WorldWideScience

Sample records for broadleaved evergreens

  1. The leaf size-twig size spectrum in evergreen broadleaved forest of ...

    African Journals Online (AJOL)

    Compared to deciduous broad-leaved species, the evergreen broad-leaved species were smaller in total leaf area for a given cross-sectional area or stem mass. This suggests that the species would support less leaf area at a given twig cross-sectional area with increasing environmental stress. And the life form can modify ...

  2. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China

    Science.gov (United States)

    Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo

    2013-01-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...

  3. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    Science.gov (United States)

    Xiaojun Du; Qinfeng Guo; Xianming Gao; Keping Na

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms.We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan,...

  4. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Science.gov (United States)

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  5. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    Science.gov (United States)

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  6. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    Full Text Available Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1 identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2 predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77. Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and

  7. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Science.gov (United States)

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine

  8. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

    Science.gov (United States)

    Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong

    2014-02-01

    Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad-leaved

  9. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.

    Science.gov (United States)

    Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei

    2013-04-01

    Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.

  10. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Hua Zhu; Yong Chai; Shisun Zhou; Lichun Yan; Jipu Shi; Guoping Yang

    2016-01-01

    The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous, island-like, distribution. It is diverse, rich in endemic species, and likely to be sensitive to climate change. Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan. All trees with d.b.h.>1 cm in each plot were identified. Patterns of seed plant distributions were quantified at the specific, generic and family levels. The forests are dominated by the families Fagaceae, Lauraceae, Theaceae and Magnoliaceae, but are very diverse with only a few species shared between sites. Floristic similarities at the family and generic level were high, but they were low at the specific level, with species complementarity between plots. Diversity varied greatly among sites, with greater species richness and more rare species in western Yunnan than central Yunnan. The flora is dominated by tropical biogeographical elements, mainly the pantropic and the tropical Asian distributions at the family and genus levels. In contrast, at the species level, the flora is dominated by the southwest or the southeast China distributions, including Yunnan endemics. This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin, and has adapted to cooler temperatures with the uplift of the Himalayas. Due to great sensitivity to climate, high endemism and species complementarity, as well as the discontinuous, island-like, distribution patterns of the upper montane forest in Yunnan, the regional conservation of the forest is especially needed.

  11. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  12. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  13. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  14. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

    Directory of Open Access Journals (Sweden)

    Tang, C. Q.

    2015-12-01

    Full Text Available This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia, and Michelia, (Magnoliaceae, while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan. Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.En este trabajo se analiza los patrones de distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de china, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la regiones subtropicales tanto orientales como occidentales presentan dominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia y Michelia

  15. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Azita Ahmad Zawawi

    2015-04-01

    Full Text Available Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation. Dominant tree canopy layers were estimated using multi-scale filtering and local maxima detection. The LiDAR estimation results were then compared to the ground inventory data and a high resolution orthophoto image for accuracy assessment. Main results: A Wilcoxon matched pair test suggests that LiDAR data is highly capable of estimating tree height in a subtropical forest (z = 4.0, p = 0.345, but has limitation to detect small understory trees and a single tree delineation. The results show that there is a statistically significant different type of crown detection from LiDAR data over forest inventory (z = 0, p = 0.043. We also found that LiDAR computation results underestimated the stand density and overestimated the crown size. Research highlights: Most studies involving crown detection and tree height estimation have focused on the analysis of plantations, boreal forests and temperate forests, and less was conducted on tropical and/or subtropical forests. Our study tested the capability of LiDAR as an effective application for analyzing a highly dense forest

  16. A comparison of 137Cs radioactivity in localized evergreen and deciduous plant species

    International Nuclear Information System (INIS)

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental 137 Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil 137 Cs concentrations from each vegetation location were also compared to the foliage 137 Cs concentrations. The study's objective was to determine if the deciduous and evergreen vegetation 137 Cs concentrations are statistically the same

  17. A comparison of {sup 137}Cs radioactivity in localized evergreen and deciduous plant species

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental {sup 137}Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil {sup 137}Cs concentrations from each vegetation location were also compared to the foliage {sup 137}Cs concentrations. The study`s objective was to determine if the deciduous and evergreen vegetation {sup 137}Cs concentrations are statistically the same.

  18. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.

    Science.gov (United States)

    England, Jacqueline R; Attiwill, Peter M

    2007-08-01

    Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.

  19. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  20. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  1. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.

  2. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    International Nuclear Information System (INIS)

    Paoletti, Elena

    2005-01-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening

  3. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  4. Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species

    Science.gov (United States)

    Nali, C.; Paoletti, E.; Marabottini, R.; Della Rocca, G.; Lorenzini, G.; Paolacci, A. R.; Ciaffi, M.; Badiani, M.

    Three Mediterranean shrubs, Phillyrea latifolia L. (phillyrea), Arbutus unedo L. (strawberry tree), and Laurus nobilis L. (laurel), differing in their morphological and ecological response to water shortage, were exposed for 90 days to 0 or 110 ppb of ozone (O 3), 5 h each day. This yielded an accumulated exposure over of a threshold of 40 ppb (AOT40) of 31.5 ppm h over the 3 months experiment. These species showed differing responses to O 3: laurel and phillyrea developed foliar chlorotic mottles on the adaxial surface of leaves, whereas strawberry tree leaves showed reddish interveinal stipple-like necrotic lesions. In all cases, however, foliar injury did not exceed 8% of the sampled leaf area. At the end of the exposure period, O 3-induced stomatal limitation caused significant decreases of net photosynthesis in strawberry tree and laurel, but not in phillyrea. The relative water content of the leaves was significantly decreased by O 3, especially in laurel and strawberry tree, suggesting the occurrence of drought stress. Electrical conductivity of leachates from foliar discs increased in response to the treatment, much more strongly in laurel and in strawberry tree than in phillyrea, suggesting an O 3-dependent alteration of the membrane retention capacity. At the end of the experimental period, the activity of superoxide dismutase and the content of reduced glutathione, but not that of reduced ascorbate, were significantly increased in the ozonated leaves of strawberry tree and phillyrea, but not in laurel. The evergreen broadleaves studied here maybe relatively tolerant to realistic O 3 levels, at least in terms of visible injury and gas exchange. Such tolerance might overlap with their level of tolerance to drought stress. High constitutive levels, and/or O 3-induced increases in antioxidants, might contribute to O 3 tolerance in these Mediterranean evergreen broadleaf species.

  5. The transitional semi-evergreen bushland in Ethiopia

    DEFF Research Database (Denmark)

    van Breugel, Paulo; Friis, Ib; Sebsebe, Demissew

    2016-01-01

    Question: Evergreen bushlands in Ethiopia have been inadequately studied and mapped. We address the question whether there is a transitional semi-ever-green bushland on the eastern escarpment of the Ethiopian Highlands, with unique floristic characteristics that distinguish it from the evergreen...... bushlands in other parts of Ethiopia and eastern Africa. Methods: Based on a review of the recent descriptions of evergreen bushlands in Ethiopia, we hypothesize that there is a distinct zone of natural semi-ever-green bushland, which is restricted to the eastern and southeastern escarpment of the Ethiopian...... Highlands. In contrast, evergreen bushlands in other parts of Ethiopia are considered to be of a secondary nature. To test this hypothesis, we carried out qualitative vegetation surveys in 354 locations across Ethiopia and classified the vegetation in these locations based on the occurrences of indicator...

  6. Water use efficiency in a primary subtropical evergreen forest in Southwest China.

    Science.gov (United States)

    Song, Qing-Hai; Fei, Xue-Hai; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Wu, Chuan-Sheng; Lu, Zhi-Yun; Luo, Kang; Gao, Jin-Bo; Liu, Yu-Hong

    2017-02-20

    We calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.68 g C kg H 2 O -1 . The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H 2 O -1 . WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. At the diurnal scale, WUE in the wet season reached 5.1 g C kg H 2 O -1 in the early morning and 4.6 g C kg H 2 O -1 in the evening. WUE in the dry season reached 3.1 g C kg H 2 O -1 in the early morning and 2.7 g C kg H 2 O -1 in the evening. During the leaf emergence stage, the variation of WUE could be suitably explained by water-related variables (relative humidity (RH), soil water content at 100 cm (SWC_100)), solar radiation and the green index (Sgreen). These results revealed large variation in WUE at different time scales, highlighting the importance of individual site characteristics.

  7. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  8. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  9. [Analysis of Camellia rosthorniana populations fecundity].

    Science.gov (United States)

    Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun

    2004-03-01

    With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.

  10. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Marco, Francisco; Cervero, Julia; Sanchez-Pena, Gerardo; Sanz, Maria Jose

    2010-01-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO 2 assimilation and stomatal conductance (g s ), impaired Rubisco efficiency and regeneration capacity (V c,max, J max ) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  11. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    Science.gov (United States)

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  12. 'Linkage' pharmaceutical evergreening in Canada and Australia

    Science.gov (United States)

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong their patent royalties, 'evergreening' is rarely mentioned explicitly by judges in patent protection cases. The term usually refers to threats made to competitors about a brand-name manufacturer's tactical use of pharmaceutical patents (including over uses, delivery systems and even packaging), not to extension of any particular patent over an active product ingredient. This article focuses in particular on the 'evergreening' potential of so-called 'linkage' provisions, imposed on the regulatory (safety, quality and efficacy) approval systems for generic pharmaceuticals of Canada and Australia, by specific articles in trade agreements with the US. These 'linkage' provisions have also recently appeared in the Korea-US Free Trade Agreement (KORUSFTA). They require such drug regulators to facilitate notification of, or even prevent, any potential patent infringement by a generic pharmaceutical manufacturer. This article explores the regulatory lessons to be learnt from Canada's and Australia's shared experience in terms of minimizing potential adverse impacts of such 'linkage evergreening' provisions on drug costs and thereby potentially on citizen's access to affordable, essential medicines. PMID:17543113

  13. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  14. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    Science.gov (United States)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  15. Carbon and water vapore balance in a primary subtropical evergreen forest in Southewest China under a changing climate

    Science.gov (United States)

    Song, Q. H.; Zhang, Y. P.

    2017-12-01

    The Ailaoshan Nature Reserve in Yunnan province, southwestern China hosts about 5000 ha of primary subtropical evergreen mountain cloud forest. A widespread and severe drought occurred in southwestern China in 2009 and 2010, providing a unique opportunity to directly evaluate how water use efficiency (WUE) changes with drought stress in the primary subtropical forest. We calculated WUE using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from 2.28 to 2.68 g C kg H2O-1. The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H2O-1. WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. Unfortunately, the same study site experienced a particularly extreme climate anomaly during January 2015, with a heavy snow of up to 50 cm in depth, which led to severe forest damage. The forest canopy was severely damaged by the heavy snow, and the leaf area index (LAI) decreased significantly from January to July 2015. GPP, net ecosystem exchange (NEE), and Ecosystem respiration (Reco) all sharply decreased in 2015 after the heavy snow. On average, a strong decrease of 544 g C m-2 year-1 in annual NEE in 2015 was associated with a decrease of 829 g C m-2 year-1 in annual GPP and a decrease of 285 g C m-2 year-1 in annual Reco. Overall, annual net C uptake in 2015 was reduced by 76% compared to the mean C uptake of the previous four years. A sharp increase in carbon uptake was also observed in 2016, indicating that long-term, continuous measurements should be carried out to evaluate the overall response to the disturbance.

  16. TREE SPECIES CLASSIFICATION OF BROADLEAVED FORESTS IN NAGANO, CENTRAL JAPAN, USING AIRBORNE LASER DATA AND MULTISPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    S. Deng

    2017-10-01

    Full Text Available This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB, 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees, four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees, and 13 classes for the third level (three coniferous and ten broadleaved species, using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  17. Sustainable cultivation of broadleaved trees in a recycling community

    International Nuclear Information System (INIS)

    Christersson, L.

    1996-01-01

    In the future, with problems of global warming and acidification and with an increasing need to recirculate wastes of the community in an ecologically acceptable and economically sound manner, the cultivation of broadleaved species (birch, aspen, poplar, alder and willow in particular) on suitable forest land and on former agricultural land is of utmost interest if following the recycling philosophy. The wood produced could be used primarily for short fibres and for energy. Also of interest is the production of methanol, biogas and electricity, chipboard and laminates, in the context of a forest industry concerned with the further development of the raw materials. The main advantages of cultivating fast-growing, broadleaved trees on former agricultural land are that: * in Sweden it has been shown possible to produce 10-12 tonnes of dry matter of woody biomass per hectare and year by cultivating willows and hybrid poplars, * in such plantations, the energy efficiency ratio will be 1 to 15-20, meaning that for every energy unit used, 15-20 can be harvested, and * some residual products from society, such as sludges, ashes, and wastewaters can be used as fertilizers in such plantations. 16 refs

  18. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8...

  19. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    Science.gov (United States)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  20. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  1. Phosphorus conservation by evergreenness of mountain laurel. [Kalmia latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W A [Oak Ridge National Lab., TN; Grigal, D F

    1976-01-01

    Field studies and compartmental model analyses demonstrate that the evergreen nature of mountain laurel Kalmia latifolia L. helps conserve phosphorus on infertile sites. The perennial canopy continuously adds P to the forest floor through foliar leaching and year-round leaf fall. Slow mineralization of leaf litter provides a steady addition of available P. The evergreenness of Kalmia allows it to utilize increases in available P, thus keeping it in circulation through biological tissues. Retention of a sufficient P supply in this manner allows the site to respond when changes such as disturbance or succession occur in the system.

  2. 78 FR 45288 - Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS...

    Science.gov (United States)

    2013-07-26

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. MCF 21054] Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS Corporation--Intra-Corporate Family Transaction Exemption Frank Sherman, Evergreen Trails, Inc. (Evergreen), Cabana Coaches, LLC...

  3. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  4. [Population structure and regeneration strategy of relict deciduous broadleaved trees on Mount Tianmu, Zhejiang Province, China.

    Science.gov (United States)

    Shang, Kan Kan; Chen, Bo; Da, Liang Jun

    2018-02-01

    The population structure, regeneration ways and spatial relationships of six relict deci-duous broadleaved trees were examined based on community investigation on Mount Tianmu, East China. The results showed that relict deciduous broadleaved trees had a strong ability of vegetative reproduction and their population structure was generally belonged to intermittent type. Some relict species such as Cyclocarya paliurus and Liquidamb aracalycina regenerated discontinuously at appropriate sites via long-distance diffusion. Some species such as Emmenoptery henryi and Euptelea pleiospermum regenerated discontinuously around mature trees due to habitat limitation and frequent disturbance. After occupying forest gaps by seedling regeneration, C. paliurus, L. acalycina, Nyssasinensis and Liquidambar formosana could recruit and form multi-stemmed individuals by their inherent sprouting ability at relatively stable sites such as crest slope and side slope. At riverbed, valley slope and head hollow, recognized as unstable habitats, Emmenopterys henryi, E. pleiospermum, and L. formosana could also recruit by strong sprouting ability due to sparse seedlings and individual loss incurred by disturbance. Therefore, the relict deciduous broadleaved trees could be classified into two ecological species groups (repairment species for forest gap and supplement species for special habitat) based on spatial distribution and strategy of regeneration and competition. We suggested that the protection of special habitats of their communities should be strengthened.

  5. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  6. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  7. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile

    Directory of Open Access Journals (Sweden)

    Jan R. Bannister

    2013-11-01

    Full Text Available The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S. These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typification, would aid in the development of appropriate silvicultural proposals for these forests. Based on the tree composition of 46 sampled plots in old-growth forests in an area of >1000 ha in southern Chiloé Island (43° S, we used multivariate analyses to define forest groups and to compare these forests with other evergreen forests throughout the Archipelago of North-Patagonia. We determined that evergreen forests of southern Chiloé correspond to the North-Patagonian temperate rainforests that are characterized by few tree species of different shade tolerance growing on fragile soils. We discuss the convenience of developing continuous cover forest management for these forests, rather than selective cuts or even-aged management that is proposed in the current legislation. This study is a contribution to forest classification for both ecologically- and forestry-oriented purposes.

  8. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  9. Evergreen understory dynamics in Coweeta forest, North Carolina

    Science.gov (United States)

    M.M. Dobbs; Albert J. Parker

    2004-01-01

    A number of studies have elucidated the distributional patterns of various components of Southern Appalachian forests. The evergreen understory here is composed largely of a dominant ericaceous shrub, Rhododendron maximum L., which is believed to be expanding and inhibiting the development of other species with consequent impacts on overall forest...

  10. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome

    Directory of Open Access Journals (Sweden)

    Federica Marando

    2016-07-01

    Full Text Available Nature-based solutions have been identified by the European Union as being critical for the enhancement of environmental qualities in cities, where urban and peri-urban forests play a key role in air quality amelioration through pollutant removal. A remote sensing and geographic information system (GIS approach was applied to the Metropolitan City (MC of Rome to assess the seasonal particulate matter (PM10 removal capacity of evergreen (broadleaves and conifers and deciduous species. Moreover, a monetary evaluation of PM10 removal was performed on the basis of pollution externalities calculated for Europe. Deciduous broadleaves represent the most abundant tree functional group and also yielded the highest total annual PM10 deposition values (1769 Mg. By contrast, PM10 removal efficiency (Mg·ha−1 was 15%–22% higher in evergreen than in deciduous species. To assess the different removal capacity of the three functional groups in an area with homogeneous environmental conditions, a study case was performed in a peri-urban forest protected natural reserve (Castelporziano Presidential Estate. This study case highlighted the importance of deciduous species in summer and of evergreen communities as regards the annual PM10 removal balance. The monetary evaluation indicated that the overall PM10 removal value of the MC of Rome amounted to 161.78 million Euros. Our study lends further support to the crucial role played by nature-based solutions for human well-being in urban areas.

  11. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  12. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    Science.gov (United States)

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  13. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  14. 75 FR 76727 - Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-12-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2201-000] Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request for... proceeding of Evergreen Wind Power III, LLC's application for market-based rate authority, with an...

  15. Evergreen oak leaves as natural monitor in environmental pollution

    International Nuclear Information System (INIS)

    Capannesi, G.; Rosada, A.; Caroli, S.

    1988-01-01

    Evergreen oak was chosen as a possible biological monitor of environmental pollution. It was shown that there was a direct relationship between the concentration of elements in leaves and the presence of pollution sources, i.e. the density of vehicular traffic. (author) 12 figs.; 3 tabs

  16. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia

    Science.gov (United States)

    Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller

    2009-01-01

    The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...

  17. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I; Hoch, Günter

    2013-08-01

    The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.

  18. 'Linkage' pharmaceutical evergreening in Canada and Australia

    OpenAIRE

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong...

  19. Structure and Regeneration Status of Gedo Dry Evergreen Montane ...

    African Journals Online (AJOL)

    This study was conducted on Gedo Dry Evergreen Montane Forest in West Shewa Zone of Oromia National Regional State, 182-196 km west of Addis Ababa (Finfinne). The objective of the study was to determine structure and regeneration status of Gedo Forest. All trees and shrubs with Diameter at Breast Height (DBH) ...

  20. Quantifying the Accuracy of Digital Hemispherical Photography for Leaf Area Index Estimates on Broad-Leaved Tree Species.

    Science.gov (United States)

    Gilardelli, Carlo; Orlando, Francesca; Movedi, Ermes; Confalonieri, Roberto

    2018-03-29

    Digital hemispherical photography (DHP) has been widely used to estimate leaf area index (LAI) in forestry. Despite the advancement in the processing of hemispherical images with dedicated tools, several steps are still manual and thus easily affected by user's experience and sensibility. The purpose of this study was to quantify the impact of user's subjectivity on DHP LAI estimates for broad-leaved woody canopies using the software Can-Eye. Following the ISO 5725 protocol, we quantified the repeatability and reproducibility of the method, thus defining its precision for a wide range of broad-leaved canopies markedly differing for their structure. To get a complete evaluation of the method accuracy, we also quantified its trueness using artificial canopy images with known canopy cover. Moreover, the effect of the segmentation method was analysed. The best results for precision (restrained limits of repeatability and reproducibility) were obtained for high LAI values (>5) with limits corresponding to a variation of 22% in the estimated LAI values. Poorer results were obtained for medium and low LAI values, with a variation of the estimated LAI values that exceeded the 40%. Regardless of the LAI range explored, satisfactory results were achieved for trees in row-structured plantations (limits almost equal to the 30% of the estimated LAI). Satisfactory results were achieved for trueness, regardless of the canopy structure. The paired t -test revealed that the effect of the segmentation method on LAI estimates was significant. Despite a non-negligible user effect, the accuracy metrics for DHP are consistent with those determined for other indirect methods for LAI estimates, confirming the overall reliability of DHP in broad-leaved woody canopies.

  1. Quantifying the Accuracy of Digital Hemispherical Photography for Leaf Area Index Estimates on Broad-Leaved Tree Species

    Directory of Open Access Journals (Sweden)

    Carlo Gilardelli

    2018-03-01

    Full Text Available Digital hemispherical photography (DHP has been widely used to estimate leaf area index (LAI in forestry. Despite the advancement in the processing of hemispherical images with dedicated tools, several steps are still manual and thus easily affected by user’s experience and sensibility. The purpose of this study was to quantify the impact of user’s subjectivity on DHP LAI estimates for broad-leaved woody canopies using the software Can-Eye. Following the ISO 5725 protocol, we quantified the repeatability and reproducibility of the method, thus defining its precision for a wide range of broad-leaved canopies markedly differing for their structure. To get a complete evaluation of the method accuracy, we also quantified its trueness using artificial canopy images with known canopy cover. Moreover, the effect of the segmentation method was analysed. The best results for precision (restrained limits of repeatability and reproducibility were obtained for high LAI values (>5 with limits corresponding to a variation of 22% in the estimated LAI values. Poorer results were obtained for medium and low LAI values, with a variation of the estimated LAI values that exceeded the 40%. Regardless of the LAI range explored, satisfactory results were achieved for trees in row-structured plantations (limits almost equal to the 30% of the estimated LAI. Satisfactory results were achieved for trueness, regardless of the canopy structure. The paired t-test revealed that the effect of the segmentation method on LAI estimates was significant. Despite a non-negligible user effect, the accuracy metrics for DHP are consistent with those determined for other indirect methods for LAI estimates, confirming the overall reliability of DHP in broad-leaved woody canopies.

  2. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    Science.gov (United States)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  3. Why Do Some Evergreen Species Keep Their Leaves for a Second Winter, While Others Lose Them?

    Directory of Open Access Journals (Sweden)

    Peter J. Grubb

    2014-10-01

    Full Text Available In subtropical montane semi-moist forest in SW China (SMSF, a large majority of evergreen tree and tall shrub species was found to have only one cohort of old leaves in early spring. In contrast, almost all species of evergreen tree and tall shrub in warm temperate rain forest (WTRF in Japan and sclerophylls in Mediterranean-climate forest (MSF of the Mediterranean Basin have two or more cohorts of old leaves in early spring; they drop their oldest cohort during or soon after leaf outgrowth in spring. Japanese WTRF has no dry season and MSF a dry summer. SMSF has a dry winter. On four evergreen Rhododendron species from SW China with only one cohort of old leaves in spring when in cultivation in Scotland, the majority of leaves in the senescing cohort fell by the end of December. We hypothesize that with dry winters, there is an advantage to dropping older leaves in autumn, because there is a low chance of appreciable positive assimilation in winter and a high chance of desiccation, reducing the resorption of dry mass and mineral nutrients from ageing leaves. Our hypothesis may be extended to cover evergreens at high altitude or high latitude that experience cold soils in winter.

  4. [Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China.

    Science.gov (United States)

    Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei

    2018-02-01

    In order to clarify the effects of selective cutting on soil phosphorus availability in Korean pine broad-leaved forest, surface soil (0-10 cm) samples from original Korean pine broad-leaved forest and natural forests with mild, medium and intensive cutting disturbances were collected. The Sui modified Hedley phosphorus fractionation method was used to continuously extract soil samples and analyzed the differences and changes of soil phosphorus fractions from different experimental stands. The results showed that the soil total phosphorus content of Korean pine broad-leaved forest varied from 1.09 to 1.66 g·kg -1 , with the original stand and intensive cutting disturbance stand being the maximum and minimum one, respectively. The differences of soil total phosphorus content among cutting disturbance levels were significant. The Olsen phosphorus and phosphorus activation coefficients changed with an amplitude of 7.26-17.79 mg·kg -1 and 0.67%-1.07%, respectively. Both of them significantly decreased with the increase of selective cutting disturbance level. The concentrations of all P fractions except HCl-P o , i.e., H 2 O-P i , NaHCO 3 -P, NaOH-P, HCl-P i , Residual-P, decreased with increasing cutting disturbance levels compared with original forest. The correlation coefficient between H 2 O-P i and soil Olsen phosphorus was the highest (0.98), though it only accounted for 1.5%-2.2% of the total phosphorus. NaOH-P content contributed to more than 48.0% of the total phosphorus, acknowledged as the potential source of soil phosphorus. In conclusion, selective cutting disturbance could constrain phosphorus storage and soil phosphorus availabi-lity of the Korean pine broad-leaved forests by significantly reducing the content of soil inorganic phosphorus and NaOH-P o , and such trends were positively dependent on the intensity of selective cutting.

  5. Silvicultural interpretation of natural vegetation dynamics in ageing Scots pine stands for their conversion into mixed broadleaved stands

    NARCIS (Netherlands)

    Kint, V.; Geudens, G.; Mohren, G.M.J.; Lust, N.

    2006-01-01

    In many West-European regions there is principal consensus on the conversion of homogeneous even-aged Scots pine plantations into mixed broadleaved stands. In recent years, interest is growing for conversion management in which managers try to maximise the use of natural processes by steering or

  6. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia

    DEFF Research Database (Denmark)

    Costa, A.; Madeira, M.; Lima Santos, J.

    2014-01-01

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands...... patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands....

  7. Effect of feeding some evergreen tropical browse plant leaves on ...

    African Journals Online (AJOL)

    A feeding trial was conducted with thirty (30) weaner rabbits to investigate the nutritive potentials of some evergreen tropical browse plant leaves (Ficcus thoningii, Vitex doniana, Daniela oliveri, Sarcocephalus latifolia). Mixed breed rabbits were used and randomly assigned to five (5) treatments (T1 - T5). The rabbits in ...

  8. [Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest].

    Science.gov (United States)

    Yin, Xiu-qin; Li, Jin-xia; Dong, Wei-hua

    2007-02-01

    The analysis on the Mn, Zn and Cu contents of litter, soil fauna and soil in Pinus korazenszis and broad-leaved mixed forest in Liangshui Natural Reserve of Xiaoxing' an Mountains showed that the test microelement contents in the litter, soil fauna and soil all followed the sequence of Mn > Zn > Cu, but varied with these environmental components, being in the sequence of soil > litter > soil fauna for Mn, soil fauna > litter and soil for Zn, and soil fauna > soil > litter for Cu. The change range of test microelement contents in litter was larger in broad-leaved forest than in coniferous forest. Different soil fauna differed in their microelement-enrichment capability, e. g. , earthworm, centipede, diplopod had the highest content of Mn, Zn and Cu, respectively. The contents of test microelements in soil fauna had significant correlations with their environmental background values, litter decomposition rate, food habit of soil fauna, and its absorbing selectivity and enrichment to microelements. The microelements contained in 5-20 cm soil layer were more than those in 0-5 cm soil layer, and their dynamics differed in various soil layers.

  9. The C-household of young broad-leaved and conifer tree species exposed to long-term carbon limitation by shading

    Science.gov (United States)

    Weber, Raphael; Hoch, Günter

    2017-04-01

    Non-structural carbohydrates (NSC, i.e. free sugars and starch) are regarded as freely available carbon (C) reserves in plants. They are often quantified to estimate a plant's C-balance, assuming that NSC are controlled by the net-balance between photo-assimilation and C-usage (respiration, growth and other sinks). Within a recent field experiment, we investigated the extent, to which C-reserves (NSC) can be formed in young trees against prevailing C-sink demands (growth) under C-limitation. A total of almost 1000 individuals of two-year-old tree saplings from 6 deciduous, broadleaved species and 4 evergreen conifer species were planted on a field side. Half of the trees per species were treated with long-term C-limitation by exposing them to continuous deep shade conditions (5% of natural PPFD) under a permanent shading tent. C gas-exchange, growth and NSC tissue concentrations were analyzed in shaded and unshaded saplings for two consecutive years. Three months after the beginning of the experiment, leaf photosynthesis acclimatized to the low light conditions, with leaves of shaded trees showing significantly higher SLA and lower light saturation and maximum photosynthesis. During the second season of the experiment, most species exhibited very strong reductions in NSC, but much less pronounced reductions in growth. In contrast, other species, with few exceptions, kept NSC concentrations similar to unshaded controls, while growth virtually stopped under deep shade. In conclusion, we found species-specific strategies in the trees' C-household after two years of C-limitation, that fall into two major carbon allocation strategies: 1) "C-spenders", which deplete C reserves in order to keep up significant growth, and 2) "C-savers", which reduce C sink activities to a minimum in order to store substantial amounts of C reserves. Overall, early-successional species tended to follow the first strategy, while late-successional species tended to save higher C reserve pools

  10. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees.

    Science.gov (United States)

    Smith, Merryn G; Miller, Rebecca E; Arndt, Stefan K; Kasel, Sabine; Bennett, Lauren T

    2018-04-01

    Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed

  11. Artocarpus hirsutus Lam. of Moraceae is a large evergreen tree with ...

    Indian Academy of Sciences (India)

    Artocarpus hirsutus Lam. of Moraceae is a large evergreen tree with milky latex. This species occurs wild and is also cultivated for its fruit, which is edible. Leaves are simple and dark green. The branchlets are covered with rust-brown hairs. Inflorescence is axillary. The female inflorescence is globose with individualjlowers ...

  12. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  13. Homogeneous data-reprocessing and full synthesis of eddy-flux measurements in French terrestrial ecosytems : 1999 - 2015

    Science.gov (United States)

    Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.

    2017-12-01

    The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.

  14. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Protected Areas: Mixed Success in Conserving East Africa's Evergreen Forests

    OpenAIRE

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa ...

  16. [Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China.

    Science.gov (United States)

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-05-01

    Keeping other parameters as empirical constants, different numerical combinations of the main photosynthetic parameters V c max and J max were conducted to estimate daily GPP by using the iteration method in this paper. To optimize V c max and J max in BEPSHourly model at hourly time steps, simulated daily GPP using different numerical combinations of the parameters were compared with the flux tower data obtained from the temperate deciduous broad-leaved forest of the Maoershan Forest Farm in Northeast China. Comparing the simulated daily GPP with the observed flux data in 2011, the results showed that optimal V c max and J max for the deciduous broad-leaved forest in Northeast China were 41.1 μmol·m -2 ·s -1 and 82.8 μmol·m -2 ·s -1 respectively with the minimal RMSE and the maximum R 2 of 1.10 g C·m -2 ·d -1 and 0.95. After V c max and J max optimization, BEPSHourly model simulated the seasonal variation of GPP better.

