enzymatically competent Watson-Crick's geometry via the intrapair mutagenic tautomerization directly in the essentially hydrophobic recognition pocket of the replication DNA-polymerase machinery. Proposed approaches are able to explain experimental data, namely growth of the rate of the spontaneous point incorporation errors during DNA biosynthesis with increasing temperature.