WorldWideScience

Sample records for bromates

  1. Removal of bromates from water

    Science.gov (United States)

    Barlokova, D.; Ilavsky, J.; Marko, I.; Tkacova, J.

    2017-10-01

    Bromates are substances that are usually not present in drinking water. They are obtained by ozone disinfection in the presence of bromine ions in water, as an impurity of sodium hypochlorite, respectively. Because of their specific properties, bromates are classified as vary dangers substances, that can cause serious illnesses in humans. There are several technological processes that have been used to the removal of bromates from water at present. In this article, the removal of the bromates from water by the adsorption using various sorbent materials (activated carbon, zeolite, Klinopur-Mn, Bayoxide E33, GEH, Read-As and Activated alumina) are presented. The effectiveness of selected sorbent materials in the removal of bromates from drinking water moves in the interval from 10 to 40%. Based on laboratory results, the zeolite can be used to reduce the concentration of bromates in water.

  2. 21 CFR 137.205 - Bromated whole wheat flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is added...

  3. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A Case of Cochlear Implantation in Bromate-Induced Bilateral Sudden Deafness.

    Science.gov (United States)

    Eom, Tae-Ho; Lee, Sungsu; Cho, Hyong-Ho; Cho, Yong-Beom

    2015-04-01

    Despite the well-established nature of bromate-induced ototoxicity, cochlear implantation after bromate intoxication has been rarely documented. We hereby present a case of a 51-year-old female deafened completely after bromate ingestion. Her hearing was not restored by systemic steroid treatment and hearing aids were of no use. A cochlear implantation was performed on her right ear 3 months after the bromate ingestion. In bromate intoxication cases, early monitoring of hearing level is necessary and other drugs with potential ototoxicity should be avoided. The outcome of cochlear implantation was excellent in this case of bromate-induced deafness.

  5. Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures

    Science.gov (United States)

    Janardhanan, S.; Kalidas, C.

    1984-06-01

    The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.

  6. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    Science.gov (United States)

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  7. Reduction of Bromate Formation During Ozonation of Drinking Water

    DEFF Research Database (Denmark)

    Antoniou, Maria; Sichel, C.; Andre, K.

    This study focused on the prevention of carcinogenic bromate formation during ozonation of tap water from the DTU university campus. To achieve this, different pre-treatments including pH-adjustment, ammonia addition and chlorine-ammonia addition, were tested. Formation of bromated was drastically...

  8. Molecular biomarkers of oxidative stress associated with bromate carcinogenicity

    International Nuclear Information System (INIS)

    Delker, Don; Hatch, Gary; Allen, James; Crissman, Bobby; George, Michael; Geter, David; Kilburn, Steve; Moore, Tanya; Nelson, Gail; Roop, Barbara; Slade, Ralph; Swank, Adam; Ward, William; DeAngelo, Anthony

    2006-01-01

    Potassium bromate (KBrO 3 ) is a chemical oxidizing agent found in drinking water as a disinfection byproduct of surface water ozonation. Chronic exposures to KBrO 3 cause renal cell tumors in rats, hamsters and mice and thyroid and testicular mesothelial tumors in rats. Experimental evidence indicates that bromate mediates toxicological effects via the induction of oxidative stress. To investigate the contribution of oxidative stress in KBrO 3 -induced cancer, male F344 rats were administered KBrO 3 in their drinking water at multiple concentrations for 2-100 weeks. Gene expression analyses were performed on kidney, thyroid and mesothelial cell RNA. Families of mRNA transcripts differentially expressed with respect to bromate treatment included multiple cancer, cell death, ion transport and oxidative stress genes. Multiple glutathione metabolism genes were up-regulated in kidney following carcinogenic (400 mg/L) but not non-carcinogenic (20 mg/L) bromate exposures. 8-Oxodeoxyguanosine glycosylase (Ogg1) mRNA was up-regulated in response to bromate treatment in kidney but not thyroid. A dramatic decrease in global gene expression changes was observed following 1 mg/L compared to 20 mg/L bromate exposures. In a separate study oxygen-18 ( 18 O) labeled KBrO 3 was administered to male rats by oral gavage and tissues were analyzed for 18 O deposition. Tissue enrichment of 18 O was observed at 5 and 24 h post-KBr 18 O 3 exposure with the highest enrichment occurring in the liver followed by the kidney, thyroid and testes. The kidney dose response observed was biphasic showing similar statistical increases in 18 O deposition between 0.25 and 50 mg/L (equivalent dose) KBr 18 O 3 followed by a much greater increase above 50 mg/L. These results suggest that carcinogenic doses of potassium bromate require attainment of a threshold at which oxidation of tissues occurs and that gene expression profiles may be predictive of these physiological changes in renal homeostasis

  9. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  10. Potassium bromate content of some baked breads sold in Kano ...

    African Journals Online (AJOL)

    Background: Potassium bromate is an additive used by some bakers to make the bread rise rapidly, create a good texture in the finished product and to give bulkiness to the dough. Objective: The main objective of this work was to assess the potassium bromate residues of some baked breads sold in some selected local ...

  11. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine.

    Science.gov (United States)

    Yang, Jingxin; Li, Ji; Dong, Wenyi; Ma, Jun; Yang, Yi; Li, Jiayin; Yang, Zhichao; Zhang, Xiaolei; Gu, Jia; Xie, Wanying; Cang, Yan

    2017-02-01

    This work investigated the fate of bromate formation during ozonation in the presence of hydroxylamine (HA). Results indicated that pH depression, as a commonly feasible control strategy for bromate formation during ozonation, unexpectedly enhanced the bromate formation during ozonation in the presence of HA. A dramatically high level of bromate was observed at acidic pH in the ozone/HA process. The scavenging experiments demonstrated the essential role of OH produced in the reaction of ozone with HA in bromate formation. In the process, OH mainly oxidizes bromide to Br, which is further oxidized by ozone and eventually converts to bromate. Further investigations suggested that the unexpected enhancement on bromate formation by pH depression can be mainly ascribed to the pH-dependent ozone decay, OH exposures and formation rate of Br. As pH decreased from 7 to 5, the reduced OH scavenging capacity of HA led to higher OH exposures, which contributed to the enhancement of bromate formation. As pH decreased from 5 to 3, the enhanced formation rate of Br largely augmented the formation of bromate. In addition, the ozone decay slowed down by pH depression provided more available ozone for the oxidation of the formed Br to bromate. The enhanced effect of pH depression on bromate formation was still observed in the real water samples in the ozone/HA process. Accordingly, pH depression might be avoided to control the bromate formation during ozonation in the presence of HA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fe(II)–Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate

    International Nuclear Information System (INIS)

    Zhong, Yu; Yang, Qi; Luo, Kun; Wu, Xiuqiong; Li, Xiaoming; Liu, Yang; Tang, Wangwang; Zeng, Guangming; Peng, Bo

    2013-01-01

    Highlights: ► Fe(II)–Al(III) LDHs were synthesized by ultrasound-assisted co-precipitation method. ► The Fe–Al (30 min) exhibited highly reduction reactivity on bromate. ► Pseudo-first-order model described the experimental data well. ► The mechanisms of bromate removal were proposed. -- Abstract: Bromate is recognized as an oxyhalide disinfection byproduct in drinking water. In this paper, Fe(II)–Al(III) layered double hydroxides (Fe–Al LDHs) prepared by the ultrasound-assisted co-precipitation method were used for the reduction of bromate in solution. The Fe–Al LDHs particles were characterized by X-ray diffractometer, scanning electron microscopy and thermogravimetry–differential scanning calorimetry. It was found that ultrasound irradiation assistance promoted the formation of the hydrotalcite-like phase and then improved the removal efficiency of bromate. In addition, the effects of solid-to-solution ratio, contact time, initial bromate concentration, initial pH, coexisting anions on the bromate removal were investigated. The results showed the bromate with an initial concentration of 1.56 μmol/L could be completely removed from solution by Fe–Al LDHs within 120 min. When the initial bromate concentration was 7.81 μmol/L, the Fe–Al LDHs with irradiation time of 30 min exhibited the optimum removal efficiency and the bromate removal capacity (q e ) was 6.80 μmol/g. In addition, the appearance of sulfate and production of bromide were observed simultaneously in this process, which suggested that ion-exchange between sulfate and bromate, and the reduction of bromate to bromide by Fe 2+ were the main mechanisms responsible for the bromate removal by Fe–Al LDHs

  13. Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes

    Directory of Open Access Journals (Sweden)

    Naoyuki Kishimoto

    2012-01-01

    Full Text Available Bromate formation characteristics of six-physicochemical oxidation processes, UV irradiation, single addition of hydrogen peroxide, ozonation, UV irradiation with hydrogen peroxide addition (UV/H2O2, ozonation with hydrogen peroxide addition (O3/H2O2, and ozonation with UV irradiation (O3/UV were investigated using 1.88 μM of potassium bromide solution with or without 6.4 μM of 4-chlorobenzoic acid. Bromate was not detected during UV irradiation, single addition of H2O2, and UV/H2O2, whereas ozone-based treatments produced . Hydroxyl radicals played more important role in bromate formation than molecular ozone. Acidification and addition of radical scavengers such as 4-chlorobenzoic acid were effective in inhibiting bromate formation during the ozone-based treatments because of inhibition of hydroxyl radical generation and consumption of hydroxyl radicals, respectively. The H2O2 addition was unable to decompose 4-chlorobenzoic acid, though O3/UV and O3/H2O2 showed the rapid degradation, and UV irradiation and UV/H2O2 showed the slow degradation. Consequently, if the concentration of organic contaminants is low, the UV irradiation and/or UV/H2O2 are applicable to organic contaminants removal without bromate formation. However, if the concentration of organic contaminants is high, O3/H2O2 and O3/UV should be discussed as advanced oxidation processes because of their high organic removal efficiency and low bromate formation potential at the optimum condition.

  14. Revisiting the Kinetics and Mechanism of Bromate-Bromide Reaction

    Directory of Open Access Journals (Sweden)

    Côrtes Carlos Eduardo S.

    2001-01-01

    Full Text Available The bromate-bromide reaction was investigated in an acidity range not studied yet. The reaction was followed at the Br2/Br3- isosbestic point (lambda = 446 nm. It was observed a first-order behavior for bromate and bromide ions and a second-order behavior for H+ ion that results in the rate law nu = k[BrO3-][Br- ][H+]². This rate law suggests a mechanism involving two successive protonation of bromate followed by the interaction of the intermediate species H2BrO3+ with bromide. These results disagree with the obtained by other authors who observed a second-order behavior for the bromide and first-order for H+, and have proposed intermediate species like H2Br2O3 and HBr2O3-. The second-order for [H+] observed in the range 0.005 <= [H+] <= 2.77 mol L-1 sets down that the pKa of bromic acid, HBrO3, must be lower than -0.5 (T = 25 °C, different from all other values for this pKa proposed in the literature.

  15. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xin; Yang, Qi; Wang, Dongbo; Yao, Fubing; Li, Xiaoming; Zhao, Jianwei; Xu, Qiuxiang; Zhang, Chang; Zeng, Guangming

    2016-01-01

    Graphical abstract: Main mechanism of simultaneous bromate and nitrate removal in the RBER. - Highlights: • Cathode of RBER was designed to automatically rotate. • Simultaneous bromate and nitrate removal was achieved by auto-hydrogenotrophic reduction. • The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h. • An electron transfer process and main reaction mechanism in RBER was explored. - Abstract: Simultaneous reduction of bromate and nitrate was investigated using a rotating biofilm-electrode reactor (RBER) with graphite carbon (GC) rods as anode and activated carbon fiber (ACF) bonded with steel ring as cathode. In RBER, the community of denitrifying bacteria immobilized on the cathode surface could completely utilize hydrogen (H 2 ) as the electron donor, which was internally produced by the electrolysis of water. The short-term test confirmed that the RBER system could reduce 150–800 μg/L bromate to below 10 μg/L under autotrophic conditions. The reduced bromate was considered to be roughly equivalent to the amount of bromide in effluent, indicating that bromate was completely reduced to bromide without accumulation of by-products. The long-term test (over 120 days) showed that the removal fluxes of bromate and nitrate could be improved by increasing the electric current and decreasing the hydraulic retention time (HRT). But nitrite in effluent was significantly accumulated when the electric current was beyond 10 mA and the HRT was less than 6 h. The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h when the electric current was 10 mA and HRT was 12 h. It was proposed that the electron transfer process in RBER produced H 2 on the surface of the ACF cathode, and the microbial cultures attached closely on the cathode which could completely utilize H 2 as electron donors for reduction of bromate and nitrate.

  16. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Advanced Water Management Centre, The University of Queensland, QLD 4072 (Australia); Yao, Fubing [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhao, Jianwei; Xu, Qiuxiang; Zhang, Chang; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-04-15

    Graphical abstract: Main mechanism of simultaneous bromate and nitrate removal in the RBER. - Highlights: • Cathode of RBER was designed to automatically rotate. • Simultaneous bromate and nitrate removal was achieved by auto-hydrogenotrophic reduction. • The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h. • An electron transfer process and main reaction mechanism in RBER was explored. - Abstract: Simultaneous reduction of bromate and nitrate was investigated using a rotating biofilm-electrode reactor (RBER) with graphite carbon (GC) rods as anode and activated carbon fiber (ACF) bonded with steel ring as cathode. In RBER, the community of denitrifying bacteria immobilized on the cathode surface could completely utilize hydrogen (H{sub 2}) as the electron donor, which was internally produced by the electrolysis of water. The short-term test confirmed that the RBER system could reduce 150–800 μg/L bromate to below 10 μg/L under autotrophic conditions. The reduced bromate was considered to be roughly equivalent to the amount of bromide in effluent, indicating that bromate was completely reduced to bromide without accumulation of by-products. The long-term test (over 120 days) showed that the removal fluxes of bromate and nitrate could be improved by increasing the electric current and decreasing the hydraulic retention time (HRT). But nitrite in effluent was significantly accumulated when the electric current was beyond 10 mA and the HRT was less than 6 h. The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h when the electric current was 10 mA and HRT was 12 h. It was proposed that the electron transfer process in RBER produced H{sub 2} on the surface of the ACF cathode, and the microbial cultures attached closely on the cathode which could completely utilize H{sub 2} as electron donors for reduction of bromate and nitrate.

  17. Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation.

    Science.gov (United States)

    Soltermann, Fabian; Abegglen, Christian; Götz, Christian; von Gunten, Urs

    2016-09-20

    Bromide measurements and mass balances in the catchments of major Swiss rivers revealed that chemical industry and municipal waste incinerators are the most important bromide sources and account for ∼50% and ∼20%, respectively, of the ∼2000 tons of bromide discharged in the Rhine river in 2014 in Switzerland. About 100 wastewater treatment plants (WWTPs) will upgrade their treatment for micropollutant abatement in the future to comply with Swiss regulations. An upgrade with ozonation may lead to unintended bromate formation in bromide-containing wastewaters. Measured bromide concentrations were industry). Wastewater ozonation formed little bromate at specific ozone doses of ≤0.4 mg O3/mg DOC, while the bromate yields were almost linearly correlated to the specific ozone dose for higher ozone doses. Molar bromate yields for typical specific ozone doses in wastewater treatment (0.4-0.6 mg O3/mg DOC) are ≤3%. In a modeled extreme scenario (in which all upgraded WWTPs release 10 μg L(-1) of bromate), bromate concentrations increased by major Swiss rivers and by several micrograms per liter in receiving water bodies with a high fraction of municipal wastewater.

  18. Preparation and properties of uranyl bromate monohydrate

    International Nuclear Information System (INIS)

    Weigel, F.

    1983-01-01

    Uranyl bromate monohydrate UO 2 (BrO 3 ) 2 .H 2 O was obtained as a greenish-yellow solid by the metathesis of a uranyl sulfate solution with a stoichiometric amount of barium bromate solution. On evaporation of the supernatant of the precipitated BaSO 4 a greenish-yellow syrup was obtained which, on dehydration with anhydrous carbon tetrachloride, yielded a free-flowing greenish-yellow powder with stoichiometry UO 2 (BrO 3 ) 2 .H 2 O. Powder diffraction diagrams of UO 2 (BrO 3 ) 2 .H 2 O obtained using the Guinier method yielded an orthorhombic lattice (space group, Pbcn (no. 60)) with a = 8.533 +- 0.003 A, b = 7.639 +- 0.003 A and c = 12.293 +- 0.004 A; the X-ray density was 4.507 g cm -3 . The compound was characterized by chemical analysis, IR spectroscopy and differential thermal analysis. (Auth.)

  19. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    Science.gov (United States)

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    DEFF Research Database (Denmark)

    Mines, Paul D.; Kaarsholm, Kamilla Marie Speht; Droumpali, Ariadni

    2017-01-01

    , trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster...... reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we...

  1. Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.

    Science.gov (United States)

    Himata, K; Noda, M; Ando, S; Yamada, Y

    2000-01-01

    This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method.

  2. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    J.A.O. Oyekunle

    2014-01-01

    Full Text Available Bread loaves randomly sampled from nine outlets and bakeries within Ile-Ife were analysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determination was carried out via spectrophotometric method while trace metals in the digested bread samples were profiled using Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the trace metal levels were of the order: 0.03–0.10 μg/g Co = 0.03–0.10 μg/g Pb < 0.23–0.46 μg/g Cu < 2.23–6.63 μg/g Zn < 25.83–75.53 μg/g Mn. This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples contained both essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.

  3. Acute Renal Failure following Accidental Potassium Bromate ...

    African Journals Online (AJOL)

    Accidental poisoning is common in children. Potassium bromate is a commonly used additive and raising agent in many edibles particularly bread, a staple food worldwide, yet its accidental poisoning has hitherto, not been documented in Nigeria. We report an unusual case of acute renal failure following accidental ...

  4. CONSUMER WILLINGNESS TO PAY FOR SAFETY LABELS IN NIGERIA: A CASE STUDY OF POTASSIUM BROMATE IN BREAD

    Directory of Open Access Journals (Sweden)

    O Oni

    2006-05-01

    Full Text Available The study analysed consumer willingness to pay for safety labels in Nigeria by a case study of potassium bromate in bread” in Benin City, Edo State. It specifi cally investigates factors that promote willingness to pay for label among consumers of bread in Benin City, Edo State. Data used for the study were obtained through a well-structured questionnaire from 200 respondents. Both descriptive analytical methods and probit regression models were used for the analysis. The study revealed that 73% of the respondents are in their active working age with 50 percent of the respondent being male and female respectively. 67 percent of the respondents are married with 55 percent having an average of 5 members per household. 99 percent of the respondents are educated i.e. they have the capability of being able to read and write. Respondents purchased bread mainly from hawkers (60% with about 60% of them being aware of the presence of bromate in bread. 40% of the consumers used labeling as a way of identifying bromate free bread. Other methods reported deal with differences in price of bread with same weight, aroma and taste. Result also revealed that 60% of the respondents got to know about the negative effect of bromate from news (both print and mass media. Econometric results show that variables like education, gender, income, prior knowledge of bromate and perception held by respondents of negative implications of bromate signifi cantly infl uence the willingness to pay for safety labels. Education, gender, income and prior knowledge of bromate positively infl uence the probability of consumers’ decision to pay for safety label, while price of bread and confi dence and perception held by respondents of negative implications of bromate on human health infl uence consumers willingness to pay more for safety labels. The study, thus, suggests a defi ned market for bread purchases, community based awareness programme and extension of National Agency

  5. Removal efficiency and economic cost comparison of hydrated electron-mediated reductive pathways for treatment of bromate

    DEFF Research Database (Denmark)

    Nawaz, Shah; Shah, Noor S.; Khan, Javed Ali

    2017-01-01

    Bromate, a potential carcinogen, is a well known highly persistent and environmentally recalcitrant contaminant. UV-254/sulfite-based advanced reductive pathways (ARPs) were proposed to eliminate bromate successfully from water. Experiments with N2, N2O, 2-chlorophenol, inorganic ions, and differ...

  6. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  7. The mutagenic potentials of potassium bromate and some ...

    African Journals Online (AJOL)

    Food additives are substances added to preserve flavour or improve the taste and appearance of food. The continuous consumption of these food additives could be hazardous to human health. Food additives including sodium bicarbonate, sodium benzoate, ammonium bicarbonate and potassium bromate were subjected ...

  8. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2013-01-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  9. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-09-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  10. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.