  17. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O 3 ), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O 3 (AA + 60 ppb O 3 , E-O 3 ) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O 3 exposure. Results indicated that E-O 3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O 3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O 3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O 3 was investigated. • Elevated O 3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O 3 . • Stomatal conductance contributes to the response difference to O 3 among leaf ages. -- Impacts of elevated O 3 on photosynthesis of evergreen woody species depend on leaf ages

  18. [Characteristics of floor litter and soil arthropod community in different types ot subtropical forest in Ailao Mountain of Yunnan, Southwest China].

    Science.gov (United States)

    Yang, Zhao; Yang, Xiao-Dong

    2011-11-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of

  19. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  20. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  1. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    Science.gov (United States)

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. © 2015 Society for Conservation Biology.

  2. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  3. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  4. [Simulating climate change effect on aboveground carbon sequestration rates of main broadleaved trees in the Xiaoxing'an Mountains area, Northeast China].

    Science.gov (United States)

    Ma, Jun; Bu, Rencang; Deng, Hua-Wei; Hu, Yuan-Man; Qin, Qin; Han, Feng-Lin

    2014-09-01

    LANDIS Pro 7.0 model was used to simulate the dynamics of aboveground biomass of ten broadleaved tree species in the Xiao Xing' an Mountains area under current and various climate change scenarios from 2000 to 2200, and carbon content coefficients (CCCs) were coupled to cal- culate the aboveground carbon sequestration rates (ACSRs) of these species. The results showed that in the initial year of simulation, the biomasses and their proportions of Fraxinus mandshurica, Phellodendron amurense, Quercus mongolica, Ulmus propinqua, and Acer mono were relatively low, while those of Betula costata, Betula platyphylla, and Populus davidiana were higher. A trend of rise after decline occurred in ACSR for pioneer species in the mid and late periods of simulation years, but ACSRs for the other broadleaved tree species were considerably complex. The ACSRs of Q. mongolica and Tilla amurensis fluctuated in the ranges of -0.05-0.25 t · hm(-2) · 10 a(-1) and 0.16-1.29 t · hm(-2) · 10 a(-1) in simulation years, respectively. The ACSRs of F. mandshurica, U. propinqua, A. mono, and B. costata showed a trend of decline after rise in late simulation years. There were significant differences in ACSR for P. amurense and B. davurica among various climate change scenarios in the periods of 2050-2100 and 2150-2200, while no significant difference in ACSR for the other species would be detected. Difference of sensitivity of various species in ACSR for future climate scenarios in the Small Khingan Mountains area existed. However, the un- certainty of future climates would not yield significant difference in ACSR for most broadleaved tree species. Moreover, a time lag would exist in the process of climate change effects on temperate forest's ACSR.

  5. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  6. Response of Termite (Blattodea: Termitoidae) Assemblages to Lower Subtropical Forest Succession: A Case Study in Dinghushan Biosphere Reserve, China.

    Science.gov (United States)

    Li, Zhi-Qiang; Ke, Yun-Ling; Zeng, Wen-Hui; Zhang, Shi-Jun; Wu, Wen-Jing

    2016-02-01

    Termite (Blattodea: Termitoidae) assemblages have important ecological functions and vary in structure between habitats, but have not been studied in lower subtropical forests. To examine whether differences in the richness and relative abundance of termite species and functional groups occur in lower subtropical regions, termite assemblages were sampled in Dinghushan Biosphere Reserve, China, among pine forest, pine and broad-leaved mixed forest (mixed forest), and monsoon evergreen broad-leaved forest (monsoon forest). The dominant functional group was wood-feeding termites (family Termitidae), and the mixed forest hosted the greatest richness and relative abundance. Soil-feeding termites were absent from the lower subtropical system, while humus-feeding termites were sporadically distributed in mixed forest and monsoon forest. The species richness and functional group abundance of termites in our site may be linked to the forest succession. Altitude, soil temperature, air temperature, surface air relative humidity, and litter depth were significant influences on species and functional group diversity.

  7. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  8. The Next Generation Library Catalog: A Comparative Study of the OPACs of Koha, Evergreen, and Voyager

    Directory of Open Access Journals (Sweden)

    Sharon Q. Yang

    2010-09-01

    Full Text Available Open source has been the center of attention in the library world for the past several years. Koha and Evergreen are the two major open-source integrated library systems (ILSs, and they continue to grow in maturity and popularity. The question remains as to how much we have achieved in open-source development toward the next-generation catalog compared to commercial systems. Little has been written in the library literature to answer this question. This paper intends to answer this question by comparing  the next-generation features of the OPACs of two open-source ILSs (Koha and Evergreen and one proprietary ILS (Voyager’s WebVoyage.

  9. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.

    Science.gov (United States)

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2013-07-01

    In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and

  10. Abiotic factors affect the recruitment and biomass of perennial grass and evergreen shrub seedlings in denuded areas of Patagonian Monte rangelands.

    Science.gov (United States)

    Bosco, Tomás; Bertiller, Mónica Beatriz; Carrera, Analía Lorena

    2018-07-15

    Assessing the ability of key species to cope with environmental stresses in disturbed areas is an important issue for recovery of degraded arid ecosystem. Our objective was to evaluate the effect of soil moisture, exposure to UV radiation, and presence/absence of litter with different chemistry on soil N, recruitment and biomass of seedlings of perennial grass (Poa ligularis and Nassella tenuis) and evergreen shrub species (Atriplex lampa and Larrea divaricata) in denuded areas. We carried out a microcosm experiment with soil blocks (28 cm depth) sowed with seeds of the target species, subjected to different levels of litter type (perennial grass-evergreen shrub mixture, evergreen shrub mixture, and no litter), UV radiation (near ambient and reduced UV), and soil water (high: 15-25% and low 5-15%). Periodically, during 6 months, we assessed soil-N (total and inorganic) at two depths and species seedling recruitment at microcosms. Additionally, emerged seedlings of each species were transplanted to individual pots containing soil and subjected to the same previous factors during 12 months. Then, all plants were harvested and biomass assessed. Only inorganic soil-N at the upper soil varied among treatments increasing with the presence of evergreen shrub litter, exposure to ambient UV, and high soil water. Inorganic soil-N, promoted by near ambient UV and high soil water, had a positive effect on recruitment of perennial grasses and A. lampa. Both litter types promoted the recruitment of perennial grasses. Evergreen shrub litter and high soil water promoted the recruitment of L. divaricata. Seedling biomass of perennial grasses increased with high soil water and reduced UV. Ambient UV had positive or null effects on biomass of evergreen shrub seedlings. High soil water increased biomass of L. divaricata seedlings. We concluded that soil water appeared as the most limiting factor for seedling recruitment of all species whereas inorganic soil N limited the

  11. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.

    Science.gov (United States)

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2013-08-01

    The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist

  12. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    Science.gov (United States)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and

  13. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea

    Directory of Open Access Journals (Sweden)

    Boram Kwon

    2016-09-01

    Full Text Available This study investigated the effects of interspecific and temporal variation of specific leaf area (SLA, cm2·g−1 on leaf area index (LAI estimation for three deciduous broadleaved forests (Gwangneung (GN, Taehwa (TH, and Gariwang (GRW in Korea with varying ages and composition of tree species. In fall of 2014, fallen leaves were periodically collected using litter traps and classified by species. LAI was estimated by obtaining SLAs using four calculation methods (A: including both interspecific and temporal variation in SLA; B: species specific mean SLA; C: period-specific mean SLA; and D: overall mean, then multiplying the SLAs by the amount of leaves. SLA varied across different species in all plots, and SLAs of upper canopy species were less than those of lower canopy species. The LAIs calculated using method A, the reference method, were GN 6.09, TH 5.42, and GRW 4.33. LAIs calculated using method B showed a difference of up to 3% from the LAI of method A, but LAIs calculated using methods C and D were overestimated. Therefore, species specific SLA must be considered for precise LAI estimation for broadleaved forests that include multiple species.

  14. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  15. Biomass equations and biomass expansion factors (BEFs) for pine (pinus spp.), spruce (picea spp.) and broadleaved dominated stands in Norway

    OpenAIRE

    Viken, Knut Ole

    2012-01-01

    Abstract The objectives of this study were (1) to develop models for estimation of stand-level tree biomass for spruce (picea spp.)- pine (pinus spp.)- and broadleaved-dominated forest in Norway and, (2) develop biomass expansion factors (BEFs; ratio of stem volume to biomass) which convert stem volume to whole tree biomass for Norwegian forest conditions. A dataset from a 5 year period (2006 – 2010) from the Norwegian National Forest Inventory (NFI) were used to develop the...

  16. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents

    NARCIS (Netherlands)

    Tomlinson, K.W.; Poorter, L.; Sterck, F.J.; Borghetti, M.; Ward, D.; Bie, de S.; Langevelde, van F.

    2013-01-01

    1. Drought stress selects for a suite of plant traits at root, stem and leaf level. Two strategies are proposed for trees growing in seasonally water-stressed environments: drought tolerance and drought avoidance. These are respectively associated with evergreen phenology, where plants retain their

  17. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  18. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    The photochemical reflectance index (PRI) reflects diurnal xanthophyll cycle activity and is also influenced by seasonally changing carotenoid : Chl pigment ratios. Both changing pigment pools and xanthophyll cycle activity contribute to photoprotection in evergreen conifers exposed to boreal winters, but they operate over different timescales, and their relative contribution to the PRI signal has often been unclear. To clarify these responses and their contribution to the PRI signal, leaf PRI, pigment composition, temperature and irradiance were monitored over 2 yr for two evergreen conifers (Pinus contorta and Pinus ponderosa) in a boreal climate. PRI was affected by three distinct processes operating over different timescales and exhibiting contrasting spectral responses. Over the 2 yr study period, the greatest change in PRI resulted from seasonally changing carotenoid : Chl pigment ratios, followed by a previously unreported shifting leaf albedo during periods of deep cold. Remarkably, the smallest change was attributable to the xanthophyll cycle. To properly distinguish these three effects, interpretation of PRI must consider temporal context, physiological responses to evolving environmental conditions, and spectral response. Consideration of the separate mechanisms affecting PRI over different timescales could greatly improve efforts to monitor changing photosynthetic activity using optical remote sensing. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  19. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    Science.gov (United States)

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  20. 76 FR 51367 - China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A...

    Science.gov (United States)

    2011-08-18

    ... FEDERAL MARITIME COMMISSION [Docket No. 11-12] China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A Joint Service Agreement; Hanjin Shipping Co., Ltd... Maritime Commission (Commission) by China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company...

  1. Using Remote Sensing Products for Environmental Analysis in South America

    Directory of Open Access Journals (Sweden)

    Fabrício Brito Silva

    2011-09-01

    Full Text Available Land cover plays a major role in many biogeochemical models that represent processes and connections with terrestrial systems; hence, it is a key component for public decisions in ecosystems management. The advance of remote sensing technology, combined with the emergence of new operational products, offers alternatives to improve the accuracy of environmental monitoring and analysis. This work uses the GLOBCOVER, the Vegetation Continuous Field (VCF, MODIS Fire Radiative Power (FRP and the Tropical Rainfall Measuring Mission (TRMM remotely sensed databases to analyze the biomass burning distribution, the land use and land cover characteristics and the percent of tree cover in South America during the years 2000 to 2005. Initially, GLOBCOVER was assessed based on VCF product, and subsequently used for quantitative analysis of the spatial distribution of the South America fires with the fire radiative power (FRP. The results show that GLOBCOVER has a tendency to overestimate forest classes and to underestimate urban and mangroves areas. The fire quantification based on GLOBCOVER product shows that the highest incidence of fires can be observed in the arc of deforestation, located in the Amazon forest border, with vegetation cover composed mainly of broadleaved evergreen or semi-deciduous forest. A time series analysis of FRP database indicates that biomass burning occurs mainly in areas of broadleaved evergreen or semi-deciduous forest and in Brazilian Cerrado associated with grassland management, agricultural land clearing and with the deforestation of Amazon tropical rainforest. Also, variations in FRP intensity and spread can be attributed to rainfall anomalies, such as in 2004, when South America had a positive anomaly rainfall.

  2. Age and distribution of an evergreen clonal shrub in the Coweeta basin: Rhododendron maximum L

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2012-01-01

    Rhododendron maximum L. is an evergreen, clonal shrub that forms a dominant sub-canopy layer and is a key species in southern Appalachian forests. We investigated the age and distribution of R. maximum across the Coweeta Basin, a 1626 ha watershed in western North Carolina. We selected 16 perennial, second-order streams and used a Global Positioning System to establish...

  3. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  4. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    Science.gov (United States)

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  5. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    Science.gov (United States)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  6. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  7. 78 FR 69932 - Tedesco Family ESB Trust, et al.-Purchase of Certain Assets and Membership Interests-Evergreen...

    Science.gov (United States)

    2013-11-21

    ... Trails, Inc. d/b/a Horizon Coach Lines, et al. AGENCY: Surface Transportation Board, DOT. ACTION: Notice... Franmar's purchase of certain motor coach and non- motor coach assets of Evergreen Trails, Inc. d/b/a... (Family Trust), on behalf of Franmar Leasing, Inc. (Franmar), together with the Francis Tedesco Revocable...

  8. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    Science.gov (United States)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel

  9. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  10. [Accumulation responses of seeds and seedlings to 15N isotope for two typical broadleaved trees in Northeast China.

    Science.gov (United States)

    Wang, Guang Chen; Song, Yuan; Yan, Qiao Ling; Zhang, Jin Xin

    2016-08-01

    Two typical broadleaved trees (i.e., Fraxinus rhynchophylla and Acer mono) with wind-dispersed seeds in Northeast China were selected in this study. A method of 15 N isotope labeling was used to explore the accumulation responses of seeds and seedlings to 15 N-urea soaking concentration (0, 0.05, 0.1 and 0.2 g·L -1 ), soaking time (4, 8 and 12 days) and leaf stage (2, 4, 6, and 8 leaves). The results showed that 15 N-urea soaking concentration and soaking time had significantly positive effects on δ 15 N values of seeds, i.e., higher 15 N-urea concentration and longer period of soaking (0.2 g·L -1 +12 d) were contributed to more 15 N accumulation of seeds. The maximum multiples of 15 N accumulation in F. rhynchophylla seeds and A. mono seeds were observed in 0.1 g·L -1 + (4 d, 8 d) and 0.05 g·L -1 + (4 d, 8 d), respectively. The loss rate of δ 15 N values decreased markedly from 2 leaves to 6 leaves and then kept relatively stable with the increasing seedling height, and the total δ 15 N values of seedlings started to decline at the stage of 8 leaves. These results suggested that seedlings with 6 leaves were more suitable for tracking seedling source. The δ 15 N values in leaves of seedlings were significantly positively correlated with 15 N-urea concentration level, soaking time and δ 15 N values of seeds. Overall, the accumulation of 15 N-urea could be found in seeds and seedlings of F. rhynchophylla and A. mono. The combination of 15 N-urea concentration (0.1 g·L -1 ), soaking time (8 d) and leaf stage (6 leaves) was the most suitable for tracking the seeds and seedlings of these two broadleaved trees.

  11. Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions.

    NARCIS (Netherlands)

    van Ommen Kloeke, A.E.E.; Douma, J.C.; Ordonez Barragan, J.C.; Reick, P.B.; van Bodegom, P.M.

    2012-01-01

    Aim Species with deciduous and evergreen leaf habits typically differ in leaf life span (LLS). Yet quantification of the response of LLS, within each habit, to key environmental conditions is surprisingly lacking. The aim of this study is to quantify LLS strategies of the two leaf habits under

  12. Behavior of 7Be and 210Pb deposited via rainwater on a coniferous forest, a broad-leaved forest, and grassland

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    Fall water, stem flow water and falling litter in a coniferous forest (C. japonica) and a broad-leaved forest (L. edulis), and rainwater on a grassland near the forests were collected, and their 7 Be and 210 Pb contents were measured. The average residence times of 7 Be and 210 Pb in the forest crowns were calculated from the balances of their radionuclides, those in the forest crown of C. japonica were 88 days for 7 Be and 9.2 years for 210 Pb, and those in the forest crown of L. edulis were 52 days and <1 year, respectively. (author)

  13. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.

  14. An analysis of the decadal variability of Carbon fluxes in three evergreen European forests through modelling

    Science.gov (United States)

    Delpierre, N.; Dufrêne, E.

    2009-04-01

    With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.

  15. Holocene vegetation and fire history of the mountains of northern Sicily (Italy)

    Science.gov (United States)

    Tinner, Willy; Vescovi, Elisa; Van Leeuwen, Jacqueline; Colombaroli, Daniele; Henne, Paul; Kaltenrieder, Petra; Morales-Molino, Cesar; Beffa, Giorgia; Gnaegi, Bettina; Van der Knaap, Pim W O; La Mantia, Tommaso; Pasta, Salvatore

    2016-01-01

    Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adaptedFagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.

  16. Do seasonal profiles of foliar pigments improve species discrimination of evergreen coastal tree species in KwaZulu- Natal, South Africa?

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2013-04-01

    Full Text Available of seven evergreen tree species in a sub-tropical region of South Africa, over four seasons during 2011-12. Parametric ANOVA classification was compared to similarity measures of shape (spectral angle mapper; SAM) and magnitude (sum of Euclidean Distance...

  17. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  18. Evergreening, patent challenges, and effective market life in pharmaceuticals.

    Science.gov (United States)

    Hemphill, C Scott; Sampat, Bhaven N

    2012-03-01

    Observers worry that generic patent challenges are on the rise and reduce the effective market life of drugs. A related concern is that challenges disproportionately target high-sales drugs, reducing market life for these "blockbusters." To study these questions, we examine new data on generic entry over the past decade. We show that challenges are more common for higher sales drugs. We also demonstrate a slight increase in challenges over this period, and a sharper increase for early challenges. Despite this, effective market life is stable across drug sales categories, and has hardly changed over the decade. To better understand these results, we examine which patents are challenged on each drug, and show that lower quality and later expiring patents disproportionately draw challenges. Overall, this evidence suggests that challenges serve to maintain, not reduce, the historical baseline of effective market life, thereby limiting the effectiveness of "evergreening" by branded firms. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  20. Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-10-01

    Full Text Available Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap, stomatal and mesophyll conductances (gs and gm, CO2 assimilation rate (An, and total electron flow through PSII (JPSII at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap, the diurnal values of gs, gm, An and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures.

  1. Comparative seasonal variations of spectral signatures of broad-leaved and coniferous stands from Landsat data. Comparison with other perennial environments

    International Nuclear Information System (INIS)

    Chaume, R.; Combeau, A.

    1984-01-01

    Spectral signatures of two distinct forest test areas were identified from digital data including 15 LANDSAT scenes covering the same geographical area: a broad-leaved forest (oak and beech) and a coniferous forest (scotch pine). Seasonal variations of the signatures were examined and were expressed in terms of various data: date, solar height and phenological state of vegetation cover. Results were compared to these obtained from other perennial surface conditions (grassland, bare soils) . Range of the seasonal variations of radiance is noted, as well as evolutionary peculiarities on each band and between themes. Rationing of spectral bands (particularly MSS 5 and 7) and their variation with time are specified [fr

  2. Effect of Severe Winter Cold on the Photosynthetic Potentials of Three Co-occurring Evergreen Woody Species in a Mediterranean Forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, Dominik; Gracia, Carlos; Peñuelas, Josep; Sabaté, Santi

    2013-04-01

    Evergreen tree species in the Mediterranean region have to cope with a wide range of environmental stress conditions from summer drought to winter cold. The winter period can lead to photoinhibition due to a combination of high solar irradiances and chilling temperatures which can reduce the light saturation point. However, Mediterranean winter mildness can lead periodically to favourable environmental conditions above the threshold for positive carbon balance benefitting evergreen woody species in contrast to winter deciduous species. The advantage of being able to photosynthesis all year round with a significant fraction in the winter month is compensating for the lower photosynthetic potentials during spring and summer in comparison to deciduous species. In this work, we investigated the physiological behaviour of three evergreen tree species (Quercus ilex, Pinus halepensis, Arbutus undeo) co-occurring in a natural and mature Mediterranean forest after a period of mild winter conditions and their response to a sudden period of intense cold weather. Therefore, we examined in each period the photosynthetic potentials by estimating the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) through gas exchange measurements. The results indicate that all species exhibited extraordinary high photosynthetic potentials during the first period of measurement as a response to the mild conditions. However, the sudden cold period affected negatively the photosynthetic potentials of Quercus ilex and A. unedo with reduction ranging between 37 to 45 %, whereas they were observed to be only insignificantly reduced in Pinus halepensis. Our results can be explained by previous classifications into photoinhibition-avoiding (P. halpensis) and photoinhibition-tolerant (Q. ilex, A. undeo) species on the basis of their susceptibility to dynamic photoinhibition (Martinez Ferri 2000). Photoinhibition tolerant species are characterised with a more dynamic

  3. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    Science.gov (United States)

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  4. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2015-01-01

    Full Text Available A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2, a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron Euthalia anosia anosia; Sylhet Oakblue Arhopala silhetensis; Branded Yamfly Yasoda tripunctata. The butterflies showed a strong seasonality pattern in this forest with only one significant peak during the post monsoon (September-October when 118 species were in flight inside the forest which slowly declined to 92 species in November-December. Another peak (102 species was visible after winter from March to April. Species composition showed least similarity between pre-monsoon (March-May and post-monsoon (October-November seasons. The number of papilionid species were greater from July to December as compared from January to June. The findings of this study suggest that the pattern of seasonality in a semi-evergreen forest in northeastern India is distinct from that of the sub-tropical lowland forest in the Himalaya. Favourable logistics and rich diversity in GWS points to its rich potential in promoting ‘butterfly inclusive ecotourism’ in this remnant forest.

  5. Roots of pioneer trees in the lower sub-tropical area of Dinghushan, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ru; PENG Shao-lin; MO Jiang-ming; LIU Xin-wei; CHEN Zhuo-quan; ZHOU Kai; WU Jin-rong

    2006-01-01

    Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broad-leaved forest; 50.61t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. Thisis the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.

  6. Species and acoustic diversity of bats in a palaeotropical wet evergreen forest in southern India

    OpenAIRE

    Raghuram, H; Jain, M; Balakrishnan, R

    2014-01-01

    The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka...

  7. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants.

    Science.gov (United States)

    Alkhafaji, Ali A; Trinquart, Ludovic; Baron, Gabriel; Desvarieux, Moïse; Ravaud, Philippe

    2012-11-20

    "Evergreening" refers to the numerous strategies whereby owners of pharmaceutical products use patent laws and minor drug modifications to extend their monopoly privileges on the drug. We aimed to evaluate the impact of evergreening through the case study of the antidepressant citalopram and its chiral switch form escitalopram by evaluating treatment efficacy and acceptability for patients, as well as health insurance costs for society. To assess efficacy and acceptability, we performed meta-analyses for efficacy and acceptability. We compared direct evidence (meta-analysis of results of head-to-head trials) and indirect evidence (adjusted indirect comparison of results of placebo-controlled trials). To assess health insurance costs, we analyzed individual reimbursement data from a representative sample of the French National Health Insurance Inter-regime Information System (SNIIR-AM) from 2003 to 2010, which allowed for projecting these results to the whole SNIIR-AM population (53 million people). In the meta-analysis of seven head-to-head trials (2,174 patients), efficacy was significantly better for escitalopram than citalopram (combined odds ratio (OR) 1.60 (95% confidence interval 1.05 to 2.46)). However, for the adjusted indirect comparison of 10 citalopram and 12 escitalopram placebo-controlled trials, 2,984 and 3,777 patients respectively, efficacy was similar for the two drug forms (combined indirect OR 1.03 (0.82 to 1.30)). Because of the discrepancy, we could not combine direct and indirect data (test of inconsistency, P = 0.07). A similar discrepancy was found for treatment acceptability. The overall reimbursement cost burden for the citalopram, escitalopram and its generic forms was 120.6 million Euros in 2010, with 96.8 million Euros for escitalopram. The clinical benefit of escitalopram versus citalopram remains uncertain. In our case of evergreening, escitalopram represented a substantially high proportion of the overall reimbursement cost burden as

  8. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  9. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Cervero, Julia; Calvo, Esperanza; Garcia-Breijo, Francisco-Jose; Reig-Arminana, Jose; Sanz, Maria Jose

    2011-01-01

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD 1.6 ) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  10. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: calatayud_viclor@gva.e [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Cervero, Julia; Calvo, Esperanza [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Garcia-Breijo, Francisco-Jose [Laboratorio de Anatomia e Histologia Vegetal ' Julio Iranzo' , Jardin Botanico, Universitat de Valencia, c/Quart 80, 46008 Valencia (Spain); Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Reig-Arminana, Jose [Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Sanz, Maria Jose [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain)

    2011-01-15

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD{sub 1.6}) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  11. Ideas and perspectives: how coupled is the vegetation to the boundary layer?

    Directory of Open Access Journals (Sweden)

    M. G. De Kauwe

    2017-10-01

    Full Text Available Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere and is commonly expressed by the decoupling factor. The degree of coupling assumed by models varies considerably and has previously been shown to be a major cause of model disagreement when simulating changes in transpiration in response to elevated CO2. The degree of coupling also offers us insight into how different vegetation types control transpiration fluxes, which is fundamental to our understanding of land–atmosphere interactions. To explore this issue, we combined an extensive literature summary from 41 studies with estimates of the decoupling coefficient estimated from FLUXNET data. We found some notable departures from the values previously reported in single-site studies. There was large variability in estimated decoupling coefficients (range 0.05–0.51 for evergreen needleleaf forests. This is a result that was broadly supported by our literature review but contrasts with the early literature which suggests that evergreen needleleaf forests are generally well coupled. Estimates from FLUXNET indicated that evergreen broadleaved forests were the most tightly coupled, differing from our literature review and instead suggesting that it was evergreen needleleaf forests. We also found that the assumption that grasses would be strongly decoupled (due to vegetation stature was only true for high precipitation sites. These results were robust to assumptions about aerodynamic conductance and, to a lesser extent, energy balance closure. Thus, these data form a benchmarking metric against which to test model assumptions about coupling. Our results identify a clear need to improve the quantification of the processes involved in scaling from the leaf to the whole ecosystem. Progress could be made with targeted measurement campaigns at

  12. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs

    DEFF Research Database (Denmark)

    Hansen, Anja Hoff; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    -arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea × polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were...

  13. Mite species (Acari: Mesostigmata new and rare to Polish fauna, inhabiting the soil of broadleaved forests dominated by small-leaved lime (Tilia cordata Mill. in Kwidzyn Forest District (N Poland

    Directory of Open Access Journals (Sweden)

    FALEŃCZYK-KOZIRÓG KATARZYNA

    2014-06-01

    Full Text Available During a two-year study on mites of the order Mesostigmata in broadleaved forest stands dominated by small-leaved lime (Tilia cordata Mill., 117 mite species were identified. Among them, 3 had been so far rarely recorded in Poland (Haemogamasus nidi, Stylochirus rovenensis and Eugamasus crassitarsis and 2 were classified as new to the Polish fauna (Veigaia sibirica and Digamasellus perpusillus.

  14. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    Science.gov (United States)

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  15. Identifying the best season for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-10-01

    Full Text Available would provide the best discrimination of six evergreen tree species, associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal...

  16. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India

    Directory of Open Access Journals (Sweden)

    RAJA RISHI

    2013-10-01

    Full Text Available Kumar R, Tapwal A, Pandey S, Rishi R, Borah D. 2013. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India. Biodiversitas 14: 67-72. Non-timber forest products constitute an important source of livelihood for rural households from forest fringe communities across the world. Utilization of wild edible tuber plants is an integral component of their culture. Mycorrhizal associations influence the establishment and production of tuber plants under field conditions.The aim of present study is to explore the diversity and arbuscular mycorrhizal (AMF colonization of wild edible tuber plants grown in wet evergreen forest of Assam, India. A survey was conducted in 2009-10 in Sunaikuchi, Khulahat, and Bura Mayong reserved forest of Morigaon district of Assam to determine the AMF spore population in rhizosphere soils and root colonization of 14 tuberous edible plants belonging to five families. The results revealed AMF colonization of all selected species in all seasons. The percent colonization and spore count was less in summer, moderate in winter and highest in rainy season. Seventeen species of arbuscular mycorrhizal fungi were recorded in four genera viz. Acaulospora (7 species, Glomus (5 species, Sclerocystis (3 species and Gigaspora (2 species.

  17. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants

    Directory of Open Access Journals (Sweden)

    Alkhafaji Ali A

    2012-11-01

    Full Text Available Abstract Background "Evergreening" refers to the numerous strategies whereby owners of pharmaceutical products use patent laws and minor drug modifications to extend their monopoly privileges on the drug. We aimed to evaluate the impact of evergreening through the case study of the antidepressant citalopram and its chiral switch form escitalopram by evaluating treatment efficacy and acceptability for patients, as well as health insurance costs for society. Methods To assess efficacy and acceptability, we performed meta-analyses for efficacy and acceptability. We compared direct evidence (meta-analysis of results of head-to-head trials and indirect evidence (adjusted indirect comparison of results of placebo-controlled trials. To assess health insurance costs, we analyzed individual reimbursement data from a representative sample of the French National Health Insurance Inter-regime Information System (SNIIR-AM from 2003 to 2010, which allowed for projecting these results to the whole SNIIR-AM population (53 million people. Results In the meta-analysis of seven head-to-head trials (2,174 patients, efficacy was significantly better for escitalopram than citalopram (combined odds ratio (OR 1.60 (95% confidence interval 1.05 to 2.46. However, for the adjusted indirect comparison of 10 citalopram and 12 escitalopram placebo-controlled trials, 2,984 and 3,777 patients respectively, efficacy was similar for the two drug forms (combined indirect OR 1.03 (0.82 to 1.30. Because of the discrepancy, we could not combine direct and indirect data (test of inconsistency, P = 0.07. A similar discrepancy was found for treatment acceptability. The overall reimbursement cost burden for the citalopram, escitalopram and its generic forms was 120.6 million Euros in 2010, with 96.8 million Euros for escitalopram. Conclusions The clinical benefit of escitalopram versus citalopram remains uncertain. In our case of evergreening, escitalopram represented a substantially

  18. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    Science.gov (United States)

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types. © 2016

  19. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    Science.gov (United States)

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  20. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  1. Potential of two submontane broadleaved species (Acer opalus, Quercus pubescens) to reveal spatiotemporal patterns of rockfall activity

    Science.gov (United States)

    Favillier, Adrien; Lopez-Saez, Jérôme; Corona, Christophe; Trappmann, Daniel; Toe, David; Stoffel, Markus; Rovéra, Georges; Berger, Frédéric

    2015-10-01

    Long-term records of rockfalls have proven to be scarce and typically incomplete, especially in increasingly urbanized areas where inventories are largely absent and the risk associated with rockfall events rises proportionally with urbanization. On forested slopes, tree-ring analyses may help to fill this gap, as they have been demonstrated to provide annually-resolved data on past rockfall activity over long periods. Yet, the reconstruction of rockfall chronologies has been hampered in the past by the paucity of studies that include broadleaved tree species, which are, in fact, quite common in various rockfall-prone environments. In this study, we test the sensitivity of two common, yet unstudied, broadleaved species - Quercus pubescens Willd. (Qp) and Acer opalus Mill. (Ao) - to record rockfall impacts. The approach is based on a systematic mapping of trees and the counting of visible scars on the stem surface of both species. Data are presented from a site in the Vercors massif (French Alps) where rocks are frequently detached from Valanginian limestone and marl cliffs. We compare recurrence interval maps obtained from both species and from two different sets of tree structures (i.e., single trees vs. coppice stands) based on Cohen's k coefficient and the mean absolute error. A total of 1230 scars were observed on the stem surface of 847 A. opalus and Q. pubescens trees. Both methods yield comparable results on the spatial distribution of relative rockfall activity with similar downslope decreasing recurrence intervals. Yet recurrence intervals vary significantly according to tree species and tree structure. The recurrence interval observed on the stem surface of Q. pubescens exceeds that of A. opalus by > 20 years in the lower part of the studied plot. Similarly, the recurrence interval map derived from A. opalus coppice stands, dominant at the stand scale, does not exhibit a clear spatial pattern. Differences between species may be explained by the bark

  2. Miocene fossil plants from Bukpyeong Formation of Bukpyeong Basin in Donghae City, Gangwon-do Province, Korea and their palaeoenvironmental implications

    Science.gov (United States)

    Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik

    2016-04-01

    The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.