    Science.gov (United States)

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-09-15

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Etiology of bromate-induced cancer and possible modes of action-studies in Japan

    International Nuclear Information System (INIS)

    Umemura, Takashi; Kurokawa, Yuji

    2006-01-01

    Renal cell tumors were significantly increased in male and female rats given potassium bromate at 250 and 500 mg/L in drinking water. In at least one other study renal cell tumors were produced in male rats at 125 mg/L. Among male mice given 750 mg/L of potassium bromate, there were no significant differences in renal cell tumors between treated and control groups after 88 weeks on test. In oxidative DNA damage tests 8-oxodeoxyguanosine (8-oxodG also referred to as 8-OH-dG) was induced in DNA in the male rat kidney in 1 week, and in females after 3 weeks at 500 mg/L, and also in both male and female rats at 250 mg/L, but not at 125 mg/L. DNA adducts are considered to be an initial step in the carcinogenesis process, however, the administered doses are not always sufficient to cause mutations, possibly due to DNA repair. In the two-step rat renal carcinogenesis model using N-ethyl-N-hydroxyethylnitrosamine (EHEN) as initiator, promotion activity by potassium bromate was measured using the BrdU labeling index. The promoting activity of bromate in male rats was much greater and extended to doses as low as 60 mg/L in male rats, whereas in females the response was limited to 250 and 500 mg/L. Therefore, it was concluded that the mechanisms contributing to cancer in the male rat were more complex than in the female rat. The accumulation of α 2μ -globulin in the kidneys of male rats exposed to potassium bromate probably accounts for the greater labeling index in the male rat relative to the female rat. Accumulation of α 2μ -globulin as a result of treatment with chemicals is unique to the male rat and does contribute to carcinogenic responses. Neither humans nor female rats display this response. Nevertheless, bromate must be considered carcinogenic because of the response of the female rats. The better correlation between 8-oxodG formation and tumor response indicates that dose-response information from the female rat would be much more relevant to human risk

  12. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    Science.gov (United States)

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radiolysis of permanganate and its mixtures with bromate and nitrate ions in solution at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    γ-radiolysis of aqueous solutions of pure permanganate and its binary mixture with nitrite and bromate ions at pH 10 is studied as a function of concentration and dose. In pure system G(-MnO 4 - ) increases with the increase in initial concentration from 0.68 to a maximum of 25. The rise is sharp above 10 -2 M concentration which indicates the occurrence of a chain mechanism. In the presence of bromate or nitrite the G value decreases: the G(-MnO 4 - ) in 10 -3 M permanganate solution is 1.07, with 10 -1 M bromate it is 0.2 and with 10 -2 M nitrite it is 0.7. A mechanism based on the cometitive kinetics is envisaged to explain the observed results. (author)

  14. Photocatalytic Reduction Activity of 001  TiO2 Codoped with F and Fe under Visible Light for Bromate Removal

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available The presence of bromate in water is a well-known problem because of its toxic effects on human health, particularly its carcinogenic potential. Photocatalytic reduction is an attractive process for bromate removal. F- and Fe-codoped TiO2 (F-Fe-TiO2 with a {001} facet was successfully prepared, and its bromate-removal activity under visible light was examined. The microstructure, morphology, and chemical state of the doping elements and the optical property of the photocatalysts were examined using transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, electron paramagnetic resonance (EPR, photoluminescence spectroscopy (PLS, and UV-Vis diffuse reflectance spectra (DRS. The results indicate that the optical properties of F-Fe-TiO2 with the {001} facet and cuboid morphology were obviously improved and its photocatalytic activity was significantly enhanced. The bromate solution of 100 μg/L was thoroughly removed with 0.5 g/L dosage of 1.0% F- and 0.08% Fe-codoped TiO2 composite within 1 hour under visible light.

  15. KIDNEY TOXICOGENOMICS OF CHRONIC POTASSIUM BROMATE EXPOSURE IN F344 MALE RAT

    Science.gov (United States)

    Potassium bromate (KBrO3), used in both the food and cosmetics industry, and a drinking water disinfection by-product, is a nephrotoxic compound and rodent carcinogen. To gain insight into the carcinogenic mechanism of action and provide possible biomarkers of KBrO3 exposure, the...

  16. Surface studies on as-grown (111) faces of sodium bromate crystals

    Indian Academy of Sciences (India)

    Unknown

    facilitates to etch almost at the selective position. It consists of a small tube with pointed tip, after filling with ... the selective position by turning the socket. By pressing the tube gently the etchant is released drop by ... In the present study attention has also been focused to study the inclusions in the sodium bromate crystals. In.

  17. Toxicity of bromate to striped bass ichthyoplankton (Morone saxatilis) and juvenile spot (Leiostomus xanthurus).

    Science.gov (United States)

    Richardson, L B; Burton, D T; Rhoderick, J C

    1981-10-01

    Striped bass (Morone saxatillis) eggs (12 h after fertilization) and larvae (4 d after hatching) and juvenile spot (Leiostomus xanthurus) were exposed to a series of bromate concentrations for 4, 10, and 10 d, respectively, using static replacement bioassay techniques. Three-dimensional mortality response surfaces were constructed by computerized probit regression techniques. Newly hatched striped bass prolarvae were most sensitive to bromate and had a 96-h LC50 of 30.8 mg/l (as BrO3-). Four-day-old striped bass larvae were less sensitive, with 2- to 10-d LC50s ranging from 605.0 to 92.6 mg/l BrO3-, respectively. Juvenile spot were least sensitive, with 1- to 10-d LC50s ranging from 698.0 to 278.6 mg/l BrO3-, respectively.

  18. Effect of hydration on the annealing of chemical radiation damage in gamma-irradiated strontium bromate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Sahish, T.S.

    1991-01-01

    Rehydration of γ-irradiated anhydrous strontium bromate induces direct recovery of damage. The recovery process is unimolecular and the rehydrated salt is susceptible to thermal annealing. (author) 11 refs.; 2 figs

  19. Determination of trace vanadium using its catalytic effect on the oxidation of gallic acid by bromate

    International Nuclear Information System (INIS)

    Yamane, Takeshi; Fukasawa, Tsutomu

    1976-01-01

    The oxidation of gallic acid by bromate with trace vanadium as catalyst was followed spectrophotometrically by measurements of absorbance change at 420 nm. The reaction rate was obtained graphically from the absorbance vs. time curve in the range of about 15 to 40 min. reaction time. The reaction rate was proportional to the concentration of vanadium(V) in the range 0--120 ng (under the conditions of 5.3x10 -3 M gallic acid, 6.0x10 -3 M potassium bromate, pH 3.8) and 0--30 ng (1.1x10 -2 M gallic acid, 2.7x10 -2 M potassium bromate, pH 3.8). Using this relationship, the concentration of vanadium as low as 0.1 ng/ml can be determined. The relative standard deviations at 50 ng and 20 ng of vanadium were 3.5% (n=14) and 4.0% (n=10), respectively. Iron(III) interfered seriously even when present in 20 times the amounts of vanadium. Up to 60 times, W(VI), Mo(VI) and iodide did not interfere. Many of the other ions examined were found to have no effect or slight effect even when present in 1000 times the amounts of vanadium. Other factors affecting the reaction rate were also studied. (auth.)

  20. Mixed mode and sequential oscillations in the cerium-bromate-4-aminophenol photoreaction

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jeffrey G.; Wang Jichang [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2013-09-15

    Cerium was introduced to the bromate-aminophenol photochemical oscillator to implement coupled autocatalytic feedbacks. Mixed mode and sequential oscillations emerged in the studied system, making it one of the few chemical oscillators known to support consecutive bifurcations in a batch system. The complex reaction behavior showed a strong dependence on the intensity of illumination supplied to the system. Removal of illumination during an oscillatory window affected both the frequency and amplitude of the oscillation but did not fully extinguish them, indicating that the cerium-bromate-4-aminophenol oscillator was photosensitive rather than photo-controlled. A moderate light intensity allowed for a slow evolution of the system, which proved to be critical for the emergence of transient complex oscillations. Variation of individual reaction parameters was carried out, which indicated that the development of complex oscillations occur in a narrow region and a phase diagram in the 4-aminophenol and sulfuric acid plane demonstrated this. Simulations provide strong support that transient complex oscillations observed experimentally arise from the coupling of two autocatalytic cycles.

  1. Oscillatory bromate-oxalic acid-Ce-acetone-sulfuric acid reaction, in CSTR

    International Nuclear Information System (INIS)

    Pereira, Janaina A.M.; Faria, Roberto B.

    2004-01-01

    Periodic oscillations were observed for the first time, in a CSTR, in the system bromate-oxalic acid-Ce(IV)-acetone-sulfuric acid, in a CSTR. A reaction between Ce(IV) and acetone, until now not described in the literature and occurring before the addition of the reagents to the reactor, was identified as a decisive factor for the appearing of the regular oscillations. (author)

  2. KIDNEY TOXICOGENOMICS OF ACUTE SODIUM AND POTASSIUM BROMATE EXPOSURE IN F344 MALE RAT

    Science.gov (United States)

    Bromate, used in both the food and cosmetics industry, is a drinking water disinfection by-product that is nephrotoxic and carcinogenic to rodents. To gain insight into the carcinogenic mechanism of action, identify possible biomarkers of exposure, and determine if the cation, po...

  3. Lack of genotoxicity of potassium iodate in the alkaline comet assay and in the cytokinesis-block micronucleus test. Comparison to potassium bromate.

    Science.gov (United States)

    Poul, J M; Huet, S; Godard, T; Sanders, P

    2004-02-01

    Iodine could be added to the diet of human population in the form of iodide or iodate but iodate had not been adequately tested for genotoxicity and carcinogenicity. In the present study, genotoxic effects of potassium iodate were evaluated in vitro using the alkaline comet assay and the cytokinesis-block micronucleus assay on CHO cells and compared to halogenate salt analogues potassium bromate and chlorate and also to their respective reduced forms (potassium iodide, bromide and chloride). The results showed that the comet assay failed to detect the presence of DNA damage after a treatment of cells by potassium iodate for concentrations up to 10 mM. This absence of primary DNA damage was confirmed in the cytokinesis-block micronucleus assay. In the same way, results showed that potassium chlorate as well as potassium iodide, bromide and chloride did not induced DNA damage in the alkaline comet assay for doses up to 10 mM. By contrast, potassium bromate exposure led to an increase in both DNA damage and frequency of micronucleated cells. The repair of bromate-induced DNA damage was incomplete 24 h after the end of treatment. These results seem to indicate that potassium bromate would induce DNA damage by several mechanisms besides oxidative stress.

  4. Bromate reduction by iron(II) during managed aquifer recharge : A laboratory-scale study

    NARCIS (Netherlands)

    Wang, F.; Salgado Ismodes, V.A.; van der Hoek, J.P.; van Halem, D.

    2018-01-01

    The removal of bromate (BrO3 -) as a byproduct of ozonation in subsequent managed aquifer recharge (MAR) systems has so far gained little attention. This preliminary study with anoxic batch experiments was executed to explore the feasibility of chemical BrO3

  5. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    Science.gov (United States)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  6. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao

    2012-10-16

    Bromate (BrO3 -) in drinking water is traditionally seen as an ozonation byproduct from the oxidation of bromide (Br-), and its formation during chlorination is usually not significant. This study shows enhanced bromate formation during chlorination of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate concentrations were formed from a CuO-catalyzed hypohalite disproportionation pathway. For example, the chlorate concentration was 2.7 ± 0.2 μM (225.5 ± 16.7 μg L-1) after 90 min for HOCl (Co = 37 μM, 2.6 mg L-1 Cl2) in the presence of 0.2 g L-1 CuO at pH 7.6, and the bromate concentration was 6.6 ± 0.5 μM (844.8 ± 64 μg L -1) after 180 min for HOBr (Co = 35 μM) in the presence of 0.2 g L-1 CuO at pH 8.6. The maximum halate formation was at pHs 7.6 and 8.6 for HOCl or HOBr, respectively, which are close to their corresponding pKa values. In a HOCl-Br--CuO system, BrO3 - formation increases with increasing CuO doses and initial HOCl and Br- concentrations. A molar conversion (Br - to BrO3 -) of up to (90 ± 1)% could be achieved in the HOCl-Br--CuO system because of recycling of Br - to HOBr by HOCl, whereas the maximum BrO3 - yield in HOBr-CuO is only 26%. Bromate formation is initiated by the formation of a complex between CuO and HOBr/OBr-, which then reacts with HOBr to generate bromite. Bromite is further oxidized to BrO3 - by a second CuO-catalyzed process. These novel findings may have implications for bromate formation during chlorination of bromide-containing drinking waters in copper pipes. © 2012 American Chemical Society.

  7. Spectrophotometric determination of nitrite by its catalytic effect on the oxidation of congo red with bromate

    Directory of Open Access Journals (Sweden)

    Zenovia Moldovan

    2012-08-01

    Full Text Available A novel simple, sensitive and rapid kinetic-spectrophotometric method for the determination of trace amounts of nitrite is proposed. The method is based on its catalytic effect on the oxidation of congo red (CR by potassium bromate in acidic solution. The oxidation reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of CR at a suitable λmax = 570 nm for the first 10–40 s from the start of the reaction. Under the optimum experimental conditions (sulfuric acid, 0.3 M; CR, 0.75Χ10-4 M; potassium bromate, 5Χ10-4 M and 25 oC, nitrite can be determined in the range of 0.015–0.75 µg mL−1 with the detection limit of 0.006 µg mL−1. The relative standard deviation of five replicate determination of 0.25 µg mL−1 nitrite was 2.5%. The proposed method was applied satisfactorily to the determination of nitrite in spiked drinking water samples.DOI: http://dx.doi.org/10.4314/bcse.v26i2.1

  8. The influence of the combined effects of acute gamma-radiation, sodium bromate and sodium nitrate on lettuce (Lactuca sativa) seedling root growth

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Osipov, D. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation)

    2014-07-01

    Among special industrial reservoirs used for the storage of liquid radioactive waste of Mayak PA, Russia, one of the most radioactively contaminated is the R-17 reservoir, so-called 'Staroye Boloto' (the total β-activity of water ranged in the observation period from 0.4 MBq/l to 4.5 MBq/l, the total a-activity ranged from 43 to 420 Bq/l). Also this reservoir is characterized by high level of chemical contamination, in particular, the concentration of nitrates in water is 2.5-4,4 g/l, sodium bromate - up to 35 mg/l. One of the interesting questions is interaction of radiation and chemical contamination in their effect on living organisms in this reservoir. In laboratory experiments seeds of Lactuca sativa were used; the effect of the studied factor on the length of the sprout's root was estimated. To assess the effect of chemical toxicants the solutions of each salt in 7 different concentrations were used, distilled water was used as a control. For evaluation of acute effects of external gamma irradiation the seeds after exposure for 24 hours in distilled water, were irradiated at 7 different doses using gamma-unit on the basis of Cs-137 with the dose rate of 0.62 Gy/min. To assess the combined effects of acute external gamma irradiation, of nitrates and bromates, seeds after 24 hour exposure at each test concentration of the salts solutions were irradiated using gamma-unit. To calculate the effective concentrations or doses was used drc package for R software. To calculate the dose rate to aquatic organisms in the R-17 was used ERICA Assessment Tool 2012. It was found out that the EC50 of sodium nitrate for lettuce was 2.69 g/l, which is comparable to the concentration of nitrates in the 'Staroye Boloto'. This indicates that nitrate can have significant toxic effect on aquatic higher plants of the reservoir. The EC50 of sodium bromate was 14.6 mg/l. This is less than the maximum concentration of the substance in the R-17, which suggests

  9. Ion Chromatographic Method with Post-Column Fuchsin Reaction for Measurement of Bromate in Chlorinated Water

    Directory of Open Access Journals (Sweden)

    Homer C. Genuino

    2009-06-01

    Full Text Available An ion chromatographic method that employs a post-column reaction with fuchsin and spectrophotometric detection was optimized for measuring bromate (BrO3- in water. BrO3- is converted to Br2 by sodium metabisulfite and then reacted with acidic fuchsin to form a red-colored product that strongly absorbs at 530 nm. The reaction of BrO3- and fuchsin reagent is optimum at pH 3.5 and 65 oC. The method has a limit of quantitation of 4.5 µg L-1 and is linear up to 150 µg L-1 BrO3-. Recoveries from spiked samples were high ranging from 95 to 102 % using external standard calibration and 87 to 103 % using standard addition method. Intra-batch and inter-batch reproducibility studies of the method resulted to RSD values ranging from 0.62 to 2.01 % and percent relative error of 0.12 to 2.94 % for BrO3- concentrations of 10 µg L-1 and 50 µg L-1. This method is free of interferences from common inorganic anions at levels typically found in chlorinated tap drinking water without preconcentration. The optimized method can be applied to trace analysis of bromate in chlorinated tap drinking water samples.

  10. Rejection of Bromide and Bromate Ions by a Ceramic Membrane.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2012-12-01

    Effects of pH and the addition of calcium chloride (CaCl(2)) on bromate (BrO(3) (-)) and bromide (Br(-)) rejection by a ceramic membrane were investigated. Rejection of both ions increased with pH. At pH 8, the rejection of BrO(3) (-) and Br(-) was 68% and 63%, respectively. Donnan exclusion appears to play an important role in determining rejection of BrO(3) (-) and Br(-). In the presence of CaCl(2), rejection of BrO(3) (-) and Br(-) ions was greatly reduced, confirming the importance of electrostatic interactions in determining rejection of BrO(3) (-) and Br(-). The effect of Ca(2+) is so pronounced that in most natural waters, rejection of both BrO(3) (-) and Br(-) by the membrane would be extremely small.

  11. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; MamKhezri, Hussein; Hallaj, Rahman; Zandi, Shiva

    2007-01-01

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage (Γ) and charge transfer rate constant (k s ) of Fe(III)P immobilized on MWCNTs were 7.68 x 10 -9 mol cm -2 and 1.8 s -1 , respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO 3 - , IO 3 - and BrO 3 - in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10 3 , 7.4 x 10 3 and 4.8 x 10 2 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 μM, 2 μM to 1 mM, 8.4 nA/μM, 0.6 μM, 2 μM to 0.15 mM, 11 nA/μM, and 2.5 μM, 10 μM to 4 mM and 1.5 nA/μM, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical application of the Fe(III)P-MWCNTs-modified electrode as an amperometric sensor for chlorate, iodate and

  12. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center of University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); E-mail: absalimi@uok.ac.ir; MamKhezri, Hussein [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Zandi, Shiva [Laboratory of Biochemistry, Kurdistan Medical University, Sanandaj (Iran, Islamic Republic of)

    2007-06-10

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage ({gamma}) and charge transfer rate constant (k {sub s}) of Fe(III)P immobilized on MWCNTs were 7.68 x 10{sup -9} mol cm{sup -2} and 1.8 s{sup -1}, respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO{sub 3} {sup -}, IO{sub 3} {sup -} and BrO{sub 3} {sup -} in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10{sup 3}, 7.4 x 10{sup 3} and 4.8 x 10{sup 2} M{sup -1} s{sup -1}, respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 {mu}M, 2 {mu}M to 1 mM, 8.4 nA/{mu}M, 0.6 {mu}M, 2 {mu}M to 0.15 mM, 11 nA/{mu}M, and 2.5 {mu}M, 10 {mu}M to 4 mM and 1.5 nA/{mu}M, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical

  13. Highly sensitive spectrophotometric kinetic determination of vanadium by catalysis of the gallic acid-bromate reaction

    International Nuclear Information System (INIS)

    Fukasawa, Tsutomu; Kawakubo, Susumu; Yamanouchi, Tatsuo

    1985-01-01

    Conditions are described for improving the speed and sensitivity of this catalytic determination of vanadium. The reaction of 0.018 M gallic acid with 0.96 M sodium bromate at pH 3.8 and double-beam spectrophotometric measurement at 380 nm are recommended. The highest practical sensitivity at 22-30 0 C was ca. 40 pg for an absorbance change of 0.0005, 50 times better than previously. The detection limit was ca. 0.5 ng of vanadium. Reaction at 50 0 C gave even better sensitivity. (Auth.)

  14. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  15. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  17. Analysis of haloacetic acids, bromate, and dalapon in natural waters by ion chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Shimin; Anumol, Tarun; Gandhi, Jay; Snyder, Shane A

    2017-03-03

    The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reuse of sewage sludge as a catalyst in ozonation – Efficiency for the removal of oxalic acid and the control of bromate formation

    International Nuclear Information System (INIS)

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-01-01

    Highlights: ► Sewage sludge was converted into catalyst (SBC) and characterized. ► SBC can enhance oxalic acid degradation in ozonation. ► Surface reaction mechanism is responsible for enhancement of ozonation by SBC. ► SBC can control the formation of bromate in ozonation. ► Several combined reasons for the control of bromate formation are proposed. - Abstract: Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl 2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO 3 − ) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO 3 − formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO 3 − formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO 3 − formation was demonstrated and the reason for its control in the process of O 3 /SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase.

  19. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition.

    Science.gov (United States)

    Ben Saad, Hajer; Kharrat, Nadia; Driss, Dorra; Gargouri, Manel; Marrakchi, Rim; Jammoussi, Kamel; Magné, Christian; Boudawara, Tahia; Ellouz Chaabouni, Samia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-07-01

    Vanillin is known to possess important antioxidant activity. The current study was conducted to establish the therapeutic efficiency of vanillin against potassium bromate (KBrO 3 )-induced depression-like behavior and oxidative stress in mice. Mice were exposed during 15 days either to potassium bromate (KBrO 3 ), KBrO 3 + vanillin or to only vanillin. Our results revealed a significant modification in the fatty acid composition of the KBrO 3 -treated mice. In addition, KBrO 3 induced a significant reduction in enzymatic activities and gene expressions, Na +  -K +  and Mg 2+ -ATPases, acetylcholinesterase and butylcholinesterase activities. The gene expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 and COX 2 , significantly increased in the cerebrum of KBrO 3 -treated group. Histopathological observations were consistent with these effects. Co-treatment with vanillin significantly attenuated KBrO 3 -induced oxidative stress and inflammation. This work suggests that vanillin mitigates KBrO 3 -induced depression, and that this neuroprotective effect proceeds through anti-oxidant and anti-inflammatory activities.

  20. Determination of trace amount of formaldehyde base on a bromate-Malachite Green system.

    Science.gov (United States)

    Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Hu, Tao

    2015-01-25

    A novel catalytic kinetic spectrophotometric method for determination of trace amount of formaldehyde (FA) has been established, based on catalytic effect of trace amount of FA on the oxidation of Malachite Green (MG) by potassium bromate in presence of sulfuric acid medium, and was reported for the first time. The method was monitored by measuring the decrease in absorbance of MG at 617 nm and allowed a precise determination of FA in the range of 0.003-0.08 μg mL(-1), with a limit of detection down to 1 ng mL(-1). The relative standard deviation of 10 replicate measurements was 1.63%. The method developed was approved to be sensitive, selective and accurate, and adopted to determinate free FA in samples directly with good accuracy and reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood.

    Science.gov (United States)

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2016-03-01

    Potassium bromate (KBrO3 ) is widely used as a food-additive and is a major water disinfection by-product. KBrO3 causes severe toxicity in humans and experimental animals. Bromate is considered a probable human carcinogen and a complete carcinogen in animals. We have investigated the potential role of taurine in protecting against KBrO3 -induced oxidative stress in rat blood. Animals were given taurine for 5 days prior to KBrO3 and then sacrificed. Blood was collected and used to prepare hemolysates and plasma, which were then used for the analysis of several biochemical parameters. Administration of single oral dose of KBrO3 alone induced hepato- and nephro-toxicity as evident by elevated marker levels in plasma. Lipid peroxidation and protein oxidation were increased both in plasma and erythrocytes, suggesting the induction of oxidative stress. KBrO3 increased methemoglobin, nitric oxide, and hydrogen peroxide levels. It also altered the activities of the major antioxidant enzymes and lowered the antioxidant power of blood. Administration of taurine, prior to treatment with KBrO3 , resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. These results show that taurine is effective in mitigating the oxidative insult induced in rat blood by KBrO3 . © 2014 Wiley Periodicals, Inc.

  2. Chemoprotective Effect of Taurine on Potassium Bromate-Induced DNA Damage, DNA-Protein Cross-Linking and Oxidative Stress in Rat Intestine

    Science.gov (United States)

    Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Ali, Shaikh Nisar; Mahmood, Riaz

    2015-01-01

    Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. It induces multiple organ toxicity in humans and experimental animals and is a probable human carcinogen. The present study reports the protective effect of dietary antioxidant taurine on KBrO3-induced damage to the rat intestine. Animals were randomly divided into four groups: control, KBrO3 alone, taurine alone and taurine+ KBrO3. Administration of KBrO3 alone led to decrease in the activities of intestinal brush border membrane enzymes while those of antioxidant defence and carbohydrate metabolism were also severely altered. There was increase in DNA damage and DNA-protein cross-linking. Treatment with taurine, prior to administration of KBrO3, resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. Histological studies supported these biochemical results showing extensive intestinal damage in KBrO3-treated animals and greatly reduced tissue injury in the taurine+ KBrO3 group. These results show that taurine ameliorates bromate induced tissue toxicity and oxidative damage by improving the antioxidant defence, tissue integrity and energy metabolism. Taurine can, therefore, be potentially used as a therapeutic/protective agent against toxicity of KBrO3 and related compounds. PMID:25748174

  3. Behavior of sup(80m)Br in potassium bromate crystals

    International Nuclear Information System (INIS)

    Serrano G, J.

    1976-01-01

    A study was made about the chemical changes caused by isomeric transition of sup(80m)Br to sup(80)Br potassium bromate crystals marked with sup(80m)Br and the thermic annealing reactions of the isomeric transition products. Once the isomeric transition has been completed, transition associated with the emission of internal conversion electrons and Auger processes, the chemical analysis of the system which is being studied shows a change in the atom or ion due to the nuclear transformation. The described chemical changes can be reverted if the compound which contains the transformed atomic nucleus is heated before the chemical analysis is performed. Such a process was called annealing reaction and generally conduces to an increase of the retention considered as the percentage of radioactive atoms which reappear in the original chemical form after the nuclear transformation of a reliable technique which will permit the quantitative separation of the chemical fractions produced during the nuclear transformation of the metastable isomer, with the purpose to evaluate the percentage of the produced chemical change as well as the retention. The establishment of this technique was reached. (author)

  4. Supplementation of Nigella sativa fixed and essential oil mediates potassium bromate induced oxidative stress and multiple organ toxicity.

    Science.gov (United States)

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Ahmad, Rabia Shabeer; Pasha, Imran; Ahmad, Atif Nisar; Qayyum, Mir Muhammad Nasir

    2012-01-01

    The plants and their functional ingredients hold potential to cure various maladies and number of plants hold therapeutic potential. The present research was designed study the health promoting potential of black cumin (Nigella sativa) fixed oil (BCFO) and essential oil (BCEO) against oxidative stress with special reference to multiple organ toxicity. For the purpose, thirty rats (Strain: Sprague Dawley) were procured and divided into three groups (10 rats/group). The groups were fed on their respective diets i.e. D1 (control), D2 (BCFO @ 4.0%) and D3 (BCEO @ 0.30%) for a period of 56 days. Mild oxidative stress was induced with the help of potassium bromate injection @ 45 mg/Kg body weight. Furthermore, the levels of cardiac and liver enzymes were assayed. The results indicated that oxidative stress increased the activities of cardiac and liver enzymes. However, supplementation of BCFO and BCEO was effective in reducing the abnormal values of enzymes. Elevated levels of lactate dehydrogenase (LDH), CPK and CPK-MB were reduced from 456 to 231, 176 to 122 and 45 to 36mg/dL, respectively. Similarly, liver enzymes were also reduced. However, the results revealed that BCEO supplementation @ 0.30% is more effectual in ameliorating the multiple organ toxicity in oxidative stressed animal modelling. In the nutshell, it can be assumed that black cumin essential oil is more effective in reducing the extent of potassium bromate induced multiple organ toxicity (cardiac and liver enzymes imbalance) that will ultimately helpful in reducing the extent of myocardial and liver necrosis.

  5. Removal of bromide and bromate from drinking water using granular activated carbon.

    Science.gov (United States)

    Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua

    2015-03-01

    Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.

  6. Validação do método de determinação simultânea dos íons brometo e bromato por cromatografia iônica em águas de consumo humano Validation of simultaneous determination of bromides and bromates by ion chromatography in drinking water

    Directory of Open Access Journals (Sweden)

    Maria Edite Pinto Gonçalves

    2004-06-01

    Full Text Available European Directive (98/83/CE, compulsory after 2008, states that bromate in drinking water must be controlled at levels below 10 mg L-1. Supporting implementation of the Directive, the European Comission has established project SMT4-CT96 2134, in collaboration with various european institutions, aiming at the identification of the interferents to the current analytical method (Ionic Chromatography with Conductimetric Detection - IC/CD, their removal and the automation of pre-treatment and injection steps, as well as the development of alternative methods. EPAL, responsible for the water supply to a great deal of Portuguese regions, has taken steps to meet these requirements. Although not part of such project, this work (the result of a project conducted under a protocol of collaboration between EPAL SA and FCUL - Faculty of Sciences, University of Lisbon, reports on studies of usefulness to laboratories planning to monitor bromate in ozone treated waters, in conditions different from those described in EPA 300.1. Simultaneous determination of bromide is justified by its role as bromate precursor.

  7. Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis: diminution of oxidative stress.

    Science.gov (United States)

    Khan, Naghma; Sharma, Sonia; Sultana, Sarwat

    2003-04-01

    Potassium bromate (KBrO3) is a potent nephrotoxic agent. In this paper, we report the chemopreventive effect of Nigella sativa (black cumin) on KBrO3-mediated renal oxidative stress, toxicity and tumor promotion response in rats. KBrO3 (125 mg/kg body weight, intraperitoneally) enhances lipid peroxidation, gamma-glutamyl transpeptidase, hydrogen peroxide and xanthine oxidase with reduction in the activities of renal antioxidant enzymes and renal glutathione content. A marked increase in blood urea nitrogen and serum creatinine has also been observed. KBrO3 treatment also enhances ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into renal DNA. Prophylaxis of rats orally with Nigella sativa extract (50 mg/kg body weight and 100 mg/kg body weight) resulted in a significant decrease in renal microsomal lipid peroxidation (P stress, toxicity and tumour promotion response in rats.

  8. Impact of potassium bromate and potassium iodate in a pound cake system.

    Science.gov (United States)

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  9. Radiolysis of nitrite, bromate and permanganate ions and their binary mixtures in aqueous solutions at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    #betta#-radiolysis of pure systems viz. nitrite, bromate and permanganate and their binary mixtures (MNO 4- /NO 2- , MnO 4- /BrO 3- ) in aqueous solution at pH 10 is studied as a function of dose and concentration. In pure systems the G(NO 3- ), G(Br - ) and G(-MnO 4- ) increase with increasing concentration. The first two show an identical limiting value of approximately 0.5 while the last increases from 0.68 below 10 4 M and reaches 2.5 at 10 - 2 M concentration. Presence of 10 - 1 M BrO 3- or 10 - 2 M NO 2- reduces the G(-MnO 4- ) from 1.07 for the pure 10 - 3 M permanganate solution to 0.2 and 0.7 respectively. A mechanism based on the competitive kinetics is envisaged to explain the observed results. (author)

  10. Pb4(OH)4(BrO3)3(NO3): An Example of SHG Crystal in Metal Bromates Containing π-Conjugated Planar Triangle.

    Science.gov (United States)

    Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao

    2016-01-19

    The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.

  11. Bromate Removal from Water Using Doped Iron Nanoparticles on Multiwalled Carbon Nanotubes (CNTS

    Directory of Open Access Journals (Sweden)

    Aasem Zeino

    2014-01-01

    Full Text Available The raw carbon nanotubes (CNTs were prepared by the floating catalyst chemical vapor deposition method. The raw carbon nanotubes were functionalized, impregnated with iron nanoparticles, and characterized using high resolution transmission electron microscopy (HRTEM, scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, Differential Scanning Calorimetry (DSC, and thermogravimetric analysis (TGA. The three types of these multiwalled carbon nanotubes were applied as adsorbents for the removal of bromate from drinking water. The effects of the pH, the concentration of BrO3- anion, the adsorbent dose, the contact time, and the coanions on the adsorption process have been investigated. The results concluded that the highest adsorption capacities were 0.3460 and 0.3220 mg/g through using CNTs-Fe and raw CNTs, respectively, at the same conditions. The results showed that the CNTs-Fe gives higher adsorption capacity compared with the raw CNTs and the functionalized CNTs. The presence of nitrate (NO3- in the solution decreases the adsorption capacity of all CNTs compared with chloride (Cl- associated with pH adjustment caused by nitric acid or hydrochloric acid, respectively. However, the adsorption of all MWNCTs types increases as the pH of solution decreases.

  12. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with alpha-SiMo12O40(4-) and single walled carbon nanotubes: application to nanomolar detection of hydrogen peroxide and bromate.

    Science.gov (United States)

    Salimi, Abdollah; Korani, Aazam; Hallaj, Rahman; Khoshnavazi, Roshan; Hadadzadeh, Hasan

    2009-03-02

    A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)(2)]Br(2) was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, alpha-SiMo(12)O(40)(4-) and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/alpha-SiMo(12)O(40)(4-) electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/alpha-SiMo(12)O(40)(4-) modified electrodes shows excellent electrocatalytic activity toward reduction H(2)O(2) and BrO(3)(-) at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(+/-0.2)x10(3) M(-1) s(-1) and 3.0(+/-0.10)x10(3) M(-1) s(-1), respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM(-1), 10 nM-20 microM, 1 nM, 5.5 nA nM(-1) and 10 nM-18 microM, respectively.

  13. Treatment of Aqueous Bromate by Superparamagnetic BiOCl-Mediated Advanced Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu

    2017-05-01

    Full Text Available Bromate ( BrO 3 − contamination in drinking water is a growing concern. Advanced reduction processes (ARPs are reportedly promising in relieving this concern. In this work, UV/superparamagnetic BiOCl (BiOCl loaded onto superparamagnetic hydroxyapatite assisted with small molecule carboxylic acid (formate, citrate, and acetate, a carboxyl anion radical ( CO 2 • − -based ARP, was proposed to eliminate aqueous BrO 3 − . Formate and citrate were found to be ideal CO 2 • − precursor, and the latter was found to be safe for practical use. BrO 3 − (10 μg·L−1, WHO guideline for drinking water can be completely degraded within 3 min under oxygen-free conditions. In this process, BrO 3 − degradation was realized by the reduction of CO 2 • − (major role and formyloxyl radical (minor role in bulk solution. The formation mechanism of radicals and the transformation pathway of BrO 3 − were proposed based on data on electron paramagnetic resonance monitoring, competitive kinetics, and degradation product analysis. The process provided a sustainable decontamination performance (<5% deterioration for 10 cycles and appeared to be more resistant to common electron acceptors (O2, NO 3 − , and Fe3+ than hydrated electron based-ARPs. Phosphate based-superparamagnetic hydroxyapatite, used to support BiOCl in this work, was believed to be applicable for resolving the recycling problem of other metal-containing catalyst.

  14. Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Jaballi, Imen; Ghozzi, Hanen; Boudawara, Ons; Droguet, Michael; Magné, Christian; Nasri, Monsef; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2018-02-01

    The current study aimed to elucidate the effect of vanillin on behavioral changes, oxidative stress, and histopathological changes induced by potassium bromate (KBrO3), an environmental pollutant, in the cerebellum of adult mice. The animals were divided into four groups: group 1 served as a control, group 2 received KBrO3, group 3 received KBrO3 and vanillin, and group 4 received only vanillin. We then measured behavioral changes, oxidative stress, and molecular and histological changes in the cerebellum. We observed significant behavioral changes in KBrO3-exposed mice. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. These effects were accompanied by decreased Na+-K+ and Mg2+ ATPase activity and antioxidant enzyme gene expression when compared to the control group. Additionally, there was a significant increase in cytokine gene expression in KBrO3-treated mice. Microscopy revealed that KBrO3 intoxication resulted in numerous degenerative changes in the cerebellum that were substantially ameliorated by vanillin supplementation. Co-administration of vanillin blocked the biochemical and molecular anomalies induced by KBrO3. Our results demonstrate that vanillin is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Thionine-Bromate as a New Reaction System for Kinetic Spectrophotometric Determination of Hydrazine in Cooling Tower Water Samples

    Directory of Open Access Journals (Sweden)

    Masoud Reza Shishehbore

    2013-01-01

    Full Text Available A simple, selective, and inexpensive kinetic method was developed for the determination of hydrazine based on its inhibitory effect on the thionine-bromate system in sulfuric acid media. The reaction was monitored spectrophotometrically at 601 nm by a fixed time method. The effect of different parameters such as concentration of reactants, ionic strength, temperature, and time on the rate of reaction was investigated, and the optimum conditions were obtained. Under optimum conditions, the calibration curve was linear in the concentration range from 0.8–23.0 μg mL−1 of hydrazine, and the detection limit of the method was 0.22 μg mL−1. The relative standard deviation for five replicate determinations of 1.0 μg mL−1 of hydrazine was 0.74%. The potential of interfering effect of foreign species on the hydrazine determination was studied. The proposed method was successfully applied for the determination of hydrazine in different water samples.

  16. The catalytic kinetic method for the determination of trace formaldehyde (FA) base on a bromate-eosin Y system

    Science.gov (United States)

    Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Yang, Qiongqiong; Hu, Tao; Cai, Changqun

    A new simple and highly sensitive catalytic kinetic method for the determination of trace amount of FA in food sample has been established. The method was based on the catalytic effect of FA on the oxidation of eosin Y by potassium bromate in present of phosphoric acid. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of eosin Y at 518 nm. Under the optimized experimental conditions, the developed method allowed the determination of FA in the range of 0.03-0.6 μg mL-1 with a good precision, and the limit of detection was down to 0.00988 μg mL-1. The relative standard deviation of five replicate measurements for the determination of FA in concentration 0.12 μg mL-1 was 1.8%. The proposed method was successfully applied to the determination of FA in food directly and satisfactory results were obtained.

  17. Vanillin mitigates potassium bromate-induced molecular, biochemical and histopathological changes in the kidney of adult mice.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ellouz Chaabouni, Samia; Boudawara, Tahia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2016-05-25

    The present study aimed to explore the ability of vanillin to ameliorate the adverse effects induced by potassium bromate (KBrO3) in the renal tissue. Our results showed a significant increase in hydrogen peroxide, superoxide anion, malondialdehyde, advanced oxidation protein product and protein carbonyl levels in the kidney of KBrO3 treated mice, compared with the control group. Nephrotoxicity was evidenced by a decrease in plasma uric acid and kidney glutathione levels, Na(+)-K(+)-ATPase, lactate dehydrogenase and catalase activities. Additionally, creatinine and urea levels significantly increased in the plasma and declined in the urine. Also, Kidney glutathione peroxidase, superoxide dismutase, metallothionein (MT1 and MT2) mRNA expression remarkably increased. These modifications in biochemical and molecular values were substantiated by histopathological data. Co-treatment with vanillin restored these parameters to near control values. Interestingly, vanillin proved to possess, in vitro, a stronger scavenging radical activity than vitamin C and Trolox. Thus, vanillin inhibited KBrO3-induced damage via its antioxidant and antiradical activities as well as its capacity to protect genes expression and histopathological changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons.

    Science.gov (United States)

    Chen, Ho-Wen; Chuang, Yen Hsun; Hsu, Cheng-Feng; Huang, Winn-Jung

    2017-09-19

    This study was undertaken to investigate the adsorption kinetics and isotherms of bromate (BrO 3 - ) on bamboo charcoals that are activated with nitrogen and water vapor. Bamboo-based activated carbon (AC) was dipped in acid and oxidized in a mixture of potassium permanganate and sulfuric acid. Oxidation treatment considerably improved the physicochemical properties of AC, including purity, pore structure and surface nature, significantly enhancing BrO 3 - adsorption capacity. AC with many oxygenated groups and a high mesopore volume exhibited a particularly favorable tendency for BrO 3 - adsorption. Its adsorption of BrO 3 - is best fitted using Langmuir isotherm, and forms a monolayer. A kinetic investigation revealed that the adsorption of BrO 3 - by the ACs involved chemical sorption and was controlled by intra-particle diffusion. The competitive effects of natural organic matter (NOM) on AC were evaluated, and found to reduce the capacity of carbon to adsorb BrO 3 - . Residual dissolved ozone reacted with AC, reducing its capacity to absorb BrO 3 - . Proper dosing and staging of the ozonation processes can balance the ozone treatment efficiency, BrO 3 - formation, and the subsequent removal of BrO 3 - .

  19. The role of glutathione in DNA damage by potassium bromate in vitro.

    Science.gov (United States)

    Parsons, J L; Chipman, J K

    2000-07-01

    We have investigated the role of reduced glutathione (GSH) in the genetic toxicity of the rodent renal carcinogen potassium bromate (KBrO(3)). A statistically significant increase in the concentration of 8-oxodeoxyguanosine (8-oxodG) relative to deoxyguanosine was measured following incubation of calf thymus DNA with KBrO(3) and GSH or N-acetylcysteine (NACys). This was dependent on these thiols and was associated with the loss of GSH and production of oxidized glutathione. A short-lived (potassium chlorate (KClO(3)) or potassium iodate (KIO(3)) were used instead of KBrO(3), though GSH depletion also occurred with KIO(3), but not with KClO(3). Other reductants and thiols in combination with KBrO(3) did not cause a significant increase in DNA oxidation. DNA strand breakage was also induced by KBrO(3) in human white blood cells (5 mM) and rat kidney epithelial cells (NRK-52E, 1.5 mM). This was associated with an apparent small depletion of thiols in NRK-52E cells at 15 min and with an elevation of 8-oxodG at a delayed time of 24 h. Depletion of intra-cellular GSH by diethylmaleate in human lymphocytes decreased the amount of strand breakage induced by KBrO(3). Extracellular GSH, however, protected against DNA strand breakage by KBrO(3), possibly due to the inability of the reactive product to enter the cell. In contrast, membrane-permeant NACys enhanced KBrO(3)-induced DNA strand breakage in these cells. DNA damage by KBrO(3) is therefore largely dependent on access to intracellular GSH.

  20. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  1. Spectrophotometric determination of nitrite based on its catalytic effect on the reaction of nuclear fast red and potassium bromate

    Directory of Open Access Journals (Sweden)

    HASSAN ZAVVAR MOUSAVI

    2009-08-01

    Full Text Available A highly selective and sensitive catalytic spectrophotometric method was developed for the determination of nitrite in water samples. The method is based on its catalytic effect on the nuclear fast red–potassium bromate redox reaction in acidic medium. The reaction was followed spectrophotometrically by measuring the change in the absorbance at 518 nm of nuclear fast red 5 min after initiation of the reaction. In this study, the experimental parameters were optimized and the effects of other cations and anions on the determination of nitrite were examined. The calibration graph was linear in the range 2.0–45 µg mL-1 of nitrite. The relative standard deviations for the determination of 15 and 30 µg mL-1 of nitrite were 3.1 and 1.75 %, respectively (n = 8. The detection limit calculated from three times the standard deviation of the blank 3Sb was 0.7 µg mL-1. The method was successfully applied to the determination of nitrite in spiked tap, natural and wastewater samples.

  2. Bromate Reduction by Iron(II during Managed Aquifer Recharge: A Laboratory-Scale Study

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    2018-03-01

    Full Text Available The removal of bromate (BrO3− as a byproduct of ozonation in subsequent managed aquifer recharge (MAR systems has so far gained little attention. This preliminary study with anoxic batch experiments was executed to explore the feasibility of chemical BrO3− reduction in Fe-reducing zones of MAR systems and to estimate potential inhibition by NO3−. Results show that the reaction rate was affected by initial Fe2+/BrO3− ratios and by pH. The pH dropped significantly due to the hydrolysis of Fe3+ to hydrous ferric oxide (HFO flocs. These HFO flocs were found to adsorb Fe2+, especially at high Fe2+/BrO3− ratios, whereas at low Fe2+/BrO3− ratios, the mass sum loss of BrO3− and Br− indicated intermediate species formation. Under MAR conditions with relatively low BrO3− and Fe2+ concentrations, BrO3− can be reduced by naturally occurring Fe2+, as the extensive retention time in MAR systems will compensate for the slow reaction kinetics of low BrO3− and Fe2+ concentrations. Under specific flow conditions, Fe2+ and NO3− may co-occur during MAR, but NO3− hardly competes with BrO3−, since Fe2+ prefers BrO3− over NO3−. However, it was found that when NO3− concentration exceeds BrO3− concentration by multiple orders of magnitude, NO3− may slightly inhibit BrO3− reduction by Fe2+.

  3. The Development of a New Inhibition Kinetic Spectrophotometric Method for the Determination of Phenylhydrazine Based on its Inhibitory Effect on Oxidation of Methyl Red by Bromate in Micellar Medium

    Directory of Open Access Journals (Sweden)

    Mohsen Keyvanfard

    2010-01-01

    Full Text Available A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of trace amounts of phenylhydrazine over the range of 0.02-0.30 μg/mL. The method is based on the inhibitory effect of phenylhydrazine on the oxidation of methyl red by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl red at 518 nm with a fixed-time 0.5–2.0 min from initiation of the reaction..The relative standard deviation of 0.08 and 0.2 μg/mL phenylhydrazine was 1.7 and 2.4%, respectively. The method was applied to the determination of phenylhydrazine in water samples.

  4. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.

    Science.gov (United States)

    Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing

    2017-02-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO 3 - usually fall into three main categories: reducing bromide (Br - ) prior to formation of BrO 3 - , minimizing BrO 3 - formation during the ozonation process, and removing BrO 3 - from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO 3 - , have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.