  3. Callus formation impedes adventitious rhizogenesis in air layers of broadleaved tree species

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2014-07-01

    Full Text Available Callusing and root induction in air layering was evaluated aiming at evolution of procedure for mass clonal propagation of mature ortets of five tropical broadleaf species differing in their potential for adventitious root formation in shoot cuttings as: Anogiessus latifolia < Boswellia serrata < Dalbergia latifolia < Gmelina arborea < Dalbergia sissoo. Two experiments were conducted in rainy season during consecutive years; without application of growth regulators in the first year and with growth regulators (T1 - water, T2- 100 ppm indole-3-acetic acid, T3-100 ppm thiamine-HCl and T4 -combination of T2 + T3 in the next year. Air layered branches were detached from the trees to record percentage of alive airlayers, callusing and rooting (% as well as root number and root length. Response to air layering was found to be highly variable in five tree species but appeared to be feasible procedure for clonal propagation of mature ortets of B. serrata and D. sissoo with 100% (in auxin + thiamine treatment and 83.3% (in auxin treatment success, respectively. Maximum callusing (% was found in D. latifolia while no callusing was observed in D. sissoo, which is most easy-to-root among all five species. Callus formation impedes adventitious rhizogenesis in air layers as significant negative correlation of callusing (% and adventitious root formation was recorded in air layers of five tropical broadleaved tree species. Application of exogenous auxin alone or in combination with thiamine circumvents callusing to ensure direct development of roots for successful air layering.

  4. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    Science.gov (United States)

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  5. Understanding Seasonal Dynamics of the Photo-Protective Xanthophyll Cycle Improves Remote Detection of Photosynthetic Phenology in Deciduous Trees and Evergreen Conifers

    Science.gov (United States)

    Ensminger, I.; Wong, C. Y.; Junker, L. V.; Bathena, Y.; Arain, M. A.; D'Odorico, P.

    2017-12-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species undergo senescence, which is associated with the downregulation of photosynthesis and a change of leaf color and leaf optical properties. Vegetation indices derived from remote sensing of leaf optical properties using e.g. spectral reflectance measurements are increasingly used to monitor and predict growing season length and seasonal variation in carbon sequestration. Here we compare leaf-level, canopy-level and drone based observations of leaf spectral reflectance measurements. We demonstrate that some of the widely used vegetation indices such as the normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) vary in their ability to adequately track the seasonal variation in photosynthetic efficiency and chlorophyll content. We further show that monitoring seasonal variation of photosynthesis using NDVI or PRI is particularly challenging in evergreen conifers, due to little seasonal variation in foliage. However, there is remarkable seasonal variation in leaf optical properties associated with changes in pools of xanthophyll cycle pigments and carotenoids that provide a promising way of monitoring photosynthetic phenology in evergreen conifers via leaf reflectance measurements.

  6. Effects of mixture and thinning in a tree farming valuable broadleaves plantation more than 20 years after the establishment.

    Directory of Open Access Journals (Sweden)

    Alessio Corazzesi

    2010-12-01

    Full Text Available The results of peduncolate Oak plantation trials where the Oak is mixed to wild Cherry and narrow-leaf Ash per line and per close mixture with different proportions (25% and 50% of N-fixing species (Black Locust and Italian Alder are described in the paper. The plantation, carried out in winter 1988-89, was framed into a reafforestation plan for spoil banks restoration. On a share of the plantation area, free thinnings foreseeing the release of about 70 target trees per hectare, were undertaken in 2001 and 2003; 21% and 27% of basal area were removed, respectively. In the latter trial, the crowns of target trees were completely isolated by felling all the surrounding trees. The performances of valuable timber broadleaves, the effects of intercropping and thinning on the growth of Oak target trees were analysed. Three inventories (2001, 2004 and 2008 and the annual monitoring of target trees growth were performed at the purpose. The two peduncolate Oak and narrow-leaf Ash trees showed the best performances among the set of valuable broadleaves, whilst wild cherry resulted not suited to local site conditions. A higher tree mortality occurred in the mixture with Black Locust. The mixture with both Nfixing species provided a stimulus to the Oak growth both in terms of dbh and tree height. Italian Alder resulted anyway less competitive and easy to manage, considering its progressive self-thinning, while Black Locust was aggressive enough to necessitate the control of its development by pollarding 7 years after the plantation. In the thinned plots, target trees showed significant diameter increments in comparison with control plots; maintaining year by year constant dbh increments of about 1 cm and crown’s diameter increment of about 50 cm. Intercropping with Italian Alder showed to be more effective than thinning on growth of the target trees. st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso

  7. Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology.

    Science.gov (United States)

    Priyamvada, Hema; Akila, M; Singh, Raj Kamal; Ravikrishna, R; Verma, R S; Philip, Ligy; Marathe, R R; Sahu, L K; Sudheer, K P; Gunthe, S S

    2017-01-01

    Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.

  8. [Vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve, Anhui, China].

    Science.gov (United States)

    Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao

    2009-09-01

    By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( 1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.

  9. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  10. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  11. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  12. Examining the patterns and dynamics of species abundance distributions in succession of forest communities by model selection

    Science.gov (United States)

    Luo, Shao-Ming; Chen, Ping; He, Xiao; Guo, Wei; Li, Bailian

    2018-01-01

    There are a few common species and many rare species in a biological community or a multi-species collection in given space and time. This hollow distribution curve is called species abundance distribution (SAD). Few studies have examined the patterns and dynamics of SADs during the succession of forest communities by model selection. This study explored whether the communities in different successional stages followed different SAD models and whether there existed a best SAD model to reveal their intrinsic quantitative features of structure and dynamics in succession. The abundance (the number of individuals) of each vascular plant was surveyed by quadrat sampling method from the tree, shrub and herb layers in two typical communities (i.e., the evergreen needle- and broad-leaved mixed forest and the monsoon evergreen broad-leaved forest) in southern subtropical Dinghushan Biosphere Reserve, South China. The sites of two forest communities in different successional stages are both 1 ha in area. We collected seven widely representative SAD models with obviously different function forms and transformed them into the same octave (log2) scale. These models are simultaneously confronted with eight datasets from four layers of two communities, and their goodness-of-fits to the data were evaluated by the chi-squared test, the adjusted coefficient of determination and the information criteria. The results indicated that: (1) the logCauchy model followed all the datasets and was the best among seven models; (2) the fitness of each model to the data was not directly related to the successional stage of forest community; (3) according to the SAD curves predicted by the best model (i.e., the logCauchy), the proportion of rare species decreased but that of common ones increased in the upper layers with succession, while the reverse was true in the lower layers; and (4) the difference of the SADs increased between the upper and the lower layers with succession. We concluded that

  13. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    Science.gov (United States)

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  14. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    OpenAIRE

    Murdiyah, Siti

    2017-01-01

    Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research...

  15. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  16. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  17. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Directory of Open Access Journals (Sweden)

    Laura Ulsig

    2017-01-01

    Full Text Available Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI. This study investigates the potential of a Photochemical Reflectance Index (PRI, which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R2 = 0.36–0.8, which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R2 > 0.6 in all cases. The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  18. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  19. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    International Nuclear Information System (INIS)

    Suwanprasit, C.

    2010-01-01

    Tropical forest is the most important and largest source for stocking CO 2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  20. Development of broadleaved woodland on colliery and open pit coal mines in the United Kingdom

    International Nuclear Information System (INIS)

    Humphries, R.N.; McQuire, G.E.

    1994-01-01

    Broadleaved woodland is an important land use and vegetation type in the United Kingdom (UK), and potentially the most effective landscape and restoration treatment for colliery waste tips and open pit coal sites. A field-based national survey of collieries in England and Wales in 1986 and 1987 showed that establishment was satisfactory in only half of the schemes, and growth was deemed satisfactory in less than one-fifth. There are standard forestry practices whereby stock quality can be assured, and herbaceous vegetation controlled or eliminated by the use of herbicides. During the restoration of the site, depending on choice of species, adequate soil water can be provided by the selection of appropriate soil types and thicknesses, and adoption of appropriate soil handling and decompaction practices. The low affinity of the plantations with local and regional types was partly due to the planting of non-native species and partly due to the failure to match species with site and soil characteristics. There is no reason why woodlands of a local and regional character cannot be established by planting the associated species. A matrix of fast-growing tree and/or shrub species should be used to promote early woodland development. These would be removed during normal management which is essential for the ultimate success of the woodland. Planting schemes should also incorporate woodland structural elements and understory and ground flora species. Provided that these measures are fully implemented, significant improvements in establishment, growth, and woodland development on restored sites should be achieved

  1. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  2. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  3. Variation of functional clonal traits along elevation in two fern species

    International Nuclear Information System (INIS)

    Song, Y.B.; Chen, L.Y.; Xiong, W.

    2015-01-01

    Phenotypical plasticity is generally considered among adaptive strategies by which plants can cope with environmental variation in space and time. Although much is known about plasticity in seed plants in terms of functional clonal traits while little is known about ferns. Variation of functional clonal traits of two ferns Dicranopteris dichotoma and Diplopterygium glaucum among plots differing in elevation in a subtropical evergreen broad-leaved forest in southern China was investigated. Along with elevation increasing the two fern species showed similar variation pattern of functional clonal traits: stable spacer length, increasing specific spacer length and decreasing spacer weight per ramet and specific spacer weight. The two ferns species had similar variation pattern of ramet performance traits but different variation pattern of ramet population properties. These results suggest an evolutionary trade-off between functions of foraging for and storing of resources in the two ferns, with a functional preference for the foraging in response to environmental change. (author)

  4. Inferring genetic diversity and differentiation of the endangered chinese endemic plant sauvagesia rhodoleuca (ochnaceae) using microsatelite markers

    International Nuclear Information System (INIS)

    Chen, Z. Y.; Wei, X.; Jiang, Y. S.; Chai, S. F.

    2015-01-01

    Sauvagesia rhodoleuca is one of the most endangered species in China. It has a narrow distribution in the evergreen broadleaved forest of southern China. Up to now, only six populations remained in two provinces. In this study, eight microsatellite loci were used to examine genetic diversity in these populations. We found very low levels of genetic diversity within populations of S. rhodoleuca with average observed and expected heterozygosity (HO and HE) of 0.069 and 0.186, respectively. Estimated inbreeding coefficients (FIS) within populations were high suggests the probable selfing in the species.Combination of the UPGMA dendrogram and the INSTRUCT analysis show that six extant populations could be classified into three distinct genetic groups and no pattern of isolation by distance was detected among populations. The low genetic variation within populations and high genetic differentiation among populations indicate that the management for the conservation of genetic diversity in S. rhodoleuca should aim to preserve every population. (author)

  5. Composition and diversity of tree species in transects of location lowland evergreen forest of Ecuador

    Directory of Open Access Journals (Sweden)

    Jorge Caranqui A.

    2015-09-01

    Full Text Available The study was conducted in 9 transects 1000m2 of lowland evergreen forest, located in two locations on the coast and one in eastern Ecuador. It was to contribute to knowledge of the diversity and composition of woody plants over 10 cm diameter at breast height (DBH plus infer the state of conservation of forests based on the composition, the number of species, indices diversity and importance value (IV, found in 9 transects of 1000 m² of forest: 156 species, 107 genera and 39 families distributed in 9 transects, in each one the Simpson diversity index is of 0.92 to 0.95, in this case are diversity because all approaches 1. Most were found species aren´t present in all transects, the index value in each transect does not exceed 40%. Grouping transects match three locations exception made to transect 5 and 8 were conducted in disturbed sites, the most transects are intermediate disturbance that their high levels of diversity.

  6. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions.

    Science.gov (United States)

    Rivas, Rebeca; Frosi, Gabriella; Ramos, Diego G; Pereira, Silvia; Benko-Iseppon, Ana M; Santos, Mauro G

    2017-09-01

    Calotropis procera is a C 3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/C i analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (V c,max ) and photosynthetic rate (A max ). On the other hand, limitation of stomatal or mesophyll CO 2 diffusion did not impair fast recovery, maintaining V c,max , chloroplast CO 2 concentration (C c ) and mesophyll conductance (g m ) unchanged while electron flow used for RuBP carboxylation (J c ) and A max increased. The ability to tolerate drought stress and the fast recovery of this evergreen C 3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  8. Tree Diversity and Structure of Andaman Giant Evergreen Forests, India

    Directory of Open Access Journals (Sweden)

    M. Rajkumar

    2008-12-01

    Full Text Available We investigated tree diversity in ‘giant evergreen forest’ of Andaman and Nicobar Islands, which falls within the Indo-Burma hot spot of biodiversity in the world. A one hectare square plot was established in sites Kalapahad (KP and Macarthy Valley (MV of Middle Andamans, in which all trees ≥ 30 cm girth at breast height (gbh were enumerated. Tree diversity totaled 105 species that belonged to 63 genera and 49 families. Site MV harboured ~10% greater species richness than KP. Species diversity indices did not vary much between the two sites. In the two sites, there were 1311 individuals of trees (579 ha-1 in KP and 732 in MV. The stand basal area was nearly equal in both the sites (KP- 45.59 m2 ha-1; MV- 47.93 m2 ha-1. Thirteen tree species (12.38% were strict endemics to Andamans. Ten species recorded are rare to the flora of these islands. The two sites are distinctly dominated by two different plant families; Dipterocarpaceae in KP and Myristicaceae in MV. Most of the species were common to central and lower region of Myanmar and Indian mainland. The forest stand structure exhibited a typical reverse-J shape, but site MV had double the density of stems in the lower tree size class than that of KP. The voluminous dipterocarps contributed more to the total above-ground live biomass. The need to preserve these species- and endemics- rich, fragile island forests, prioritized for biodiversity conservation, is emphasized.

  9. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  10. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests

    DEFF Research Database (Denmark)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars

    2015-01-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance...... present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs......, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production...

  11. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen Conifer Jack Pine

    OpenAIRE

    Busch, F.; Huner, N.; Ensminger, I.

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack ...

  12. Pilot Inventory of mammals, reptiles, and amphibians, Golden Gate National Recreation Area, California, 1990-1997

    Science.gov (United States)

    Semenoff-Irving, M.; Howell, J.A.

    2005-01-01

    The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3?4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse?the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.

  13. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  14. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  15. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Directory of Open Access Journals (Sweden)

    Marion Pfeifer

    Full Text Available In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL was estimated at -9.3% (17,167 km(2, but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan. We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks. Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337, Nature Reserves (six out of 12 and Game Parks (24 out of 26 were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  16. Vegetation Response and Landscape Dynamics of Indian Summer Monsoon Variations during Holocene: An Eco-Geomorphological Appraisal of Tropical Evergreen Forest Subfossil Logs

    Science.gov (United States)

    Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  17. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield

    Directory of Open Access Journals (Sweden)

    Lionel Hernández

    2012-03-01

    Full Text Available There have been several ecological studies in forests of the Guayana Shield, but so far none had examined the changes in structure and composition of evergreen forests with altitude. This study describes and analyzes the structure, species composition and soil characteristics of forest stands at different altitudinal zones in Southeastern Venezuelan Guayana, in order to explain the patterns and the main factors that determine the structure and composition of evergreen forests along the altitudinal gradient. Inventories of 3 948 big (>10cm DBH and 1 328 small (5-10cm DBH woody stems were carried out in eleven plots, ranging from 0.1 to 1.0ha, along a 188km long transect with elevations between 290 and 1 395masl. It has been found that 1 hemiepihytes become more dominant and lianas reduce their dominance with increasing altitude and 2 the forest structure in the study area is size-dependent. Five families and 12 genera represented only 9% of the total number of families and genera, respectively, recorded troughout the gradient, but the two groups of taxa comprised more than 50% of the Importance Value (the sum of the relative density and the relative dominance of all measured stems. Moreover, the results suggest that low species richness seems to be associated with the dominance of one or few species. Stand-level wood density (WD of trees decreased significantly with increasing elevation. WD is an indicator of trees’life history strategy. Its decline suggests a change in the functional composition of the forest with increasing altitude. The Canonical Correspondence Analysis (CCA indicated a distinction of the studied forests on the basis of their altitudinal levels and geographic location, and revealed different ecological responses by the forests, to environmental variables along the altitudinal gradient. The variation in species composition, in terms of basal area among stands, was controlled primarily by elevation and secondarily by rainfall

  18. Reproductive Ecology of Rhynchanthus beesianus W. W. Smith (Zingiberaceae) in South Yunnan, China: A Ginger with Bird Pollination Syndrome

    Institute of Scientific and Technical Information of China (English)

    Jiang-Yun Gao; Zi-Hui Yang; Pan-Yu Ren; Qing-Jun Li

    2006-01-01

    Rhynchanthus beesianus W. W. Smith (Zingiberaceae) is an epiphytic tropical ginger with a very conspicuous floral display, but almost no fruit set under field conditions. The reproductive ecology encompassing phenology, floral biology, and pollination and breeding systems was investigated in an evergreen broad-leaved forest in Yunnan Province, Southwest China. The flowers possess a typical bird pollination syndrome,but no effective pollinators were observed during 138 h of observation. Female Black-breasted Sunbird (Aethopyga saturata) and bumblebees visited R. beesianus regularly, but they all played roles as nectar robbers. No fruit was found in the bagging treatment, and fruit set following manual self-pollination ((57.55 ± 4.08)%) was comparable with cross-pollination ((64.32 ± 4.42)%), suggesting that R. beesianus is self-compatible but spontaneous self-pollination in this species does not occur. Seed set of open-pollination ((26.42 ± 3.11)%) was significantly lower than manual self-pollination ((73.41 ± 4.16)%) and cross-pollination ((75.56 ± 4.52)%), confirming that R. beesianus was dependent on animals for fertilization and suffered a serious pollinator-limitation.

  19. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Institute of Scientific and Technical Information of China (English)

    Xiaqin Luo; Min Cao; Min Zhang; Xiaoyang Song; Jieqiong Li; Akihiro Nakamura; Roger Kitching

    2017-01-01

    Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported,how soil seed banks vary with elerational gradients in different climatic zones is still unknown.This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province,southwest China.Similarity between the soil seed bank and standing vegetation was also examined.We collected soil samples from sites spanning 12 elevations in tropical rain forests,subtropical evergreen broadleaved forests and subalpine coniferous forests,and transported them to a glasshouse for germination trials for species identification.The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests.Seeds of woody species dominated the soil seed banks of tropical and subtropical forests,while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests,followed by subtropical forests but were completely absent from subalpine forests.

  20. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    Science.gov (United States)

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  1. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Directory of Open Access Journals (Sweden)

    Xiaqin Luo

    2017-10-01

    Full Text Available Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration. Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density, species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broad-leaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests. The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.

  2. Protected Areas: Mixed Success in Conserving East Africa’s Evergreen Forests

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at −9.3% (17,167 km2), but varied between countries (range: −0.9% to −85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa’s forest conservation efforts. PMID:22768074

  3. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    Science.gov (United States)

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  4. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  5. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  6. Early Oligocene plant diversity along the Upper Rhine Graben: The fossil flora of Rauenberg, Germany

    Directory of Open Access Journals (Sweden)

    Kovar-Eder Johanna

    2016-12-01

    Full Text Available The macroflora of Rauenberg, Baden-Württemberg, Germany, is treated monographically. The plant-bearing sediments are marine, mainly well-bedded clay- to siltstones, the so-called Fischschiefer, which are part of the Bodenheim Formation. Based on nannoplankton they are dated to nannoplankton zone NP 23 (Rupelian, Lower Oligocene. The plant remains, mainly leaves and some fructifications, are preserved as compressions. The taxonomic assignment is based on gross morphology and cuticle characteristics. The flora yields marine algae and remains of the very diverse terrestrial flora. A total of 68 taxa, including three types of algae, one cycad, 12 conifers, and 49 dicots, among them 5 palms, are described. The following fossil species are described for the first time: Laurophyllum rauenbergense, Myrica obliquifolia, Distylium metzleri, ? Berchemia altorhenana, ? Ternstroemites maritiae, Trachelospermum kelleri, Oleinites altorhenana, O. rauenbergensis, Dicotylophyllum badense, D. oechsleri, D. vesiculaeferens, D. ziegleri, ? Viscophyllum hendriksiae, and Cladites vesiculaeferens. Dicotylophyllum vesiculaeferens and Cladites vesiculaeferens bear peculiar, complex cuticular structures presumably representing salt-secreting glands. Both taxa are interpreted to derive from one plant species of yet uncertain systematic affinity. The flora bears a high proportion of broad-leaved, presumably evergreen taxa, whereas the diversity of modern Arcto-Tertiary taxa (sensu Kvaček 1994 is rather low. Most abundant are Platanus neptuni, Daphnogene cinnamomifolia, and Tetraclinis salicornioides. On the family level, Lauraceae (10 species and Pinaceae (8 are most diverse, followed by Arecaceae (4-5, Cupressaceae, and Myricaceae (4 species each. Surprisingly, Fagaceae are documented solely by a single leaf of Eotrigonobalanus furcinervis f. haselbachensis, and the record of Pentaphyllaceae remains ambiguous (? Ternstroemites maritiae. Sloanea olmediaefolia is recorded

  7. Seasonal abundance and activity of pill millipedes ( Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India

    Science.gov (United States)

    Ashwini, Krishna M.; Sridhar, Kandikere R.

    2006-01-01

    Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.

  8. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  9. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  10. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators.

    Science.gov (United States)

    Costa, Augusta; Madeira, Manuel; Lima Santos, José; Plieninger, Tobias; Seixas, Júlia

    2014-01-15

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands in relation to their surrounding landscape matrix, and to characterize and quantify woodland boundaries and edges. The present study aims to fill this gap by analyzing fragmentation patterns of oak woodlands over a 50-year period (1958-2007) in three landscapes. Using archived aerial imagery from 1958, 1995 and 2007, for two consecutive periods (1958-1995 and 1995-2007), we calculated a set of landscape metrics to compare woodland fragmentation over time. Our results indicated a continuous woodland fragmentation characterized by their edge dynamics. From 1958 to 2007, the replacement of open farmland by shrubland and by new afforestation areas in the oak woodland landscape surrounding matrix, led to the highest values for edge contrast length trends of 5.0 and 12.3, respectively. Linear discriminant analysis was performed to delineate fragmented woodland structures and identify metric variables that characterize woodland spatial configuration. The edge contrast length with open farmland showed a strong correlation with F1 (correlations ranging between 0.55 and 0.98) and may be used as a proxy for oak woodland mixedness in landscape matrix. The edge dynamics of oak woodlands may result in different patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture

    Science.gov (United States)

    Paço, Teresa A.; David, Teresa S.; Henriques, Manuel O.; Pereira, João S.; Valente, Fernanda; Banza, João; Pereira, Fernando L.; Pinto, Clara; David, Jorge S.

    2009-05-01

    SummaryMediterranean evergreen oak woodlands of southern Portugal ( montados) are savannah-type ecosystems with a widely sparse tree cover, over extensive grassland. Therefore, ecosystem water fluxes derive from two quite differentiated sources: the trees and the pasture. Partitioning of fluxes according to these different sources is necessary to quantify overall ecosystem water losses as well as to improve knowledge on its functional behaviour. In southern Iberia, these woodlands are subjected to recurrent droughts. Therefore, reaction/resilience to water stress becomes an essential feature of vegetation on these ecosystems. Long-term tree transpiration was recorded for 6 years from a sample of holm oak ( Quercus ilex ssp. rotundifolia) trees, using the Granier sap flow method. Ecosystem transpiration was measured by the eddy covariance technique for an 11-month period (February to December 2005), partly coincident with a drought year. Pasture transpiration was estimated as the difference between ecosystem (eddy covariance) and tree (sap flow) transpiration. Pasture transpiration stopped during the summer, when the surface soil dried up. In the other seasons, pasture transpiration showed a strong dependence on rainfall occurrence and on top soil water. Conversely, trees were able to maintain transpiration throughout the summer due to the deep root access to groundwater. Q. ilex trees showed a high resilience to both seasonal and annual drought. Tree transpiration represented more than half of ecosystem transpiration, in spite of the low tree density (30 trees ha -1) and crown cover fraction (21%). Tree evapotranspiration was dominated by transpiration (76%), and interception loss represented only 24% of overall tree evaporation.

  12. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought.

    Science.gov (United States)

    David, T S; Henriques, M O; Kurz-Besson, C; Nunes, J; Valente, F; Vaz, M; Pereira, J S; Siegwolf, R; Chaves, M M; Gazarini, L C; David, J S

    2007-06-01

    In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day(-1) during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.

  13. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    Science.gov (United States)

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  14. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Science.gov (United States)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-05-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  15. Effect of the degree of anthropization in the structure, at three sites fragmented evergreen piedmont forest

    Directory of Open Access Journals (Sweden)

    Hugo Gabriel Sánchez Villacis

    2017-08-01

    Full Text Available The Ecuadorian Amazon is recognized worldwide for its extraordinary megadiversity and multiplicity of forest goods and services. However, the inadequate practices of extractive use of non-timber forest products, the clearing of extensive areas of forests for the development of oil activity and the unsustainable use of timber as economic sustenance of communities have led to structural and functional changes In ecosystems. The study was carried out in three sites of a degraded evergreen forest of the eastern Amazon (Mera, Shell and Puyo in order to evaluate the effect of the degree of intervention on the forest structure. A floristic inventory was carried out with 60 plots of 25 x 25 m2 and tree species ≥ 2.5 cm d1.30 and species in natural regeneration phase with h <2 m were measured. We found 35 families, 65 genera, 101 species and 2 298 individuals, with Arecaceae, Fabaceae and Moraceae being the most representative botanical families. The degree of anthropization was highly modified where Mera was the best state of conservation. It was evidenced a low floristic diversity with patterns of alteration in the vertical and horizontal structure, distinguished phytosociologically by two strata in the sites of Shell and Puyo and by three in Mera, indicator of structural changes.

  16. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.

    Science.gov (United States)

    Fréchette, Emmanuelle; Wong, Christopher Y S; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-12-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. [Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan].

    Science.gov (United States)

    Yin, Guangcai; Zhou, Guoyi; Zhang, Deqiang; Wang, Xu; Chu, Guowei; Liu, Yan

    2005-09-01

    The total flux and concentration of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan were measured from July 2002 to July 2003. The results showed that the TOC input by precipitation was 41.80 kg x hm(-2) x yr(-1), while its output by surface runoff and groundwater (soil solution at 50 cm depth) was 17.54 and 1.80 kg x hm(-2) x yr(-1), respectively. The difference between input and output was 22.46 kg x hm(-2) x yr(-1), indicating that the ecosystem TOC was in positive balance. The monthly variation of TOC flux in hydrological processes was very similar to that in precipitation. The mean TOC concentration in precipitation was 3.64 mg x L(-1), while that in throughfall and stemflow increased 6.10 and 7.39 times after rain passed through the tree canopies and barks. The mean TOC concentration in surface runoff and in soil solution at 25 and 50 cm depths was 12.72, 7.905 and 3.06 mg x L(-1), respectively. The monthly TOC concentration in throughfall and stemflow had a similar changing tendency, showing an increase at the beginning of growth season (March), a decrease after September, and a little increase in December. The TOC concentration in runoff was much higher during high precipitation months. No obvious monthly variation was observed in soil solution TOC concentration (25 and 50 cm below the surface). Stemflow TOC concentration differed greatly between different tree species. The TOC concentration in precipitation, throughfall, and soil solution (25 and 50 cm depths) decreased with increasing precipitation, and no significant relationship existed between the TOC concentrations in stemflow, surface runoff and precipitation. The TOC concentrations in the hydrological processes fluctuated with precipitation intensity, except for that in stemflow and soil solutions.

  18. [Distribution pattern of rare plants along riparian zone and its implication for conservation in Shennongjia area].

    Science.gov (United States)

    Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua

    2002-11-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.

  19. Atmospheric Direct Uptake and Long-term Fate of Radiocesium in Trees after the Fukushima Nuclear Accident

    Science.gov (United States)

    Mahara, Yasunori; Ohta, Tomoko; Ogawa, Hideki; Kumata, Atsushi

    2014-11-01

    Large areas of forests were radioactively contaminated by the Fukushima nuclear accident of 2011, and forest decontamination is now an important problem in Japan. However, whether trees absorb radioactive fallout from soil via the roots or directly from the atmosphere through the bark and leaves is unclear. We measured the uptake of radiocesium by trees in forests heavily contaminated by the Fukushima nuclear accident. The radiocesium concentrations in sapwood of two tree species, the deciduous broadleaved konara (Quercus serrata) and the evergreen coniferous sugi (Cryptomeria japonica), were higher than that in heartwood. The concentration profiles showed anomalous directionality in konara and non-directionality in sugi, indicating that most radiocesium in the tree rings was directly absorbed from the atmosphere via bark and leaves rather than via roots. Numerical modelling shows that the maximum 137Cs concentration in the xylem of konara will be achieved 28 years after the accident. Conversely, the values for sugi will monotonously decrease because of the small transfer factor in this species. Overall, xylem 137Cs concentrations will not be affected by root uptake if active root systems occur 10 cm below the soil.

  20. Evergreen Valley College Matriculation Aide Intervention Evaluation: Success Rates of Fall 1992 Sections Using a Matriculation Aide Compared to Non-Intervention Sections for the Same Semester and Two Previous Semesters, English 321, 322, 330, and Math 12. Research Report #408.

    Science.gov (United States)

    Kangas, Jon

    In fall 1992, a study was performed at Evergreen Valley College, in San Jose, California, to determine whether the presence of full-time instructional aides and part-time matriculation aides in four specific courses (English 321, 322, 330, and Math 12) led to increases in student success. Success was defined as receipt of a grade of…

  1. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    Directory of Open Access Journals (Sweden)

    LIU Minmin

    2014-04-01

    Full Text Available Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,Trachycarpus fortunei,Radix Ophiopogonis had worse carbon-fixing and oxygen-releasing effects.Radix Ophiopogonis,Photinia glabra,Euonymus fortunei Hand.-Mazz had higher cooling and humidification ability,while Photinia serrulata,Trachycarpus fortunei did not act as well as them.Euonymus fortunei Hand.-Mazz and Hedera helix had higher leaf chlorophyll in per unit mass,values are 12.91、10.34、9.93 mg·g-1.Radix Ophiopogonis、Cinnamomum camphora(Linn. Presl and Trachycarpus fortunei had lower leaf chlorophyll in per unit mass,value is 3.55、2.67、2.06 mg·g-1.Releasing oxygen,fixing carbon,net assimilation and chlorophyll content has good correlation(P<0.05.

  2. Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.).

    Science.gov (United States)

    Gómez-Tamayo, M del Mar; Macías-García, Antonio; Díaz Díez, M Angeles; Cuerda-Correa, Eduardo M

    2008-05-01

    In the present work activated carbons have been prepared from evergreen oak wood. Different samples have been prepared varying the concentration of the activating agent (H(3)PO(4)) and the treatment temperature. The yield of the process decreases with increasing phosphoric acid concentrations. Furthermore, high concentrations of activating agent lead to mainly mesoporous activated carbons to the detriment of the microporous texture. Treatment temperatures up to 450 degrees C lead to a progressive increase of the micro- and mesopore volumes. Values of specific surface area (S(BET)) as high as 1723 m(2) g(-1)have been obtained using appropriate phosphoric acid concentrations and treatment temperatures. The samples prepared have been successfully used in the removal of Zn(II) from aqueous solutions. From the adsorption kinetic data it may be stated that the equilibrium time is, in all cases, below 170 h. The adsorption process as a rule becomes faster as the mesopore volume and specific surface area of the samples increase. The adsorption isotherms in liquid phase point out that the adsorption capacity (n(0)(s)) and the affinity towards the solute (K(ci)) are higher for the sample showing the most developed mesoporous texture and surface area as well.

  3. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    Directory of Open Access Journals (Sweden)

    Siti Murdiyah

    2017-03-01

    Full Text Available Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research findings showed there were 3 isolates of endophytic fungi isolated from 2 medicinal plants namely Kesambi (Schleicera oleosa and Ketapang (Terminalia catappa. All three isolates formed sporangiophores as asexual reproductive structures, while the structure of sexual still undiscovered therefore its classification has not been determined. The validity tests also showed that the lab manual is feasible for use with the percentage achievement 85.37% and 88.56%.

  4. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Directory of Open Access Journals (Sweden)

    W. Nijland

    2011-05-01

    Full Text Available Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  5. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure

    Directory of Open Access Journals (Sweden)

    Hiroki Itô

    2016-12-01

    Full Text Available The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.

  6. [Biogeographic regionalization of the mammals of tropical evergreen forests in Mesoamerica].

    Science.gov (United States)

    Olguin-Monroy, Hector C; Gutiérrez-Blando, Cirene; Rios-Muñoz, César A; León-Paniagua, Livia; Navarro-Sigüenza, Adolfo G

    2013-06-01

    Mesoamerica is a biologically complex zone that expands from Southern Mexico to extreme Northern Colombia. The biogeographical patterns and relationships of the mammalian fauna associated to the Mesoamerican Tropical Evergreen Forest (MTEF) are poorly understood, in spite of the wide distribution of this kind of habitat in the region. We compiled a complete georeferenced database of mammalian species distributed in the MTEF of specimens from museum collections and scientific literature. This database was used to create potential distribution maps through the use of environmental niche models (ENMs) by using the Genetic Algorithm for Rule-Set Production (GARP) using 22 climatic and topographic layers. Each map was used as a representation of the geographic distribution of the species and all available maps were summed to obtain general patterns of species richness in the region. Also, the maps were used to construct a presence-absence matrix in a grid of squares of 0.5 degrees of side, that was analyzed in a Parsimony Analysis of Endemicity (PAE), which resulted in a hypothesis of the biogeographic scheme in the region. We compiled a total of 41 527 records of 233 species of mammals associated to the MTEF. The maximum concentration of species richness (104-138 species) is located in the areas around the Isthmus of Tehuantepec, Northeastern Chiapas-Western Guatemala, Western Honduras, Central Nicaragua to Northwestern Costa Rica and Western Panama. The proposed regionalization indicates that mammalian faunas associated to these forests are composed of two main groups that are divided by the Isthmus of Tehuantepec in Oaxaca in: a) a Northern group that includes Sierra Madre of Chiapas-Guatemala and Yucatan Peninsula; and b) an austral group, that contains the Pacific slope of Chiapas towards the South including Central America. Some individual phylogenetic studies of mammal species in the region support the relationships between the areas of endemism proposed, which

  7. Freedom of information applications as an "evergreening" tactic: Secretary, Department of Health and Ageing v iNOVA Pharmaceuticals (Australia) Pty Ltd (2010) 191 FCR 573; [2010] FCA 1442.

    Science.gov (United States)

    Vines, Tim; Faunce, Thomas

    2011-09-01

    A recent decision of the Federal Court of Australia illustrates how patent-holding pharmaceutical companies are attempting to use Australia's Freedom of Information Act 1982 (Cth) to force Australian safety, quality and efficacy regulators to disclose whether generic competitors are attempting to enter the market. In Secretary, Department of Health and Ageing v iNova Pharmaceuticals (Australia) Pty Ltd (2010) 191 FCR 573; [2010] FCA 1442 a single judge of the Federal Court overturned a decision of the Administrative Appeals Tribunal (AAT) that would have compelled the Australian Therapeutic Goods Administration (TGA) to reveal whether they were in possession of an application to register generic versions of two iNova products: imiquimod and phentermine. In its justification to the AAT for refusing to confirm or deny the existence of any application, the TGA argued that to reveal the existence of such a document would prejudice the proper administration of the National Health Act 1953 (Cth) as it could compromise the listing of a generic on the Pharmaceutical Benefits Scheme. The AAT failed to appreciate the extent to which this revelation to a competitor would have undercut 2004 amendments to the Therapeutic Goods Act 1989 (Cth) that provided penalties for evergreening tactics involving TGA notifications to drug patent-holders and 2006 amendments to the Patents Act 1990 (Cth) which protected the right of generic manufacturers to "springboard". The decision of the Federal Court is one of the first to explore the use of freedom of information legislation by patent-holders as a potential "evergreening" technique to prolong royalties by marginalising generic competition. Because of the significant amounts of money involved in ensuring rapid market entry of low-cost generic products, the issue has considerable public health significance.

  8. Life-history traits in an evergreen Mediterranean oak respond differentially to previous experimental environments

    Directory of Open Access Journals (Sweden)

    J. M. Rey Benayas

    2008-06-01

    Full Text Available Living organisms respond both to current and previous environments, which can have important consequences on population dynamics. However, there is little experimental evidence based on long-term field studies of the effects of previous environments on the performance of individuals. We tested the hypothesis that trees that establish under different environmental conditions perform differently under similar post-establishment conditions. We used the slow-growing, evergreen Mediterranean oak Quercus ilex subsp. rotundifolia as target species. We analyzed the effects of previous environments, competition effects and tradeoffs among life-history traits (survival, growth, and reproduction. We enhanced seedling establishment for three years by reducing abiotic environmental harshness by means of summer irrigation and artificial shading in 12 experimental plots, while four plots remained as controls. Then these treatments were interrupted for ten years. Seedlings under ameliorated environmental conditions survived and grew faster during early establishment. During the post-management period, previous treatments 1 did not have any effect on survival, 2 experienced a slower above-ground growth, 3 decreased root biomass as indicated from reflectivity of Ground Penetration Radar, 4 increased acorn production mostly through a greater canopy volume and 5 increased acorn production effort. The trees exhibited a combination of effects related to acclimation for coping with abiotic stress and effects of intra-specific competition. In accordance with our hypothesis, tree performance overall depended on previous environmental conditions, and the response was different for different life-history traits. We recommend early management because it increased plot cover, shortened the time to attain sexual maturity and increased the amount of acorn production. Plots such as those assessed in this study may act as sources of propagules in deforested

  9. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The use of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures (MAATs) and environmental pH from soils has sparked significant interest in the terrestrial paleoclimate community. However, the reconstruction of these climate proxies from peat bogs is rare in monsoonal regions of the East Asia. This research was carried out on a core from the Shuizhuyang (SZY) peat bog located in Fujian Province. Branched GDGT (brGDGT) indexes were used for reconstructing the paleoclimate of the last 30 cal ka. The aim was to evaluate quantitatively the MAAT and pH values since the Last Glacial Maximum (LGM) in the subtropical zone of China. Results show that the CBT-MBT'-derived MAAT at MIS 3 is about 15.6 °C on average, which is followed by a significant fall at the LGM (11.7-12.1 °C). The temperature difference between the LGM and the present-day value is as high as 5.8 °C. The synchronous variation of biomarker and pollen proxies indicates that replacement of subtropical evergreen broadleaved forests by coldtolerant, deciduous broadleaved forests was driven by the significant drop in air temperature. Our results also indicate that the Younger Dryas event lasted from about 12.9 to about 11.3 cal ka, and cooling event at 3.2 cal ka in the late Holocene was detected, showing the sensitivity of peat bogs to rapid cooling. Our pH reconstructions indicate that the pH of the bog rose during Heinrich 1 and Bølling-Allerød periods, probably due to low precipitation, and were lowest in the Holocene thermal maximum between 8 ka and 2.5 ka, probably due to higher precipitation. The decoupling of reconstructed MAAT and pH during particularly deglaciation and YD periods supports the hypothesis that the variations in temperature and precipitation are not always synchronous.

  10. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    Science.gov (United States)

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a

  11. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  12. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    Science.gov (United States)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  13. Decontamination Trials for the Bed-Log Cultivation of Mushroom in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Kahori; Arai, Shio; Hirano, Yurika; Yoshida, Hirohisa [Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Ogawa, Hideki [Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Fukushima Prefectural Forestry Research Centre, Nishi-Shimasaka, Asaka, Koriyama, Fukushima 963-0112 (Japan); Ito, Hirohisa; Kumata, Atsushi [Fukushima Prefectural Forestry Research Centre, Nishi-Shimasaka, Asaka, Koriyama, Fukushima 963-0112 (Japan); Murayama, Kazunari [Macoho Co. Ltd., Nagaoka, Niigata (Japan); Suzuki, Kin-ichi [Abukuma Cooperative for Best Use of Broad-leaved Trees (Japan)

    2014-07-01

    Radioactive nuclear dispersed in environment from Fukushima Dai-ichi Nuclear Power Plant (FNP) Accident-contaminated forests in Fukushima Prefecture, especially in Abukuma mountainous region located 10 to 20 Km west from FNP. Broad-leaved trees such as Quercus serrata, chestnut tree, oak, chinquapin tree, Japanese beech are widely planting in Abukuma area. Many prefectures in Japan depends on supply of bed-log from Fukushima prefecture, especially Abukuma area. North part of Abukuma mountain area has highly contaminated by radioactive nuclear, however, the contamination level in the south part of Abkuma area was about ten times lower than the north part. The outside (bark, leaves and twigs) of broad-leaved trees was highly contaminated above 10,000 Bq/kg in Iidate and Kawamata villages located the north part of Abkuma ears, 35 to 40 km from FNP. On the other hand, the contamination level of the outside of broad-leaved trees in the south part of Abukuma ears was 100-500 Bq/kg and the contamination of the inside tree was lower than 10 Bq/kg. For the bed-log cultivation of mushrooms using broad-leaved trees, two methods were used in Japan. The mushrooms incubated broad-leaved trees (90 cm of length and 15 cm of diameter) were setting in the lack on the ground in forest from winter to autumn. This method was mainly used for the cultivation of shiitake mushroom (Lentinus edodes). The second method was used for Maitake (Grifola frondosa) cultivation. The mushroom incubated broad-leaved trees (20 cm of length and 20 cm of diameter) were setting in the ground holes and covered by soil (2 cm) and litters. The maitake (Grifola frondosa) mushrooms harvesting October 2013 at Iidate, the evaluation area, contained 120 Bq/kg, even though the soil on the broad-leaved trees contained more than 20,000 Bq/kg. The outside contamination of broad-leaved trees supplied from the south part of Abkuma ears were washed by the wet blasting. 80 % of radiocesium on the bark was efficiently

  14. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    Science.gov (United States)

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  15. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects...... of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing...

  16. Holocene temperature variability revealed by brGDGTs in subtropical southwestern China

    Science.gov (United States)

    Feng, X.; Zhao, C.

    2017-12-01

    Subtropical areas are important source region of moisture and heat in global climate system. Paleoclimate reconstructions from these regions, especially quantitative records, would not only help to better understand the nature of climate system through time, but also provide important constraining dataset for long-term ecosystem variations in these ecological important areas. To date, quantitative climate records with reliable chronological controls are still limited from terrestrial archives in subtropical areas. Here we present a 50-year-resolution quantitative temperature record throughout the Holocene based on branched GDGTs at a small alpine lake, Tiancai Lake (26°38'E, 99°43'N, 3898 m.a.s.l) in southwestern China. The record is based on a temporal calibration between instrumental mean annual air temperature (MAAT) and brGDGT compounds (GDGT-IIIa, GDGT-IIa', GDGT-IIb, GDGT-Ia and GDGT-Ic). The MAAT was relatively low -0.6 ° between 11 and 7.5 ka, then abruptly increased 1 ° to 4 °until 7 ka. The MAAT was relatively warm 2° between 7 and 1 ka, then decreased to 1° over the last 1 ka. The Middle to Late Holocene was 3 ° warmer than the Early Holocene. The MAAT variation at Lake Tiancai is supported by changes in evergreen oaks and Tsuga from the same sediment core, suggesting that the growth of cold-tolerant forest in place of subtropical evergreen broadleaved forest has been driven by the decrease in MAAT. The early Holocene cold interval revealed by our record and pollen data is different with the chironomid-based summer temperature reconstruction from the same lake, the latter has been driven by summer insolation. This difference suggests that a pronounced winter contribution to the mean annual temperature during the early Holocene, which was probably caused by a low winter insolation, and strengthened by a sparse vegetation cover and influences of winter ice/snow cover in tropical high latitude regions.

  17. Aplicação de misturas de diuron com MSMA, e com paraquat, no controle de plantas daninhas de folhas largas em cultura de algodão (Gossypium hirsutum L. Mixture of diuron whit MSMA and with paraquat for broadleaved weeds control in cotton

    Directory of Open Access Journals (Sweden)

    L. S. P. Cruz

    1978-01-01

    Full Text Available Em ensaio de campo conduzido em 1975/76 procurou-se avaliar a ação de misturas de MSMA com diuron e de paraquat com diuron, aplicadas em pós-emergência, em jato dirigido, em duas épocas diferentes, no controle de algumas plantas daninhas de folhas largas em algodão: carrapicho- do-campo (Acanthospermum australe (Loef O. Kuntze , falsa-poaia (Borreria ala ta (Aubl DC, poaia-branca (Richardia brasiliensis Gomez e guanxuma (Sida spp . A vegetação natural da área do ensaio era formada ainda pela gramínea capim-de-colchão (Digitaria sanguinalis (L. Scop . Os resultados mostraram que as misturas de 2,00 kg e 2,70 kg/ha de MSMA com, respectivamente 0,30 kg e 0,40 kg/ha de diuron, e a mistura de 0.60 kg/ha de paraquat com 0,60 kg/ ha de diuron, foram eficientes no co ntro le daquelas dicotiledôneas, e também no da gramínea. Todos os tratamentos provocaram leves sintomas de fitotoxicidade nos algodoeiros, mas desapareceram depois e não prejudicaram o desenvolvimento vegetativo das plantas, assim como a produção de algodão em caroço.In a field trial carried out in 1975/76, a diuron mixtu re with MSMA and another with paraquat was tested on broadleaved weeds in cotton crops. The applications were done in postemergence, directed-spray, in two different periods. The broadleaved weeds observed in the trial were Acanthospermum australe , Borreria alata, Richardia brasiliensis, and Sida spp, also the grass Digitaria sanguinalis. Best results were obtained with the mixture of 0,60 kg/ha of paraquat with 0,60 kg/ha of diuron, and 2,70 kg/ha of MSMA with 0,40 kg/ ha of diuron, or 2,00 kg/ha of MSMA with 0,30 kg/ha of diuron. All the treatments caused sl ight symptons of toxic ity in cotton, which disappeared later and did not damage the production.

  18. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    Science.gov (United States)

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  19. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    Science.gov (United States)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  20. Species composition, diversity and stratification in subtropical evergreen broadleaf forests along a latitudinal thermal gradient in the Ryukyu Archipelago, Japan

    Directory of Open Access Journals (Sweden)

    S.M. Feroz

    2015-07-01

    Full Text Available A well-developed evergreen broadleaf forest exists in the northern part of Okinawa and in the central part of the Ishigaki Islands in the Ryukyu Archipelago, Japan. All woody plants were identified to species level and their heights and diameters were measured in a 750m2 plot in Okinawa and a 400m2 plot in the Ishigaki Islands. Species overlap, dominance, diversity, multi-strata structure, and spatial distribution were calculated. The floristic composition in Okinawa was found to be different from that in Ishigaki. The species overlap between strata was higher in Okinawa than in Ishigaki. Species diversity and evenness tended to increase from the top down in Okinawa and the reverse in Ishigaki. Mean tree weight of each stratum decreased and tree density increased from top down in both forests. This trend resembled the mean weight–density trajectory of self-thinning plant populations. The degree of stand stratification, species richness and species diversity for trees with DBH ⩾4.5  cm increased along the latitudinal thermal gradient in the Ryukyu Archipelago. Thus, trees in the lower strata of Okinawa and upper strata of Ishigaki are important for sustainable maintenance of higher woody species diversity in the Ryukyu Archipelago.

  1. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

    Science.gov (United States)

    Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Mercury dynamics and mass balance in a subtropical forest, southwestern China

    Directory of Open Access Journals (Sweden)

    M. Ma

    2016-04-01

    Full Text Available The mid-subtropical forest area in southwest China was affected by anthropogenic mercury (Hg emissions over the past 3 decades. We quantified mercury dynamics on the forest field and measured fluxes and pools of Hg in litterfall, throughfall, stream water and forest soil in an evergreen broadleaved forest field in southwestern China. Total Hg (THg input by the throughfall and litterfall was assessed at 32.2 and 42.9 µg m−2 yr−1, respectively, which was remarkably higher than those observed from other forest fields in the background of North America and Europe. Hg fluxes across the soil–air interface (18.6 mg m−2 yr−1 and runoff and/or stream flow (7.2 µg m−2 yr−1 were regarded as the dominant ways for THg export from the forest field. The forest field hosts an enormous amount of atmospheric Hg, and its reserves is estimated to be 25 341 µg m2. The ratio of output to input Hg fluxes (0.34 is higher compared with other study sites. The higher output / input ratio may represent an important ecological risk for the downstream aquatic ecosystems, even if the forest field could be an effective sink of Hg.

  3. [Effects of forest regeneration patterns on the quantity and chemical structure of soil solution dissolved organic matter in a subtropical forest.

    Science.gov (United States)

    Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng

    2016-06-01

    Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.

  4. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    Science.gov (United States)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  5. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China.

    Science.gov (United States)

    Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X

    2015-06-01

    Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.

  6. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  7. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    Science.gov (United States)

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation

  8. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  9. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  10. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level

    Czech Academy of Sciences Publication Activity Database

    Potúčková, M.; Červená, L.; Kupková, L.; Lhotáková, Z.; Lukeš, Petr; Hanuš, Jan; Novotný, Jan; Albrechtová, J.

    2016-01-01

    Roč. 16, č. 11 (2016), č. článku 1801. ISSN 1424-8220 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : broadleaved leaf * broadleaved plants * conifers * contact probe * integration sphere * needle * spectroradiometer * spectroscopy Subject RIV: EH - Ecology, Behaviour Impact factor: 2.677, year: 2016

  11. Potential and limitations of using digital repeat photography to track structural and physiological phenology in Mediterranean tree-grass ecosystems

    Science.gov (United States)

    Luo, Yunpeng; EI-Madany, Tarek; Filippa, Gianluca; Carrara, Arnaud; Cremonese, Edoardo; Galvagno, Marta; Hammer, Tiana; Pérez-Priego, Oscar; Reichstein, Markus; Martín Isabel, Pilar; González Cascón, Rosario; Migliavacca, Mirco

    2017-04-01

    Tree-Grass ecosystems are global widely distributed (16-35% of the land surface). However, its phenology (especially in water-limited areas) has not yet been well characterized and modeled. By using commercial digital cameras, continuous and relatively vast phenology data becomes available, which provides a good opportunity to monitor and develop a robust method used to extract the important phenological events (phenophases). Here we aimed to assess the usability of digital repeat photography for three Tree-Grass Mediterranean ecosystems over two different growing seasons (Majadas del Tietar, Spain) to extract critical phenophases for grass and evergreen broadleaved trees (autumn regreening of grass- Start of growing season; resprouting of tree leaves; senescence of grass - End of growing season), assess their uncertainty, and to correlate them with physiological phenology (i.e. phenology of ecosystem scale fluxes such as Gross Primary Productivity, GPP). We extracted green chromatic coordinates (GCC) and camera based normalized difference vegetation index (Camera-NDVI) from an infrared enabled digital camera using the "Phenopix" R package. Then we developed a novel method to retrieve important phenophases from GCC and Camera-NDVI from various region of interests (ROIs) of the imagery (tree areas, grass, and both - ecosystem) as well as from GPP, which was derived from Eddy Covariance tower in the same experimental site. The results show that, at ecosystem level, phenophases derived from GCC and Camera-NDVI are strongly correlated (R2 = 0.979). Remarkably, we observed that at the end of growing season phenophases derived from GCC were systematically advanced (ca. 8 days) than phenophase from Camera-NDVI. By using the radiative transfer model Soil Canopy Observation Photochemistry and Energy (SCOPE) we demonstrated that this delay is related to the different sensitivity of GCC and NDVI to the fraction of green/dry grass in the canopy, resulting in a systematic

  12. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    Science.gov (United States)

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  13. [Monitoring temporal dynamics in leaf area index of the temperate broadleaved deciduous forest in Maoershan region, Northeast China with tower-based radiation measurements.

    Science.gov (United States)

    Liu, Fan; Wang, Chuan Kuan; Wang, Xing Chang

    2016-08-01

    Broadband vegetation indices (BVIs) derived from routine radiation measurements on eddy flux towers have the advantage of high temporal resolutions, and thus have the potential to obtain detailed information of dynamics in canopy leaf area index (LAI). Taking the temperate broadleaved deciduous forest around the Maoershan flux tower in Northeast China as a case, we investigated the controlling factors and smoothing method of four BVI time-series, i.e., broadband norma-lized difference vegetation index (NDVI B ), broadband enhanced vegetation index (EVI B ), the ratio of the near-infrared radiation reflectance to photosynthetically active radiation reflectance (SR NP ), and the ratio of the shortwave radiation reflectance to photosynthetically active radiation reflectance (SR SP ). We compared the seasonal courses of the BVIs with the LAI based on litterfall collection method. The values for each BVI were slightly different among the three calculation methods by Huemmrich, Wilson, and Jenkins, but showed similar seasonal patterns. The diurnal variations in BVIs were mainly influenced by the solar elevation and the angle between the solar elevation and slope, but the BVIs were relatively stable around 12:30. The noise of daily BVI time-series could be effectively smoothed by a threshold of clearness index (K). The seasonal courses of BVIs for each time of day around the noon had similar patterns, but their thresholds of K and the percen-tages of remaining data were different. Therefore, the daily values of BVIs might be optimized based on the smoothing and the proportion of remaining data. The NDVI B was closely correlated linearly with the LAI derived from the litterfall collection method, while the EVI B , SR NP , and SR SP had a logarithmic relationship with the LAI. The NDVI B had the advantage in tracking the seasonal dyna-mics in LAI and extrapolating LAI to a broader scale. Given that most eddy flux towers had equipped with energy balance measurements, a

  14. Facilitating the recovery of natural evergreen forests in South Africa via invader plant stands

    Directory of Open Access Journals (Sweden)

    Coert J. Geldenhuys

    2017-11-01

    Full Text Available Contrary to general belief, planted and naturalized stands of introduced species facilitate the recovery of natural evergreen forests and their diversity. Forest rehabilitation actions are often performed at great cost: mature forest species are planted, while species with adaptations to recover effectively and quickly after severe disturbance are ignored; or stands are cleared of invasive alien species before native tree species are planted. By contrast, cost-effective commercial plantation forestry systems generally use fast-growing pioneer tree species introduced from other natural forest regions. Such planted tree stands often facilitate the recovery of shade-tolerant native forest species. This paper provides a brief overview of disturbance-recovery processes at landscape level, and how pioneer stands of both native and introduced tree species develop from monocultures to diverse mature forest communities. It uses one example of a study of how natural forest species from small forest patches of 3 ha in total invaded a 90-ha stand of the invasive Black wattle, Acacia mearnsii, over a distance of 3.1 ha at Swellendam near Cape Town, South Africa. The study recorded 329 forest species clusters across the wattle stand: more large clusters closer to and more smaller clusters further away from natural forest patches. The 28 recorded forest species (of potentially 40 species in the surrounding forest patches included 79% tree and 21% shrub species. Colonizing forest species had mostly larger fleshy fruit and softer small seeds, and were dispersed by mostly birds and primate species. Maturing forest trees within developing clusters in the wattle stand became a source for forest regeneration away from the clusters, showing different expansion patterns. Four sets of fenced-unfenced plots in the wattle stand showed the impact of browsing by livestock, antelope, rodents and insects on the successful establishment of regenerating forest species, and the

  15. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    Science.gov (United States)

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Nagel, L.M.; Bassman, J.H.; Edwards, G.E.; Robberecht, R.; Franceshi, V.R.

    1998-01-01

    Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m −2 day −1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa

  17. Outbreaks of forest defoliating insects in Japan, 1950-2000.

    Science.gov (United States)

    Kamata, N; Kamata, N

    2002-04-01

    In Japan, several forest-defoliating insects reach outbreak levels and cause serious defoliation. Stand mortality sometimes occurs after severe defoliation. However, in general, tree mortality caused by insect defoliation is low because of the prevailing moist climate in Japan. Evergreen conifers are more susceptible to tree mortality as a result of insect defoliation whereas deciduous broad-leaved trees are seldom killed. Insect defoliation occurs more frequently in man-made environments such as among shade trees, orchards, and plantations than in natural habitats. Outbreaks of some defoliators tend to occur in stands of a particular age: e.g. outbreaks of the pine caterpillar, Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae) occur more frequently in young pine plantations. In contrast, defoliation caused by outbreaks of lepidopterous and hymenopterous pests in larch plantations is more frequent with stand maturation. There is a relationship between outbreaks of some defoliators and altitude above sea level. Most outbreaks of forest defoliators were terminated by insect pathogens that operated in a density-dependent fashion. Since the 1970s, Japan has been prosperous and can afford to buy timber from abroad. More recently, there has been an increasing demand for timber in Japan, that coincides with a huge demand internationally, so that the country will need to produce more timber locally in the future. The increasing pressure on the forestry industry to meet this demand will require more sophisticated methods of pest control coupled with more sustainable methods of silviculture.

  18. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  19. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  20. Autecology of broadleaved species

    OpenAIRE

    Gonin, Pierre; Larrieu, Laurent; Coello, Jaime; Marty, Pauline; Lestrade , Marine; Becquey, Jacques; Claessens, Hugues

    2013-01-01

    Anyone involved in timber production needs some knowledge of autecology. With the renewed interest in hardwoods in the last 20 years, they are increasingly being introduced by planting or encouraged in natural stands. The results in terms of growth have not always met foresters’ expectations, due to technical problems and especially because the species are not always suited to the different sites. While the principle of establishing hardwoods is not in question, it is important to be aware of...

  1. New data on the natural environment of the Middle and Late Neopleistocene interglacial periods in the east of the European Subarctic Region of Russia

    Science.gov (United States)

    Andreicheva, L. N.; Marchenko-Vagapova, T. I.

    2017-11-01

    The data obtained from investigation of the Middle and Late Neopleistocene lake sediments in the European Subarctic Region of Russia are reported. Chirva, Rodionovo (Scklov), Sula (Mikulino), and Byzovaya (Leningrad) sediments were subject to palynological analysis and investigation of particle size distribution and mineral composition. The spore-pollen spectra of the Chirva sediments demonstrate two climatic optima: the lower optimum is dominated by the pollen of Pinus sylvestris and broad-leaved species (up to 10%); the upper optimum is dominated by Picea sp. and Pinus sylvestris, while the pollen of Picea sect. Omorica and broad-leaved species are sporadic. The Rodionovo flora is characterized by a more xerophilous composition relative to the Chirva flora and a higher pollen content of pine, birch, wormseed plants, and wormwood. The climatic optimum of the Sula interglacial is distinguished by boreal vegetation, including spruce, birch, and birch-spruce forests with sparse broad-leaved species. The Byzovaya interstadial is marked by seven stages of changes in the vegetation: from tundra and forest-tundra communities to taiga forests with some broad-leaved species. The natural climatic sedimentation conditions in the Middle and Late Neopleistocene interglacial periods are reconstructed. The mineral composition of sediments was largely formed owing to underlying deposits.

  2. Holocene Vegetation Succession and Response to Climate Change on the South Bank of the Heilongjiang-Amur River, Mohe County, Northeast China

    Directory of Open Access Journals (Sweden)

    Chao Zhao

    2016-01-01

    Full Text Available Pollen samples from peat sediments on the south bank of the Heilongjiang River in northern Northeast China (NE China were analyzed to reconstruct the historical response of vegetation to climate change since 7800 cal yr BP. Vegetation was found to have experienced five successions from cold-temperate mixed coniferous and broadleaved forest to forest-steppe, steppe-woodland, steppe, and finally meadow-woodland. From 7800 to 7300 cal yr BP, the study area was warmer than present, and Betula, Larix, and Picea-dominated mixed coniferous and broadleaved forests thrived. Two cooling events at 7300 cal yr BP and 4500 cal yr BP led to a decrease in Betula and other broadleaved forests, whereas herbs of Poaceae expanded, leading to forest-steppe and then steppe-woodland environments. After 2500 cal yr BP, reduced temperatures and a decrease in evaporation rates are likely to have resulted in permafrost expansion and surface ponding, with meadow and isolated coniferous forests developing a resistance to the cold-wet environment. The Holocene warm period in NE China (7800–7300 cal yr BP could have resulted in a strengthening of precipitation in northernmost NE China and encouraged the development of broadleaved forests.