  5. Multiple linear regression model for bromate formation based on the survey data of source waters from geographically different regions across China.

    Science.gov (United States)

    Yu, Jianwei; Liu, Juan; An, Wei; Wang, Yongjing; Zhang, Junzhi; Wei, Wei; Su, Ming; Yang, Min

    2015-01-01

    A total of 86 source water samples from 38 cities across major watersheds of China were collected for a bromide (Br(-)) survey, and the bromate (BrO3 (-)) formation potentials (BFPs) of 41 samples with Br(-) concentration >20 μg L(-1) were evaluated using a batch ozonation reactor. Statistical analyses indicated that higher alkalinity, hardness, and pH of water samples could lead to higher BFPs, with alkalinity as the most important factor. Based on the survey data, a multiple linear regression (MLR) model including three parameters (alkalinity, ozone dose, and total organic carbon (TOC)) was established with a relatively good prediction performance (model selection criterion = 2.01, R (2) = 0.724), using logarithmic transformation of the variables. Furthermore, a contour plot was used to interpret the influence of alkalinity and TOC on BrO3 (-) formation with prediction accuracy as high as 71 %, suggesting that these two parameters, apart from ozone dosage, were the most important ones affecting the BFPs of source waters with Br(-) concentration >20 μg L(-1). The model could be a useful tool for the prediction of the BFPs of source water.

  6. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  7. The Effect of Ozonation Process on Bromide-Containing Groundwaters in Bandung Area and Its Surroundings

    Directory of Open Access Journals (Sweden)

    Mindriany Syafila

    2012-11-01

    Full Text Available Disinfection process was applied as the last step of the water treatment to kill pathogenic bacteria in the water. However, according to several studies, the ozonation disinfection process could form undesired by-products. One of the by-products potentially affecting human life is bromate produced from bromide ionic-containing water. This study was carried out to examine the effect of raw water characteristics and pH on bromate formation. Also, the performance of bromate formation for a period of exposure time was analyzed. Raw waters taken from four different areas around Bandung were exposed to ozone introduced to a reactor with a flow rate of 2 L/min. The pH of the raw waters varied from 4, 7 to 10. The results show that there was no evidence of an initial bromide ion concentration, whereas a change in pH value gives a significantly different outcome. In acidic condition (pH of 4 the bromate formation tends to decrease, whereas when the pH value increases to a pH of 10, the bromate formation increases. Therefore, for drinking water with a neutral pH, when bromide ions are detected in the raw water, the drinking water may be toxic due to the presence of bromate.

  8. Altered hepatic mRNA expression of immune response-associated DNA damage in mice liver induced by potassium bromate: Protective role of vanillin.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ben Amara, Ibtissem; Boudawara, Ons; Boudawara, Tahia; Ellouz Chaabouni, Samia; Mounir Zeghal, Khaled; Hakim, Ahmed

    2016-12-01

    Chronic exposure to potassium bromate (KBrO 3 ), a toxic halogen existing widely in the environment, environment through contaminated drinking water, has become a global problem of public health. The present study investigates the protective role of vanillin against KBrO 3 induced oxidative stress, distruption in inflammatory cytokines expression, DNA damage, and histopathological changes. Adult mice were exposed orally to KBrO 3 (2g/L of drinking water) for 2 weeks The co-administration of vanillin to the KBrO 3 -treated mice significantly prevented the plasma transaminases increase in. Furthermore, it inhibited hepatic lipid peroxidation (malondialdehyde), advanced oxidation protein product (AOPP) and protein carbonyl (PCO) formation and attenuated the KBrO 3 -mediated depletion of enzymatic and non enzymatic antioxidants catalase, superoxide dismutase, and glutathione peroxidase activities and glutathione level in the liver. In addition, vanillin markedly attenuated the expression levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and COX2 and prevented KBrO 3 -induced hepatic cell alteration and necrosis, as indicated by histopathological data. DNA damage, as assessed by the alkaline comet assay, was also found to be low in the co-treated group. Thus, these findings show that vanillin acts as potent chemopreventive agent against KBrO 3 -mediated liver oxidative stress and genotoxicity through its antioxidant properties. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1796-1807, 2016. © 2015 Wiley Periodicals, Inc.

  9. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess bromate conditions. The reaction displays an induction period before formation of bromine. The stoichiometry of the reaction was determined to be 4:3: 4BrO3 ...

  10. Effective removal of bromate in nitrate-reducing anoxic zones during managed aquifer recharge for drinking water treatment: Laboratory-scale simulations.

    Science.gov (United States)

    Wang, Feifei; van Halem, Doris; Ding, Lei; Bai, Ying; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2018-03-01

    The removal of bromate (BrO 3 - ) as a by-product of ozonation in subsequent managed aquifer recharge (MAR) systems, specifically in anoxic nitrate (NO 3 - )-reducing zones, has so far gained little attention. In this study, batch reactors and columns were used to explore the influence of NO 3 - and increased assimilable organic carbon (AOC) due to ozonation pre-treatment on BrO 3 - removal in MAR systems. 8 m column experiments were carried out for 10 months to investigate BrO 3 - behavior in anoxic NO 3 - -reducing zones of MAR systems. Anoxic batch experiments showed that an increase of AOC promoted microbial activity and corresponding BrO 3 - removal. A drastic increase of BrO 3 - biodegradation was observed in the sudden absence of NO 3 - in both batch reactors and columns, indicating that BrO 3 - and NO 3 - competed for biodegradation by denitrifying bacteria and NO 3 - was preferred as an electron acceptor under the simultaneous presence of NO 3 - and BrO 3 - . However, within 75 days' absence of NO 3 - in the anoxic column, BrO 3 - removal gradually decreased, indicating that the presence of NO 3 - is a precondition for denitrifying bacteria to reduce BrO 3 - in NO 3 - -reducing anoxic zones. In the 8 m anoxic column set-up (retention time 6 days), the BrO 3 - removal achieved levels as low as 1.3 μg/L, starting at 60 μg/L (98% removal). Taken together, BrO 3 - removal is likely to occur in vicinity of NO 3 - -reducing anoxic zones, so MAR systems following ozonation are potentially effective to remove BrO 3 - . Copyright © 2017. Published by Elsevier Ltd.

  11. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao; Croue, Jean-Philippe

    2015-01-01

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  12. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism.

    Science.gov (United States)

    Li, Weiwei; Lu, Xiaowei; Xu, Ke; Qu, Jiuhui; Qiang, Zhimin

    2015-12-01

    The composite mesoporous sieve Ce-MCM-48 (cerium incorporated MCM-48) with different Si/Ce molar ratios were synthesized hydrothermally and characterized with X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area, and pHpzc. Results indicate that Ce-MCM-48, especially with a Si/Ce molar ratio of 66 (i.e., Ce66-MCM-48), could significantly inhibit bromate (BrO3(-)) formation during ozonation of Br(-)-containing water, achieving 91% of inhibition efficiency at pH 7.6 and 25 °C. An acidic or alkaline pH decreased the inhibition efficiency of Ce66-MCM-48 to some extent, but reaction temperature ranging from 15 to 30 °C had no significant impact. By comparing the bromine mass balance, aqueous O3 decomposition, and newly formed H2O2 between O3 and O3/Ce66-MCM-48 processes, the inhibition mechanism was proposed: Ce66-MCM-48 promoted aqueous O3 decomposition to generate hydroxyl radicals (OH) that could merge into H2O2, so the oxidative transformation of Br(-) and HOBr/OBr(-) by O3 and OH was primarily suppressed. The catalytic ability of Ce66-MCM-48 was continuously regenerated through the circulating reactions between Ce(III) and Ce(IV) occurring on the catalyst surface. Besides its inhibition on BrO3(-) formation, Ce66-MCM-48 could also enhance the degradation of refractory organic micropollutants. Because of these distinct merits, Ce66-MCM-48 has potential applications to water treatment by ozone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao

    2015-12-02

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  14. Selenium dioxide catalysed oxidation of acetic acid hydrazide by ...

    Indian Academy of Sciences (India)

    followed by its oxidation by diprotonated bromate in a slow step. ... for metal extraction, polymer stabilization and ion ... both oxidant and catalyst in various organic transfor- ... sodium bromate are stable solids and easily handled as ... pared by dissolving KBrO3 (BDH) in water and stan- ..... active species of the reductant.

  15. Micronucleus test of varying amounts of potassium bromate (KBrO3) on the meristematic cells of Allium cepa var. aggregatum root tips

    International Nuclear Information System (INIS)

    Cajigal Romnick, M.; Somera, Leomerto A.

    1999-03-01

    Four hundred twenty onion bulbs of the multiplier variety Allium cepa var. aggregatum were used as test materials to assay the micronucleus induction capacity of potassium bromate doses of 0, 5, 10, 25, 50, 75, and 100 parts per million. Microscopic analyses were done using onion root tips prepared according to a modified technique of Medina (1994). These analyses were done on root tips taken from onions grown in KBrO 3 for three days and for five days. The study was conducted following a completely randomized design and the data were statistically analyzed using a non-parametric equivalent of the analysis of variance. A significant amount of micronucleated cells (MCN) were found among treated onions compared with the almost non-occurrence in the control groups (0 ppm). The Kruskal-Wallis H-test and the Wilcoxon two-samples tests revealed significant differences among treatment means and that a significant increase in the number of MCN occurs as the dose of KBr0 3 increased in both day experiments. Results from the higher doses of 50, 75, and 100 ppm were found to be significantly the same for the day 3 experiments while those of the day 5 higher doses are characterized by lack of clear cellular and nuclear outline such that scoring is difficult. Differences in MCN averages for the day 3 and 5 experiments appear to be insignificant. However, day 3 results show averages that are more significantly different from each other. These prove that the MCN can be used as an efficient and time-saving parameter for the allium test of chemicals with chromosome breaking capacities. (Author)

  16. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  17. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    Collivignarelli, C.; Sorlini, S.; Riganti, V.

    2001-01-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step [it

  18. Micronucleus test of varying amounts of potassium bromate (KBrO{sub 3}) on the meristematic cells of Allium cepa var. aggregatum root tips

    Energy Technology Data Exchange (ETDEWEB)

    Cajigal Romnick, M; Somera, Leomerto A

    1999-03-01

    Four hundred twenty onion bulbs of the multiplier variety Allium cepa var. aggregatum were used as test materials to assay the micronucleus induction capacity of potassium bromate doses of 0, 5, 10, 25, 50, 75, and 100 parts per million. Microscopic analyses were done using onion root tips prepared according to a modified technique of Medina (1994). These analyses were done on root tips taken from onions grown in KBrO{sub 3} for three days and for five days. The study was conducted following a completely randomized design and the data were statistically analyzed using a non-parametric equivalent of the analysis of variance. A significant amount of micronucleated cells (MCN) were found among treated onions compared with the almost non-occurrence in the control groups (0 ppm). The Kruskal-Wallis H-test and the Wilcoxon two-samples tests revealed significant differences among treatment means and that a significant increase in the number of MCN occurs as the dose of KBr0{sub 3} increased in both day experiments. Results from the higher doses of 50, 75, and 100 ppm were found to be significantly the same for the day 3 experiments while those of the day 5 higher doses are characterized by lack of clear cellular and nuclear outline such that scoring is difficult. Differences in MCN averages for the day 3 and 5 experiments appear to be insignificant. However, day 3 results show averages that are more significantly different from each other. These prove that the MCN can be used as an efficient and time-saving parameter for the allium test of chemicals with chromosome breaking capacities. (Author)

  19. Direct injection ion chromatography for the control of chlorinated drinking water: simultaneous estimation of nine haloacetic acids and quantitation of bromate, chlorite and chlorate along with the major inorganic anions.

    Science.gov (United States)

    Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier

    2014-09-01

    Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed.

  20. Kinetic Investigations on Pd(II) Catalyzed Oxidation of Some Amino ...

    African Journals Online (AJOL)

    Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl-threonine by acidic solution of potassium bromate in the presence of mercuric acetate, as a scavenger have been made in the temperature range of 30–45°C. The rate shows zero order kinetics in bromate [BrO3‾] and order of reaction is one with respect ...

  1. Evaluation of repeated dose micronucleus assays of the liver and gastrointestinal tract using potassium bromate: a report of the collaborative study by CSGMT/JEMS.MMS.

    Science.gov (United States)

    Okada, Emiko; Fujiishi, Yohei; Narumi, Kazunori; Kado, Shoichi; Wako, Yumi; Kawasako, Kazufumi; Kaneko, Kimiyuki; Ohyama, Wakako

    2015-03-01

    The food additive potassium bromate (KBrO3) is known as a renal carcinogen and causes chromosomal aberrations in vitro without metabolic activation and in vivo in hematopoietic and renal cells. As a part of a collaborative study by the Mammalian Mutagenicity Study group, which is a subgroup of the Japanese Environmental Mutagen Society, we administered KBrO3 to rats orally for 4, 14, and 28 days and examined the micronucleated (MNed) cell frequency in the liver, glandular stomach, colon, and bone marrow to confirm whether the genotoxic carcinogen targeting other than liver and gastrointestinal (GI) tract was detected by the repeated dose liver and GI tract micronucleus (MN) assays. In our study, animals treated with KBrO3 showed some signs of toxicity in the kidney and/or stomach. KBrO3 did not increase the frequency of MNed cells in the liver and colon in any of the repeated dose studies. However, KBrO3 increased the frequency of MNed cells in the glandular stomach and bone marrow. Additionally, the MNed cell frequency in the glandular stomach was not significantly affected by the difference in the length of the administration period. These results suggest that performing the MN assay using the glandular stomach, which is the first tissue to contact agents after oral ingestion, is useful for evaluating the genotoxic potential of chemicals and that the glandular stomach MN assay could be integrated into general toxicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Possible participation of oxidative stress in causation of cell proliferation and in vivo mutagenicity in kidneys of gpt delta rats treated with potassium bromate

    International Nuclear Information System (INIS)

    Umemura, Takashi; Tasaki, Masako; Kijima, Aki; Okamura, Toshiya; Inoue, Tomoki; Ishii, Yuji; Suzuki, Yuta; Masui, Norio; Nohmi, Takehiko; Nishikawa, Akiyoshi

    2009-01-01

    Clarifying the participation of oxidative stress among possible contributing factors in potassium bromate (KBrO 3 )-induced carcinogenesis is of importance from the perspective of human health protection. In the present study, utilizing the antioxidative effects of α-tocopherol (α-TP) or sodium ascorbic acid (SAA) to attenuate oxidative stress, alterations in bromodeoxyuridine labeling indices (BrdU-LIs) and reporter gene mutations in kidneys of male and female gpt delta rats given KBrO 3 were examined. Five male and female gpt delta rats in each group were given KBrO 3 at a concentration of 500 ppm in the drinking water for 9 weeks, with 1% of α-TP or SAA administered in the diet from 1 week prior to the KBrO 3 treatment until the end of the experiment. Increases in 8-hydroxydeoxyguanosine levels in kidney DNA of both sexes of rats given KBrO 3 were significantly inhibited by SAA, but not α-TP. While BrdU-LIs in the proximal tubules of female rats were also significantly reduced by SAA, those in the males and gpt mutant frequencies in kidney DNA of both sexes were not affected by SAA or α-TP. Immunohistochemical and Western blot analyses for α 2u -globulin strongly suggested that induction of cell proliferation observed in the males might primarily result from accumulation of this protein, independent of oxidative stress. The overall data indicated that while oxidative stress well correlates with induction of cell proliferation in females, its role in males and in generation of in vivo mutagenicity by KBrO 3 in both sexes is limited

  3. Process for the impromptu preparation of a radio-iodine-labelled injectable fatty acid and the preparation of iodinated derivatives suitable for the application of this process

    International Nuclear Information System (INIS)

    Bardy, Andre; Comet, Michel; Coornaert, Sabine; Mathieu, J.P.; Riche, Francoise; Vidal, Michel.

    1983-01-01

    The radioiodine-labelled fatty acid is prepared by reaction of a fatty acid, bromated or iodinated in the #betta# position, with an aqueous solution of radioactive iodide at pH 7 in the presence of carrier iodide. The labelled product obtained is suspended in a buffer solution at pH 9 then dissolved in human serum albumin for injection purposes. The iodinated derivatives used as starting products may be obtained by condensation of a bromated fatty acid and an acetylene alcohol [fr

  4. Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography-mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment.

    Science.gov (United States)

    Khan, Mohammad Rizwan; Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Busquets, Rosa; Naushad, Mu

    2016-05-15

    A rapid, sensitive and precise method for the determination of bromate (BrO3(-)), nitrate (NO3(-)) and nitrite (NO2(-)) in drinking water was developed with Ultra performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI/MS). The elution of BrO3(-), NO3(-) and NO2(-) was attained in less than two minutes in a reverse phase column. Quality parameters of the method were established; run-to-run and day-to-day precisions were water from Saudi Arabia (Jeddah, Dammam and Riyadh areas) and commercial bottled water (from well or unknown source) after mere filtration steps. The quantified levels of NO3(-) were not found to pose a risk. In contrast, BrO3(-) was found above the maximum contaminant level established by the US Environmental Protection Agency in 25% and 33% of the bottled and metropolitan waters, respectively. NO2(-) was found at higher concentrations than the aforementioned limits in 70% and 92% of the bottled and metropolitan water samples, respectively. Therefore, remediation measures or improvements in the disinfection treatments are required. The concentrations of BrO3(-), NO3(-) and NO2(-) were mapped with Principal Component analysis (PCA), which differentiated metropolitan water from bottled water through the concentrations of BrO3(-) and NO3(-) mainly. Furthermore, it was possible to discriminate between well water; blend of well water and desalinated water; and desalinated water. The point or source (region) was found to not be distinctive. Copyright © 2016. Published by Elsevier B.V.

  5. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: Application to nanomolar detection of bromate, periodate and iodate

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Kavosi, Begard; Babaei, Ali; Hallaj, Rahman

    2008-01-01

    A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl 2 ).ClO 4 , irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (k s ) of the immobilized Os-complex on SWCNTs were 3.07 x 10 -9 mol cm -2 , 5.5 (±0.2) s -1 , 2.94 x 10 -9 mol cm -2 , 7.3 (±0.3) s -1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO 3 - , IO 3 - and IO 4 - in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) x 10 3 , 7.32 (±0.2) x 10 3 and 1.75 (±0.2) x 10 3 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor

  6. Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors

    Science.gov (United States)

    This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.

  7. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats.

    Science.gov (United States)

    Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2012-11-27

    Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.

  8. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats

    Directory of Open Access Journals (Sweden)

    Khan Rahmat Ali

    2012-11-01

    Full Text Available Abstract Background Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE against potassium bromate-induced reproductive stress in male rats. Methods 20 mg/kg body weight (b.w. potassium bromate (KBrO3 was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC was used for determination of bioactive constituents responsible. Results The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT, peroxidase (POD, superoxide dismutase (SOD and phase II metabolizing enzymes viz; glutathione reductase (GSR, glutathione peroxidase (GSHpx, glutathione-S-tansase (GST and reduced glutathione (GSH was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Conclusion Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.

  9. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas

    2013-01-01

    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  10. Download this PDF file

    African Journals Online (AJOL)

    Joshua Konne

    initial metal concentration and contact time on the removal processes was investigated. The results ... metal works and jetties, waste water from industries such as .... The reaction proceeded according to the ..... potassium bromate and some.

  11. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  12. Enzyme Activities and Histopathology of Selected Tissues in Rats ...

    African Journals Online (AJOL)

    Olaleye

    histology are indications of adverse effect of potassium bromate on the cells which might be ... oxidation of polyunsaturated fatty acids on the ordered lipid bilayer of cell membranes. ..... World Health Organization (WHO) (1996). Guidelines for ...

  13. An overview of South Africa's first proficiency testing scheme

    African Journals Online (AJOL)

    either looking at selected organic contaminants listed in the World Health Organisation (WHO) drinking water guidelines or .... Group 1: metals testing (Al, As, Ba, Be, B, Cd, Cr, Co, Cu, ... tests: nitrite, chromium VI, chlorine, chloramine, bromate,.

  14. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  15. Fabrication, electrochemical and catalytic properties of the nanocomposites composed of phosphomolybdic acid and viologen-functionalized multi-walled carbon nanotubes

    Science.gov (United States)

    Liu, Jiang; Wang, Jing; Chen, Meng; Qian, Dong-Jin

    2017-08-01

    Electroactive nanocomposites composed of phosphomolybdic acid (PMA) and viologen-functionalized carbon nanotubes were synthesized and used as heterogeneous catalysts for the electrocatalytic reduction of bromate. Viologen (V) was first covalently anchored on the surface of multi-walled carbon nanotubes (MWNTs) to produce positively charged MWNT-V polyelectrolyte, which was then combined with PMA through electrostatic interaction to form MWNT-V@PMA nanocomposites. Thermogravimetric analysis revealed that the organic species in the MWNT-V polyelectrolyte was about 30% in weight. Composition, structure, and morphology of the nanocomposites were investigated by using UV-vis, infrared, Raman and X-ray photoelectron spectroscopy as well as field emission transition electron microscope. The thickness of organic substituents, viologen, and PMA in the nanocomposites was approximately 10 nm covered on the surface of MWNTs. Cyclic voltammogram measurements for the casting films of MWNT-V@PMA nanocomposites revealed four couples of redox waves with cathodic potentials at about -0.56, -0.19, 0.02, 0.21 V, and anodic ones at about -0.46, -0.11, 0.12, 0.31 V (vs Ag/AgCl), respectively, among which the first one corresponded to the electron transfer process of viologens and others to that of the PMA adsorbed. Finally, the MWNT-V@PMA modified electrodes were used as heterogeneous catalysts for the electrocatalytic bromate reduction, which revealed an almost linear correction between the current density and the bromate concentrations in the concentration range from 1 to 15 mmol/l. [Figure not available: see fulltext.

  16. Transfer of energy from irradiated crystals to redox reactions: iodide/bromate and nitrite/bromate systems

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Madhava Rao, B.S.; Bedekar, M.J.