  3. Plant biodiversity patterns on Helan Mountain, China

    Science.gov (United States)

    Jiang, Yuan; Kang, Muyi; Zhu, Yuan; Xu, Guangcai

    2007-09-01

    A case study was conducted to mountainous ecosystems in the east side of Helan Mountain, located in the transitional zone between steppe and desert regions of China, aiming to reveal the influences of four environmental factors on features of plant biodiversity—the spatial pattern of vegetation types, and the variation of α- and β-diversities in vegetation and flora. Field surveys on vegetation and flora and on environmental factors were conducted, and those field data were analyzed through CCA (Canonical Correspondence Analysis), and through Shannon-Weiner index for α-diversity and Sørensen index for β-diversity. The preliminary results are: (1) Ranked in terms of their impacts on spatial patterns of plant biodiversity, the four selected environmental factors would be: elevation > location > slope > exposure. (2) The variation of Shannon-Weiner index along the altitudinal gradient is similar to that of species amount within altitudinal belts spanning 200 m each, which suggests a unimodal relationship between the species richness and the environmental condition with regards to altitudinal factors. Both the Shannon-Weiner index and the species richness within each altitudinal belt reach their maximum at elevation range from about 1700 to 2000 m a.s.l. (3) The altitudinal extent with the highest Shannon-Weiner index is identical to the range, where both the deciduous broad-leaved forest, and the temperate evergreen coniferous and deciduous broad-leaved mixed forest distribute. The altitudinal range from 1700 to 2200 m a.s.l. is the sector with both high level of species richness and diversified vegetation types. (4) The variation of β-diversity along the altitude is consistent with the vegetation vertical zones. According to the Sørensen index between each pair of altitudinal belts, the transition of vegetation spectrum from one zone to another, as from the base horizontal zone, the desert steppe, to the first vertical zone, the mountain open forest and

  4. Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile Aporte, descomposición de hojarasca y mineralización de nitrógeno en bosques siempreverdes de antiguo crecimiento y bosques secundarios deciduos, centro-sur de Chile

    Directory of Open Access Journals (Sweden)

    JEROEN STAELENS

    2011-03-01

    Full Text Available South Chilean forest ecosystems represent one of the largest areas of old-growth temperate rainforests remaining in the Southern hemisphere and have a high ecological value, but suffer from deforestation, invasion by exotic species, fragmentation, and increasing atmospheric nitrogen (N deposition. To support sustainable forest management, more knowledge is required on nutrient cycling of these ecosystems. Therefore, a descriptive study of nutrient dynamics was done in four Valdivian rainforests in the lower Andes range of south Chile: old-growth and altered evergreen stands and unmanaged and managed secondary deciduous stands. Time series were measured for (i mass (four year and nutrient content (N, K, Ca, and Mg; one year of litterfall, (ii decomposition and nutrient dynamics (N, C, K, Ca, Mg, and P; one year of leaf litter and Saxegothaea conspicua bark litter, and (iii in situ topsoil net N mineralization (one year. Litterfall in the four stands ranged from 3.5 to 5.8 ton ha-1 yr-1, was temporarily lower in the managed than in the unmanaged deciduous stand and had a different seasonality in the evergreen stands than in the deciduous stands. Leaf litter decomposed faster (on average 32 % mass loss after one year than bark litter (8 % but without significant differences between leaf litter types. Net N in evergreen leaf litter decreased during decomposition but increased in deciduous leaf litter. Net soil N mineralization was fastest in the pristine evergreen stand, intermediate in the deciduous stands and slowest in the altered evergreen forest. Given the absence of replicated stands, the definite impact of forest type or management regime on the internal nutrient cycling cannot be demonstrated. Nevertheless, the results suggest that management can affect nutrient turnover by altering species composition and forest structure, while recent (five years selective logging in secondary deciduous forest did not affect litter decomposition or N

  5. 78 FR 46258 - Drawbridge Operation Regulation Lake Washington, Seattle, WA

    Science.gov (United States)

    2013-07-31

    ... that governs the Evergreen Point Floating Bridge (State Route 520 across Lake Washington) at Seattle... Department of Transportation has requested that the draw span of the Evergreen Point Floating Bridge (State... this time, which would divert road traffic onto the Evergreen Point Floating Bridge. The closure of the...

  6. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment.

    Science.gov (United States)

    Martin-Stpaul, Nicolas K; Limousin, Jean-Marc; Vogt-Schilb, Hélène; Rodríguez-Calcerrada, Jesus; Rambal, Serge; Longepierre, Damien; Misson, Laurent

    2013-08-01

    Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long-lived trees differ depending on the time scale considered, and short-term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf-scale physiological traits, branch-scale hydraulic traits, and stand-scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long-term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long-lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation. © 2013 John Wiley & Sons Ltd.

  7. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    Science.gov (United States)

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results

  8. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    Science.gov (United States)

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show

  9. Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images

    Science.gov (United States)

    Mohammadi, Jahangir; Shataee, Shaban; Namiranian, Manochehr; Næsset, Erik

    2017-09-01

    Inventories of mixed broad-leaved forests of Iran mainly rely on terrestrial measurements. Due to rapid changes and disturbances and great complexity of the silvicultural systems of these multilayer forests, frequent repetition of conventional ground-based plot surveys is often cost prohibitive. Airborne laser scanning (ALS) and multispectral data offer an alternative or supplement to conventional inventories in the Hyrcanian forests of Iran. In this study, the capability of a combination of ALS and UltraCam-D data to model stand volume, tree density, and basal area using random forest (RF) algorithm was evaluated. Systematic sampling was applied to collect field plot data on a 150 m × 200 m sampling grid within a 1100 ha study area located at 36°38‧- 36°42‧N and 54°24‧-54°25‧E. A total of 308 circular plots (0.1 ha) were measured for calculation of stand volume, tree density, and basal area per hectare. For each plot, a set of variables was extracted from both ALS and multispectral data. The RF algorithm was used for modeling of the biophysical properties using ALS and UltraCam-D data separately and combined. The results showed that combining the ALS data and UltraCam-D images provided a slight increase in prediction accuracy compared to separate modeling. The RMSE as percentage of the mean, the mean difference between observed and predicted values, and standard deviation of the differences using a combination of ALS data and UltraCam-D images in an independent validation at 0.1-ha plot level were 31.7%, 1.1%, and 84 m3 ha-1 for stand volume; 27.2%, 0.86%, and 6.5 m2 ha-1 for basal area, and 35.8%, -4.6%, and 77.9 n ha-1 for tree density, respectively. Based on the results, we conclude that fusion of ALS and UltraCam-D data may be useful for modeling of stand volume, basal area, and tree density and thus gain insights into structural characteristics in the complex Hyrcanian forests.

  10. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    Science.gov (United States)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  11. I. Identification and characterization of dasheen mosaic virus in Chinese evergreen plants (Aglaonema commutatum) in California. II. New approaches for detecting plant viruses

    International Nuclear Information System (INIS)

    Kositratana, W.

    1985-01-01

    Chinese evergreen plants (Aglaonema commutatum) with symptoms of mild stunting, chlorosis, leaf distortion and mosaic, were observed in Southern California. Flexuous rods (ca. 750 nm) were detected in leaf dip and partially purified preparations. Dasheen mosac virus (DMV) was identified as the causal agent on the basis of host range, morphology and reaction with DMV antiserum in immunodouble diffusion and immunosorbent electron microscopy (ISEM) tests. Tetragonia expansa was found to be a new host of this virus. Surveys indicate that DMV is not widespread in cultivars of A. commutatum in Southern California. The virus was purified from leaves of seedling Philodendron selloum by clarification with CCl 4 , CHCl 3 , and Triton X-100, precipitation with PEG-8000 and centrifugation in either Cs 2 SO 4 -sucrose cushion gradients or Cs 2 SO 4 equilibrium density gradients. Purified virions formed a single UV-absorbing infectious band with densities of 1.31 and 1.245 g/ml in CsCl 2 and Cs 2 SO 4 equilibrium density gradients, respectively, and a sedimentation coefficient of 154 S as determined by a linear-log sucrose density gradient centrifugation. Dasheen mosaic virus has a plus-sense ssRNA with the M.W. of 3.2 x 10 6 under denaturing conditions. Molecular hybridization analysis using 3 H-complementary DNA specific to DMV-Ca RNA showed that DMV-Ca isolate was more closely related to DMV-Fiji isolate than to DMV-Fla isolate, and was very distantly related to ZYMV, TEV. PeMoC and PVY

  12. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    Directory of Open Access Journals (Sweden)

    E. V. J. Tanner

    2016-11-01

    Full Text Available Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm; Mehlich-III extractable phosphorus and total carbon (both to 20 cm; total nitrogen (to 15 cm; Mehlich-III calcium (to 10 cm; and Mehlich-III magnesium and lower bulk density (both to 5 cm. In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m−2 of mineral soil (approximately the upper 20 cm of the profile about 0.5 kg C m−2 was “missing” from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m−2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  13. Contrasting regeneration strategies in climax and long-lived pioneer tree species in a subtropical forest.

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    Full Text Available 1: This study investigated 15 coexisting dominant species in a humid subtropical evergreen broad-leaved forest in southwest China, consisting of long-lived pioneers and climax species occurring in natural and disturbed regimes. The authors hypothesized that there would be non-tradeoff scaling relationships between sprouting and seed size among species, with the aim of uncovering the ecological relationship between plant sprouting and seed characteristics in the two functional groups. 2: The sprouting variations of the species were initially examined using pairwise comparisons between natural and disturbed habitats within and across species and were noted to show a continuum in persistence niches across the forest dominants, which may underlie the maintenance of plant diversity. Second, a significantly positive, rather than tradeoff, relationship between sprout number and seed size across species within each of the two functional groups was observed, and an obvious elevational shift with a common slope among the two groups in their natural habitat was examined. The results indicate the following: 1 the relationship of seed size vs. sprouts in the natural habitat is more likely to be bet-hedging among species within a guild in a forest; 2 climax species tend to choose seeding rather than sprouting regeneration, and vice versa for the long-lived pioneers; and 3 the negative correlation between sprouting and seed dispersal under disturbed conditions may imply a tradeoff between dispersal and persistence in situ during the process of plant regeneration. 3: These findings may be of potential significance for urban greening using native species.

  14. Holocene fire activity and vegetation response in South-Eastern Iberia

    Science.gov (United States)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  15. Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan

    Science.gov (United States)

    Lai, Hsiao-Yin; Liew, Ping-Mei

    2010-05-01

    Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.

  16. Elevational Distribution of Adult Trees and Seedlings in a Tropical Montane Transect, Southwest China

    Directory of Open Access Journals (Sweden)

    Xiaoyang Song

    2016-08-01

    Full Text Available Montane habitats are characterized by high variation of environmental factors within small geographic ranges, which offers opportunities to explore how forest assemblages respond to changes in environmental conditions. Understanding the distributional transition of adult trees and seedlings will provide insight into the fate of forest biodiversity in response to future climate change. We investigated the elevational distribution of 156 species of adult trees and 152 species of seedlings in a tropical montane forest in Xishuangbanna, southwest China. Adult trees and seedlings were surveyed within 5 replicate plots established at each of 4 elevational bands (800, 1000, 1200, and 1400 m above sea level. We found that species richness of both adult trees and seedlings changed with elevation, showing a notable decline in diversity values from 1000 to 1200 m. Tree species composition also demonstrated distinct differences between 1000 and 1200 m, marking the division between tropical seasonal rain forest (800 and 1000 m and tropical montane evergreen broad-leaved forest (1200 and 1400 m. The results suggested that soil moisture and temperature regimes were associated with elevational distribution of tree species in this region. We also observed that seedlings from certain species found at high elevations were also distributed in low-elevation zones, but no seedlings of species from low elevations were distributed in high-elevation zones. The increase in temperature and droughts predicted for this region may result in the contraction of tropical seasonal rain forest at lower elevations and a downhill shift of higher tropical montane tree species.

  17. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California.

    Science.gov (United States)

    Vasey, Michael C; Loik, Michael E; Parker, V Thomas

    2012-10-01

    Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.

  18. Ecological Value of Soil Organic Matter at Tropical Evergreen Aglaia-Streblus Forest of Meru Betiri National Park, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hari Sulistiyowati

    2016-09-01

    Full Text Available As part of carbon pools, forest soil stores soil organic matter (SOM that contains many elements including organic C, N, P, and K. These elements contribute nutrients for biogeochemical cycles within the ecosystem. This study was done to determine the ecological value of forest soil organic matter at tropical evergreen Aglaia-Streblus forest of Meru Betiri National Park (MBNP, East Java, Indonesia. The data were sampled along gradient topography in Pringtali tropical forest of TMBNP. Direct measurements of soil moisture, temperature, and pH were taken in the field. The soil samples were extracted from 6 points of soil solum using soil auger, and then oven-dried to get value of dry-weight. The elements content of organic C, N, P, and K were analyzed and estimated at the laboratory. The ecoval of SOM was appraised using developed ecological valuation tool. The result showed that SOM contributed higher ecoval of organic C (66.03 Mg ha-1 than other elements. Compared to P and K elements, N had the highest stock of element content. However, comparing to other two tropical forest ecosystems of Asia the ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features.The ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features. The ecovals contributed about 2.440,64 - 6.955,50 USD or 31.271.923,73 - 89.120.837,23 IDR per hectare of ecological value (d to the ecosystem. This value was mainly contributed by organic C stock in the TMBNP forest SOM. It means the forest SOM had higher element content of organic C than N, P, and K elements. This d value is an indicator for TMBNP to protect the SOM elements meaning protecting their resources to sustain the biogeochemical cycles in the forest ecosystem. All the management and policy correlated to this protected area should consider this valuable information for their plan and actions.

  19. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  20. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an ... would get excited. The GFP would then emit green light. (509 nm) and return to the ground state. com ponents required. T hese include a photoprotein,ae- quorin (F igure 2) w hich em its .... a chemical reaction which originates in an organism.

  1. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  2. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests.

    Science.gov (United States)

    Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia

    2017-06-01

    Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had

  3. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  4. Supply of wood fuel from small-scale woodlands for small-scale heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report summarises the findings of a study aimed at stimulating a market for wood fuels. A desk study of harvesting in existing small woodland was conducted, and thirteen case studies covering early broadleaved thinnings, mixed broadleaved coppice, and crownwood, scrub and residues were examined to obtain information on woodland types, wood fuel supply, and combustion equipment. Details are given of the measurement of moisture content of woodchips and stacked roundwood, wood volume and green density, harvesting options, crop and site variables, and production and costs of wood fuels. Usage of wood fuels, and the drying of small roundwood was considered. (UK)

  5. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  6. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008 from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR, shrubland (SH, as well as in evergreen coniferous (EC, deciduous coniferous (DC and deciduous broadleaved forest (DB, to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  7. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress.

    Directory of Open Access Journals (Sweden)

    Bao-Cai Han

    Full Text Available Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs, Gene Ontology (GO terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.

  8. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  9. Nitrous oxide emission inventory of German forest soils

    Science.gov (United States)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  10. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    Science.gov (United States)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The

  11. 77 FR 39571 - Frank Sherman, FSCS Corporation, TMS West Coast, Inc.,

    Science.gov (United States)

    2012-07-03

    ..., Inc. and Cabana Coaches, LLC--Acquisition and Consolidation of Assets--America Charters, LTD., American Coach Lines of Jacksonville, Inc., American Coach Lines of Miami, Inc., American Coach Lines of... noncarrier holding company; Evergreen Trails, Inc. d/b/a Horizon Coach Lines (Evergreen), an interstate motor...

  12. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  13. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  14. Sécurité alimentaire : une lutte sur plusieurs fronts | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 févr. 2011 ... From green to evergreen: Updating the food revolution. Hunger can be eradicated “in my lifetime,” says the man known as the father of the Green Revolution in India. M.S.. View moreFrom green to evergreen: Updating the food revolution ...

  15. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Directory of Open Access Journals (Sweden)

    Alvaro G Gutiérrez

    Full Text Available Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S. The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area. We compared the responses of a young stand (YS, ca. 60 years-old and an old-growth forest (OG, >500 years-old in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  16. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Science.gov (United States)

    Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  17. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China

    Directory of Open Access Journals (Sweden)

    Ruiwu Zhou

    2018-04-01

    Full Text Available The distribution of forest vegetation and forest carbon sequestration potential are significantly influenced by climate change. In this study, a map of the current distribution of vegetation in Yunnan Province was compiled based on data from remote sensing imagery from the Advanced Land Observing Satellite (ALOS from 2008 to 2011. A classification and regression tree (CART model was used to predict the potential distribution of the main forest vegetation types in Yunnan Province and estimate the changes in carbon storage and carbon sequestration potential (CSP in response to increasing temperature. The results show that the current total forest area in Yunnan Province is 1.86 × 107 ha and that forest covers 48.63% of the area. As the temperature increases, the area of forest distribution first increases and then decreases, and it decreases by 11% when the temperature increases from 1.5 to 2 °C. The mean carbon density of the seven types of forest vegetation in Yunnan Province is 84.69 Mg/ha. The total carbon storage of the current forest vegetation in Yunnan Province is 871.14 TgC, and the CSP is 1100.61 TgC. The largest CSP (1114.82 TgC occurs when the temperature increases by 0.5 °C. Incremental warming of 2 °C will sharply decrease the forest CSP, especially in those regions with mature coniferous forest vegetation. Semi-humid evergreen broad-leaved forests were highly sensitive to temperature changes, and the CSP of these forests will decrease with increasing temperature. Warm-hot coniferous forests have the greatest CSP in all simulation scenarios except the scenario of a 2 °C temperature increase. These results indicate that temperature increases can influence the CSP in Yunnan Province, and the largest impact emerged in the 2 °C increase scenario.

  18. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    Science.gov (United States)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  19. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?

    Directory of Open Access Journals (Sweden)

    A. Ngomanda

    2009-10-01

    Full Text Available Past vegetation and climate changes reconstructed using two pollen records from Lakes Maridor and Nguène, located in the coastal savannas and inland rainforest of Gabon, respectively, provide new insights into the environmental history of western equatorial African rainforests during the last 4500 cal yr BP. These pollen records indicate that the coastal savannas of western equatorial Africa did not exist during the mid-Holocene and instead the region was covered by evergreen rainforests. From ca. 4000 cal yr BP a progressive decline of inland evergreen rainforest, accompanied by the expansion of semi-deciduous rainforest, occurred synchronously with grassland colonisation in the coastal region of Gabon. The contraction of moist evergreen rainforest and the establishment of coastal savannas in Gabon suggest decreasing humidity from ca. 4000 cal yr BP. The marked reduction in evergreen rainforest and subsequent savanna expansion was followed from 2700 cal yr BP by the colonization of secondary forests dominated by the palm, Elaeis guineensis, and the shrub, Alchornea cordifolia (Euphorbiaceae. A return to wetter climatic conditions from about 1400 cal yr BP led to the renewed spread of evergreen rainforest inland, whereas a forest-savanna mosaic still persists in the coastal region. There is no evidence to suggest that the major environmental changes observed were driven by human impact.

  20. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  1. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    Science.gov (United States)

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  2. 3 The Traditional Cloth Dyeing Enterprise.cdr

    African Journals Online (AJOL)

    Administrator

    reconnaissance visits and necessary changes ... difficulty in accessing fuelwood for boiling .... precipitation of 600 mm up to over 4000 mm, and a mean annual temperature of 15–28 °C. ... Found in evergreen fringing forest along water, swamp forest, ... drier evergreen forest and thickets, from sea-level up to 1500 m altitude.

  3. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images.

    Science.gov (United States)

    Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III

    2006-01-01

    Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...

  4. Flacourtia montana

    Indian Academy of Sciences (India)

    Admin

    Flacourtia montana Graham, referred to as Indian plum or mountain sweet thorn is restricted only to the evergreen and semi-evergreen forests of the Western Ghats. It belongs to the willow family, i.e., Salicaceae. The tree trunk at its base bears several long, sharp thorns. In the dry season the plant produces scarlet colored, ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The dominant forest type is tropical semi-evergreen which comprises 21,678 km2 (35.2%) of the total forest area of Western Ghats, followed by wet evergreen forest (30.6%), moist deciduous forest (24.8%) and dry deciduous forest (8.1%) in 2013. Even though it has the highest population density among the hotspots, there ...

  6. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    Science.gov (United States)

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains

  7. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees

    International Nuclear Information System (INIS)

    Räsänen, Janne V.; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna

    2013-01-01

    Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. -- Highlights: • Coniferous Scots pine was the most efficient particle collector. • Decreasing single leaf size increases particle deposition of the total leaf area. • Hairiness of the leaf increases particle deposition. -- Trees can improve air quality by removing PM 2.5 pollutants carried on the wind at a velocity of 3 m s −1 , the efficiency of which depends on species leaf characteristics and physical factors

  8. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Hisadome, Keigo; Loffredo, Nicolas; Kawamori, Ayumi

    2017-01-01

    In this study, we investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Dai-ichi Nuclear Power Plant accident. The 137 Cs content of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantations of Japanese cedar) and a deciduous mixed broad-leaved forest stand (oak with red pine) from July 2011 to December 2012. The forest floor of cedar stands had received higher levels of additional 137 Cs deposition compared with the mixed broad-leaved stand during the sampling period. The cumulative 137 Cs deposition during the study period was 119 kBq m -2 for the mature cedar stand, 105 kBq m -2 for the young cedar stand, and 41.5 kBq m -2 for the broad-leaved stand. The deposition of 137 Cs to the forest floor occurred mainly in throughfall during the first rainy season, from July to September 2011 (<200 d after the initial fallout); thereafter, the transfer of 137 Cs from the canopy to forest floor occurred mainly through litterfall. A double exponential field-loss model, which was used to simulate the removal of 137 Cs from canopies, was the best fit for the temporal changes in the canopy 137 Cs inventory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantifying the missing link between forest albedo and productivity in the boreal zone

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  10. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... of 122 tree species from different functional types (FT). We then explored projections of future distributions under one climate scenario for 2080, considering two alternative dispersal assumptions: no dispersal and unlimited dispersal. The species-rich broadleaved deciduous group appeared to play a key...... role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity...

  11. Hypoxylon species on beech and other broadleaves

    Directory of Open Access Journals (Sweden)

    Milijašević Tanja

    2004-01-01

    Full Text Available Fungi in the genus Hypoxylon cause wood decay and most of them are saprophytes on dead wood or parasites of weakness. The following species in this genus were identified in this study performed at several localities in Serbia and Montenegro: H. deustum, H. fragiforme, H. nummularium, H. multiforme, H. rubiginosum and H. fuscum. Among them the most significant species is H. deustum, the fungus causing root and butt rot of standing beech trees. It was recorded from all coppice and high forests of beech. This paper presents the morphological characteristics of the recorded fungi their range, plant hosts and significance.

  12. Estimating Resistance and Resilience of Military Lands Using Vegetation Indices

    Science.gov (United States)

    2017-05-17

    considered more resistant to maneuver damage because they have flex- ible, horizontal, and branching stems , narrow leaves, below-ground repro- ductive... stems with reproductive capacity more elevated than the graminoids, which make them far more sensitive to maneuver training im- pacts (Tolvanen et...Tree- Evergreen 3.2 2.2 Southeast Florida Coastal Strand and Maritime Hammock Coccoloba uvifera Shrub- Evergreen 2.7 2.4 Southwest Florida Coastal

  13. Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies

    International Nuclear Information System (INIS)

    Marshall, J.D.; Zhang, J.W.

    1994-01-01

    Stable carbon isotope composition was determined on leaves of woody plants sampled along an 800—km transect on the western flank of the Rocky Mountains at altitudes ranging from 610 to 2650 m above mean sea level. Discrimination decreased by 1.20 ± 0.11% (mean ± 1 se) per km of altitude (n = 15, F 1,13 = 127.8, P < 0.0001). The change in discrimination was just sufficient to maintain a constant CO 2 partial pressure gradient from ambient air to the intercellular spaces within the leaf for both deciduous (P = 0.60) and evergreen (P = 0.90) species. However, the CO 2 gradient so maintained was significantly steeper among evergreen (11.31 ± 0.14 Pa) than among deciduous (9.64 ± 0.14 Pa) species (t = 8.4, 27 df, P < 00001). As a consequence, the evergreens had lower discrimination than the deciduous species at any given altitude. After the data were corrected for altitude, further analysis revealed significant differences in discrimination and in CO 2 partial pressure gradient among species. Thuja plicata (western red—cedar), a scale—leaved evergreen, had lowest mean discrimination (16.67 ± 0.50%, n = 4) and the steepest CO 2 gradient from ambient to intercellular spaces (14.5 ± 0.5 Pa). Larix occidentalis (western larch), a deciduous conifer, had the highest discrimination (20.95 ± 0.34%, n = 9) and the flattest CO 2 gradient (8.3 ± 0.4 Pa). A simple model of water—use efficiency predicted that evergreen species would average 18 ± 2% higher in water—use efficiency at any given altitude and that mean water—use efficiency would triple across a 2000—m altitude gradient. The difference between evergreen and deciduous species is attributable to variation in the CO 2 partial pressure gradient, but the tripling with altitude was almost exclusively a consequence of reduced evaporative demand. (author)

  14. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...... vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were...... unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition...

  15. Download this PDF file

    African Journals Online (AJOL)

    egyptian hak

    (ii) to compare the rate of stemflow in coniferous and broadleaved trees in according to the ... variability. During precipitation, the morphology and distribution of trees and, collectively the forest, control the .... canopy and the needle-like leaves.

  16. The species richness-productivity relationship in the herb layer of European deciduous forests

    Czech Academy of Sciences Publication Activity Database

    Axmanová, I.; Chytrý, M.; Zelený, D.; Ching-Feng, L.; Vymazalová, M.; Danihelka, Jiří; Horsák, M.; Kočí, M.; Kubešová, S.; Lososová, Z.; Otýpková, Z.; Tichý, L.; Martynenko, V. B.; Baisheva, E. Z.; Schuster, B.; Diekmann, M.

    2012-01-01

    Roč. 21, č. 6 (2012), s. 657-667 ISSN 1466-822X Institutional support: RVO:67985939 Keywords : broad-leaved woodland * diversity - productivity relationship * herb-layer biomass Subject RIV: EF - Botanics Impact factor: 7.223, year: 2012

  17. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Science.gov (United States)

    Pretty, J. L.; Dobson, M.

    The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK) was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention.

  18. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa 'Beaupre', Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment

    International Nuclear Information System (INIS)

    Freer-Smith, P.H.; Beckett, K.P.; Taylor, Gail

    2005-01-01

    Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp<1.0 μm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location

  19. Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Danihelka, Jiří; Horsák, M.; Kočí, M.; Kubešová, S.; Lososová, Z.; Otýpková, Z.; Tichý, L.; Martynenko, V. B.; Baisheva, E. Z.

    2010-01-01

    Roč. 37, č. 4 (2010), s. 767-780 ISSN 0305-0270 Institutional research plan: CEZ:AV0Z60050516 Keywords : bryophytes * broad-leaved trees * mixed oak forests Subject RIV: EF - Botanics Impact factor: 4.273, year: 2010

  20. Fytocenologická a geobiocenologická studie bučin Třeboňska

    Czech Academy of Sciences Publication Activity Database

    Boublík, Karel; Žárník, M.; Douda, J.

    2007-01-01

    Roč. 47, - (2007), s. 71-89 ISSN 0139-8172 R&D Projects: GA ČR(CZ) GA206/05/0020 Institutional research plan: CEZ:AV0Z60050516 Keywords : Broadleaved forests * ecosystem classification * phytosociology Subject RIV: EF - Botanics

  1. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution

    NARCIS (Netherlands)

    Boer, H.J. de; Eppinga, M.B.; Wassen, M.J.; Dekker, S.C.

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid

  2. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    International Nuclear Information System (INIS)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-01-01

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO 2 ) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m 2 s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and

  3. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  4. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  5. 1-14 Effect of Plant Spacing and Weeding Frequency on Weed ...

    African Journals Online (AJOL)

    user

    2College of Agriculture and Environmental Sciences, Haramaya University, ... pod, hundred seed weight, grain yield, aboveground dry biomass, and ... an infestation by weeds and the performance of crop ... frequencies affect weed management in common bean .... including broad-leaved, sedge and grass weeds (Table.

  6. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  7. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Directory of Open Access Journals (Sweden)

    J. L. Pretty

    2004-01-01

    Full Text Available The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention. Keywords: forestry, detritivores, old-growth conifers, river management, woody debris

  8. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  9. A review of European ash (Fraxinus excelsior L.): implications for silviculture

    NARCIS (Netherlands)

    Dobrowolska, D.; Hein, S.; Oosterbaan, A.; Wagner, S.; Clark, J.; Skovsgaard, J.P.

    2011-01-01

    European ash (Fraxinus excelsior L.) is common throughout much of Europe and is a valuable broadleaved tree due to its ecological characteristics, outstanding wood properties and high economic value. It is a fast growing species, associated with several forest types and with a scattered distribution

  10. The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season

    Czech Academy of Sciences Publication Activity Database

    Neuwirthová, E.; Lhotáková, Z.; Albrechtová, Jana

    2017-01-01

    Roč. 17, č. 6 (2017), s. 1-23, č. článku 1202. ISSN 1424-8220 Institutional support: RVO:67985939 Keywords : broadleaved trees * leaf optical properties * leaf traits Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.677, year: 2016

  11. Crispin: capital requirements and reinsurance protect against insolvency.

    Science.gov (United States)

    Crispin, C

    2001-12-01

    Charles Crispin is president of Evergreen Re, a managed care consulting firm with expertise in the reinsurance industry. Before Joining Evergreen Re, Crispin served as a consultant to the managed care industry. He is a member of the American Association of Integrated Delivery Systems, Glen Allen, Virginia, and the Provider Excess Loss Association, Princeton, New Jersey. Crispin recently talked with HFM about risk-based capital requirements for health plans and the Impact these solvency guidelines could have on healthcare providers.

  12. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  13. Contribution to growth and increment analysis on the Italian CONECOFOR Level II Network

    Directory of Open Access Journals (Sweden)

    Emilio AMORINI

    2002-09-01

    Full Text Available The paper deals with the "Estimation of growth and yield" included in the National Programme on Intensive Monitoring of Forest Ecosystems CONECOFOR Aims of the paper are: i to outline the composition and design of Level II PMPs network, also examining the structural characteristics of forest stands; ii to describe the contents of mensurational surveys carried out in winter 1996/97 and 1999/00; iii to analyse the growth rates in progress at each PMP using selected descriptors. Stand origin (11 high forests and 13 stored coppices and transitory crops and the number of forest types tested are focused as the main discriminants of the PMPs network. This composition, together with irregular forestry practice, results in a number of consequences (prevailing age classes, tree densities and related stand structures, growth patterns which cause a high in-and-between variability of all growth parameters. For the purposes of this analysis, the network of the plots was divided into three main sets: broadleaved high forest (i.e. beech stands, 6 PMPs; coniferous forest (i.e. Norway spruce stands, 5 PMPs; coppice forest (i.e. deciduous and evergreen oaks, beech and hardbeam stands, 13 PMPs. The measurement of basic growth variables (dbh and tree height was used to describe the tree populations in each PMP; the calculation of basal area, mean and top dbh, mean and top height, provided the reference dataset at each inventory. The assessment of social class according to Kraft gave information on vertical stand structure and made it possible to analyse growth according to tree layers. Data comparison provided increments in the interval 1997-2000. The occurrence of natural mortality and ingrowth was also assessed to take into account their combined effect on tree population dynamics. No trend was found, due to limited data availability, but it was possible to have a detailed overview of the stand situation and growth rates in PMPs.