    1978-01-01

    Earlier it had been shown by the authors that some of the redox reactions, which do not take place at room temperature can be induced by γ radiation. The yields are proportional to the dose. Results reported here show that instead of direct irradiation, the energy stored in irradiated crystals in the form of F and hole centres can be available, in part, in effecting redox reactions. The mechanism of such an energy transfer is discussed with reference to reactions in the I - +BrO 3 - and NO 2 - +BrO 3 - systems due to the addition of irradiated NaCl. (author)

  17. Functional role of ascorbic acid in bread-making | Dadzie-Mensah ...

    African Journals Online (AJOL)

    bread characteristics. Various levels of ascorbic acid and bromate were used in the bread production to compare critical functional properties of bread. The results showed that the specific volume of the loaves increased from 2.80 cm3/g ...

  18. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    NICOLAAS

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess .... kinetics experiments were performed at 25.0 ± 0.1 °C and at an ..... thiourea compounds with potent anti-HIV activity.

  19. 7 CFR 93.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... bromate titration method after distillation and acidification as described in the current edition of the... acid, per 100 grams of juice or citrus product. Total acidity is determined by titration with standard... Brix or degrees Brix may be determined by any other method which gives equivalent results. Brix value...

  20. Protective role of aqueous extract of Hibiscus sabdariffa (calyx ...

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... of electron on the electron transport chain. There is a dose-dependent relationship between lipid peroxidation induced by potassium bromate and the protection offered by the extract of H. sabdariffa. REFERENCES. Alli MB, Salih M (1991). Investigation of the antispasmodic potential of. Hibiscus sabdariffa ...

  1. The existence of the potassium dioxodifluorobromate

    International Nuclear Information System (INIS)

    Tantot, Georges; Bougon, Roland

    1975-01-01

    The reaction of liquid bromine pentafluoride with potassium bromate allows the formation of an oxyfluorinated complex ion of bromine V: the dioxodifluorobromate ion BrO 2 F 2 - . From Raman spectroscopy data this ion has a structure related to those of the chlorine and iodine corresponding ions [fr

  2. Author Details

    African Journals Online (AJOL)

    Simoyi, Reuben H. Vol 55 (2002) - Articles Complex Kinetics in the Reaction of Taurine with Aqueous Bromine and Acidic Bromate : A Possible Cytoprotective Role against Hypobromous Acid Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  3. Uranium hexafluoride. Bromine spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Bromine determination in hydrolized uranium hexafluoride by reduction of bromates by ferrous sulfate, oxidation of bromides by potassium permanganate to give bromine which is extracted into carbon tetrachloride and transformed in eosine for spectrophotometry at 510 nm. The method is suitable for determining 5 to 150 ppm with respect to uranium [fr

  4. Selenium dioxide catalysed oxidation of acetic acid hydrazide

    Indian Academy of Sciences (India)

    The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the ...

  5. Simultaneous polarographic determination of micro amounts of vanadium(V) and molybdenum(VI)

    International Nuclear Information System (INIS)

    Rao, V.S.N.; Rao, S.B.

    1979-01-01

    A simple and sensitive polarographic method has been developed for the determination of micro quantities of vanadium(V) and molybdenum(VI), based on the reduction of bromate, which is catalysed by these metal ions in the presence of 2,4-dihydroxyacetophenone oxime. Interference by various cations and anions has been investigated. (author)

  6. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio

    2012-01-01

    Highlights: ► Bioavailable iodine and bromine speciation in edible seaweed were developed. ► In vitro dialyzability was used to assess the bioavailable fractions. ► AEC hyphenated with inductively coupled plasma-mass spectrometry was used. ► Iodide, MIT, DIT, bromide and bromate were found in dialyzates from edible seaweed. ► Positive correlation between bioavailability and protein contents was found. - Abstract: A bioavailability study based on an in vitro dialyzability approach has been applied to assess the bio-available fractions of iodine and bromine species from edible seaweed. Iodide, iodate, 3-iodo-tyrosine (MIT), 3,5-diiodo-tyrosine (DIT), bromide and bromate were separated by anion exchange chromatography under a gradient elution mode (175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase, and flow rates within the 0.5–1.5 mL min −1 range). Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector for iodine ( 127 I) and bromine ( 79 Br). Low dialyzability ratios (within the 2.0–18% range) were found for iodine species; whereas, moderate dialyzability percentages (from 9.0 to 40%) were obtained for bromine species. Iodide and bromide were the major species found in the dialyzates from seaweed, although MIT and bromate were also found in the dialyzates from most of the seaweed samples analysed. However, DIT was only found in dialyzates from Wakame, Kombu, and NIES 09 (Sargasso) certified reference material; whereas, iodate was not found in any dialyzate. Iodine dialyzability was found to be dependent on the protein content (negative correlation), and on the carbohydrate and dietary fibre levels (positive correlation). However, bromine dialyzability was only dependent on the protein amount in seaweed (negative correlation).

  7. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  8. 186 183 Potassium Bromate Content of Bread

    African Journals Online (AJOL)

    2008-12-02

    Dec 2, 2008 ... milk or juice) fats, sugar, salt, eggs, leavening ... soluble in water and almost insoluble in alcohol. It has a vapour ... quality of bread as the main vitamins available in bread are ... metropolis are still being exposed to this toxic ...

  9. Kinetic spectrophotometric determination of trace amounts of selenium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A.; Sedghy, H.R.; Shams, E. [Dept. of Chemistry, Shiraz Univ. (Iran)

    1999-11-01

    A sensitive kinetic spectrophotometric method has been developed for the determination of Se(IV) over the range of 45 to 4000 ng in 10 mL of solution. The method is based on the catalytic effect of Se(IV) on the reduction reaction of bromate by hydrazinium dichloride, with subsequent reaction of Ponceau S with products of the above reaction (chlorine and bromine), causing color changing of Ponceau S. Method development includes optimization of time interval for measurement of slope, pH, reagents concentration, and temperature. The optimized conditions yielded a theoretical detection limit of 33 ng/10 mL of solution of Se(IV). The interfering effects were studied and removed. The method was applied to the determination of selenium in spiked water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has an inhibition effect on the catalyzed reaction of bromate and hydrazine by selenium. Using this effect, V(V) can be determined in the range of 70 to 2500 ng in 10 mL of solution. The optimization procedure includes pH and selenium concentration. An extraction method was used for interference removal. The method was applied to the determination of vanadium in petroleum. (orig.)

  10. Spectrophotometric determination of trace carbaryl in water and grain samples by inhibition of the rhodamine-B oxidation.

    Science.gov (United States)

    Gupta, Nirja; Pillai, Ajai Kumar; Parmar, Prachi

    2015-03-15

    A novel, sensitive, selective and simple kinetic spectrophotometric method has been developed for determination of trace levels of carbaryl based on its inhibitory effect on the oxidation of rhodamine-B by chlorine and bromine released from reaction of potassium bromate with hydrochloric acid in micellar medium. A linear relationship was observed between the inhibitory effect and the concentration of the compound. The absorbance was monitored at the maximum wavelength of 555 nm. The effect of different parameters such as pH, temperature and concentration of rhodamine-B, potassium bromate and surfactant on the reaction were investigated and optimum conditions were established. Under the selected experimental conditions, carbaryl was determined in the range of 0.04-0.4 μg mL(-1). Sandell's sensitivity and molar absorptivity were found to be 0.00055 μg cm(-2) and 3.658×10(5) L mol(-1) cm(-1) respectively. The proposed method was applied satisfactorily for the determination of carbaryl in water and different grain samples. The results were compared with those obtained by reference method and were found to be in agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Occurrence and Assessment of Chemical Contaminants in Drinking Water in Tunceli, Turkey

    Directory of Open Access Journals (Sweden)

    Veysel Demir

    2013-01-01

    Full Text Available The objective of this study was to analyze drinking water samples from 21 sites in the city center and seven municipalities of Tunceli, Turkey, in order to determine the presence of nitrate, nitrite, fluoride, bromate, pesticides, polycyclic aromatic hydrocarbons (PAHs, trihalomethanes (THMs, and some other chemicals. In all locations, the concentrations of chemicals investigated were below the permissible limits set by local and international organizations for drinking water. Low levels of nitrate (4.79 ± 4.20 mg/L, fluoride (0.11 ± 0.08 mg/L, and THMs (6.63 ± 5.14 μg/L were detected in all locations. A low level of tetra, chloroethane, which is suspected to be a human carcinogen, was also detected in 8 locations in the range of 0.26–0.43 μg/L. These contaminants may pose adverse health effects or minimum hazard due to long-term exposure. In all locations, bromate, benzene, total PAH, 1-2 dichloroethane, vinyl chloride, acrylamide, and epichloridine levels in drinking water samples were under detection limits.

  12. Bazı Oksidan Maddeler ve Emülgatör ile Birlikte Katılan Soya Ununun Hamurun Reolojik Özellikleri Üzerine Etkisi

    Directory of Open Access Journals (Sweden)

    Recai Ercan

    2015-02-01

    Full Text Available Diyetleri hububat ya da nişastalı gıdalardan oluşan kişilerin önemli bir sorunu olan protein yetersizliği, ekmek veya diğer nişastalı ürünlerin proteince zengin katkı maddeleriyle kuvvetlendirilmesini gerektirmektedir. Bu amaçla fiyatı, kalitesi ve miktarı ve kullanımındaki kolaylığına bağlı olarak en çok soya unu kullanılmaktadır. Bu çalışmanın amacı tek tek, ya da kombinasyonlar halinde tam yağlı soya unu, SSL, bromat ve L. askorbik asit kullanılarak zayıf un hamurlarının fiziksel özelliklerini geliştirmektir. Sonuçlar ilave edilecek soya unu ve SSL miktarının un kalitesi ile ilişkili olduğunu ve soya unu ile SSL yerine bromat ya da L. askorbik asit kullanılması ihtimalinin oldukça düşük olduğunu göstermiştir.

  13. Easy to use program “Simkine3” for simulating kinetic profiles of multi-step chemical Systems and optimisation of predictable rate coefficients therein

    Directory of Open Access Journals (Sweden)

    S.B. Jonnalagadda

    2012-08-01

    Full Text Available ‘Simkine3’, a Delphi based software is developed to simulate the kinetic schemes of complex reaction mechanisms involving multiple sequential and competitive elementary steps for homogeneous and heterogeneous chemical reactions. Simkine3 is designed to translate the user specified mechanism into chemical first-order differential equations (ODEs and optimise the estimated rate constants in such a way that simulated curves match the experimental kinetic profiles. TLSoda which uses backward differentiation method is utilised to solve resulting ODEs and Downhill Simplex method is used to optimise the estimated rate constants in a robotic way. An online help file is developed using HelpScrible Demo to guide the users of Simkine3. The versatility of the software is demonstrated by simulating the complex reaction between methylene violet and acidic bromate, a reaction which exhibits complex nonlinear kinetics. The new software is validated after testing it on a 19-step intricate mechanism involving 15 different species. The kinetic profiles of multiple simulated curves, illustrating the effect of initial concentrations of bromate, and bromide were matched with the corresponding experimental curves.DOI: http://dx.doi.org/10.4314/bcse.v26i2.10

  14. Second-order advantage from kinetic-spectroscopic data matrices in the presence of extreme spectral overlapping

    International Nuclear Information System (INIS)

    Culzoni, Maria J.; Goicoechea, Hector C.; Ibanez, Gabriela A.; Lozano, Valeria A.; Marsili, Nilda R.; Olivieri, Alejandro C.; Pagani, Ariana P.

    2008-01-01

    Multivariate curve resolution coupled to alternating least-squares (MCR-ALS) has been employed to model kinetic-spectroscopic second-order data, with focus on the achievement of the important second-order advantage, under conditions of extreme spectral overlapping among sample components. A series of simulated examples shows that MCR-ALS can conveniently handle the studied analytical problem unlike other second-order multivariate calibration algorithms, provided matrix augmentation is implemented in the spectral mode instead of in the usual kinetic mode. The approach has also been applied to three experimental examples, which involve the determination of: (1) the antiparkinsonian carbidopa (analyte) in the presence of levodopa as a potential interferent, both reacting with cerium (IV) to produce the fluorescent species cerium (III) with different kinetics; (2) Fe(II) (analyte) in the presence of the interferent Zn(II), both catalyzing the oxidation of methyl orange with potassium bromate; and (3) tartrazine (analyte) in the presence of the interferent brilliant blue, both oxidized with potassium bromate, with the interferent leading to a product with an absorption spectrum very similar to tartrazine. The results indicate good analytical performance towards the analytes, despite the intense spectral overlapping and the presence of unexpected constituents in the test samples

  15. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  16. Second-order advantage from kinetic-spectroscopic data matrices in the presence of extreme spectral overlapping

    Energy Technology Data Exchange (ETDEWEB)

    Culzoni, Maria J. [Laboratorio de Desarrollo Analitico y Quimiometria (LADAQ), Catedra de Quimica Analitica I, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analitico y Quimiometria (LADAQ), Catedra de Quimica Analitica I, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA (Argentina)], E-mail: hgoico@fbcb.unl.edu.ar; Ibanez, Gabriela A.; Lozano, Valeria A. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario and Instituto de Quimica Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK (Argentina); Marsili, Nilda R. [Laboratorio de Desarrollo Analitico y Quimiometria (LADAQ), Catedra de Quimica Analitica I, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA (Argentina); Olivieri, Alejandro C. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario and Instituto de Quimica Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK (Argentina)], E-mail: aolivier@fbioyf.unr.edu.ar; Pagani, Ariana P. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario and Instituto de Quimica Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK (Argentina)

    2008-04-28

    Multivariate curve resolution coupled to alternating least-squares (MCR-ALS) has been employed to model kinetic-spectroscopic second-order data, with focus on the achievement of the important second-order advantage, under conditions of extreme spectral overlapping among sample components. A series of simulated examples shows that MCR-ALS can conveniently handle the studied analytical problem unlike other second-order multivariate calibration algorithms, provided matrix augmentation is implemented in the spectral mode instead of in the usual kinetic mode. The approach has also been applied to three experimental examples, which involve the determination of: (1) the antiparkinsonian carbidopa (analyte) in the presence of levodopa as a potential interferent, both reacting with cerium (IV) to produce the fluorescent species cerium (III) with different kinetics; (2) Fe(II) (analyte) in the presence of the interferent Zn(II), both catalyzing the oxidation of methyl orange with potassium bromate; and (3) tartrazine (analyte) in the presence of the interferent brilliant blue, both oxidized with potassium bromate, with the interferent leading to a product with an absorption spectrum very similar to tartrazine. The results indicate good analytical performance towards the analytes, despite the intense spectral overlapping and the presence of unexpected constituents in the test samples.

  17. Redox substoichiometric determination of arsenic in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Kanda, Y.; Suzuki, N.

    1979-01-01

    Redox substoichiometry is proposed for an accurate and precise determination of arsenic. This method is based on the substoichiometric oxidation of trivalent arsenic to pentavalent with potassium bromate or ceric sulfate followed by the separation of these species by thionalide extraction of trivalent arsenic. It was applied to neutron activation analysis of arsenic in the NBS SRM Orchard Leaves and the Shark Powder. The results were obtained with and excellent accuracy and precision. (author)

  18. Method of stabilizing wood

    International Nuclear Information System (INIS)

    Pesek, M.; Dedek, V.; Plander, E.

    1975-01-01

    Wood is impregnated with vinyl monomers in a solution of organic solvents and in the presence of a swelling agent. The impregnation mixture contains a diolefinic hydrocarbon and/or a solid chlorinated or bromated compound with the melting point exceeding 30 degC and less than 10 % of an organosilicon compound. Polymerization is effected by ionizing radiation and a subsequent action of temperature in a range of 40 to 150 JegC. (B.S.)

  19. Spectrophotometeric Determination of Bromate in Bread by the ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    dough, improves the quality of the bread, and increases ... to improve the gluten content (de Man, 1990; Alias and Linden, 1999). ... prepared in the range, 12, 24, 36, 48, 60 and 72 ppm ..... Chemical formula, Synonyms, Prescription and Uses.

  20. Rapid and stream-lined methods for analysis of actinides in environmental samples

    International Nuclear Information System (INIS)

    Cooper, E.L.

    2001-01-01

    Full text: 1) Project Summary: A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by co-precipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np and U to +6 state in 1 M HCI media at 85 deg C with 30% NaBrO 3 and separation from trivalent Am by collecting the latter on the first NdF 3 co- precipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO 2 at 85 deg C, while Np and U are kept oxidized with additional bromate in solution at 50-70 deg C, thus separating Pu by collection on a second NdF 3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCI 3 and co-precipitated on a final source. The second procedure, which employs KMnO 4 in 1 M HCI media at 60-85 deg C for oxidizing Pu, Np and U, and separating from Am, produces MnO 2 which is collected along with Am on the co-precipitated NdF 3 . This MnO 2 is dissolved on the filter itself with 1 ml of acidified 1.5% H 2 O 2 without any degradation of the α-spectra. After evaporating the filtrate to destroy H 2 O 2 , Pu, Np and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedures are >99%. The decontamination factors are between 10 3 and 10 4 . 2) Summary of Proposed Work for the Next Year: Now that the separation procedure has been developed, we will begin to incorporate it into rapid and steam-lined procedures for samples, such as water, air filters and environmental materials. (author)

  1. O-Anisidine as Indicator in Titrimetric Determination of Ascorbic Acid and Isonicotinic Acid Hydrazide in Pharmaceutical Formulations

    OpenAIRE

    B.S.A.Andrews; B.Sreenivas Rao; Som Shankar Dubey; B.Venkata Kiran

    2010-01-01

    Inspite of the beautiful red coloured oxidized product of O-anisidine, the studies on its application in analytical techniques are scanty. So, authors have taken up the investigation on the utility of O-anisidine as a new Analytical reagent in the bromatometric-Indicator reaction. The detailed reaction on the potassium bromate and OAnisidine has enabled the authors to utilize O-Anisidine in titration of Ascorbic Acid and Isonicitonic Acid Hydrazide. Suitable conditions has been established wi...

  2. New considerations on hydrogen peroxide and related substances as food additives in view of carcinogenicity.

    Science.gov (United States)

    Ito, R

    1982-01-01

    The use of hydrogen peroxide as a labile and safe food preservative in fish cake and boiled noodles has recently been restricted by the Japanese government, since hyperplasia has been found in the duodenum of mice after long-term peroral study. The action of compounds with resembling mode of action, potassium bromate as an improving agent in bread, and sodium chlorate as a weed killer are discussed in this paper in view of developmental and environmental pharmacology.

  3. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    Science.gov (United States)

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    Science.gov (United States)

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-04-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment.

  5. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dansby-Sparks, Royce; Chambers, James Q. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States); Xue Ziling, E-mail: xue@ion.chem.utk.edu [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States)

    2009-06-08

    An electrochemical technique has been developed for ultra-trace (ng L{sup -1}) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire electrodes (MWEs, 100 {mu}m) in the presence of gallic acid (GA) and bromate ion. A potential of -0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0-1000 ng L{sup -1} range (2 min deposition), with a detection limit of 0.88 ng L{sup -1}. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ng L{sup -1} level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP).

  6. A Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH Oscillation

    Directory of Open Access Journals (Sweden)

    Shuji Hasimoto

    2011-02-01

    Full Text Available In this study, we succeeded in manufacturing a novel nanofiber hydrogel actuator that caused a bending and stretching motion synchronized with external pH oscillation, based on a bromate/sulfite/ferrocyanide reaction. The novel nanofiber gel actuator was composed of electrospun nanofibers synthesized by copolymerizing acrylic acid and hydrophobic butyl methacrylate as a solubility control site. By changing the electrospinning flow rate, the nanofiber gel actuator introduced an anisotropic internal structure into the gel. Therefore, the unsymmetrical motion of the nanofiber actuator was generated.

  7. Novel pre-treatments to control bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Sichel, Cosima; Andre, Klaus

    2017-01-01

    Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today’s water treatment industry. Both the development of new advanced oxidation technologies, but also the enhancement of existing conventional technologies is of ...

  8. the effect of potassium bromate on some haematological parameters ...

    African Journals Online (AJOL)

    Daniel Owu

    Nigeria, 1 Department of Medical Biochemistry, College of Medicine,. University of Nigeria ... water pH, it should exist almost exclusively in the ionic form ... containers. We measured .... WHO (1993). Guidelines for Drinking Water Quality, 2nd.

  9. Synthesis, characterization, magnetic and electrochemical properties of a new 3D hexa-copper-substituted germanotungstate

    International Nuclear Information System (INIS)

    Li, Yanzhou; Luo, Jie; Zhang, Yanting; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2013-01-01

    An inorganic–organic hybrid hexa-copper-substituted germanotungstate Na 2 [Cu(dap) 2 ] 2 [Cu(dap) 2 ] ([Cu 6 (H 2 O) 2 (dap) 2 ][B-α-GeW 9 O 34 ] 2 )·4H 2 O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP–AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O′Keefe) vertex symbol is 4·4·6 4 ·4·4·4·4·6 4 ·4·4·4·6 4 ·4·4·4 and the short vertex (Schläfli) symbol of 4 12 6 3 . Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-Cu II cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the W VI -based wave. - Graphical abstract: A hexa-Cu II sandwiched germanotungstate has been synthesized and structurally characterized. The magnetic, solid-state electrochemical and electrocatalytic properties have been investigated. Display Omitted - Highlights: • Transition-metal substituted polyoxometalates. • Hexa-copper-substituted germanotungstate. • Six-connected 3D network. • Electrocatalytic reduction of nitrite, bromate and hydrogen peroxide

  10. Oscillatory behaviour of isomers of hydroxybenzoic acid with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Masood A.; Rastogi, R.P.; Peerzada, G.M. [University of Kashmir, Srinagar (India). Dept. of Chemistry]. E-mail: nath_masood@yahoo.co.in

    2009-07-01

    The present work establishes and compares the oscillatory behaviour of mono-, di- and trihydroxybenzoic acids as organic substrates in acidic bromate (1.0 mol L{sup -1} H{sub 2}SO{sub 4}) without catalyst and in the presence of Mn{sup 2+} ion as the main catalyst. The oscillations are also affected by other catalyst such as Fe{sup 2+} ion. Further, the oscillations start diminishing in mixed catalyst systems. The experimental parameters were obtained potentiometrically and the results have been interpreted on the basis of FKN mechanism. (author)

  11. Ultrasensitive and Fast Voltammetric Determination of Iron in Seawater by Atmospheric Oxygen Catalysis in 500 μL Samples.