  14. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  15. Effect of industrial air pollution on decorative trees and shrubs in the area of the Nitrogen Fertilizer Factory at Pulawy

    Energy Technology Data Exchange (ETDEWEB)

    Kawecka, A

    1973-01-01

    This paper discusses the effects that the gaseous wastes from a nitrogen fertilizer plant have on decorative trees and shrubs. It lists 28 species of broadleaved trees and shrubs, and assigns them to four groups according to their resistance or susceptibility to the pollution. 6 references.

  16. Disentangling the effects of land-use change, climate and CO2 on projected future European habitat types

    NARCIS (Netherlands)

    Lehsten, V; Sykes, M.T.; Scott, A.V.; Tzanopoulis, A.; Kallimanis, A.; Verburg, P.H.; Schulp, C.J.E.; Potts, S.G.; Vogiatzakis, I.

    2015-01-01

    Aim: To project the potential European distribution of seven broad habitat categories (needle-leaved, broad-leaved, mixed and mediterranean forest, urban, grassland and cropland) in order to assess effects of land use, climate change and increase in CO2 on predicted habitat changes up to

  17. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established......, and woody species. The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody...

  18. Cytogenetic relationships within the Maghrebian clade of Festuca subgen. Schedonorus (Poaceae), using flow cytometry and FISH

    Czech Academy of Sciences Publication Activity Database

    Ezquerro-López, D.; Kopecký, David; Inda, L. A.

    2017-01-01

    Roč. 74, č. 1 (2017), č. článku e052. ISSN 0211-1322 Institutional support: RVO:61389030 Keywords : Broad-leaved fescues * Festuca subgen. Schedonorus * fish * Genome size * rdna Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 0.385, year: 2016

  19. Weed Dynamics and Management in Wheat

    DEFF Research Database (Denmark)

    Jabran, Khawar; Mahmood, Khalid; Melander, Bo

    2017-01-01

    ) chemical weed control; and (vi) integrated weed management strategy in wheat. A critical analysis of recent literature indicated that broadleaved weeds are the most common group of weeds in wheat fields followed by grass weeds, while sedges were rarely noted in wheat fields. Across the globe, the most...

  20. SELECTIVE FORAGING ON WOODY SPECIES BY THE BEAVER CASTOR FIBER, AND ITS IMPACT ON A RIPARIAN WILLOW FOREST

    NARCIS (Netherlands)

    NOLET, BA; HOEKSTRA, A; OTTENHEIM, MM

    1994-01-01

    Beavers were re-introduced in the Biesbosch, The Netherlands, a wood dominated by willows Salix spp. Conservationists expected that herbivory by beavers would enhance succession to a mixed broad-leaved forest. Willows formed the staple food of the beavers, but they removed only 1.4% of the standing

  1. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits.

    Science.gov (United States)

    Moreira, X; Pearse, I S

    2017-05-01

    Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  3. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres.

    Science.gov (United States)

    Inda, Luis A; Segarra-Moragues, José Gabriel; Müller, Jochen; Peterson, Paul M; Catalán, Pilar

    2008-03-01

    Divergence times and biogeographical analyses have been conducted within the Loliinae, one of the largest subtribes of temperate grasses. New sequence data from representatives of the almost unexplored New World, New Zealand, and Eastern Asian centres were added to those of the panMediterranean region and used to reconstruct the phylogeny of the group and to calculate the times of lineage-splitting using Bayesian approaches. The traditional separation between broad-leaved and fine-leaved Festuca species was still maintained, though several new broad-leaved lineages fell within the fine-leaved clade or were placed in an unsupported intermediate position. A strong biogeographical signal was detected for several Asian-American, American, Neozeylandic, and Macaronesian clades with different affinities to both the broad and the fine-leaved Festuca. Bayesian estimates of divergence and dispersal-vicariance analyses indicate that the broad-leaved and fine-leaved Loliinae likely originated in the Miocene (13My) in the panMediterranean-SW Asian region and then expanded towards C and E Asia from where they colonized the New World. Further expansions in America (10-3.8My) showed a predominant migratory route from North to South (N Americathe AndesPatagonia). This late Tertiary scenario of successive colonizations and secondary polyploid radiations in the southern hemisphere from the northern hemisphere was accompanied by occasional transcontinental long-distance dispersal events between South America and New Zealand. Multiple Pliocene dispersal events (3.6-2.5My) from the near SW European and NW African continents gave rise to the Macaronesian Loliinae flora, while a more recent Pleistocene origin (2-1My) is hypothesized for the high polyploid lineages that successfully colonized newly deglaciated areas in both hemispheres.

  4. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe.

    Science.gov (United States)

    Seibold, Sebastian; Brandl, Roland; Buse, Jörn; Hothorn, Torsten; Schmidl, Jürgen; Thorn, Simon; Müller, Jörg

    2015-04-01

    To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large-scale extinction processes must be identified. A promising approach is to link the red-list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional-odds linear mixed-effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red-list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad-leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad-leaved forests to dense conifer-dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad-leaved trees, and dead wood in sunny areas. © 2014 Society for Conservation Biology.

  5. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  6. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    Science.gov (United States)

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample

  7. Recente vondsten van breedbladige fonteinkruiden (Groenlandia en Potamogeton spec.) in de provincie Noord-Brabant

    NARCIS (Netherlands)

    Linden, van der J.; Poelmans, W.

    1993-01-01

    Since 1987 the distribution of many plant species in the central and eastern parts of the province Noord-Brabant has been mapped for country use planning by the Provincial Authorities. Distribution maps (with a 5 x 5 km² grid) of the Potamogeton (broad-leaved pondweed) species, which are important

  8. Problem of industrial fumes in the forested valleys of Savoy

    Energy Technology Data Exchange (ETDEWEB)

    Bossavy, J

    1962-01-01

    A study of injury to forest trees in the Maurienne valley, caused by F in the fumes from aluminum factories was made. Of the local conifers, Pinus sylvestris was the most susceptible, followed by Picea abies and Abies alba; Larch has so far proved resistant, as have broadleaved deciduous species.

  9. Dust collection capacity of plants growing in coal mining areas

    International Nuclear Information System (INIS)

    Maiti, S.K.

    1993-01-01

    Plant can act as living filter of dust pollution in coal mining areas, where the amount of suspended particulate matter and dust fall rate is very high. Therefore, plant species growing in coal mining areas are classified as evergreen or deciduous with simple and compound leaf basis. The dust arresting capacity of each leaf is measured and expressed in g/m 2 . The study indicated that evergreen plants with simple, pilose surface, like - Alstonia, Ficus cunea, F. benghalensis and Mangifera indica are good dust catcher than evergreen compound leaves of Cassia siamea, Acacia arabica and Leucaena leucocephala. Deciduous with simple leaves, such as Zizyphus mauritiana, F. religiosa, Psidium guyava are also good dust collectors. Suitable plant species also help in quick reclamation of mined out areas; one practical difficulty for establishment of trees as green belts or reclamation purpose, has been incidence of cattle grazing. This study suggested a systematic way of selecting plant species on the basis of their efficiency in dust control and resistance to cattle grazing. (author). 16 refs., 3 tabs

  10. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site

    Science.gov (United States)

    Qinkui Wang; Silong Wang; Jianwei Zhang

    2009-01-01

    Forest ecosystems play a significant role in sequestering carbon (C) in biomass and soils. Plantations established in subtropical China since the 1980s, mainly of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in monocultures, have proved to be major C sinks. However, information is lacking about whether mixing Chinese fir with broadleaved tree...

  11. Prospects for extirpating small populations of the wetland invader ...

    African Journals Online (AJOL)

    The broad-leaved paper bark tree Melaleuca quinquenervia is a major invader in the wetlands of the Florida Everglades, USA. In South Africa, this introduced species is known from eight locality records and is naturalising at two of these sites. The potential for its spread to other wetlands and estuaries is of concern.

  12. An improved technique for non-destructive measurement of the stem ...

    African Journals Online (AJOL)

    It was concluded that the standard volume model based on the non-destructive measurement technique meets the requirements for precision in forest surveys. The precision of the standard volume model for L. gmelinii (a coniferous tree) was superior to that of the model for P. tomentosa (a broad-leaved tree). The electronic ...

  13. Host range of the exotic brown marmorated stink bug, Halyomorpha halys, (Hemiptera: Pentatomidae), implications for future distribution

    Science.gov (United States)

    Gary Bernon; Karen M. Bernhard; Anne L. Nielsen; James F. Stimmel; E. Richard Hoebeke; Maureen E. Carter

    2007-01-01

    Halyomorpha halys, (Hemiptera: Pentatomidae), is a pest in eastern Asia on soybeans and woody plants, including broadleaved trees and fruit trees. A population was discovered in Allentown, PA in 2001. H. halys is also a nuisance pest as it overwinters in homes and other buildings. Based on earlier reports to the Lehigh County...

  14. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  15. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  16. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    Science.gov (United States)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    -use efficiency (AQE) was similar among P. strobiformis and P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8 = 13.83, P = 0.002). Across all three species, monsoon onset increased AQE (repeated-measures ANOVA; time, F1,8= 10.04, P = 0.01). Likewise, P. strobiformis and P. ponderosa shared a similar, greater light compensation point than P. menziesii (repeated-measures ANOVA; species, F2,8 = 5.89, P = 0.02). However, across species, monsoon onset did not influence light compensation points. These results support the hypothesis that the monsoon has species-specific effects on evergreen physiological performance and are broadly consistent with predictions of stress tolerance based on species' latitudinal and elevational range distributions. Moreover, with year-to-year rainfall variability predicted to increase under future climate scenarios, species-specific functional traits related to stress tolerance and photosynthesis may promote ecosystem functional resilience in Madrean sky island mixed conifer forests.

  17. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  18. Pre and post emergence use of herbicides in maize crop

    International Nuclear Information System (INIS)

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    This experiment was conducted at Maize and Millets Research institute, Yusafwala, Sahiwal, to find out the effective and economical weedicide to control weeds in maize crop during spring 200/ and 2002. Seven treatments including control (weedy Check) were studied in this trail. The results showed that Primextra (Metolachlor + Atrazine) 500 FW sprayed as pre-emergence at the rate 3.7/ liter per hectare, controlled broad-leaved weeds and grasses better as compared to other treatments in both the years. The control was 98.11% and 99.7% of broad-leaved weeds while in case of grasses it was 88.3% and 99.45% during spring 200/ and 2002, respectively Maximum grain weight per cob (143 and 186 g), 1000-grain weight (260.67 and 279 g) and grain yield (4471 and 6193 Kg ha-1) was obtained with the above treatment during spring 2001 and 2002, respectively and minimum in weedy check i.e grain weight per cob (102 and 141 g), 1000-grain weight (202.67 and 2/6.33 g) and grain yield (2769 and 4598, kg. ha/sup -I/) during spring 2001 and 2002, respectively. It was also observed from the study that all the weedicides performed better when used asp re-emergence while same used as post-emergence at 3-4 leave stage of weeds controlled only broadleaved weeds and showed poor performance against grasses. Thus keeping in view the above given result. It is concluded that Primextra (Metolacltlor + Atrazine) 500 FW at the rate 3.7 L/ha proved better weedicide for maize crop when used as pre-emergence giving effective control of broad leaved weeds and grasses in both the years along with maximum grain yield. (author)

  19. Consequences of forest energy for flora

    International Nuclear Information System (INIS)

    Kruuse, A.

    1992-01-01

    The report examines the effects of forest energy on the field layer vegetation, and includes whole-tree harvesting, liming, fertilization, wood ash distribution and the importance of broadleaved trees. Whole-tree harvesting is negative for some of the vascular plant species, and positive for others, and can have a drastically negative effect on lichens, mosses and decomposing fungi. Whole-tree harvesting can be accepted from the viewpoint of the flora if: - between 10 and 30 % of the slash is left on the clearcut area, - hardwood stands or mixed stands with hardwood are excepted from whole-tree harvesting, - dead lying or standing trees, a few broadleaved trees and old trees, are left on the clearcut area. Liming has some effects on the flora, especially a very negative effect on lichens and mosses. Liming can be accepted if; - it only takes place where whole-tree harvesting has been used or where acidification caused by air pollution has been observed, - the amounts are moderate, 2 to 4 tonnes/ha, and the liming material has a rather large grain size, - it is unevenly distributed, and - it is avoided in naturally acid stands with a special vegetation. Fertilization has negative effects on all the considered vegetation groups. It can only be accepted as compensation for whole-tree harvesting, and no more nitrogen must be added than is taken away in the harvest. In southern Sweden even the compensatory fertilization should be avoided. The consequences of wood ash distribution are little known. Until more facts are presented, only enough wood ash as to compensate for the loss through whole-tree harvesting should be distributed. If the use of forest energy would lead to an increase of the broadleaved tree ratio it would be positive. (54 refs.)

  20. Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forest of the southeastern United States.

    Science.gov (United States)

    Michael D. Ulyshen; J.L. Hanula

    2009-01-01

    Several recent studies have shown that many litter-dwelling arthropod and other invertebrate taxa (e.g., Isopoda, Chilopoda, Diplopoda, Araneae, Pseudo scorpionida, Coleoptera, and Gastropoda) are more numerous near dead wood than away from it in the broad-leaved forests of Europe (Jabin et al. 2004; Topp et al. 2006a, 2006b; Kappes et...

  1. Association between avian communities and vegetation structure in ...

    African Journals Online (AJOL)

    In general, the Acacia sites had lower tree cover and high grass cover, the broadleaved woodland sites had higher tree cover below 3.5m, and the riparian sites had the highest tree cover. Acacia savanna recorded the highest species richness of birds (128 species) with lower numbers recorded in riparian (101) and ...

  2. Tree seedling response to LED spectra: Implications for forest restoration

    Science.gov (United States)

    Antonio Montagnoli; R. Kasten Dumroese; Mattia Terzaghi; Jeremiah R. Pinto; Nicoletta Fulgaro; Gabriella Stefania Scippa; Donato Chiatante

    2018-01-01

    We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (≤40 days), more...

  3. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  4. Estimating carbon emissions from forest fires during 1980 to 1999 in ...

    African Journals Online (AJOL)

    white birch (Betula platyphylla Suk.), mixed broadleaved-conifer (L. gmelinii & B. platyphylla) and Mongolian oak (Quercus mongolica Fish.) forests were 437 947, 20 939, 142 527, 168 532 and 1 375 hm2 during 1980 to 1999 period, respectively. The fuel consumed based on these forests were 29.0 to 46.5, 16.7 to 26.5, ...

  5. Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forests of the southeastern United States

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula

    2009-01-01

    litter-dwelling arthropod and other invertebrate taxa (e.g., Isopoda, Chilopoda, Diplopoda, Araneae, Pseudoscorpionida, Coleoptera, and Gastropoda) are more numerous near dead wood than away from it in the broad-leaved forests of Europe(Jabin et al. 2004; Topp et al. 2006a, 2006b; Kappes et al. 2006; Kappes 2006; Jabin et al. 2007) and...

  6. Potamogeton schweinfurthii and similar broad-leaved species in Italy

    Czech Academy of Sciences Publication Activity Database

    Lastrucci, L.; Frignani, F.; Kaplan, Zdeněk

    2010-01-01

    Roč. 65, č. 1 (2010), s. 147-160 ISSN 0083-7792 R&D Projects: GA ČR GA206/09/0291 Institutional research plan: CEZ:AV0Z60050516 Keywords : Potamogeton * taxonomy * distribution Subject RIV: EF - Botanics

  7. Paleoenvironmental informa-tion recorded by pollen in B-3GC gravity core in Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on pollen records in B-3GC gravity core, environmental change since 9500 aBP of Okinawa Trough and its adjacent islands was derived. The result showed that the most time during this period was in a warm temperate climate except in middle Holocene (6800-4400 aBP) that was under subtropical climate control. During 9500-8300 aBP and 3100-2000 aBP periods, it appeared colder and drier than the rest time. The original area of pollen sources surrounding Okinawa Trough was covered by evergreen and deciduous broadleaf forest alternatively with mixed broad-leaf-conifer forest distributed in high mountainous areas. Usually, these three kinds of forests existed at the same time with difference in altitude. Pollen from subtropical and tropical plants increased obviously in about 5000-6000 aBP, reflecting a great lifting of vegetation zone and expansion of evergreen broad-leaf forest in the study area. However, there was a slight descending of plant zone and shrinking of evergreen broadleaf forest during 9500-8300 aBP and 3000-2000 aBP. During the remaining periods vegetation zone was higher than the present but in a limited range.

  8. Domestication, Conservation, and Livelihoods: A Case Study of Piper peepuloides Roxb.—An Important Nontimber Forest Product in South Meghalaya, Northeast India

    Directory of Open Access Journals (Sweden)

    H. Tynsong

    2013-01-01

    Full Text Available Wild pepper (Piper peepuloides Roxb., family: Piperaceae is an evergreen climber which grows wild in tropical evergreen forests and subtropical evergreen forests of northeast India. This plant grows luxuriantly in the areas with high rainfall at lower elevations ranging from 100 to 800 m above mean sea level. In Meghalaya, to meet the market demand, farmers have domesticated it in arecanut agroforests and betel leaf agroforests. We found that the mean density of wild pepper in arecanut agroforest is 585 stem/ha and only 85 stem/ha in natural forest. In India, wild pepper is used in a variety of Ayurvedic medicines. Local people of Meghalaya uses powdered dry seeds mixed with honey and egg yolk for the treatment of severe cough. The study reveals that the average gross annual production of wild pepper is 7 quintals/ha, and final market price fetches Rs. 336,000/ha, out of which 42% of the money goes to the grower, 16% to local trader, 23% to dealer, 17% to retailer, 1.2% to wages of labourers, and 0.6% to transport.

  9. Comparative seasonal variations of spectral signatures of broad-leaved and coniferous stands from Landsat data. Comparison with other perennial environments; Evolutions saisonnières comparées des signatures spectrales de feuillus et de conifères à partir de données Landsat : comparaison avec d'autres milieux pérennes

    Energy Technology Data Exchange (ETDEWEB)

    Chaume, R. [Office de la Recherche Scientifique et Technique Outre-Mer, Bondy (France); Combeau, A.

    1984-07-01

    Spectral signatures of two distinct forest test areas were identified from digital data including 15 LANDSAT scenes covering the same geographical area: a broad-leaved forest (oak and beech) and a coniferous forest (scotch pine). Seasonal variations of the signatures were examined and were expressed in terms of various data: date, solar height and phenological state of vegetation cover. Results were compared to these obtained from other perennial surface conditions (grassland, bare soils) . Range of the seasonal variations of radiance is noted, as well as evolutionary peculiarities on each band and between themes. Rationing of spectral bands (particularly MSS 5 and 7) and their variation with time are specified [French] A partir des données numériques de 15 scènes LANDSAT sur un même secteur géographique, l e s auteurs définissent les signatures spectrales de deux milieux forestiers distincts: une futaie de chênes-hêtres et une futaie de pins sylvestres, et ils étudient l a variation saisonnière de ces signatures. Ils tentent d'interpréter cette variabilité en fonction de la date de saisie des données, donc de l a hauteur du soleil et de l'état phénologique du couvert végétal. Ils comparent les résultats 5 ceux obtenus sur d'autres milieux pérennes (prairie, sols nus). L'amplitude des variations saisonnières des luminances est précisée, ainsi que les modalités particulières de l'évolution sur certains canaux ou entre les deux thèmes. Les auteurs étudient également les rapports de luminance inter-canaux (5 et 7 en particulier) et leur évolution dans le temps.

  10. The Microclimate of a Tropical Evergreen Forest.

    Science.gov (United States)

    1980-08-01

    of Human Bioclimate - A Review. World Meteorological Organization Bulletin, Geneva, 56 pp. REFERENCES (con’t) Lee, R., 1978. Forest Micrometeorology...Geophysics, and Bioclimatology , Ser. B 24, 243-251. Pinker, R. (1980): The Microclimate of a dry tropical forest. (Accepted for publication in

  11. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  12. Differential nitrogen cycling in semiarid sub-shrubs with contrasting leaf habit.

    Directory of Open Access Journals (Sweden)

    Sara Palacio

    Full Text Available Nitrogen (N is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental (15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.

  13. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  14. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  15. Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy)

    Science.gov (United States)

    Pini, R.; Ravazzi, C.; Donegana, M.

    2009-06-01

    The pollen record of the long succession of marine and continental deposits filling the subsident north-Adriatic foredeep basin (NE Italy) documents the history of vegetation, the landscape evolution and the climate forcing during the last 215 ka at the south-eastern Alpine foreland. The chronology relies on several 14C determinations as well as on estimated ages of pollen-stratigraphical and sea-level event tie-points derived from comparison with high-resolution marine records, speleothemes and ice cores. Mixed temperate rainforests persisted throughout MIS 7a-7c, being replaced by conifer forests after the local glacioeustatic regression during early MIS 6. The Alpine piedmont facing the Adriatic foredeeep was glaciated at the culmination of the penultimate glaciation, as directly testified by in situ fluvioglacial aggradation related to the building of a large morainic amphitheatre. The pollen record allows correlation with other European records and with the IRD from N-Atlantic and off Iberia, thus the duration of the penultimate glacial culmination at the southalpine fringe is estimated less than 13 ka between 148 ± 1 and >135 ka. The site was not reached by the Last Interglacial maximum sea transgression and enregistered a typical, though incomplete, Eemian forest record, lacking Mediterranean evergreen trees. A complex sequence of stadial-interstadial episodes is reconstructed during the Early and Middle Würm: major xerophyte peaks match IRD maxima occurred during Heinrich events in deep-sea cores offshore Iberia and in the N-Atlantic and allows to frame lumps of interstadial phases, marked by Picea peaks, each one including several DO warm events. Broad-leaved thermophilous forests disappeared from the north-eastern plain of Italy at the end of the Early Würm, whereas reduced populations of Abies and Fagus probably sheltered even during the Last Glacial Maximum. A renewed fluvioglacial in situ deposition between 30.4 ± 0.4 and 21.6 ± 0.5 ka cal BP sets

  16. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  17. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    Science.gov (United States)

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  18. Coppice Woods and Pollard Trees in the Visual Arts

    Directory of Open Access Journals (Sweden)

    Lacina Jan

    2016-11-01

    Full Text Available The sprouting capacity of some broadleaves has been used for their regeneration since ancient times. Often concurrently with taking advantage of sprouting stools, the trees used to be shaped also by pruning their stems, namely on pasturelands and in grazing forests. The activity of woodcutters and shepherds was obviously rather common in warmer climates with broadleaved stands because coppice and pollard trees appear relatively often in the visual arts from ancient works through the period if the Italian and German Renaissance up to the romantic and realistic landscape painting of the 19th century overlapping into the 20th century. For centuries, most frequently illustrated in European and Czech paintings have been pollard willows (Salix spp.. Other coppice and pollard tree species identified in paintings are oaks (Quercus spp., hornbeam (Carpinus betulus, European beech (Fagus sylvatica, European chestnut (Castanea sativa, and rarely other species, too. Artists apparently often used bizarrely shaped woods to increase the dramatic atmosphere of their landscape sceneries as well as figural compositions, and the coppice and pollard trees had certainly also a symbolic meaning in some of their works.

  19. Spatio-temporal variations of conservation hotspots based on ecosystem services in Xishuangbanna, Southwest China.

    Science.gov (United States)

    Liu, Shiliang; Yin, Yijie; Cheng, Fangyan; Hou, Xiaoyun; Dong, Shikui; Wu, Xue

    2017-01-01

    Integrating biodiversity and ecosystem services (BES) has been viewed as an appropriate approach to identifying conservation priorities. Taking Xishuangbanna tropical region in Southwest China, different BESs (habitat quality [used as a proxy for biodiversity], carbon storage, and water yield) were quantified using the InVEST model and conservation hotspots from 1976, 1990, and 2010 were identified by overlapping and ranking the service layers. Results showed that BESs areas were unevenly distributed. High habitat quality and carbon storage areas located in the eastern part of the region were mainly occupied by broad-leaved forest, while high water yield areas were covered by grassland and tropical forests. Recognized hotspots were primarily composed of the broad-leaved forest and shrub grassland. However, these habitat types declined by nearly 50% from 1.25×105 ha to 0.63×105 ha and became more fragmented during the study period. We also found that the sub-watersheds which decreased in BES had fewer hotspots distributed and suffered greater landscape fragmentation. Our study further explored the impacts of land-use conversion on BES, and illustrated the necessity and feasibility of BESs in identifying potential conservation areas.

  20. Impacts of Extreme Events on Phenology: Drought-Induced Changes in Productivity of Mixed Woody-Herbaceous Ecosystems

    Science.gov (United States)

    Rich, P. M.; Breshears, D. D.; White, A. B.

    2006-12-01

    Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "greenup" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody- herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional scale piñon pine mortality following an extended drought and the subsequent herbaceous greenup following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.

  1. Technical Analysis and Characterization of Southern Cayo, Belize for Tropical Testing and Evaluation of Foliage Penetration Remote Sensing Systems

    Science.gov (United States)

    2011-05-01

    Office, Chile and the U.S. Air Force Office of Scientific Research, Brazil . These organizations seek first rate scientific collaboration in science and...coastal areas, the terrain changes from mangrove swamp to tropical pine savannah and hardwood forest. The interlocking networks of rivers, creeks, and...broad-leaved forest; (2) lowland pine forest; (3) submontane pine forest; (4) submontane broadleaved forest; (5) mangrove and littoral forest; (6

  2. Birds' nesting parameters in four forest types in the Pantanal wetland

    Directory of Open Access Journals (Sweden)

    JB Pinho

    Full Text Available We tested the heterogeneity/productivity hypothesis with respect to the abundance and richness of birds and the vegetation density hypothesis with respect to birds' nest predation rates, and determined the relative importance of forested vegetation formations for the conservation of birds in the Pantanal. We estimated the apparent nesting success, and the abundance and richness of nesting birds' in four forest types, by monitoring nests during two reproductive seasons in four forested physiognomies (two high productivity/heterogeneity evergreen forests = Cambará and Landi; two low productivity/heterogeneity dry forests = Cordilheira and Carvoeiro in the Pantanal wetland in Poconé, State of Mato Grosso, Brazil. We found 381 nests of 46 species (35 Passeriformes and 11 non-Passeriformes in the four forest types. Of these, we monitored 220 active nests belonging to 44 species, 101 during the reproductive season of 2001 and 119 in 2002. We supported the productivity/heterogeneity hypothesis since the two evergreen forests had higher nest abundance and one of them (Cambará had higher nesting species richness than the dry forests. The number of nests found in each habitat differed with most nests monitored in the Cambará forest (82%, followed by Landi (9%, Cordilheira (6% and Carvoeiro (3% forests. The total number of nests monitored was significantly higher in evergreen forests than in dry forests. Also, more species nested in evergreen (37 species than in dry (16 species forests. A Correspondence Analysis revealed that only Carvoeiros had a different nesting bird community. The overall apparent nesting success of 220 nests was 26.8%. We did not support the vegetation density hypothesis since nest predation rates were similar between evergreen (73.5% and dry (70% forests, and were higher in the Landi (85% than in the other three forests (69.2 to 72.2%. Our data indicate that Cambará forests seem to be a key nesting habitat for many bird species

  3. Birds' nesting parameters in four forest types in the Pantanal wetland.

    Science.gov (United States)

    Pinho, J B; Marini, M A

    2014-11-01

    We tested the heterogeneity/productivity hypothesis with respect to the abundance and richness of birds and the vegetation density hypothesis with respect to birds' nest predation rates, and determined the relative importance of forested vegetation formations for the conservation of birds in the Pantanal. We estimated the apparent nesting success, and the abundance and richness of nesting birds' in four forest types, by monitoring nests during two reproductive seasons in four forested physiognomies (two high productivity/heterogeneity evergreen forests = Cambará and Landi; two low productivity/heterogeneity dry forests = Cordilheira and Carvoeiro) in the Pantanal wetland in Poconé, State of Mato Grosso, Brazil. We found 381 nests of 46 species (35 Passeriformes and 11 non-Passeriformes) in the four forest types. Of these, we monitored 220 active nests belonging to 44 species, 101 during the reproductive season of 2001 and 119 in 2002. We supported the productivity/heterogeneity hypothesis since the two evergreen forests had higher nest abundance and one of them (Cambará) had higher nesting species richness than the dry forests. The number of nests found in each habitat differed with most nests monitored in the Cambará forest (82%), followed by Landi (9%), Cordilheira (6%) and Carvoeiro (3%) forests. The total number of nests monitored was significantly higher in evergreen forests than in dry forests. Also, more species nested in evergreen (37 species) than in dry (16 species) forests. A Correspondence Analysis revealed that only Carvoeiros had a different nesting bird community. The overall apparent nesting success of 220 nests was 26.8%. We did not support the vegetation density hypothesis since nest predation rates were similar between evergreen (73.5%) and dry (70%) forests, and were higher in the Landi (85%) than in the other three forests (69.2 to 72.2%). Our data indicate that Cambará forests seem to be a key nesting habitat for many bird species of the

  4. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    Science.gov (United States)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta

  5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  6. Aboveground Net Primary Production of tree cover at the post-disturbance area in the Tatra National Park, Slovakia

    Directory of Open Access Journals (Sweden)

    Konôpka Bohdan

    2015-09-01

    Full Text Available Large-scale disturbances under the conditions of Slovakia, caused especially by storm and bark beetle, bring dramatic decline in carbon budget of the country, besides other negative consequences. The largest disturbance in modern history of the Slovak forestry was the storm damage that occurred in November 2004. The Tatra National Park (TNP was one of the most affected regions. Thus, in this territory, two transects (T1 – the Danielov dom site and T2 – near the Horný Smokovec village were established to survey basic dendrometric properties of trees in young stands established after the disaster. The standing stock of aboveground biomass in tree cover for the spring and autumn 2014 was calculated using the recorded variables, i.e. tree height and diameter measured at the stem base, together with the region-specific allometric relations. Then, the Aboveground Net Primary Production (ANPP in tree cover was estimated with respect to its components (stem, branches and foliage. ANPP was 315 g m−2 per year (Transect T1, and 391 g m−2 per year (Transect T2. The differences in the structure of ANPP, i.e. contribution of tree components, were found between transects T1 and T2. They were caused by the contrasting tree species composition, specifically the ratios between Norway spruce and broadleaved species. Broadleaves allocated more biomass production to foliage than spruce. This phenomenon together with higher turnover (once a year of foliage caused that broadleaves manifest higher share of fast-cycling carbon in comparison to the amount of carbon sequestrated in woody parts (stem and branches. High variability of ANPP was found within the transects, i.e. among the plots (microsites. As for the representative estimation of the standing stock of aboveground part of tree cover as well as ANPP at the post-disturbance area in the TNP territory, the survey should be performed on a net of research plots. Only this approach enables reliable estimates

  7. 26 CFR 1.263A-8 - Requirement to capitalize interest.

    Science.gov (United States)

    2010-04-01

    ...) Timber and evergreen trees that are more than 6 years old when severed from the roots, or (ii) Property..., fences, inherently permanent advertising displays, inherently permanent outdoor lighting facilities...