    Science.gov (United States)

    Caprara, Salvatore; Laglera, Luis M; Monticelli, Damiano

    2015-06-16

    A new method based on adsorptive cathodic stripping voltammetry with catalytic enhancement for the determination of total dissolved iron in seawater is reported. It was demonstrated that iron detection at the ultratrace level (0.1 nM) may be achieved in small samples (500 μL) with high sensitivity, no need for purging, no added oxidant, and a limit of detection of 5 pM. The proposed method is based on the adsorption of the complex Fe/2,3-dihydroxynaphthalene (DHN) exploiting the catalytic effect of atmospheric oxygen. As opposite to the original method (Obata, H.; van den Berg, C. M. Anal. Chem. 2001, 73, 2522-2528), atmospheric oxygen dissolved in solution replaced bromate ions in the oxidation of the iron complex: removing bromate reduces the blank level and avoids the use of a carcinogenic species. Moreover, the new method is based on a recently introduced hardware that enables the determinations to be performed in 500 μL samples. The analyses were carried out on buffered samples (pH 8.15, HEPPS 0.01 M), 10 μM DHN and iron quantified by the standard addition method. The sensitivity is 49 nA nM(-1) min(-1) with 30 s deposition time and the LOD is equal to 5 pM. As a result, the whole procedure for the quantification of iron in one sample requires around 7.5 min. The new method was validated via analysis on two reference samples (SAFe S and SAFe D2) with low iron content collected in the North Pacific Ocean.

  12. BROMATOMATRIC ASSAY OF GATIFLOXACIN IN PHARMACEUTICALS

    Directory of Open Access Journals (Sweden)

    KALSANG THARPA

    2008-09-01

    Full Text Available Three new, simple, and cost-effective visible spectrophotometric methods are proposed for determination of gatifloxacin (GTF using bromate-bromide mixture, and three dyes, methyl orange, indigocarmine and thymol blue, as reagents.The methods engross the addition of a known excess of bromate-bromide mixture to GTF in hydrochloric acid medium followed by determination of residual bromine by reacting with a fixed amount of either methyl orange andmeasuring the absorbance at 520 nm (method A or indigo carmine and measuring the absorbance at 610 nm (method B or thymol blue and measuring the absorbance at 550 nm (method C. In all the methods, the amount of brominereacted corresponds to the amount of GTF, and the absorbance is found to increase linearly with the concentration of GTF. Under the optimum conditions, GTF could be assayed in the concentration range 0.25-1.5, 0.5-6.0, and 0.5-10μg/mL by method A, method B and method C, respectively. The apparent molar absorptivities are calculated to be 1.6x105, 4.0x104 and 3.2x104 L mol-1 cm-1 for the method A, method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0025, 0.010 and 0.012 μg/cm2. The intra-day and inter-day precision, and the accuracy of the methods were evaluated as per the current ICH guidelines. The methods were successfully applied to the determination of GTF in pharmaceutical preparations without the interference from any of the pharmaceutical adjuvants.

  13. The role of Ce(III) in BZ oscillating reactions

    Science.gov (United States)

    Nogueira, Paulo A.; Varela, Hamilton; Faria, Roberto B.

    2012-03-01

    Herein we present results on the oscillatory dynamics in the bromate-oxalic acid-acetone-Ce(III)/Ce(IV) system in batch and also in a CSTR. We show that Ce(III) is the necessary reactant to allow the emergence of oscillations. In batch, oscillations occur with Ce(III) and also with Ce(IV), but no induction period is observed with Ce(III). In a CSTR, no oscillations were found using a freshly prepared Ce(IV), but only when the cerium-containing solution was aged, allowing partial conversion of Ce(IV) to Ce(III) by reaction with acetone.

  14. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  15. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  16. Evaluation of pre-treatments for inhibiting bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus

    2011-01-01

    This study compared several pre-treatment methods for inhibiting BrO3- formation during ozonation of tap water, from the DTU campus, including H2O2 addition (perozone), pH-depression, NH4+ and Cl2/NH4+ addition. At the same time, the inhibition of atrazine and carbamazepine removal was evaluated...... close to the 10 μg/L limit, however atrazine removal did not exceed 75%. Carbamazepine was completely removed under all the tested experimental conditions with the 3.5 mg/L O3 dose....

  17. Synthesis, characterization, magnetic and electrochemical properties of a new 3D hexa-copper-substituted germanotungstate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanzhou; Luo, Jie; Zhang, Yanting [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Chen, Lijuan, E-mail: ljchen@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ma, Pengtao; Niu, Jingyang [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2013-09-15

    An inorganic–organic hybrid hexa-copper-substituted germanotungstate Na{sub 2}[Cu(dap){sub 2}]{sub 2}[Cu(dap){sub 2}] ([Cu{sub 6}(H{sub 2}O){sub 2}(dap){sub 2}][B-α-GeW{sub 9}O{sub 34}]{sub 2})·4H{sub 2}O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP–AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O′Keefe) vertex symbol is 4·4·6{sub 4}·4·4·4·4·6{sub 4}·4·4·4·6{sub 4}·4·4·4 and the short vertex (Schläfli) symbol of 4{sup 12}6{sup 3}. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-Cu{sup II} cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the W{sup VI}-based wave. - Graphical abstract: A hexa-Cu{sup II} sandwiched germanotungstate has been synthesized and structurally characterized. The magnetic, solid-state electrochemical and electrocatalytic properties have been investigated. Display Omitted - Highlights: • Transition-metal substituted polyoxometalates. • Hexa-copper-substituted germanotungstate. • Six-connected 3D network. • Electrocatalytic reduction of nitrite, bromate and hydrogen peroxide.

  18. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reactivity and selectivity of the electrophile aromatic substitution in the gas phase by positive 80Br and 125I decay ions

    International Nuclear Information System (INIS)

    Knust, E.J.

    1975-02-01

    The nuclear isomeric transition sup(80m)Br(IT) 80 Br or the electron capture decay 125 Xe(EC) 125 I in the presence of high concentrations of a noble gas such as Ar or Xe are suitable for the study of the electrophilic substitution of bromium or iodonium ions in the gas phase. By using this nuclear method, which, unlike physical methods, also allows the determination of the isomer distribution, the electrophilic aromatic bromation and iodation of mono-substituted benzene compounds through unsolvated positive bromine or iodine ions could be investigated for the first time using radio-gas chromatographic techniques. (orig./LH) [de

  20. Feasibility of wavelength dispersive X-ray fluorescence spectrometry for a simplified analysis of bromine in water samples with the aid of a strong anion exchange disk

    International Nuclear Information System (INIS)

    An, Jinsung; Jung, Hyeyeon; Bae, Jo-Ri; Yoon, Hye-On; Seo, Jungju

    2014-01-01

    The feasibility of wavelength dispersive X-ray fluorescence spectrometry (WDXRF) for a simplified analysis of bromine (Br) in water samples with the aid of strong anion exchange (SAX) disk was assessed in this study. Dissolved Br in the water sample was pre-concentrated on the SAX disk and directly analyzed by WDXRF without an elution step. The SAX disk was capable of fully adsorbing both bromide (Br − ) and bromate (BrO 3 − ) on its surface owing to their anionic properties, regardless of the pH level of environmental samples. The SAX–WDXRF system was examined using calibration standards (i.e., SAX disks with specific amounts of Br retained; 1, 10, 50, 100 and 500 μg), and a determination coefficient of R 2 = 0.9999 was yielded. The system had a low detection limit for Br (limit of detection = 0.253 μg for Br on the SAX disk) with good reproducibility (relative standard error (RSE) = 4–7%). Spike and inter-comparison tests were performed to confirm the accuracy of the proposed SAX–WDXRF method. Both tests exhibited reasonable accuracy (RSE = 3–6%). The method is simple and easy, indicating a great possibility of application in various environmental sample types, especially for which a simplified analytical system for the determination of Br is urgently required. - Highlights: • Bromide and bromate were entirely retained on a strong anion exchange (SAX) disk. • The SAX disk was used to pre-concentrate dissolved Br species from water samples. • The SAX disk adsorbing dissolved Br was directly analyzed by WDXRF. • The accuracy of the SAX–WDXRF method was confirmed by spike and inter-comparison tests. • Rapid and sensitive Br analysis can be achieved using the proposed SAX–WDXRF method

  1. Method of molybdenum kinetic determination

    International Nuclear Information System (INIS)

    Krejngol'd, S.U.; Dzotsenidze, N.E.; Ruseishviyai, T.G.; Nelen', I.M.

    1980-01-01

    The method molybdenum kinetic determination according to oxidation of pyrogallol with bromate in the medium of 0.05-0.15 M perchloric or sulphuric acids is presented. 1 mg of Ni, Co, Mn, Mg, Zn, Cr(3); 100 μg of Ca, Al, Cu, 10 μg of Cr(4), W; 10 μg of Fe in the presence of 22x10 - 4 M solution of EDTA, as well as 10 - 4 M solutions of chlorides and fluorides, 10 - 5 M solutions of bromides do not interfere with molybdenum determination using the given method. The method is rather simple, it takes 30 min to carry out the analysis. Determination limit of molybdenum constitutes 0.01 μg/ml

  2. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    Science.gov (United States)

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  3. Debromination and decomposition of bromoform by contact glow discharge electrolysis in an aqueous solution

    International Nuclear Information System (INIS)

    Wang, Lei; Liu, Panliang; Zhang, Songlin

    2015-01-01

    Bromoform (BF) is a stable and carcinogenic contaminant in water. In this study, efficient debromination and decomposition of BF induced by contact glow discharge electrolysis (CGDE) in a sodium sulfate solution were investigated. Intermediate byproducts were determined by ionic chromatography and gas chromatography, respectively. Experimental results showed that alkaline conditions and additions of organic additives to the solution were favorable for both the removal and the debromination of BF. Oxalic acid, formic acid, dibromomethane and bromate ion were determined as the major intermediate byproducts. Final products were inorganic carbon and bromide ion. Hydrated electrons may be the most likely active species responsible for the initiation of the debromination, and hydroxyl radicals may be the ones for the oxidation of the intermediate byproducts

  4. Synthesis, purification and characterization of [3,5 - T] p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Corol-Cucu, Delia-Irina; Chiper, Diana; Mihaila, V.; Negoita, N.

    2000-01-01

    This paper refers to the synthesis, purification and characterization of [3,5-T] p-aminobenzoic acid (PAB,H' vitamine). The p-aminobenzoic acid is used in the treatment of rheumatic arthritis and dermatological affections. The advantage of tritium labelling of p-aminobenzoic acid is that some biomedical important aspects of collagen's behaviour are made clear. The PAB stimulate the grow of intestinal bacteria so necessary to synthesis of some vitamins (bio tine, pantothenic acid). Tritium is the only radioactive isotope of hydrogen. Several steps have to be carried out in the synthesis of the final product as well as to study its biological behavior. For the labelling of PAB one prefers the substitution of bromine from PAB-3,5-Br with tritium because of simplicity of reaction and the easy synthesis of halogen compound. The first step in synthesis is the protection of NH 2 group through acetylation of PAB. After that PAB is bromated into the 3 and 5 position with elementary bromine. The raw compound is purified and recrystallized and characterized through thin layer chromatography.The tritium labelling is performed through substitution of bromine from bromate derivative, using Pd/C (10% Pd) as catalyst and low basic conditions for the neutralization of HBr resulting from reaction. After the separation of PAB-3,5-T through filtration, the catalyst remains on the filter paper and the labelled compound goes in aqueous solution. PAB-3,5-T is purified through thin layer chromatography with the solvent system n-BuOH:NH 4 OH(25%):H 2 O:EtOH (8:1:2:2,5, v/v) with silica gel GF 254 as support. The determination of activity is carried out with LSC (Liquid Scintillation Counter). A 98% purity was determined through TLC in the same conditions while determination of activity distribution was performed with a 2π Berthold scanner with gas running and without window. The chemical concentration has been measured through UV spectrophotometry and by comparing extinction with

  5. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  6. Preconcentration of trace amounts of formaldehyde from water, biological and food samples using an efficient nanosized solid phase, and its determination by a novel kinetic method

    International Nuclear Information System (INIS)

    Afkhami, A.; Bagheri, H.

    2012-01-01

    This work presents a sensitive method for the determination of formaldehyde. It is based on the use of modified alumina nanoparticles for its preconcentration, this followed by a new and simple catalytic kinetic method for its determination. Alumina nanoparticles were chemically modified by immobilization of 2,4-dinitrophenylhydrazine via sodium dodecyl sulfate as a surfactant. The formaldehyde retained on the modified adsorbent was then desorbed and determined via its catalytic effect on the oxidation of thionine by bromate ion. Factors affecting the preconcentration and determination of formaldehyde have been investigated. Formaldehyde can be detected in the range from 0. 05 to 38. 75 μg L -1 , and no serious interferences have been observed. The method has been successfully applied to the quantitation of formaldehyde in water, food, and certain biological samples. (author)

  7. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1997-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  8. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    Science.gov (United States)

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Temperature influence on the malonic acid decomposition in the Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Blagojević, S. M.; Anić, S. R.; Čupić, Ž. D.; Pejić, N. D.; Kolar-Anić, Lj. Z.

    2009-09-01

    The kinetic investigations of the malonic acid decomposition (8.00 × 10-3 mol dm-3 ≤ [CH2(COOH)2]0 ≤ 4.30 × 10-2 mol dm-3) in the Belousov-Zhabotinsky (BZ) system in the presence of bromate, bromide, sulfuric acid and cerium sulfate, were performed in the isothermal closed well stirred reactor at different temperatures (25.0°C ≤ T ≤ 45.0°C). The formal kinetics of the overall BZ reaction, and particularly kinetics in characteristic periods of BZ reaction, based on the analyses of the bromide oscillograms, was accomplished. The evolution as well as the rate constants and the apparent activation energies of the reactions, which exist in the preoscillatory and oscillatory periods, are also successfully calculated by numerical simulations. Simulations are based on the model including the Br2O species.

  10. Analytical method used for intermediate products in continuous distillation of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.L.; Jia, M.; Wang, L.J.; Deng, Y.X.

    1981-01-01

    During distillation of furfural, analysis of main components in the crude furfural condensate and intermediate products is very important. Since furfural and methylfurfural are homologous and both furfural and acetone contain a carbonyl group, components in the sample must be separated before analysis. An improved analytical method has been studied, the accuracy and precision of which would meet the requirement of industrial standards. The analytical procedure was provided as follows: to determine the furfural content with gravimetric method of barbituric acid; to determine the methanol content with dichromate method after precipitating furfural and acetone, and distilling the liquid for analysis; and to determine the methylfurfural content with bromide-bromate method, which can be used only in the sample containing higher content of methylfurfural. For the sample in low content, the gas-liquid chromatographic method can be used. 7 references.

  11. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples

    Science.gov (United States)

    He, Lijun; Zhang, Heng; Fan, Huanhuan; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guo Qiang

    2018-01-01

    Herein, we propose a simple and effective strategy for designing a ratiometric fluorescent nanosensor. We designed and developed a carbon dots (CDs) based dual-emission nanosensor for vanadium(V) by coating the surface of dye-doped silica nanoparticles with CDs. The fluorescence of dual-emission silica nanoparticles was quenched in acetic acid through potassium bromate (KBrO3) oxidation. V(V) could catalyze KBrO3 oxidation reaction process, resulting in the ratiometric fluorescence quenching of dual-emission silica nanoparticles. We investigated several important parameters affecting the performance of the nanosensor. Under the optimized conditions, the detection limit of this nanosensor reached 1.1 ng mL- 1 and the linear range from 10 to 800 ng mL- 1. Furthermore, we found that the sensor was suitable for determination of V(V) in different mineral water samples with satisfactory results.

  12. Bazı Ekmek Katkı Maddelerinin Buğday Unlarının Reolojik Özellikleri Üzerine Etkileri (İngilizce

    Directory of Open Access Journals (Sweden)

    Süeda Çelik

    2015-02-01

    Full Text Available Oksidan ajanlar (Potasyum bromat ve askorbik asit, indirgen ajan (L-sistein ve surfaktanlar (SSL ve DATEMJ'ın üç ekmeklik buğday çeşidine ait unların reolojik özellikleri üzerine etkileri Brabender farinograf ve extensograf kullanılarak çalışılmıştır. Genellikle askorbik asit ve po­tasyum bromatın (KBrO3 artan oranlan su absorbsiyonu değerlerini etkilememiştir. Askorbik asit ve KBrO3, kuvvetli ve orta glüten kalitesine sa­hip çeşitlerde hamur gelişme süresini biraz daha iyi etkilemiştir. Askorbik asidin olumlu etkisi KBrO3'ın etkisine göre daha belirgindir. Surfaktanlar, bütün un çeşitlerinde özellikle stabilite, yoğurma tolerans indeksi ve vaiorimetre değerleri üzerinde kuvvetlendirici (strenghtening etki yapmıştır. Bununla beraber, Bezostaya ve Kıraç unlarında, SSL su absorbsiyonu değerinde azaltıcı ve stabilite değeri üzerinde aşırı artırıcı etki yapmıştır. Oksidanların ilavesi Bezostaya ve Orso unlarında ekstensibilitede (E önemli bir azalma, Kıraç'ın E değerinde ise artma ile sonuçlanmıştır. Her üç un örneğinde de oksidan oranları artırıldıkça maksimum direnç (Rm, kurve alanı (A ve Rm/E değerleri de artmıştır. Orso örneğinin Rm/E de­ğeri hariç, bütün un örneklerinde surfaktan oranlarının artışı ile Rm, A ve Rm/E değerleri, kontrol örnekleri ile karşılaştırıldığında önemli ölçüde artmıştır.

  13. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    Science.gov (United States)

    Sobhani, Reza

    characterized by water scarcity, such as Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. However, the seawater intrusion increased the concentration of bromide in extracted groundwater. Bromide, a precursor to bromate formation is regulated by USEPA as a potential carcinogen. This study compares the energy footprint among the two processes utilized for treatment of highly colored groundwater (i.e. nanofiltration and ozone injection coupled with biologically activated carbon) and discusses the impacts of bromate formation among these processes.

  14. A New Technique for Quantitative Determination of Dexamethasone in Pharmaceutical and Biological Samples Using Kinetic Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Akhoundi-Khalafi

    2015-01-01

    Full Text Available Dexamethasone is a type of steroidal medications that is prescribed in many cases. In this study, a new reaction system using kinetic spectrophotometric method for quantitative determination of dexamethasone is proposed. The method is based on the catalytic effect of dexamethasone on the oxidation of Orange G by bromate in acidic media. The change in absorbance as a criterion of the oxidation reaction progress was followed spectrophotometrically. To obtain the maximum sensitivity, the effective reaction variables were optimized. Under optimized experimental conditions, calibration graph was linear over the range 0.2–54.0 mg L−1. The calculated detection limit (3sb/m was 0.14 mg L−1 for six replicate determinations of blank signal. The interfering effect of various species was also investigated. The present method was successfully applied for the determination of dexamethasone in pharmaceutical and biological samples satisfactorily.

  15. Trace analysis of iron in environmental water and snow samples from Poland

    International Nuclear Information System (INIS)

    Golimowski, J.

    1989-01-01

    A voltammetric method for the determination of iron at detection limit of 4 μg/l is described, using the catalytic current of the reduction of the Fe(III)-triethanolamine (TEA) complex in the presence of bromate ions. The determination was performed at a mercury hanging drop electrode without preconcentration, using the TEA alkaline solution as a supporting electrolyte and the differential pulse technique. A peak current for the Fe-(III)-TEA catalytic reduction was observed at a potential of -1.0 V (Ag/AgCl saturated electrode). The influence of TEA, BrO 3 and NaOH concentrations on the peak height was studied. It was found that a 100-fold excess of Mn, a 50-fold excess of Cr(VI) and Zn did not interfere in the determination. This method was applied to the determination of iron in water, snow and waste water samples

  16. A highly sensitive kinetic spectrophotometric method for the determination of ascorbic Acid in pharmaceutical samples.

    Science.gov (United States)

    Shishehbore, Masoud Reza; Aghamiri, Zahra

    2014-01-01

    In this study, a new reaction system for quantitative determination of ascorbic acid was introduced. The developed method is based on inhibitory effect of ascorbic acid on the Orange G-bromate system. The change in absorbance was followed spectrophotometrically at 478 nm. The dependence of sensitivity on the reaction variables including reagents concentration, temperature and time was investigated. Under optimum experimental conditions, calibration curve was linear over the range 0.7 - 33.5 μg mL(-1) of ascorbic acid including two linear segments and the relative standard deviations (n = 6) for 5.0 and 20.0 μg mL(-1) of ascorbic acid were 1.08 and 1.02%, respectively. The limit of detection was 0.21 μg mL(-) (1) of ascorbic acid. The effect of diverse species was also investigated. The developed method was successfully applied for the determination of ascorbic acid in pharmaceutical samples. The results were in a good agreement with those of reference method.

  17. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    International Nuclear Information System (INIS)

    Kakehashi, Anna; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2013-01-01

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P 450 inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate

  18. Flow injection kinetic spectrofluorimetric determination of trace amounts of osmium

    Science.gov (United States)

    Tang, Bo; Zhang, Hui; Wang, Yan

    2005-07-01

    A flow injection (FI) kinetic spectrofluorimetric method is described for the determination of osmium(IV) and the possible mechanism of catalytic reaction is discussed. The method is based on the fluorescence enhancing reaction of o-vanillin furfuralhydrazone (OVFH) with potassium bromate, which is catalyzed by Os(IV) in water medium at pH 6.10 and 45 °C. OVFH is newly synthesized and its ionization, IR and elemental analysis are established. Under these experimental conditions, the oxidized product of OVFH has excitation and emission maxima at 337 and 490 nm, respectively. The linear range of this method is 0-600 ng ml -1 with the R.S.D. of 1.2%. The detection limit is 1.0 ng ml -1 of Os(IV). A high analysis rate of 24 samples h -1 is obtained by the FI method. The proposed method is applied successfully to determine Os(IV) in synthetic mixture and mineral samples, and the results are well consistent with the standard values.

  19. PIXE analysis of Nigerian flour and bread samples

    Science.gov (United States)

    Olise, Felix S.; Fernandes, Adriana M.; Cristina Chaves, P.; Taborda, Ana; Reis, Miguel A.

    2014-01-01

    The alleged use of potassium bromate (KBrO3) in bread baking led a few authors to report on the chemical methods for the determination of KBrO3 levels in bread. In order to examine the potentials of a non chemical particle induced X-ray emission (PIXE) method for this purpose, six sets of samples, each composed of flour, dough and bread from a production batch were analysed. The samples were obtained from six different bakers of bread at Ile-Ife, Nigeria. The flour samples were air-dried while others were freeze dried at about -16 °C. The samples were homogenised in an agate mortar and then pelletised. Samples were analysed at the CTN standard PIXE setup and standard procedures for thick target samples analysis were followed. In some samples significant concentrations of bromine were found. In the present work we present possible explanations for the presence of this potentially dangerous contaminant in the samples.

  20. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna; Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0015 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan)

    2013-10-28

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P{sub 450} inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  1. Determination of trace platinum by supramolecular catalytic kinetic spectrofluorimetry of {beta}-cyclodextrin-platinum-KBrO{sub 3}-salicylaldehyde furfuralhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bo; Zhang, Ning; Chen, Zhen-Zhen; Kong, Qing-Cheng [Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, Jinan (China)

    2006-02-01

    A supramolecular catalytic kinetic spectrofluorimetric method was developed for the determination of platinum(IV) and the possible mechanism of catalytic reaction was discussed. The method was based on the fluorescence-enhancing reaction of salicylaldehyde furfuralhydrazone (SAFH) with potassium bromate, which was catalysed by platinum(IV) in a water-ethanol medium. {beta}-Cyclodextrin ({beta}-CD) obviously sensitized the determination at pH 5.20 and 25 C. Under optimum conditions, the {beta}-CD-platinum-KBrO{sub 3}-SAFH supramolecular kinetic catalytic reaction system had excitation and emission maxima at 372 and 461 nm, respectively. The linear range of this method was 0.60-180 ng ml{sup -1} with a relative standard deviation of 1.2%, and the detection limit was 0.18 ng ml{sup -1}. Investigation of the mechanism and the effects of interferences is presented. The proposed method was applied successfully to determine trace platinum(IV) in the chemotherapeutic drug cisplatin and serum from patients with satisfactory results. (orig.)

  2. Fabrication, electrochemical and electrocatalytic properties of carbon nanotube@nano-SiO{sub 2}BenV/phosphomolybdic acid polynary nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Wang, Jing; Wang, Wen-Bo [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Material Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-06-30

    Highlights: • Carbon nanotube@nano-SiO{sub 2}BenV(+86-21-65643666)/PMA polynary nanocomposites were prepared. • Functionalized silica nanoparticles covalently attached on the MWNT surfaces. • The nanocomposites showed reversible redox properties of viologen and PMA. • The nanocomposites acted as efficient heterogeneous catalysts for bromate reduction. - Abstract: Organic-inorganic nano-materials have attracted growing attention due to their potential applications for optoelectronic devices, sensors, and heterogeneous catalysts. We reported here on the preparation of polynary nanocomposites composed of poly(4-vinylpyridine) (P4VP) functionalized multi-walled carbon nanotubes (MWNTP4VP), silica nanoparticles (nano-SiO{sub 2}), viologens, and/or phosphomolybdic acid (PMA), in which the MWNTP4VP, nano-SiO{sub 2}, and viologens were covalently connected while PMA was electrostatically adsorbed. Thermogravimetric analysis revealed that the nanocomposites were composed of about 40–45% MWNTs, 40–45% nanoSiO{sub 2}, as well as 10–15% organic species and others. The preparation processes and compositions of the nanocomposites were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Field emission transmission electron microscopic images revealed that the nano-SiO{sub 2}BenV particles were strongly attached to the MWNTP4VP surfaces to form MWNTP4VP@nano-SiO{sub 2}BenV triad nano-cores. Cyclic voltammograms of the MWNTP4VP@nano-SiO{sub 2}BenV casting films showed three couples of redox waves in the potential range between −0.8 and 0 V (vs Ag/AgCl), designated to the electron transfer process of viologen substituents of MWNTP4VP@nano-SiO{sub 2}BenV{sup 2+} ↔ MWNTP4VP@nano-SiO{sub 2}BenV{sup +}· and their dimers. Further, three couples of redox waves were recorded for the casting films of MWNTP4VP@nano-SiO{sub 2}BenV/PMA polynary nanocomposites in the potential range between −0.2 and 0.8 V, designated to three

  3. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    Science.gov (United States)

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  4. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  5. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  6. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  7. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  8. Integration of Bromine and Cyanogen Bromide Generators for the Continuous-Flow Synthesis of Cyclic Guanidines.

    Science.gov (United States)

    Glotz, Gabriel; Lebl, René; Dallinger, Doris; Kappe, C Oliver

    2017-10-23

    A continuous-flow process for the in situ on-demand generation of cyanogen bromide (BrCN) from bromine and potassium cyanide that makes use of membrane-separation technology is described. In order to circumvent the handling, storage, and transportation of elemental bromine, a continuous bromine generator using bromate-bromide synproportionation can optionally be attached upstream. Monitoring and quantification of BrCN generation was enabled through the implementation of in-line FTIR technology. With the Br 2 and BrCN generators connected in series, 0.2 mmol BrCN per minute was produced, which corresponds to a 0.8 m solution of BrCN in dichloromethane. The modular Br 2 /BrCN generator was employed for the synthesis of a diverse set of biologically relevant five- and six-membered cyclic amidines and guanidines. The set-up can either be operated in a fully integrated continuous format or, where reactive crystallization is beneficial, in semi-batch mode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Directory of Open Access Journals (Sweden)

    Hideki Wanibuchi

    2013-10-01

    Full Text Available This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P450 inducers, such as phenobarbital, a-benzene hexachloride and 1,1-bis(p-chlorophenyl-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  10. FIA versatile system for spectrophotometric determinations of vanadium and molybdenum exploring the catalytic activities of V(V) and Mo(VI); Sistema FIA polivalente para determinacoes espectrofotometricas de vanadio e molibdenio explorando as atividades cataliticas de V(V) e Mo(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Gilmara Caseri de

    1996-02-01

    A versatile system for chemical analysis by flow injection analysis was developed and applied for catalytic spectrophotometric determination of vanadium or molybdenum in metallic alloys. The selected methods were based upon indicator reactions chromotropic (CS)-bromate acid or hydrogen iodide-peroxide, respectively. Initially, a model system was proposed, in which common parameters for methods were studied. This included a re-sampling process in which high degrees of samples dilution were obtained. Other parameters such as concentrations and reagents addition order, reaction medium Ph, temperature and ionic power, as well as procedures for sample solubilization, were studied relating to each method. A mini-column with cationic exchanger resin (Dowex 50W-X8, 50-100 mesh, H{sup +} form) was used. The system for vanadium determination processes 120 samples by hour, consuming 2,0 mg CS and 10 mg K Br O{sub 3b}y determination. Concerning the method for molybdenum, the reagents consumption was 2,0 mg KI and 1,0 {mu}L of solution 30% H{sub 2}O{sub 2} by determination, since the analytic velocity was the same, in relation to vanadium.

  11. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine

    International Nuclear Information System (INIS)

    Rodrigues, Pedro M.S.M.; Esteves da Silva, Joaquim C.G.; Antunes, Maria Cristina G.

    2007-01-01

    The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases

  12. Chemical State of Radiobromine Formed by the Rb{sup 85}(n, {alpha}) Br{sup 82} Reaction; Etat Chimique Du Ra Diobrome Forme Par La Reaction {sup 85}Rb (n, {alpha}) {sup 82}Br; 0425 0418 041c 0418 0427 0415 0421 041a 041e 0415 0421 041e 0421 0422 041e 042f 041d 0418 0415 0420 0410 0414 0418 041e 0410 041a 0422 0418 0412 041d 041e 0413 041e 0411 0420 041e 041c 0410 , 041e 0411 0420 0410 0417 041e 0412 0410 041d 041d 041e 0413 041e 041f 0420 0418 0420 0415 0410 041a 0426 0418 0418 Rb{sup 85}(n, {alpha}) Br{sup 82}; Estado Quimico Del Radiobromo Formado Por La Reaccion {sup 85}Rb (n, {alpha}) {sup 82}Br

    Energy Technology Data Exchange (ETDEWEB)

    Vlatkovic, M.; Kauiic, S. [' ' Ruder Boskovic' ' Institute, Zagreb, Yugoslavia (Croatia)

    1965-04-15

    A study has been made of the chemical distribution of radiobromine between its higher (BrO{sup -}{sub 3}) and lower (Br{sup -}, Br{sub 2}, BrO{sup -}) oxidation states produced by nuclear reaction Rb{sup 85}(n, {alpha}) Br{sup 82} in a number of rubidium inorganic solids. The samples of dried Rb{sub 2}SO{sub 4}, Rb{sub 2}S{sub 2}O{sub 8}, RbMnO{sub 4}, RbNO{sub 3}, Rb{sub 2}CO{sub 3} and RblO{sub 3} were irradiated with 14 MeV neutrons by a (T + d) neutron generator. It appeared that in the case of Rb{sub 2}SO{sub 4} irradiated at room temperature or at -195 C approximately 8% of total Br{sup 82} activity was found in the bromate fraction, the rest following the bromide fraction. The room temperature irradiation of RbMnO{sub 4} and RbNO{sub 3} yielded about 1% of activity in the higher oxidation state of bromine and in the cases of Rb{sub 2}S{sub 2}O{sub 8} , Rb{sub 2}CO{sub 3} and RblO{sub 3} activity could be measured only in the bromide fraction. A small increase of the bromate activity was observed when neutron-irradiated Rb{sub 2}SO{sub 4} was heated up to 250 Degree-Sign C. At higher temperatures (up to 500 Degree-Sign C) the activity passed into the lower oxidation state. Theheating of the irradiated RbMnO{sub 4} and RbNO{sub 3} did not provoke any oxidation of bromine activity. While in the case of RbNO{sub 3} pre-irradiation {gamma}-dose of 22 Mrad had no influence upon the distribution of bromine recoils, the analysis of Rb{sub 2}SO{sub 4} pretreated with {gamma}-rays (55 Mrad) gave higher bromate activity compared with the samples that before neutron irradiation had only been dried at 150 Degree-Sign C. In conclusion the authors stress the significance of the chemical constitution of the target compound and non-isotopic media with regard to the distribution of highly energetic Br{sup 82} atoms and to their inability to anneal in the rubidium compounds investigated. (author) [French] Le memoire traite de la repartition, entre ses etats d

  13. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Lin Fanyun; Liu Haixia

    2007-01-01

    In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H 6 P 2 Mo 18 O 62 .xH 2 O (P 2 Mo 18 ). By the method, glassy carbon (GC) electrode modified with P 2 Mo 18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P 2 Mo 18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P 2 Mo 18 . The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P 2 Mo 18 /OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P 2 Mo 18 /OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors

  14. Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs)

    International Nuclear Information System (INIS)

    Ashbolt, Nicholas John

    2004-01-01

    Managing the provision of safe drinking water has a renewed focus in light of the new World Health Organization (WHO) water safety plans. Risk analysis is a necessary component to assist in selecting priority hazards and identifying hazardous scenarios, be they qualitative to quantitative assessments. For any approach, acute diarrhoeal pathogens are often the higher risk issue for municipal water supplies, no matter how health burden is assessed. Furthermore, potential sequellae (myocarditis, diabetes, reactive arthritis and cancers) only further increase the potential health burden of pathogens; despite the enormous uncertainties in determining pathogen exposures and chemical dose-responses within respective microbial and chemical analyses. These interpretations are currently being improved by Bayesian and bootstrapping approaches to estimate parameters for stochastic assessments. A case example, covering the health benefits of ozonation for Cryptosporidium inactivation versus potential cancers from bromate exposures, illustrated the higher risks from a pathogen than one of the most likely disinfection by-products (DBPs). Such analyses help justify the industries long-held view of the benefits of multiple barriers to hazards and that microbial contamination of water supplies pose a clear public health risk when treatment is inadequate. Therefore, efforts to reduce potential health risks from DBP must not compromise pathogen control, despite socio-political issues

  15. Solar photocatalytic H{sub 2} production from water using a dual bed photosystem

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The authors are developing a dual stage, direct photoconversion scheme for water splitting. The overall system consists of an aqueous solution circulated through two modules, or beds, each of which contains a photochemically active surface layer below the solution. The idea is to divide the energy requirement for water decomposition between the two photosystems, so that more abundant, lower energy photons in the solar spectrum can be utilized, and that the H{sub 2} and O{sub 2} products can be evolved separately from each other. Catalyst-modified semiconductor powders, immobilized within a polymer binder are currently being employed as the photoactive layers. TiO{sub 2} and platinized-InP have been employed for the O{sub 2} and H{sub 2} evolution tasks, respectively. A major effort over the last year was identification of a suitable redox mediator that is responsible for transferring electron equivalents from one unit to the other. After testing more than a dozen candidates, spanning a wide range of electropotentials, under a variety of conditions, it was found that the bromide/bromate (Br{sup {minus}}/BrO{sub 3}{sup {minus}}) and iodide/iodate (I{sup {minus}}/IO{sub 3}{sup {minus}}) redox systems could function in both modules, necessary for closed cycle operation.

  16. Citoprotective effect of camu-camu Myrciaria dubia on three celular lines of mouse exposed in vivo to potassium bromate

    OpenAIRE

    Rafael, Alvis; Pino, José; Gonzáles, José; Francia, Juan C.; Shiga, Betty

    2011-01-01

    Se evaluó in vivo la capacidad citoprotectora del fruto de Myrciaria dubia (Kunth) McVaugh Camu-camu frente al daño mutagénico producido por bromato de potasio (68,5 mg/k) sobre tres líneas celulares de ratón (hígado, riñón y células sanguíneas). Se utilizó ratones (n= 120) divididos en tres grupos los cuales bebieron ad libitum: TI= control negativo (solo agua) y el grupo TIII (control positivo); El grupo TII bebió el extracto acuoso (2% p/v) del fruto de camu-camu. A los diez días se inyect...

  17. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2012-01-01

    of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate

  18. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós, E-mail: orbanm@chem.elte.hu [Department of Analytical Chemistry, Institute of Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Rábai, Gyula [Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen (Hungary)

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  19. Speciative determination of total V and dissolved inorganic vanadium species in environmental waters by catalytic–kinetic spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Ramazan Gürkan

    2017-02-01

    Full Text Available A kinetic determination of V(V as a catalyst was spectrophotometrically performed by using the indicator reaction of Gallamine blue (GB+ and bromate at pH 2.0. The reaction was followed by measuring absorbance change for a fixed-time of 3 min at 537 nm. The variables such as reagent concentration, pH, buffer concentration, ionic strength and temperature were optimized to improve the selectivity and sensitivity. Under the optimized conditions, the determination of V(V was performed in the range 1–100 μg L−1 with limits of detection and quantification of 0.31 and 0.94 μg L−1. The developed kinetic method is sufficiently sensitive, selective and simple. It was successfully applied to the speciative determination of total V and inorganic dissolved vanadium species, V(V and V(IV in environmental water samples. The oxidizing property of permanganate is used to differentiate between V(IV and V(V species. The V(IV content was found by subtracting the V(V content from those of total V. The recovery is above 95% for V(V spiked samples. Additionally, the accuracy was validated by analysis of a certified water sample, CRM TMDA-53.3, and the results were in good agreement with the certified value.

  20. Autonomic composite hydrogels by reactive printing: materials and oscillatory response.

    Science.gov (United States)

    Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A

    2014-03-07

    Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).

  1. Integration of vanadium-mixed addenda Dawson heteropolytungstate within poly(3,4-ethylenedioxythiophene) and poly(2,2'-bithiophene) films by electrodeposition from the nonionic micellar aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Goral, Monika [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Jouini, Mohamed, E-mail: jouini@univ-paris-diderot.f [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Perruchot, Christian [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Miecznikowski, Krzysztof; Rutkowska, Iwona A. [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Kulesza, Pawel J., E-mail: pkulesza@chem.uw.edu.p [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2011-04-01

    A comparative study describing immobilization of the Dawson type mixed addenda heteropolyanion, [P{sub 2}W{sub 17}VO{sub 62}]{sup 8-} into conducting polymer films of poly(3,4-ethylenedioxythiophene), PEDOT, and poly(2,2'-bithiophene), PBT, is reported. Electrosynthesis of these hybrid films was performed using a micellar aqueous solution of the nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-100). Deposited composite films were characterised electrochemically and, on the whole, they exhibited fast electron transfer (ET) properties and relatively high stability towards continuous potential cycling in acidic media. In particular, PEDOT composite showed relatively faster ET properties in comparison to PBT composite. Their permeability was investigated in the presence of cationic and anionic redox probes. Our results implied good mediating capabilities of the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-} anion (within the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-}-PEDOT hybrid film) towards the iron (III) reduction. The specific electrocatalytic (reductive) capabilities of hybrid films were also studied by probing the reduction of bromate. The films were further characterised by X-ray photoelectron spectroscopy to establish their interfacial elemental composition. Moreover, their surface morphology was imaged by atomic force microscopy and scanning electron microscopy. Results have shown that physicochemical properties of the investigated hybrid films were affected by polymer hydrophobicity.

  2. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  3. PIXE analysis of Nigerian flour and bread samples

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S., E-mail: felix_olise@rushpost.com [Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Fernandes, Adriana M.; Cristina Chaves, P. [CFA: Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Taborda, Ana; Reis, Miguel A. [IST/CTN: Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear (CTN), EN10, 2686-953 Sacavém (Portugal); CFA: Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2014-01-01

    Highlights: • The PIXE technique has been used to determine K and Br in a major Nigerian food item. • Samples were analysed using two proton beam energies, namely 1.25 MeV and 2.15 MeV. • Mismatched Ca results reflect its nature and accuracy/precision of the procedure. • Explanations for the presence of the contaminant in the samples are presented. • Other sources originating from erroneous burning of dangerous products suspected. -- Abstract: The alleged use of potassium bromate (KBrO{sub 3}) in bread baking led a few authors to report on the chemical methods for the determination of KBrO{sub 3} levels in bread. In order to examine the potentials of a non chemical particle induced X-ray emission (PIXE) method for this purpose, six sets of samples, each composed of flour, dough and bread from a production batch were analysed. The samples were obtained from six different bakers of bread at Ile-Ife, Nigeria. The flour samples were air-dried while others were freeze dried at about −16 °C. The samples were homogenised in an agate mortar and then pelletised. Samples were analysed at the CTN standard PIXE setup and standard procedures for thick target samples analysis were followed. In some samples significant concentrations of bromine were found. In the present work we present possible explanations for the presence of this potentially dangerous contaminant in the samples.

  4. Evaluation of rheological, bioactives and baking characteristics of mango ginger (curcuma amada) enriched soup sticks.

    Science.gov (United States)

    Crassina, K; Sudha, M L

    2015-09-01

    Wheat flour was replaced with mango ginger powder (MGP) at 0, 5, 10 and 15 %. Influence of MGP on rheological and baking characteristics was studied. Farinograph was used to study the mixing profile of wheat flour-MGP blend. Pasting profile of the blends namely gelatinization and retrogradation were carried out using micro-visco-amylograph. Test baking was done to obtain the optimum level of replacement and processing conditions. Sensory attributes consisting texture, taste, overall quality and breaking strength were assessed. Nutritional characterization of the soup sticks in terms of protein and starch in vitro digestibility, dietary fiber, minerals, polyphenols and antioxidant activity were determined using standard methods. With the increasing levels of MGP from 0 to 15 %, the farinograph water absorption increased from 60 to 66.7 %. A marginal increase in the gelatinization temperature from 65.4 to 66.2 °C was observed. Retrogradation of gelatinized starch granules decreased with the addition of MGP. The results indicated that the soup stick with 10 % MG had acceptable sensory attributes. The soup stick showed further improvement in terms of texture and breaking strength with the addition of gluten powder, potassium bromate and glycerol monostearate. The total dietary fiber and antioxidant activity of the soup sticks having 10 % MGP increased from 3.31 to 8.64 % and 26.83 to 48.06 % respectively as compared to the control soup sticks. MGP in soup sticks improved the nutritional profile.

  5. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    Science.gov (United States)

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  6. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  7. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  8. Determination of concentration and molar absorptivity of hypochlorous acid and hypobromous acid species by hydrogen peroxide titration

    Science.gov (United States)

    Uehara, H.; Arakaki, T.

    2017-12-01

    Hypochlorous acid and hypobromous acid (abbreviated as "HypoX acids") are the main ingredients of bleaching and bactericides. The HypoX acids change their chemical forms depending on environmental factors such as pH and various chemical reactions. For example, it has been reported that hypobromite ion in water changes to carcinogenic bromate by photochemical reaction with ultraviolet light. In this study, concentrations of HypoX acids were determined by UV-VIS absorbance measurement utilizing the fact that HypoX acids react with hydrogen peroxide and do not co-exist in the solution. The method for determining the concentration by titration with hydrogen peroxide can be carried out simpler and more efficiently than the DPD method or the current titration method generally used for chlorine concentration measurement. Molar absorptivity between 250 - 500 nm of HypoX acids, including their conjugate base species, was determined by solving theoretical acid-base formula including molar fraction of each chemical species at various pHs. Molar absorptivity of OCl- and OBr- between 250 - 500 nm was determined based on the concentrations obtained from titration with hydrogen peroxide and absorbance at pH > 10, where OCl- and OBr- dominate. Furthermore, the HypoX acids solutions were irradiated with a solar simulator, and the photolysis rate constants were obtained. Based on those values, the half-lives were calculated and the behavior of HypoX acids in the environment was elucidated.