  8. EnviroAtlas - Acres of crops that have no nearby pollinator habitat for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset is a summary of crop acres without nearby pollinator habitat. Pollination habitat here is defined as trees (fruit, nut, deciduous, and evergreen). Crops...

  9. Gastrodia theana Aver. (Orchidaceae a Newly Recorded Species from the Central Taiwan

    Directory of Open Access Journals (Sweden)

    Szu-I Hsieh

    2012-12-01

    Full Text Available Gastrodia theana Aver. was first publicized in Vietnam (2005. Recently, the species was found in humus of broad-leaved forest at elevations about 1,000 m in the central Taiwan. A line-drawing, photographs and distribution map of this newly recorded species are provided to aid in identification. The distinguished characters of G. theana are the perianth tube is distinctly striate outside and the column short, hardly visible.

  10. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  11. Fiscal 1995 geothermal development promotion survey. Natural environment survey report; 1995 nendo chinetsu kaihatsu sokushin chosa. Shizen kankyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In Candidate C area for the geothermal development survey, the natural environment was surveyed and `the secondary landscape assessment` was summed up in which places proposed for drilling of large-size wells and for construction of power generation facilities are extracted and a simulation of the landscape is conducted. The area for survey is the Shiramizu-gawa region in the south of Lake Akan, Akan-cho, Akan-gun, Hokkaido. The field survey was carried out about three items of landscape, plants and animals during the June-November period, 1995. As to the flora, diverse florae including vegetation unique to alpine areas, wetlands, and fumarole surrounding areas were found in the region, which is covered with summer-green broad-leaved forests or mixed forests of coniferous and broad-leaved trees. As to the fauna, faunae inhabitant of the highly natural forests were found including black woodpeckers and mountain hawk eagles. As a result of studying the places proposed for geothermal development from the above-mentioned survey, two places were picked up in the west of the survey area, where geothermal development is comparatively less influential in the natural environment and landscape and there is a high locational adaptability. 19 refs., 56 figs., 49 tabs.

  12. [Relationship between simulated acid rain stress and leaf reflectance].

    Science.gov (United States)

    Song, Xiao-dong; Jiang, Hong; Yu, Shu-quan; Zhou, Guo-mo; Jiang, Zi-shan

    2010-01-01

    Acid rain is a worldwide environmental problem. Serious acid rain pollution in subtropical China has constituted a potential threat to the health of the local forest. In the present paper, the changing properties of the chlorophyll concentration and spectral reflectance at the visible wavelengths for the six subtropical broad-leaved tree species leaves under simulated acid rain (SAR) treatment with different pH levels were studied. With the increasing strength of the SAR, the chlorophyll concentrations of the experimental species under pH 2.5 and pH 4.0 treatment were higher than that under pH 5.6; the spectral reflectance at the visible wavelengths for pH 2.5 and pH 4.0 were lower than that for pH 5.6 in general; while there weren't significant differences between pH 2.5 and pH 4.0. After the treatment with different levels of SAR, the differences in spectral reflectance at the visible wavelengths mainly focused around the green peak and red edge on the reflectance curve. The subtropical broad-leaved tree species studied were relatively not sensitive to acid rain stresses; some stronger acid rain may accelerate the growth of the tree species used here to some extent.

  13. Public Preferences Across Europe for Different Forest Stand Types as Sites for Recreation

    Directory of Open Access Journals (Sweden)

    David M. Edwards

    2012-03-01

    Full Text Available A Delphi survey involving experts in forest preference research was carried out to derive scores for the recreational value of 240 forest stand types across Europe. The survey was organized around four regional panels: Great Britain, Nordic Region, Central Europe, and Iberia. In each region, 60 forest stand types were defined according to five forest management alternatives (FMAs on a continuum of management intensity, four phases of development (establishment, young, medium, and adult, and three tree species types (conifer, broadleaved, and mixed stands of conifer and broadleaved. The resulting scores were examined using conjoint analysis to determine the relative importance of the three structural attributes (FMA, phase of development, and tree species type, and each level or component of the attributes. The findings quantify the extent to which forest visitors prefer a degree of management to unmanaged forest nature reserves across the four regions. Phase of development was shown to make the highest contribution to the recreational value of forests while the contribution of tree species type was shown to be relatively unimportant. While the results are indicative, they provide evidence to support long-term retention and low-impact silviculture in forests where recreation is a primary objective of management.

  14. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  15. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  16. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v2; ref status: indexed, http://f1000r.es/2d9

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-11-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  17. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v1; ref status: indexed, http://f1000r.es/xt

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-05-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  18. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  19. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  20. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    Science.gov (United States)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest

  1. Drought Tip: Irrigating Citrus with Limited Water

    OpenAIRE

    Faber, Ben

    2015-01-01

    As an evergreen in California's Mediterranean climate, with wet winters and dry summers, citrus requires some water all year long. Depending on the cultivar and rootstock, citrus can sustain certain levels of drought stress.

  2. Establishing Mixtures of Redcedar In Poor Oak-Hickory Forests

    Science.gov (United States)

    Leon S. Minckler

    1966-01-01

    Oak-history forests on the poorest sites in the Upper Mississippi Valley have both low productivity and little esthetic appeal. A mixture of the native evergreen redcedar would add bearty and increase wildlife values.

  3. Juhid langevad puuduliku täideviimise tõttu

    Index Scriptorium Estoniae

    2004-01-01

    Nõustamisfirmade Franklin Covey ja McKinsey & Co poolt aastatel 1986-1996 läbiviidud uuringu "Evergreen Project" käigus tehti kindlaks, millistel protsessidel ja juhtimisvahenditel on põhjuslik mõju ettevõtete edukusele

  4. Potchefstroom Electronic Law Journal/Potchefstroomse Elektroniese ...

    African Journals Online (AJOL)

    WTO) Trade Related Aspects of Intellectual Property Rights (TRIPS) flexibilities around the requirements for patentability can be effectively used to curb incremental patenting and limit the proliferation of evergreen patents. This is achieved ...

  5. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    OpenAIRE

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of ...

  6. A Comprehensive Study of the Tocks Island Lake Project and Alternatives. Part E. Land Use and Secondary Effects of Tocks Island Lake Project.

    Science.gov (United States)

    1975-06-01

    waterleaf family Hydrophyllum canadense Broad-leaved water leaf Labiatae - Mint family Monarda didyma. Oswego tea, bee balm -- stream banks in Reservoir...ID (8) 0 0. Betel (70 (72) (7W)4j 0 ~ 0)0 Ur 0 0 84 0 Lower 4 X X X - -~i tD 00zareth (62/H) U0) 63 U Ln X " - -j ID/.US- 0. vv4r V) 1 -0 0.- &a &I

  7. Download this PDF file

    African Journals Online (AJOL)

    IKYAAGBA E

    inventory approach which only tree species are ... Figure 1. Map of Cross River National Park Showing the Study Locations ..... evergreen rain forest with some semi-deciduous species (Tchouto et .... sourth- eastern Nigeria. ... Washington D.C..

  8. Genetic diversity of Santalum album using random amplified ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Santalum album is a parasitic, evergreen tree growing primarily in south Central India, in the dry .... (Adetula, 2006); Brassica (Divaret et al., 1999); lettuce ... associated with pollination in Santalum album Linn, In; Advances.

  9. Simulation of water and carbon fluxes in a broad-leaved Korean pine forest in Changbai Mountains based on Biome-BGC model and Ensemble Kalman Filter method%基于Biome-BGC模型和集合卡尔曼滤波方法的阔叶红松林生态系统水碳通量模拟

    Institute of Scientific and Technical Information of China (English)

    郑磊; 宋世凯; 袁秀亮; 董嘉琪; 李龙辉

    2017-01-01

    数据同化为模型与遥感观测结合提供了一条有效的途径,通过在模型运行过程中融入遥感观测数据,调整模型运行轨迹从而降低模型误差,提高模拟精度.本文利用集合卡尔曼滤波(EnKF)算法同化生长季中分辨率成像光谱仪(MODIS)叶面积指数(LAI)与Biome-BGC模型模拟的LAI模拟长白山阔叶红松林的水碳通量.同时,通过改进模拟的雪面升华与土壤温度计算方法的参数,旨在降低冬季生态呼吸的模拟误差.结果表明,相对于原始模型,数据同化与模型改进后使得生态系统总初级生产力(GPP)的模拟值与观测值之间的相关系数提高0.06,中心化均方根误差(RMSE)降低0.48 g C·m-2·d-1;生态系统呼吸(RE)的相关系数提高0.02,中心化均方根误差降低0.20 g C·m-2·d-1;净生态系统碳交换量(NEE)相关系数提高0.35,中心化均方根误差降低0.50gC·m-2·d-1.同时,数据同化对蒸散发(ET)的模拟精度没有显著影响,改进的模型提高了其相关系数.基于EnKF算法的数据同化提高了长白山阔叶红松林碳通量模拟精度,对于精确估算区域碳通量有着重要的意义.%Data assimilation provides an effective way to integrate the model simulation and remote sensing observation,through the integration of remote sensing data in the run of the model,adjusting the model trajectory to reduce model error and improve simulation accuracy.This paper uses the ensemble Kalman filter (EnKF) assimilated MODIS LAI into the Biome-BGC model in growing season to simulate the water and carbon fluxes in a broad-leaved Korean pine forest in Changbai Mountains.At the same time,the simulated snow sublimation and the parameters of the calculation method of soil temperature are improved,which can effectively reduce the error of the ecological respiration in winter.The result shows that as compared with the original model simulated without data assimilation,the improved Biome-BGC model with the

  10. 75 FR 33801 - Sunshine Act Meeting Notice

    Science.gov (United States)

    2010-06-15

    ...-000 System Personnel Training Reliability Standards. E-11 OMITTED. E-12 ER10-1117-000 Evergreen Wind... Administrative Matters. A-2 AD02-7-000 Customer Matters, Reliability, Security and Market Operations. A-3 AD09-10...

  11. Land use change detection in Solan Forest Division, Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shipra Shah

    2015-09-01

    Full Text Available Background Monitoring the changing pattern of vegetation across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment. Land use pattern in the state of Himachal Pradesh in the Indian Western Himalayas has been undergoing rapid modifications due to changing cropping patterns, rising anthropogenic pressure on forests and government policies. We studied land use change in Solan Forest Division of Himachal Pradesh to assess species wise area changes in the forests of the region. Methods The supervised classification (Maximum likelihood on two dates of IRS (LISS III satellite data was performed to assess land use change over the period 1998–2010. Results Seven land use categories were identified namely, chir pine (Pinus roxburghii forest, broadleaved forest, bamboo (Dendrocalamus strictus forest, ban oak (Quercus leucotrichophora forest, khair (Acacia catechu forest, culturable blank and cultivation. The area under chir pine, cultivation and khair forests increased by 191 ha (4.55 %, 129 ha (13.81 % and 77 ha (23.40 %, whereas the area under ban oak, broadleaved, culturable blank and bamboo decreased by 181 ha (16.58 %, 152 ha (6.30 %, 71 ha (2.72 % and 7 ha (0.47 %, respectively. Conclusions The study revealed a decrease in the area under forest and culturable blank categories and a simultaneous increase in the area under cultivation primarily due to the large scale introduction of horticultural cash crops in the state. The composition of forests also exhibited some major changes, with an increase in the area of commercially important monoculture plantation species such as pine and khair, and a decline in the area of oak, broadleaved and bamboo which are facing a high anthropogenic pressure in meeting the livelihood demands of forest dependent communities. In time deforestation, forest degradation and ecological imbalances due to the changing forest species

  12. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    Science.gov (United States)

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  13. Development of multi-functional streetscape green infrastructure using a performance index approach

    International Nuclear Information System (INIS)

    Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C.

    2016-01-01

    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. - Highlights: • A performance evaluation framework for streetscape vegetation is presented. • Seven traits, relevant to street vegetation, are included in a performance index (PI). • The PI approach is applied to quantify and rank fifteen street vegetation species. • Medium size trees and evergreen shrubs are found more favourable for streetscapes. • The PI offers a metric for developing sustainable streetscape green infrastructure. - A performance index is developed and applied to fifteen vegetation species indicating greater preference to medium size trees and evergreen shrubs for streetscaping.

  14. Pop / Margus Kiis

    Index Scriptorium Estoniae

    Kiis, Margus

    2007-01-01

    Uutest heliplaatidest Krää "Läti lugu", Talk Talk "Natural History", Dikta "Haunting For Happiness", Processory", The Used "Berth", Seventeen Evergreen "Life Embarrasses Me on Planet Earth", Jesu "Conqueror", Electrelane "No Shouts, No Calls", "The Sleeping Moustache"

  15. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  16. Manufacture of furfural from logging wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kul' kevits, Y.A.; Pugulis, M.O.; Daugavietis, M.O.; Zavylavov, V.A.; Butsena, A.Y.

    1980-01-01

    A pilot plant has been built at the Kalsnava forest experiment station in Latvia to convert chips of low-value broadleaves (birch, aspen, alder etc.), especially from branchwood into furfural (obtainable from bark as well as from wood). The process (patented) and flow line are described. Furfural is obtained in 6.8-7.6% yield on total DM by low-temperature pyrolysis 210-220 degrees Centigrade. A prototype factory of 1000 tons raw furfural capacity is proposed.

  17. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  18. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Kongstad, J.; Schmidt, I. K.

    2012-01-01

    of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and d13C along with vegetation cover and biomass...... in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture. Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub....... In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil...

  19. Oleaceae

    NARCIS (Netherlands)

    Stoffers, A.L.

    1982-01-01

    Evergreen or deciduous trees or shrubs or sometimes woody vines. Leaves opposite, verticillate or very rarely alternate, simple or pinnately compound. Stipules wanting. Inflorescence consisting of mostly terminal dichasial panicles or cymes. Bracts and braoteoles present. Flowers hermaphrodite or

  20. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species

    CSIR Research Space (South Africa)

    Scogings, PF

    2015-03-01

    Full Text Available concentrations are highest in the dry season. We measured nitrogen, phosphorus, total polyphenols and condensed tannins in six woody species (including one evergreen) seasonally at the Nkuhlu exclosure, Kruger National Park, South Africa, for three consecutive...

  1. Multiple recruitment limitation causes arrested succession in mediterranean cork oak systems

    NARCIS (Netherlands)

    Acacio, Vanda; Holmgren, Milena; Jansen, Patrick A.; Schrotter, Ondrej

    2007-01-01

    Lack of tree regeneration and persistency of species-poor shrublands represent a growing problem across Mediterranean evergreen oak forests. What constrains forest regeneration is poorly understood, and restoration attempts have been largely unsuccessful. We assessed the contribution of four

  2. Fulltext PDF

    Indian Academy of Sciences (India)

    branched evergreen shrub or small tree (6–7 m) with soft whitish-yellow wood. Branches are numerous and drooping. The leaves are elliptic-lanceolate and somewhat fleshy. Flowers are in loose axillary and terminal much-branched inflorescence, ...

  3. Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT Floristic and phytosociological aspects of a Seasonal Evergreen Forest area in the Trairão Farm, rio das Pacas Basin, Querência-MT

    Directory of Open Access Journals (Sweden)

    Sustanis Horn Kunz

    2008-01-01

    Full Text Available A borda sul da região amazônica apresenta um tipo peculiar de floresta, denominada de Floresta Estacional Perenifólia, que atualmente vem sofrendo severos impactos ambientais devido à expansão da fronteira agrícola no Norte do Estado de Mato Grosso. Diante da falta de estudos neste tipo florestal, objetivou-se identificar a composição florística e a estrutura fitossociológica do componente arbóreo de um trecho florestal na Fazenda Trairão em Querência-MT. A amostragem da vegetação consistiu na distribuição de 200 pontos-quadrantes, sendo considerados os quatro indivíduos mais próximos de cada ponto que tivessem DAP (diâmetro à altura do peito igual ou superior a 10 cm. A densidade total foi de 728 ind./ha, distribuídos em 49 espécies, 39 gêneros e 24 famílias. A família que apresentou maior riqueza foi Fabaceae (cinco espécies, seguida por Burseraceae e Euphorbiaceae, cada uma com quatro espécies, consideradas também as mais ricas em trechos de Floresta Amazônica. As espécies de maior Valor de Importância (VI foram Ocotea leucoxylon (Sw. Laness., Xylopia amazonica R.E. Fr., Myrcia multiflora (Lam. DC., Chaetocarpus echinocarpus (Baill. Ducke e Protium pilosissimum Engl., mas não tiveram a mesma representatividade em outros trechos de Floresta Estacional Perenifólia, evidenciando diferenças estruturais desta unidade fitogeográfica. A comunidade avaliada possui porte fino, pois a maioria dos indivíduos concentra-se nas classes de diâmetro entre 10 e 14,9 cm e altura entre 10,6 e 16,5 m. O índice de Shannon (3,17 é considerado baixo por se tratar de floresta amazônica, na qual a diversidade é superior a 4,0.The southern border of the Amazon region presents a peculiar type of forest called Seasonal Evergreen Forest, which has currently undergone several environmental impacts due to the agriculture frontier expansion from the Northern state of Mato Grosso. Due to the lack of studies on this type of forest

  4. Vegetation response following Phytophthora ramorum eradication treatments in southwest Oregon forests

    Science.gov (United States)

    Ellen Michaels Goheen; Everett Hansen; Alan Kanaskie; Wendy Sutton; Paul Reeser

    2008-01-01

    Sudden oak death, caused by Phytophthora ramorum, was identified in late July 2001 in forest stands in Curry County on the southwest Oregon coast where it was killing tanoak (Lithocarpus densiflorus) and infecting Pacific rhododendron (Rhododendron macrophyllum) and evergreen huckleberry (Vaccinium...

  5. Biodiversity of the flora of Mount Papa

    International Nuclear Information System (INIS)

    Yin-Yin-Kyi

    1995-07-01

    Even though Mount Papa is in the dry zone area, it is almost evergreen, due to its elevation of 4981 feet above the sea level and its fertile soil conditions. A has a rich biodiversity with vegetation of many types

  6. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    Science.gov (United States)

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  7. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  8. High resolution taxonomic study of the late Eocene (~34 Ma) Florissant palynoflora, Colorado, USA

    Science.gov (United States)

    Bouchal, J. M.

    2012-04-01

    The Florissant Fossil Beds National Monument is located in Teller County in central Colorado, at approximate latitude 38°54'N and longitude 105°13'. The lithologies of the Florissant Formation consist of coarse-grained arkosic and volcanoclastic sandstones and conglomerates, finer shale, and tuffaceus mudstone and siltstone. It is divided into six units, mostly of lacustrine and fluvial origin with volcanic sediments interfingering and topping the strata. Volcanic units have been dated using the 40Ar/39Ar single-crystal method, giving an absolute age of ca. 34 Ma for the upper fossiliferous sedimentary unit. This pinpoints the formation of the Florissant sediments at the end of the Eocene, providing fruitful insight into the changing palaeoecosystem of the region at the dawn of the Oligocene. The formation is very well known for its rich fossil insect fauna and well preserved plant macrofossils found in the shale units, and the silicified tree stumps occurring in the lower mudstone unit. The sample used for this study originates from the upper shale unit, the fifth unit from the base of the formation. Previous studies on the plant macrofossils, mesofossils and the palynoflora have shown that during the late Eocene the surroundings of Florissant palaeo-lake were covered by diverse mixed broad-leaved evergreen/deciduous and needle-leafed forests. Until now pollen from the Florissant Formation has mostly been described according to conventional morphological nomenclature, using light microscopy (LM) only. In this study the same individual pollen grains are investigated using both LM and scanning electron microscopy (SEM), by means of single grain technique. This provides best exploitable results concerning a more detailed resolution regarding taxonomy and more accurate identifications. The main goal of this study is to compile a well resolved taxonomic species list based on the palynoflora, to clarify the generic and species diversity of selected families (e

  9. Automated Burned Area Delineation Using IRS AWiFS satellite data

    Science.gov (United States)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi

  10. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  11. Low host-tree preferences among saproxylic beetles : acomparison of four deciduous species

    OpenAIRE

    Milberg, Per; Bergman, Karl-Olof; Johansson, Helena; Jansson, Nicklas

    2014-01-01

    Many wood-dwelling beetles rely on old hollow trees. In Europe, oaks are known to harbour a species-rich saproxylic beetle fauna, while less is known regarding other broad-leaved tree species. Furthermore, the extent to which saproxylic insect species have specialised on different tree species remains unknown. In this study, we sampled beetles through pitfall traps and window traps in four different tree species in a landscape with many old oaks. We recorded 242 saproxylic beetle species of w...

  12. Fulltext PDF

    Indian Academy of Sciences (India)

    Admin

    sized evergreen tree native to the Mollucas. Bark is brownish-red in colour; leaves are phyllodic (expanded petioles or stalk that serve as leaf) broad, smooth and elliptic with longitudinal nerves. Flowers are in spikes, clustered along the axils of the ...

  13. Fulltext PDF

    Indian Academy of Sciences (India)

    Srimath

    236 The Central Dogma of Molecular Biology. A Retrospective after Fifty Years. Michel Morange. 248 Chemistry is Evergreen... 2008 Nobel Prize in Chemistry. Swagata Dasgupta. 248. 226. Page 2. 215. RESONANCE | March 2009. DEPARTMENTS. Editorial. Biman Nath. Hubble Space Telescope, launched in 1991.

  14. the ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    COMPOUNDS IN PLANTS OF THE GENUS - ANTHOCLIESTA FOUND. IN PARTS OF .... East Atlantic Ocean. .... formation of red precipitate indicate, the presence of alkaloid. ..... and fruit of plant species under varied geographical location ... perennial evergreen and deciduous species, biennial .... Washington DC. Ogata ...

  15. First report of boxwood blight caused by Calonectria pseudonaviculata in Delaware, Maryland, New Jersey and New York

    Science.gov (United States)

    Boxwood (Buxus spp.) are commercially important evergreen ornamental plants with an annual market value of over $103 million in the United States. The recent U.S. incursion of boxwood blight disease caused by the fungus Calonectria pseudonaviculata (syn. Cylindrocladium pseudonaviculatum, Cy. buxico...

  16. Flavour Profiling of 'Marion' and Thornless Blackberries by Instrumental and Sensory Analysis

    Science.gov (United States)

    The flavour of thornless blackberries grown in Pacific Northwest including 'Thornless Evergreen', 'Black Diamond', 'Black Pearl', 'Nightfall', ORUS 1843-3, 'Waldo', NZ 9351-4, and 'Chester Thornless' as well as 'Marion' was profiled by sensory evaluation and instrumental analysis. Sensory results sh...

  17. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  18. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    International Nuclear Information System (INIS)

    Calder, W.J.; Lifferth, G.; Clair, S.B.S.; Moritz, M.A.

    2010-01-01

    Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly un investigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  19. Optimization of exposure and countryside waste management for different accidental radioactive release

    Directory of Open Access Journals (Sweden)

    Guétat Philippe

    2017-01-01

    Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5 to 10% during the same period of time.

  20. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    Directory of Open Access Journals (Sweden)

    W. John Calder

    2010-01-01

    Full Text Available Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly uninvestigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  1. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  2. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  3. Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances

    International Nuclear Information System (INIS)

    Pinho, P.; Llop, E.; Ribeiro, M.C.; Cruz, C.; Soares, A.; Pereira, M.J.; Branquinho, C.

    2014-01-01

    Critical levels (CLEs) of atmospheric ammonia based on biodiversity changes have been mostly calculated using small-scale single-source approaches, to avoid interference by other factors, which also influence biodiversity. Thus, it is questionable whether these CLEs are valid at larger spatial scales, in a multi- disturbances context. To test so, we sampled lichen diversity and ammonia at 80 sites across a region with a complex land-cover including industrial and urban areas. At a regional scale, confounding factors such as industrial pollutants prevailed, masking the CLEs. We propose and use a new tool to calculate CLEs by stratifying ammonia concentrations into classes, and focusing on the highest diversity values. Based on the significant correlations between ammonia and biodiversity, we found the CLE of ammonia for Mediterranean evergreen woodlands to be 0.69 μg m −3 , below the previously accepted value of 1.9 μg m −3 , and below the currently accepted pan-European CLE of 1.0 μg m −3 . - Highlights: • Biodiversity responds to multiple disturbances. • This prevents calculation regional critical levels of atmospheric ammonia. • We propose a tool to overcome that, based on the maximum biodiversity observed. • Critical level for Mediterranean evergreen woodlands was revised down to 0.69 μg m −3 . - Critical levels of atmospheric ammonia have not been calculated at a regional scale. Using a new method, we revised down the current Mediterranean evergreen woodlands critical level to 0.69 μg m −3

  4. Rapid forest clearing in a Myanmar proposed national park threatens two newly discovered species of geckos (Gekkonidae: Cyrtodactylus.

    Directory of Open Access Journals (Sweden)

    Grant M Connette

    Full Text Available Myanmar's recent transition from military rule towards a more democratic government has largely ended decades of political and economic isolation. Although Myanmar remains heavily forested, increased development in recent years has been accompanied by exceptionally high rates of forest loss. In this study, we document the rapid progression of deforestation in and around the proposed Lenya National Park, which includes some of the largest remaining areas of lowland evergreen rainforest in mainland Southeast Asia. The globally unique forests in this area are rich in biodiversity and remain a critical stronghold for many threatened and endangered species, including large charismatic fauna such as tiger and Asian elephant. We also conducted a rapid assessment survey of the herpetofauna of the proposed national park, which resulted in the discovery of two new species of bent-toed geckos, genus Cyrtodactylus. We describe these new species, C. lenya sp. nov. and C. payarhtanensis sp. nov., which were found in association with karst (i.e., limestone rock formations within mature lowland wet evergreen forest. The two species were discovered less than 35 km apart and are each known from only a single locality. Because of the isolated nature of the karst formations in the proposed Lenya National Park, these geckos likely have geographical ranges restricted to the proposed protected area and are threatened by approaching deforestation. Although lowland evergreen rainforest has vanished from most of continental Southeast Asia, Myanmar can still take decisive action to preserve one of the most biodiverse places on Earth.

  5. Rapid forest clearing in a Myanmar proposed national park threatens two newly discovered species of geckos (Gekkonidae: Cyrtodactylus).

    Science.gov (United States)

    Connette, Grant M; Oswald, Patrick; Thura, Myint Kyaw; LaJeunesse Connette, Katherine J; Grindley, Mark E; Songer, Melissa; Zug, George R; Mulcahy, Daniel G

    2017-01-01

    Myanmar's recent transition from military rule towards a more democratic government has largely ended decades of political and economic isolation. Although Myanmar remains heavily forested, increased development in recent years has been accompanied by exceptionally high rates of forest loss. In this study, we document the rapid progression of deforestation in and around the proposed Lenya National Park, which includes some of the largest remaining areas of lowland evergreen rainforest in mainland Southeast Asia. The globally unique forests in this area are rich in biodiversity and remain a critical stronghold for many threatened and endangered species, including large charismatic fauna such as tiger and Asian elephant. We also conducted a rapid assessment survey of the herpetofauna of the proposed national park, which resulted in the discovery of two new species of bent-toed geckos, genus Cyrtodactylus. We describe these new species, C. lenya sp. nov. and C. payarhtanensis sp. nov., which were found in association with karst (i.e., limestone) rock formations within mature lowland wet evergreen forest. The two species were discovered less than 35 km apart and are each known from only a single locality. Because of the isolated nature of the karst formations in the proposed Lenya National Park, these geckos likely have geographical ranges restricted to the proposed protected area and are threatened by approaching deforestation. Although lowland evergreen rainforest has vanished from most of continental Southeast Asia, Myanmar can still take decisive action to preserve one of the most biodiverse places on Earth.

  6. Mangroves and sediment dynamics along the coasts of southern Thailand

    NARCIS (Netherlands)

    Thampanya, U.

    2006-01-01

    Mangroves are a specific type of evergreen forest that is found along the coastlines of tropical and subtropical regions, particularly along deltas and bays where rivers discharge freshwater and sediment to the sea. These mangroves provide important ecological and socio-economic functions to coastal

  7. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees

    Science.gov (United States)

    David Y. Hollinger

    1986-01-01

    Nitrogen and phosphorus flow in litterfall and throughfall were studied in two California Quercus species (the evergreen Q.agrifolia and deciduous Q. lobata) before, during, and after an outbreak of the California oak moth, Phryganidia californica. All of the foliage of both oak species was...

  8. Dipterocarpaceae

    NARCIS (Netherlands)

    Ashton, P.S.; Arboretum, Arnold

    1979-01-01

    Small or large resinous usually evergreen trees, usually buttressed, and often (if large trees) with flaky or fissured bark. Some or most parts with a tomentum of fascicled hairs, or sometimes single hairs, unicellular or multicellular glandular hairs, or multicellular, short or long lobed or

  9. Rooting Response of Azalea Cultivars Using Hot Water Treatments to Control Pathogens

    Science.gov (United States)

    Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. The binucleate Rhizoctonia species, which cause the disease, are spread on new shoot growth harvested for propagation. Rhizoctonia can be eli...

  10. 76 FR 53409 - Wooden Bedroom Furniture From the People's Republic of China: Corrected Notice of Court Decision...

    Science.gov (United States)

    2011-08-26

    ... International Ltd. (``Evergreen'') and Jayaraja Furniture (``Jayayraja'') from the surrogate financial ratio..., Nizamuddin and Swaran) to derive the financial ratios pursuant to the lower Court's order in Dorbest II.\\14... Department also recalculated the surrogate financial ratios applied to Dorbest, and re-included the financial...

  11. Saraca asoca (Roxb.) de Wilde Syn. Saraca indica L. (English ...

    Indian Academy of Sciences (India)

    Saraca asoca (Roxb.) de Wilde Syn. Saraca indica L. (English: Ashoka; Hindi: Asok) ofCaesalpilliaceae is a medium sized extremely ornamental evergreen tree with numerous spreading and drooping branches, compound leaves and orange-yellow flowers in clusters. Fruits are black, leathery pods with compressed seeds.

  12. Pathways for resilience in Mediterranean cork oak land use systems

    NARCIS (Netherlands)

    Acácio, V.C.; Holmgren, M.

    2014-01-01

    Context Loss of woodlands and degradation of vegetation and soil have been described for all Mediterranean-type ecosystems worldwide. In the Western Iberian Peninsula, overexploitation of evergreen cork oak land use systems has led to soil erosion, failures in oak recruitment, and loss of forests.

  13. Antifreeze proteins enable plants to survive in freezing conditions

    Indian Academy of Sciences (India)

    1. Acaenamagellanica. Prickly burr. Doucet et al. 2000. 2. Acer saccharoides. Maple. Doucet et al. 2000. 3. Agrostistenuis. Creeping bentgrass. Doucet et al. 2000. 4. Alliarapetiolata. Garlic mustard. Urrutia et al. 1992. 5. Ammopiptanthusmongolicus. Evergreen legume. Wang et al. 2003. 6. Aster cordifolius. Wood aster.

  14. Annotated bibliography of South African indigenous evergreen forest ecology

    CSIR Research Space (South Africa)

    Geldenhuys, CJ

    1985-01-01

    Full Text Available Annotated references to 519 publications are presented, together with keyword listings and keyword, regional, place name and taxonomic indices. This bibliography forms part of the first phase of the activities of the Forest Biome Task Group....

  15. From green to evergreen: Updating the food revolution | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-26

    Jan 26, 2011 ... Hunger can be eradicated “in my lifetime,” says the man known as ... want to be successful in the field you must understand the problems of ... which links ecological security with small business enterprise at the village level:.

  16. Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic O3 exposure

    Science.gov (United States)

    The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...

  17. Diversity patterns in the flora of the Campo-Ma'an rain forest, Cameroon: do tree species tell it all?

    NARCIS (Netherlands)

    Tchouto, M.G.P.; Boer, de W.F.; Wilde, de J.J.F.E.; Maesen, van der L.J.G.

    2006-01-01

    This study describes diversity patterns in the flora of the Campo-Ma¿an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with

  18. 77 FR 58578 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same...

    Science.gov (United States)

    2012-09-21

    ... Electronics, LLC, 2220 Colorado Ave., Santa Monica, CA 90404 Monster Cable Products, Inc., 455 Valley Dr... Electronics, Inc., 14881 Evergreen Ave., Clearwater, FL 33762 TELEX Communications, Inc., 12000 Portland Ave... Technology, Inc., 5835 Shugart Lane, Traverse City, MI 49684 Nexteer Automotive Corp., 3900 East Holland Rd...

  19. Identifying and Selecting Plants for the Landscape. Volume 23, Number 5.

    Science.gov (United States)

    Rodekohr, Sherie; Harris, Clark Richard

    This handbook on identifying and selecting landscape plants can be used as a reference in landscaping courses or on an individual basis. The first of two sections, Identifying Plants for the Landscape, contains the following tables: shade tree identification; flowering tree identification; evergreen tree identification; flowering shrub…

  20. Jacobsen tuli külla

    Index Scriptorium Estoniae

    2003-01-01

    Arhitekti ja disaineri Arne Jacobseni 100. sünniaastapäeva tähistav näitus "Evergreens & Nevergreens" Rotermanni soolalaos. A. Jacobseni kuulsamaid hooneid on Kopenhaageni SAS Royal Hotel, millele ta tegi ka sisekujunduse ning kujundas esemed mööblist söögiriistadeni

  1. Big-leaf mahogany (Swietenia macrophylla) seedling survival and growth across a topographic gradient in southeast Pará, Brazil

    Science.gov (United States)

    James Grogana; Mark S. Ashtona; Galv& atilde; Jurandir oc

    2003-01-01

    Adult populations of big-leaf mahogany (Swietenia macrophylla) occur in aggregations along seasonal streams in transitional evergreen forests of southeast Pará, Brazil. To test whether variable seedling survival and growth across topography may underlie this observed distribution pattern, we planted nursery-grown seedlings in the...

  2. Evaluation of the Holocene environmental changes of the southwest ...

    Indian Academy of Sciences (India)

    the palaeo-environmental conditions of western coast of India during this epoch through the analysis of ... India had experienced high intensity rainfall during the earlier part of the Atlantic chronozone due to ..... of evergreen forest elements in pollen spectra also .... Quaternary peat deposits from Vembanad Lake (lagoon),.

  3. Lycopodium: Careful Harvest Fact Sheet

    Science.gov (United States)

    Elizabeth Nauertz

    2003-01-01

    Lycopodium comes from the Greek words "luko" (wolf) and "podos" (foot); thus the common name of "wolf's paw" or "Wolf's foot." Despite the common names of clubmoss, Lycopodium species are not related to mosses, but rather to ferns. They are evergreen, perennial, clonal, and rhizomatous in nature.

  4. Regionalización biogeográfica de la mastofauna de los bosques tropicales perennifolios de Mesoamérica Biogeographic regionalization of the mammals of tropical evergreen forests in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Héctor C. Olguín-Monroy

    2013-06-01

    Full Text Available Este trabajo presenta una propuesta de regionalización biogeográfica de los bosques tropicales perennifolios de Mesoamérica, resultado de un análisis de parsimonia de endemismos (PAE, utilizando modelos de nicho ecológico (GARP con mamíferos terrestres, usando 41 527 registros para las 233 especies de mamíferos reconocidas. La regionalización propuesta muestra que los bosques tropicales perennifolios de Mesoamérica se dividen por el istmo de Tehuantepec en Oaxaca en: a un grupo septentrional que comprende la Sierra Madre de Chiapas-Guatemala y la Península de Yucatán, y b un grupo austral, que contiene la vertiente pacífica hacia el sur incluyendo Centroamérica. Además se encontró congruencia con trabajos filogenéticos, lo que sugiere una historia biogeográfica común.Mesoamerica is a biologically complex zone that expands from Southern Mexico to extreme Northern Colombia. The biogeographical patterns and relationships of the mammalian fauna associated to the Mesoamerican Tropical Evergreen Forest (MTEF are poorly understood, in spite of the wide distribution of this kind of habitat in the region. We compiled a complete georeferenced database of mammalian species distributed in the MTEF of specimens from museum collections and scientific literature. This database was used to create potential distribution maps through the use of environmental niche models (ENMs by using the Genetic Algorithm for Rule-Set Production (GARP using 22 climatic and topographic layers. Each map was used as a representation of the geographic distribution of the species and all available maps were summed to obtain general patterns of species richness in the region. Also, the maps were used to construct a presence-absence matrix in a grid of squares of 0.5 degrees of side, that was analyzed in a Parsimony Analysis of Endemicity (PAE, which resulted in a hypothesis of the biogeographic scheme in the region. We compiled a total of 41 527 records of 233

  5. Rendering Future Vegetation Change across Large Regions of the US

    Science.gov (United States)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for

  6. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    Science.gov (United States)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  7. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  8. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    Science.gov (United States)

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  9. Holocene vegetation and climate change on the Haanja heights, South-East Estonia

    International Nuclear Information System (INIS)

    Saarse, Leili; Rajamaee, Raivo

    1997-01-01

    The development of forests on the Haanja Heights has been controlled by external factors, including climate, soils, hydrology, and human impact. The sediment sequence from Lake Kirikumaee, which covers about 12 000 years, records the vegetation history throughout the Late Glacial and Holocene. In the Alleroed, woodland tundra with sparse birch and willow was established. Grass-shrub tundra in the Younger Dryas was replaced by birch forest in the Pre-Boreal. During the Holocene two major shifts in vegetation dynamics occurred: the first about 8500 BP with a sharp decline in Betula-Pinus forest and development of broad-leaved forest, and the second about 3500 BP, with a decline in broad-leaved forest and regeneration of Pinus-Betula forest with a high share of Picea. The climate modelling, based on pollen record and lake-level changes, suggest cold, severe climate with low precipitation values in the early Pre-Boreal. Between 9500-8500 BP the climate was rather stable. The lake level first rose, then stabilized, and finally dropped. The sharp climate amelioration in the late Boreal together with the humidity increase resulted in a lake-level rise. The decreased precipitation and rather high summer temperatures, increased evapotranspiration, and reduced water balance are characteristic of the Sub-Boreal. Since 3500 BP, the climate deteriorated and mixed coniferous forest started to dominate. Several small climatic fluctuations, including the Little Ice Age cooling, have been traced by modelling. (author)

  10. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations

    International Nuclear Information System (INIS)

    Roeser, Dominik; Mola-Yudego, Blas; Sikanen, Lauri; Prinz, Robert; Gritten, David; Emer, Beatrice; Vaeaetaeinen, Kari; Erkkilae, Ari

    2011-01-01

    Research into the methods of producing high quality wood chips for a rapidly growing energy sector is becoming increasingly important. For example, small wood chip heating plants require high quality wood chips to ensure efficient operation, thereby minimizing maintenance costs. Moisture content is considered to be an important quality parameter regarding wood based fuels. The objective of this study is to investigate methods to promote the natural drying of wood for bioenergy purposes. The effects on the drying process through covering the wood piles and partial debarking of stems were tested in order to identify methods to reduce the moisture content of the woody material in the storage. Drying trials were established in Finland, Italy and Scotland, utilizing tree species typically used for energy purposes in each area. The results show that natural drying is a viable and effective method to enhance the energy efficiency of wood based fuel products in all the regions studied. Furthermore, by adapting current harvesting methods and storage procedures even better results can be achieved. In addition, the results also indicate that broadleaved trees dry more effectively, if some partial debarking is carried out and that covering of piles is of utmost importance in Scotland and Finland. -- Highlights: → Natural drying is an effective method to enhance efficiency in the wood-fuel chains → Broadleaved trees dry more effectively when partial debarking is done → In Scotland and Finland a method for covering of piles is of utmost importance.

  11. Damage caused to our forests and its control up to 1918

    Energy Technology Data Exchange (ETDEWEB)

    Nozicka, J

    1963-01-01

    Air pollution was mentioned as soon as 1699 by Chr. Lehman, chronicler of Krusne hory and its injurious effects were observed since the thirties of the nineteenth century by brothers Baar on their plot situated in the neighborhood of a manufactory chimney at Kdyne near Klatovy, as well as since 1843 by the surveyor William Rowland in managing the town forest of Pribram in the surroundings of silver works at Brezove hory. The problem of damage caused to our forests by air pollution arose the interest of our foresters 1850, when at the conference of the Bohemian Forestry Union held in Decin Rowland read a paper on air pollution in the area of Pribram and in surroundings of a brick-kiln at Zdiky in the Kaplice region. After 1853, the smoke effects began to be apparent in the Jachymov region, since 1880 in the Ostrava region, since the nineties of the past century in the Sokolovo, Loket, Karlovy Vary, Usti n. L. and Nachod regions and, since the first decade of the present century in the Bilina and Kladno regions. It was found that silver fir, Norway spruce and Scotch pine were the most sensitive species to smoke, whereas European larch proved to be very resistant. Broadleaved species showed also a good growth in the smoke affected areas. Basing on this experience, our foresters tried, therefore, to reduce the injouris smoke effects by growing broadleaved species in those areas. 12 references.

  12. Impact of operational factors on fossil energy inputs in motor-manual tree felling and processing: results of two case studies

    Directory of Open Access Journals (Sweden)

    Gheorghe Ignea

    2017-07-01

    Full Text Available In many cases tree felling and processing operations are carried out motor-manually and knowledge about fossil fuel consumption and direct energy inputs when using such equipment is required for different purposes starting with operational costing and ending with environmental assessment of forest operations. In this study, fuel mixture, chain oil and direct fossil energy inputs were evaluated for two chainsaws which were used to fell and process trees in two silvicultural systems. The results of this study suggest that there is a strong dependence relation between selected tree size variables such as the diameter at breast height and tree volume on one hand and the fuel mixture, chain oil and direct fossil energy inputs when felling and processing broadleaved hardwood and resinous softwood trees on the other hand. For the broadleaved trees (mean tree volume of 1.50 m3 × tree-1, DBH of 45.5 cm and tree height of 21.84 m the mean direct fossil energy input was of 3.86 MJ m-3 while for resinous trees (mean tree volume of 1.77 m3 tree-1, DBH of 39.28 cm and tree height of 32.49 m it was of 3.93 MJ m-3. Other variables, including but not limited to the technology used, work experience and procedural pattern, may influence the mentioned figures and extensive studies are required to clarify their effects.

  13. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    Science.gov (United States)

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  14. Guava SSR analysis: Diversity assessment and similarity to accessions associated with reducing citrus greening in Vietnam

    Science.gov (United States)

    The guava (Psidium guajava) is an evergreen tree in the Myrtaceae, native to tropical America. It is grown throughout the tropics and subtropics of the world, and is used as a fresh fruit and processed into juice, jelly and paste. Recent introduction of citrus greening (huanglongbing) into Florida...

  15. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A study on the microarthropod community with special reference to species diversity of Oribatid and Collembola communities (Microarthropoda: Oribatei and Collembola) in Tam Dao National Park of Vietnam, a subtropical evergreen broad leaf alpine forest, was undertaken with the aim to explain how they are related to ...

  16. Dalbergia latifolia Roxb. (East Indian Rosewood) of Leguminosae is ...

    Indian Academy of Sciences (India)

    Dalbergia latifolia Roxb. (East Indian Rosewood) of Leguminosae is a large deciduous or nearly evergreen tree that grows in mixed deciduous forests with teak. Leaves are compound. The creamy white flowers are borne on branched inflorescences. The indehiscent dry pod bears. 1-4 seeds. Inset - a juvenile plant.

  17. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Pará, Brazil

    Science.gov (United States)

    James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od

    2005-01-01

    Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...

  18. Capparis Cleghornii Dunn, a species from Southern India (Capparaceae)

    NARCIS (Netherlands)

    Rao, Rolla S.; Raghavan, R. Sundara

    1964-01-01

    Among recent collections from the evergreen forests of Mysore State in southern India, material was found of Capparis cleghornii Dunn which had only been known from the original collection made by Cleghorn in 1846 and from a Stocks specimen from “Kanara”. Further scrutiny of fresh collections from

  19. 33 CFR 117.1049 - Lake Washington.

    Science.gov (United States)

    2010-07-01

    ... Evergreen Point Floating Bridge between Seattle and Bellevue shall operate as follows: (a) The draw shall open on signal if at least two hours notice is given. (b) Telephone requests for bridge opening may be... 117.1049 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES...

  20. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Science.gov (United States)

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  1. 76 FR 17653 - Notice of Agreements Filed

    Science.gov (United States)

    2011-03-30

    ...: CSCL/ELJSA Vessel Sharing Agreement-Asia and Mexico, US East Coast Service. Parties: China Shipping Container Lines Co., Ltd.; China Shipping Container Lines (Hong Kong) Co., Ltd.; and Evergreen Lines Joint... coordinate sailings in the trades between Japan, China, and the Pacific coast of the United States. By Order...

  2. Changes to southern Appalachian water yield and stormflow after loss of a foundation species

    Science.gov (United States)

    Steven T. Brantley; Chelcy Ford Miniat; Katherine J. Elliott; Stephanie H. Laseter; James M. Vose

    2014-01-01

    Few studies have examined how insect outbreaks affect landscape-level hydrologic processes. We report the hydrologic effects of the invasive, exotic hemlock woolly adelgid (HWA) in a headwater catchment in the southern Appalachian Mountains. The study watershed experienced complete mortality of an evergreen tree species, Tsuga canadensis (L.) Carr. (...

  3. Observations on the relationship between above- and below-ground anthocyanin production in Galax urceolata (Poir.) Brummitt growing in sun-exposed and shaded locations

    Science.gov (United States)

    Howard S. Neufeld; Derick B Poindexter; Paula F. Murakami; Paul G. Schaberg

    2011-01-01

    Galax urceolata (Diapensiaceae) is a common evergreen herb of southern Appalachian forests. During the fall and winter, leaves of plants in high light produce substantial amounts of anthocyanins. Oddly, rhizomes in these plants also accumulate anthocyanins. The purpose of this observational study was to identify seasonal trends in anthocyanin...

  4. 76 FR 74060 - Notice of Agreements Filed

    Science.gov (United States)

    2011-11-30

    ... Maritime Corporation; Delmas SAS; Evergreen Marine Corporation (Taiwan), Ltd.; Hamburg-S[uuml]d KG; Hapag...) Ltd. and Agriculture Investment Export, Inc. Filing Party: Wade S. Hooker, Esquire, 21 Central Park W... Agriculture Investment in the trade between U.S. Atlantic and Gulf ports and ports in Guatemala and Honduras...

  5.   Diversity and composition of palm communities (Arecaceae) in Quintana Roo Mexico

    DEFF Research Database (Denmark)

    Alvarado, Arturo A.; Calvo, Luz M.; Duno, Rodrigo

      We compared composition and diversity of palm (Arecaceae) communities in three forest types along a gradient from dry deciduous, over intermediate to wet evergreen forest in Quintana Roo, Mexico. In forty-nine 5×500-m transects, we counted 52,612 individuals representing 14 species in 11 genera...

  6. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    Science.gov (United States)

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  7. Environmental measures in forest. Realistic measures for counteracting negative effects of acid precipitation in forest; Miljoetiltak i skog. Realistiske tiltak for aa motvirke negative effekter av sur nedboer i skog

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, P [Norsk Inst. for Skogforskning, Aas (Norway)

    1996-01-01

    The conference paper deals with an Norwegian research programme concerning environmental measures for decreasing the effects of acidification in forest areas. This programme, which lasts in a period of five years, will terminate in 1997. An important part of the programme has been to investigate other types of measures than the ordinary methods of liming and fertilizing. In the course of the programme, there was determined to put the attention to the increased use of broad-leaved trees as an alternative in a coniferous forest. 19 refs., 1 fig.

  8. Satellite derived forest phenology and its relation with nephropathia epidemica in Belgium.

    Science.gov (United States)

    Barrios, José Miguel; Verstraeten, Willem W; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol

    2010-06-01

    The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission.

  9. Management of broadleaved weeds in small-scale in an on-farm perspective

    International Nuclear Information System (INIS)

    Ooro, P.A.; Kamwaga, J.N.; Kipkemoi, P.L.; Bor, P.K.; Mbanda, G.O.; Rogoncho; Ochieng', J.O.

    2001-01-01

    An on-farm trial was conducted at eight different sites in Rongai and Njoro areas of Nakuru district and only six of the sites were finally harvested. The study was mainly to evaluate different weed control methods to offer a variety of recommendations for small scale wheat farmers. Of the treatments tested Buctril Mc out performed all the treatments except for Ariane. Cultural methods of control seemed to be inferior to almost all the chemical control. (author)

  10. Effects of Seedbed Density on Seedling Morphological Characteristics of four Broadleaved Species

    Energy Technology Data Exchange (ETDEWEB)

    Yucedag, C.; Gailing, O.

    2012-11-01

    The aim of this study was to investigate the effects of seedling spacing on morphological characteristics of one year-old Amygdalus communis L., Prunus avium L., Pyrus elaeagnifolia Pall. and Eriolobus trilobatus (Poiret) Roemer seedlings under nursery conditions. Seedlings were grown in completely randomized blocks with four replications. Seedbeds were 1.2 m wide with 5 rows each 20 cm apart. Within-row spacings were chosen as 4, 8 and 12 cm to analyze the effect of seedlings density on growth performance. Seedling spacing significantly affected root collar diameter, shoot height, tap root length and number of fine roots in A. communis and P. avium, but not in P. elaeagnifolia and E. tribolatus. Additionally wider seedling spacings resulted in larger seedlings in A. communis and P. avium. In conclusion, it would be beneficial to use wider seedling spacing in order to obtain better seedling growth in A. communis and P. avium. Larger seedlings could also provide significant advantages because of reduced cultural activities and an expected higher growth and survival rate. (Author) 27 refs.

  11. Quantifying Rainfall Interception Loss of a Subtropical Broadleaved Forest in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen

    2016-01-01

    Full Text Available The factors controlling seasonal rainfall interception loss are investigated by using a double-mass curve analysis, based on direct measurements of high-temporal resolution gross rainfall, throughfall and stemflow from 43 rainfall events that occurred in central Taiwan from April 2008 to April 2009. The canopy water storage capacity for the wet season was estimated to be 1.86 mm, about twice that for the dry season (0.91 mm, likely due to the large reduction in the leaf area index (LAI from 4.63 to 2.23 (m2·m−2. Changes in seasonal canopy structure and micro-meteorological conditions resulted in temporal variations in the amount of interception components, and rainfall partitioning into stemflow and throughfall. Wet canopy evaporation after rainfall contributed 41.8% of the wet season interception loss, but only 17.1% of the dry season interception loss. Wet canopy evaporation during rainfall accounted for 82.9% of the dry season interception loss, but only 58.2% of the wet season interception loss. Throughfall accounted for over 79.7% of the dry season precipitation and 76.1% of the wet season precipitation, possibly due to the change in gap fraction from 64.2% in the dry season to 50.0% in the wet season. The reduced canopy cover in the dry season also produced less stemflow than that of the wet season. The rainfall stemflow ratio ( P s f / P g was reduced from 12.6% to 8.9%. Despite relatively large changes in canopy structure, seasonal variation of the ratio of rainfall partitioned to interception was quite small. Rainfall interception loss accounted for nearly 12% of gross precipitation for both dry and wet seasons.

  12. Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.

    2011-01-01

    The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little

  13. Does water stress, nutrient limitation, or H-toxicity explain the differential stature among Heath Forest types in Central Kalimantan, Indonesia?

    NARCIS (Netherlands)

    Vernimmen, R.R.E.; Bruijnzeel, L.A.; Proctor, J.; Verhoef, H.A.; Klomp, N.

    2013-01-01

    To investigate the causes of the reduced stature of heath forest compared to lowland evergreen rain forest (LERF), the quantity and quality of small litterfall (LF), the standing crop of litter on the forest floor (LSC), and the annual rates of litter decay were determined over a period of 12 months

  14. Carry-over effect of Thidiazuron on banana in vitro proliferation at ...

    African Journals Online (AJOL)

    Thidiazuron (TDZ) is an active cytokinin that was shown to induce increased shoot proliferation and habituation in black walnut, Phaseolus lunatus and evergreen azalea, which are tree species but has not been widely investigated in bananas. Unlike other cytokines commonly in use that are adeninebased, TDZ is a urea ...

  15. Short Communicat Short Communication

    African Journals Online (AJOL)

    RAGHAVENDRA

    biodiversity hotspots (also one among hotspots of biodiversity) of the world. W encompass a wide range of forest types tropical wet evergreen forests to grasslan rich flora and fauna evident from the several species of flowering plants, butte birds, mammals, fishes and amphibians. Western Ghats are known to be a varietal.

  16. Alsophila weidenbrueckii (Cyatheaceae), a new scaly tree fern from Papua New Guinea

    NARCIS (Netherlands)

    Lehnert, M.

    2016-01-01

    The scaly tree fern Alsophila weidenbrueckii is described and illustrated as new to science. It occurs in the Bismarck range in north-eastern New Guinea at 1200–2100 m in evergreen wet mountain forest. The species reaches maturity at a comparatively old age and large size and regenerates only in

  17. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  18. Flowering Trees

    Indian Academy of Sciences (India)

    Berrya cordifolia (Willd.) Burret (Syn. B. ammonilla Roxb.) – Trincomali Wood of Tiliaceae is a tall evergreen tree with straight trunk, smooth brownish-grey bark and simple broad leaves. Inflorescence is much branched with white flowers. Stamens are many with golden yellow anthers. Fruit is a capsule with six spreading ...

  19. Flowering Trees

    Indian Academy of Sciences (India)

    Andira inermis (wright) DC. , Dog Almond of Fabaceae is a handsome lofty evergreen tree. Leaves are alternate and pinnately compound with 4–7 pairs of leaflets. Flowers are fragrant and are borne on compact branched inflorescences. Fruit is ellipsoidal one-seeded drupe that is peculiar to members of this family.

  20. Reforming South Africa's procedures for granting patents to improve ...

    African Journals Online (AJOL)

    requires SA to grant 20 years of patent protection on products and processes ... 2010 in SA. However, secondary, evergreening patents prevented generic versions from being brought to the market at a 30% price reduction when the initial patent expired. ... and new uses (new clinical uses of medicines other than those for.

  1. 29 CFR 570.103 - Comparison with wage and hour provisions.

    Science.gov (United States)

    2010-07-01

    ... requirements as well. This is the exemption for employees engaged in the delivery of newspapers to the consumer... amended by revising paragraph (c), effective July 19, 2010. For the convenience of the user, the revised... consumer and homeworkers engaged in the making of wreaths composed principally of evergreens.3 Apart from...

  2. Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages

    Science.gov (United States)

    Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To disco...

  3. Mangifera indica L. (the mango plant) of Anacardiaceae is a large ...

    Indian Academy of Sciences (India)

    Mangifera indica L. (the mango plant) of Anacardiaceae is a large spreading evergreen tree with simple leaves and small reddish white or yellowish green flowers borne on much-branched inflorescences. More than 500 varieties of mango are cultivated in Indiafor their large, sweet, edible fruits which are of high economic ...

  4. Fulltext PDF

    Indian Academy of Sciences (India)

    Admin

    ... an acute tip, greenish above and greenish- grey below. Flowers are unisexual, male flowers in fascicles, yellow, 5-lobed and female flowers axillary, solitary, reddish, 5-6 lobed. Fruit is globose, pale reddish when ripe. Common in open places of semi-evergreen to moist-deciduous forests. Leaves are used in medicine.

  5. Genetic diversity of an endangered species, Fokienia hodginsii ...

    African Journals Online (AJOL)

    Fokienia hodginsii (Cupressaceae) is distributed in montane evergreen forests in North and Central Vietnam and extends to southeastern China at 900 m above sea level. The species has been threatened in its area of distribution in recent years because of habitat destruction and over-exploitation. The genetic variation of ...

  6. Thevetia neriifolia Juss. ex Steud Syn. J. peruviava (Pers.) Schum ...

    Indian Academy of Sciences (India)

    Thevetia neriifolia Juss. ex Steud Syn. J. peruviava (Pers.) Schum (English: yellow oleander; Hindi: Pili-. Kaner) of Apocynaceae is a small evergreen ornamental tree with strap-like simple leaves and funnel- shaped yellow flowers. Fruit is large with a single hard-shelled seed. Thevetia trees are largely cultivated in gardens ...

  7. Size, plumage, moult and supposed hybrids of African Goshawks ...

    African Journals Online (AJOL)

    The male is even more variable in colour, in part age related: a 'sepia' morph is described for the first adult plumage. Older birds are grey with reddish flanks, becoming darker with age. The adult evergreen forest canescens shows enforcement of colourful advertising plumage and loss of sexual plumage dimorphism.

  8. Turbulence considerations for comparing ecosystem exchange over old-growth and clear-cut stands for limited fetch and complex canopy flow conditions

    Science.gov (United States)

    Sonia Wharton; Matt Schroeder; Kyaw Tha Paw U; Matthias Falk; Ken Bible

    2009-01-01

    Carbon dioxide (CO2), water vapor, and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent evergreen forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early...

  9. Gorse (Ulex europaeus) as a possible source of xylans by hydrothermal treatment

    NARCIS (Netherlands)

    Ligero, P.; Vega, de A.; Kolk, van der J.C.; Dam, van J.E.G.

    2011-01-01

    Autocatalytic hydrothermal process conditions were used to study Ulex europæus (Gorse) as a source of xylan compounds. The aim was to study the possibilities for using this unutilised biomass material to produce xylans. Ulex is an evergreen shrub that grows in the northwest of Spain and has no

  10. Comparison of three sampling methods in the characterization of cork oak stands for management purpose

    NARCIS (Netherlands)

    Paulo, M.J.; Tomé, M.; Otten, A.; Stein, A.

    2005-01-01

    The cork oak (Quercus suber L.) is an evergreen oak that has the ability to produce a continuous layer of cork tissue which regenerates after being removed. Cork oak stands can be diverse in structure. Young stands are often regularly spaced, whereas older stands usually show clustering and can be

  11. First megafossil evidence of Cyatheaceous tree fern from the Indian

    Indian Academy of Sciences (India)

    A part of the compressed tree fern axis with leaf and adventitious root scars in unusual arrangement from Plio–Pleistocene sediments of Arunachal Pradesh, India is described as Cyathea siwalika sp. nov. This record suggests that Cyathea was an important component of tropical evergreen forest in the area during the ...

  12. Filicium decipiens

    Indian Academy of Sciences (India)

    Admin

    Flowering Trees. Filicium decipiens (Wt. & Arn.) Thwaites ex. Hook.f. (Fern-leaf tree) of Sapindaceae is a handsome middle- sized evergreen native tree with a dense, often shapely crown. Leaves are alternate, pinnnately compound with a conspicuous leafy wing that runs along the entire length of the rachis. Flowers are ...

  13. Effects of the light environment and stand history on beargrass (Xerophyllum tenax) morphology and demography

    Science.gov (United States)

    David H. Peter; Timothy B. Harrington; Mark Thompson

    2017-01-01

    Beargrass (Xerophyllum tenax [Pursh] Nutt.) is an herbaceous, evergreen perennial found in higher elevations of the northern Rocky, Sierra Nevada, Klamath, Siskiyou, Cascade and Olympic Mountains and in coastal areas from Washington to northern California. It is used by Native Americans for basketry and is an important floral green, but the...

  14. Genetic structure of Notholithocarpus densiflorus(Fagaceae) from the species to the local scale: A review of our knowledge for conservation and replanting

    Science.gov (United States)

    Richard S Dodd; Alejandro Nettel; Jessica W. Wright; Zara Afzal-Rafii

    2013-01-01

    Tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh (Fagaceae), is an important component of mixed-evergreen forests and woodlands in coastal California and Oregon, with incursions into the Sierra Nevada and the Klamath Ranges. Sudden Oak Death (SOD) is causing severe dieback and mortality in tanoak and could...

  15. Biomass expansion factors of Olea ferruginea (Royle) in sub tropical ...

    African Journals Online (AJOL)

    Wood biomass gives information about total productivity of the forest as well as individual tree. Olea ferruginea (Royle) which is small and evergreen is widely distributed in native sub tropical forests of Pakistan and extensively used as fuelwood domestically. This study was carried out in the sub tropical forests of Pakistan at ...

  16. A semi-empirical model for predicting crown diameter of cedrela ...

    African Journals Online (AJOL)

    A semi-empirical model relating age and breast height has been developed to predict individual tree crown diameter for Cedrela odorata (L) plantation in the moist evergreen forest zones of Ghana. The model was based on field records of 269 trees, and could determine the crown cover dynamics, forecast time of canopy ...

  17. Keeping Pace with K-12 Online Learning, 2016

    Science.gov (United States)

    Gemin, Butch; Pape, Larry

    2017-01-01

    "Keeping Pace with K-12 Online Learning 2016" marks the thirteenth consecutive year Evergreen has published its annual research of the K-12 education online learning market. The thirteen years of researching, writing and publishing this report represents a time of remarkable change. There has been a constant presence that has become the…

  18. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Aglaia elaeagnoidea (A.Juss.) Benth. of Meliaceae is a small-sized evergreen tree of both moist and dry deciduous forests. The leaves are alternate and pinnately compound, terminating in a single leaflet. Leaflets are more or less elliptic with entire margin. Flowers are small on branched inflorescence. Fruit is a globose ...

  19. Calophyllum inophyllum L. of Clusiaceae is a handsome medium ...

    Indian Academy of Sciences (India)

    Calophyllum inophyllum L. of Clusiaceae is a handsome medium-sized evergreen tree. The leaves are shiny with many fine parallel lateral veins. Flowers in clusters are white, fragrant and bear many stamens. Fruit is hard, subglobose and little smaller than a golf ball. Bark astringent, sweet and diuretic. Seed oil is used ...

  20. Mimusops elengi L. (Bulletwood tree; Hindi: Bakul or Maulsari) of ...

    Indian Academy of Sciences (India)

    Mimusops elengi L. (Bulletwood tree; Hindi: Bakul or Maulsari) of Sapotaceae is a handsome evergreen tree with milky latex and tender vegetative parts covered with brown hairs. The tree is often cultivated in parks and as an avenue tree. The fascicled flowers are small, white and sweet-scented. The ovoid berries are ...