  9. PIXE analysis of Nigerian flour and bread samples

    International Nuclear Information System (INIS)

    Olise, Felix S.; Fernandes, Adriana M.; Cristina Chaves, P.; Taborda, Ana; Reis, Miguel A.

    2014-01-01

    Highlights: • The PIXE technique has been used to determine K and Br in a major Nigerian food item. • Samples were analysed using two proton beam energies, namely 1.25 MeV and 2.15 MeV. • Mismatched Ca results reflect its nature and accuracy/precision of the procedure. • Explanations for the presence of the contaminant in the samples are presented. • Other sources originating from erroneous burning of dangerous products suspected. -- Abstract: The alleged use of potassium bromate (KBrO 3 ) in bread baking led a few authors to report on the chemical methods for the determination of KBrO 3 levels in bread. In order to examine the potentials of a non chemical particle induced X-ray emission (PIXE) method for this purpose, six sets of samples, each composed of flour, dough and bread from a production batch were analysed. The samples were obtained from six different bakers of bread at Ile-Ife, Nigeria. The flour samples were air-dried while others were freeze dried at about −16 °C. The samples were homogenised in an agate mortar and then pelletised. Samples were analysed at the CTN standard PIXE setup and standard procedures for thick target samples analysis were followed. In some samples significant concentrations of bromine were found. In the present work we present possible explanations for the presence of this potentially dangerous contaminant in the samples

  10. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    International Nuclear Information System (INIS)

    Sun Yingxue; Wu Qianyuan; Hu Hongying; Tian Jie

    2009-01-01

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  11. INFLUENCE OF REAGENT PURITY ON THE ION CHROMATOGRAPHIC DETERMINATION OF BROMATE IN WATER USING 3,3'-DIMETHOXYBENZIDINE AS A PROCHROMOPHORE FOR PHOTOMETRIC DETECTION

    Science.gov (United States)

    Variable availability of the purified dihydrochloride salt of 3,3'-dimethoxybenzidine (DMB, ortho-dianisidine) led us to investigate the effects of reagent purity on the analytical results obtinaed when this reagent is used in the photometric determination of the disinfection byp...

  12. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Zhang Yu; Ren Yiping; Zhao Hangmei; Zhang Ying

    2007-01-01

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg -1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg -1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg -1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg -1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples

  13. The use of ion chromatography in environmental and process control in the nuclear industry. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M M [Ultra Tech Inc, 28 Teiba St. Dokki-Cairo, (Egypt)

    1996-03-01

    Ion chromatography has become the method choice for determining sub ppb for inorganic anions and cations, such as chloride, sulfide, fluoride, sodium, potassium, and ammonium, in aqueous matrices. Steam generators in pressurized water reactors nuclear power plants occasionally experience tubing degradation by a variety of corrosion related mechanisms which depends on water chemistry. Ion chromatography is also used in other environmental applications such as air pollution, industrial hygiene, drinking water quality, and industrial waste treatment. In this paper, several methods of separation and detection are present and also a number of examples of samples for various types of water are shown. The examples will include sub ppb amounts of chloride, sulfate, sodium, potassium, and ammonium in high purity turbine steam. Testing of chlorinated drinking water for inorganic anions including chlorite, chloride chlorate nitrite, nitrate as other organic anions using chemically suppressed conductivity. The role of chemical suppression is discussed. The analysis of ppb levels of transition moles in high purity water using ion chromatography with post column derivatization and UV detection are reviewed. Testing of disinfected drinking water with ozone for bromate, the detection of cyanide in waste after acid digestion, and the detection of highly toxic hexavalent in the presence of trivalent chromium is discussed. A fast method for the analysis of rain water for anions and cations is described. The presentation will also show new method (chelation ion chromatography) which enables ppb levels of heavy metals to be determined as pollutants in difficult environmental matrices such seawater, and oyster tissue. 4 figs.

  14. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  15. The use of ion chromatography in environmental and process control in the nuclear industry. Vol. 4

    International Nuclear Information System (INIS)

    Mohamed, M.M.

    1996-01-01

    Ion chromatography has become the method choice for determining sub ppb for inorganic anions and cations, such as chloride, sulfide, fluoride, sodium, potassium, and ammonium, in aqueous matrices. Steam generators in pressurized water reactors nuclear power plants occasionally experience tubing degradation by a variety of corrosion related mechanisms which depends on water chemistry. Ion chromatography is also used in other environmental applications such as air pollution, industrial hygiene, drinking water quality, and industrial waste treatment. In this paper, several methods of separation and detection are present and also a number of examples of samples for various types of water are shown. The examples will include sub ppb amounts of chloride, sulfate, sodium, potassium, and ammonium in high purity turbine steam. Testing of chlorinated drinking water for inorganic anions including chlorite, chloride chlorate nitrite, nitrate as other organic anions using chemically suppressed conductivity. The role of chemical suppression is discussed. The analysis of ppb levels of transition moles in high purity water using ion chromatography with post column derivatization and UV detection are reviewed. Testing of disinfected drinking water with ozone for bromate, the detection of cyanide in waste after acid digestion, and the detection of highly toxic hexavalent in the presence of trivalent chromium is discussed. A fast method for the analysis of rain water for anions and cations is described. The presentation will also show new method (chelation ion chromatography) which enables ppb levels of heavy metals to be determined as pollutants in difficult environmental matrices such seawater, and oyster tissue. 4 figs

  16. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  17. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  18. Parity violation and parity conservation in unstirred crystallization: Effect of first crystals

    Energy Technology Data Exchange (ETDEWEB)

    Szurgot, M. [Center of Mathematics and Physics, Technical University of Lodz (Poland)

    2012-02-15

    Statistics of nucleation of chiral forms was studied to establish the effect of the number of first crystals and their handedness on distributions of enantiomers. Various bimodal, trimodal and unimodal distributions are obtained in unstirred crystallization, depending on the number of initial crystals and growth conditions. The binomial distribution satisfactorily describes experimental distributions of enantiomeric excess and may be used to predict distributions and probabilities of nucleation of enantiomers. The first nucleated crystals determine the handedness of secondary crystals, and number of initial crystals governs statistics of chiral nucleation. According to the binomial distribution if single crystals nucleate as the first, the bimodal distributions result with D and L peaks. If LD, LL, and DD pairs are nucleated as first, trimodal distributions with D, R, and L peaks are created, and if groups of crystals of various handedness nucleate as the first the unimodal distributions of enantiomeric excess with racemate R peaks are formed. Chiral nucleation experiments on sodium bromate were the basis for the theoretical considerations and verifications of predictions resulting from binomial distributions on probabilities of the creation of L and D crystals, and racemates, and the presence of D, L, and R peaks in the distributions. Growth conditions affect the number of the first crystals and effectiveness of cloning, and as a result, the distributions of enantiomers. Formation of pure enantiomers and/or racemates proves that the conservation of chiral symmetry, and the breakage of chiral symmetry can occur in unstirred crystallization. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  20. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper)

    KAUST Repository

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2016-01-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300 °C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300 °C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents.

  1. Development of new radiation resistant, fire-retardant cables. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Fujimura, Shun-ichi; Oda, Eisuke

    1982-12-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of ..gamma..-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low.

  2. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  3. Development of new radiation resistant, fire-retardant cables

    International Nuclear Information System (INIS)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi; Fujimura, Shun-ichi; Oda, Eisuke.

    1982-01-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of γ-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low. (Wakatsuki, Y.)

  4. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    Science.gov (United States)

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-05

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  6. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper)

    KAUST Repository

    Chubar, Natalia

    2016-12-07

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300 °C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300 °C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents.

  7. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  8. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents

  9. Extraction behaviour and mechanism of Pt(iv) and Pd(ii) by liquid-liquid extraction with an ionic liquid [HBBIm]Br.

    Science.gov (United States)

    Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao

    2017-06-06

    In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).

  10. Data considerations for regulation of water contaminants

    International Nuclear Information System (INIS)

    Schoeny, Rita; Haber, Lynne; Dourson, Michael

    2006-01-01

    There are several pieces of legislation based on human health assessment that set the framework for U.S. EPA's regulation of water contaminants, such as bromate. The Safe Drinking Water Act, for example, specifies that the best available science be used in support of regulation of drinking water contaminants, and highlights that regulations must provide protection to sensitive human populations. Recent EPA guidance, including the 2005 Cancer Guidelines, emphasize analyzing data, and using defaults only in the absence of adequate data. This represents a major shift from the former practice of invoking default methodologies or values unless it was judged that there were sufficient data to depart from them. The Guidelines further present a framework for assessing data in order to determine if a mode of action (MOA) can be established, based on a modification of the Bradford-Hill criteria for causality. A similar approach is used by the International Programme on Chemical Safety (IPCS). To illustrate the application of the framework for evaluating animal tumors, three case studies are considered here. In the first example (chloroform carcinogenicity), sufficient data exist to identify the MOA in animals, and the data are used to illustrate the evaluation of the plausibility of the animal MOA in humans, taking into account toxicokinetics and toxicodynamics. In this case, the MOA was judged to be relevant to humans, and was used to determine the approach for the cancer quantitation. In the second example (naphthalene inhalation carcinogenicity), the key question is whether the weight of evidence (WOE) is sufficient to establish the MOA in animals. Atrazine-induced mammary tumors form the final example, illustrating the reasoning used to determine that the tumor MOA in animals was not considered relevant to humans; atrazine is therefore considered not likely to be a human carcinogen

  11. Utilization of a Green Brominating Agent for the Spectrophotometric Determination of Pipazethate HCl in Pure Form and Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Five simple, accurate, and sensitive spectrophotometric methods (A–E have been described for the indirect assay of pipazethate HCl (PZT either in pure form or in pharmaceutical preparations. The proposed methods are based on the bromination of pipazethate HCl with a solution of excess bromate-bromide mixture in hydrochloric acid medium and subsequent estimation of the residual bromine by different reaction schemes. In the first three methods (A–C, the determination of the residual bromine is based on its ability to bleach the color of methyl orange, indigo carmine, or thymol blue dyes and measuring the absorbance at 520, 610, and 550 nm for methods A, B, and C, respectively. Methods D and E involves treating the unreacted bromine with a measured excess of iron(II, and the remaining iron(II is complexed with 1,10-phenanthroline, and the increase in absorbance is measured at 510 nm for method D and the resulting iron(III is complexed with thiocyanate and the absorbance is measured at 480 nm for method E. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Regression analysis of the Beer-Lambert plots showed good correlation in the concentration ranges of 0.5–8.0 μg . The apparent molar absorptivity, Sandell's sensitivity, detection and quantitation limits were evaluated. The proposed methods have been applied and validated successfully for the analysis of the drug in its pure form and pharmaceutical formulations with mean recoveries of 99.94%–100.15% and relative standard deviation ≤1.53. No interference was observed from a common pharmaceutical adjuvant. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

  12. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues.

    Science.gov (United States)

    Johns, Cameron; Shellie, Robert A; Potter, Oscar G; O'Reilly, John W; Hutchinson, Joseph P; Guijt, Rosanne M; Breadmore, Michael C; Hilder, Emily F; Dicinoski, Greg W; Haddad, Paul R

    2008-02-29

    Anions and cations of interest for the post-blast identification of homemade inorganic explosives were separated and detected by ion chromatographic (IC) methods. The ionic analytes used for identification of explosives in this study comprised 18 anions (acetate, benzoate, bromate, carbonate, chlorate, chloride, chlorite, chromate, cyanate, fluoride, formate, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate and thiosulfate) and 12 cations (ammonium, barium(II), calcium(II), chromium(III), ethylammonium, magnesium(II), manganese(II), methylammonium, potassium(I), sodium(I), strontium(II), and zinc(II)). Two IC separations are presented, using suppressed IC on a Dionex AS20 column with potassium hydroxide as eluent for anions, and non-suppressed IC for cations using a Dionex SCS 1 column with oxalic acid/acetonitrile as eluent. Conductivity detection was used in both cases. Detection limits for anions were in the range 2-27.4ppb, and for cations were in the range 13-115ppb. These methods allowed the explosive residue ions to be identified and separated from background ions likely to be present in the environment. Linearity (over a calibration range of 0.05-50ppm) was evaluated for both methods, with r(2) values ranging from 0.9889 to 1.000. Reproducibility over 10 consecutive injections of a 5ppm standard ranged from 0.01 to 0.22% relative standard deviation (RSD) for retention time and 0.29 to 2.16%RSD for peak area. The anion and cation separations were performed simultaneously by using two Dionex ICS-2000 chromatographs served by a single autoinjector. The efficacy of the developed methods was demonstrated by analysis of residue samples taken from witness plates and soils collected following the controlled detonation of a series of different inorganic homemade explosives. The results obtained were also confirmed by parallel analysis of the same samples by capillary electrophoresis (CE) with excellent agreement being obtained.

  13. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor.

    Science.gov (United States)

    Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid

    2018-01-01

    Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bazı Katkı Maddelerinin Ekmek Özellikleri Üzerine Etkisi

    Directory of Open Access Journals (Sweden)

    Süeda Çelik

    2015-02-01

    Full Text Available Oksidan ajanlar (Potasyum bromat ve askorbik asit, indirgen ajan (L-sistein ve surfektanlar (SSL ve DATEM'ın farklı dozlarının üç ekmeklik buğday çeşidine ait unların ekmeklik özellikleri üzerine etkileri çalışılmıştır. Kuvvetli ve orta gluten kalitesine sahip Bezostaya ve Kırat çeşitlerinde ekmek hacmi ile ekmek iç ve dış özellikleri genel olarak değerlendirildiğinde askorbik asilin etkisinin KBrO3 m etkisinden daha iyi olduğu, KBrO3 m 150 ppm dozunun bazı ekmek özelliklerini olumsuz yönde etkilediği saptanmıştır. İndirgen ajan olan L-sistein ilavesi, kuvveti gluten yapısına sahip Bezostaya çeşidinde ekmek hacmi değerlerini az da olsa olumlu yönde etkilemiştir. Diğer iki çeşitte ise bu katkının ilavesi genellikle ekmek özelliklerini olumsuz yönde etkilemiştir. SSL ve DATEM her üç un örneğinde de ekmek iç ve dış özelliklerini genellikle benzer şekilde etkilemiştir. Buna karşılık, DATEM in ekmek hacmi değerlerini SSL e göre daha olumlu etkilediği gözlenmiştir. Zayıf gluten kalite sine sahip olan Orso çeşidinde ekmek katkı maddelerinin kullanımı ile beklenen iyileşme sağlanamamıştır.

  15. Detection of DNA Double Strand Breaks by γH2AX Does Not Result in 53bp1 Recruitment in Mouse Retinal Tissues

    Directory of Open Access Journals (Sweden)

    Brigitte Müller

    2018-05-01

    Full Text Available Gene editing is an attractive potential treatment of inherited retinopathies. However, it often relies on endogenous DNA repair. Retinal DNA repair is incompletely characterized in humans and animal models. We investigated recruitment of the double stranded break (DSB repair complex of γH2AX and 53bp1 in both developing and mature mouse neuroretinas. We evaluated the immunofluorescent retinal expression of these proteins during development (P07-P30 in normal and retinal degeneration models, as well as in potassium bromate induced DSB repair in normal adult (3 months retinal explants. The two murine retinopathy models used had different mutations in Pde6b: the severe rd1 and the milder rd10 models. Compared to normal adult retina, we found increased numbers of γH2AX positive foci in all retinal neurons of the developing retina in both model and control retinas, as well as in wild type untreated retinal explant cultures. In contrast, the 53bp1 staining of the retina differed both in amount and character between cell types at all ages and in all model systems. There was strong pan nuclear staining in ganglion, amacrine, and horizontal cells, and cone photoreceptors, which was attenuated. Rod photoreceptors did not stain unequivocally. In all samples, 53bp1 stained foci only rarely occurred. Co-localization of 53bp1 and γH2AX staining was a very rare event (< 1% of γH2AX foci in the ONL and < 3% in the INL, suggesting the potential for alternate DSB sensing and repair proteins in the murine retina. At a minimum, murine retinal DSB repair does not appear to follow canonical pathways, and our findings suggests further investigation is warranted.

  16. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    Science.gov (United States)

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    Science.gov (United States)

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-07

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering

  18. Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid

    KAUST Repository

    Yoon, Min

    2014-06-17

    A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.

  19. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.

    Science.gov (United States)

    Xia, Guangsen; Wang, Yujue; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2017-07-01

    Previous studies indicate that effective generation of hydrogen peroxide (H 2 O 2 ) from cathodic oxygen (O 2 ) reduction is critical for the improved water treatment performance (e.g., enhanced pollutant degradation and reduced bromate formation) during the electro-peroxone (E-peroxone) process (a combined process of electrolysis and ozonation). However, undesired reactions (e.g., O 3 , H 2 O 2 , and H 2 O reductions) may occur in competition with O 2 reduction at the cathode. To get a better understanding of how these side reactions would affect the process, this study investigated the cathodic reaction mechanisms during electrolysis with O 2 /O 3 gas mixture sparging using various electrochemical techniques (e.g., linear sweep voltammetry and stepped-current chronopotentiometry). Results show that when a carbon brush cathode was used during electrolysis with O 2 /O 3 sparging, H 2 O and H 2 O 2 reductions were usually negligible cathodic reactions. However, O 3 can be preferentially reduced at much more positive potentials (ca. 0.9 V vs. SCE) than O 2 (ca. -0.1 V vs. SCE) at the carbon cathode. Therefore, cathodic O 2 reduction was inhibited when the process was operated under current limited conditions for cathodic O 3 reduction. The inhibition of O 2 reduction prevented the desired E-peroxone process (cathodic O 2 reduction to H 2 O 2 and ensuing reaction of H 2 O 2 with O 3 to OH) from occurring. In contrast, when cathodic O 3 reduction was limited by O 3 mass transfer to the cathode, cathodic O 2 reduction to H 2 O 2 could occur, thus enabling the E-peroxone process to enhance pollutant degradation and mineralization. Many process and water parameters (applied current, ozone dose, and reactivity of water constituents with O 3 ) can cause fundamental changes in the cathodic reaction mechanisms, thus profoundly influencing water treatment performance during the E-peroxone process. To exploit the benefits of H 2 O 2 in water treatment, reaction conditions

  20. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuya, E-mail: suzukite@hiroshima-u.ac.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Grúz, Petr; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Adachi, Noritaka [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Nohmi, Takehiko [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2016-09-15

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  1. An assessment of the influence of multiple stressors on the Vaal River, South Africa

    Science.gov (United States)

    Wepener, V.; van Dyk, C.; Bervoets, L.; O'Brien, G.; Covaci, A.; Cloete, Y.

    community structures. This was related to decreased fish health as demonstrated by increased oxidative stress due to exposure to metals such as copper and nickel as well as organic pollutants such as PCBs, HCHs and bromated flame retardants. This study clearly demonstrates the importance of the inclusion of higher tier assessment endpoints to elucidate the effects of multiple stressors in aquatic ecosystems. The study further allowed for the identification of specific effect endpoints that need to be included in future monitoring programmes such as viral immunoassays.

  2. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    International Nuclear Information System (INIS)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-01-01

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  3. An investigation of sodium–CO{sub 2} interaction byproduct cleaning agent for SFR coupled with S-CO{sub 2} Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hwa-Young, E-mail: jhy0523@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Division of SFR NSSS System Design, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Wi, Myung-Hwan, E-mail: mhwi@kaeri.re.kr [Division of SFR NSSS System Design, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ahn, Hong Joo, E-mail: ahjoo@kaeri.re.kr [Division of Nuclear Chemistry Research, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-02-15

    Highlights: • Study on cleaning agent was conducted to remove Na–CO{sub 2} interaction byproducts. • Screening criteria to select candidate substances as cleaning agents were suggested. • The mixtures of Na{sub 2}CO{sub 3} with NaBrO{sub 3}, NaClO{sub 3}, or NaBF{sub 4} were thermally analyzed with the TG/DTA studies. • Three candidate substances decomposed before 600 °C and did not react with Na{sub 2}CO{sub 3}. - Abstract: One of the promising future nuclear energy systems, the Sodium-cooled Fast Reactor (SFR) has been actively developed internationally. Recently, to improve safety and economics of a SFR further, coupling supercritical CO{sub 2} power cycle was suggested. However, there can be a chemical reaction between sodium and CO{sub 2} at high temperature (more than 400 °C) when the pressure boundary fails in a sodium–CO{sub 2} heat exchanger. To ensure the performance of such a system, it is important to employ a cleaning agent to recover the system back to normal condition after the reaction. When sodium and CO{sub 2} react, solid and gaseous reaction products such as sodium carbonate (Na{sub 2}CO{sub 3}) and carbon monoxide (CO) appear. Since most of solid reaction products are hard and can deteriorate system performance, quick removal of solid reaction products becomes very important for economic performance of the system. Thus, the authors propose the conceptual method to remove the byproducts with a chemical reaction at high temperature. The chemical reaction will take place between the reaction byproducts and a cleaning agent while the cleaning agent is inert with sodium. Thus, various sodium-based compounds were first investigated and three candidate substances satisfying several criteria were selected; sodium bromate (NaBrO{sub 3}), sodium chlorate (NaClO{sub 3}), and sodium tetrafluoroborate (NaBF{sub 4}). The selected substances were thermally analyzed with the TG/DTA studies. Unfortunately, it was revealed that all candidate

  4. Mapeamento da qualidade da água de abastecimento público no nordeste do estado de São Paulo (Brasil | Mapping of public water supply in the northeast of the State of São Paulo (Brazil

    Directory of Open Access Journals (Sweden)

    Sergio Dovidauskas

    2017-05-01

    nitrate concentration was greater than the maximum value allowed in 17 samples; 1730 samples showed fluoride content out-of-range of drinking pattern; bromate concentration was greater than the maximum value allowed in 16 samples; the pH value was outside the range recommended in 161 samples; 292 samples showed levels of free residual chlorine (FRC outside the recommended range; 17 samples showed apparent color values above the maximum allowed; 13 samples showed turbidity values above the maximum allowed. By means of principal components analysis, it was possible to discriminate the waters of the region, with the formation of groups of municipalities with similar physico-chemical profiles, generating a mapping based on prominent variables.

  5. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  6. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    Science.gov (United States)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric