WorldWideScience

Sample records for brevibacterium

  1. Brevibacterium casei as a cause of brain abscess in an immunocompetent patient.

    Science.gov (United States)

    Kumar, V Anil; Augustine, Deepthi; Panikar, Dilip; Nandakumar, Aswathy; Dinesh, Kavitha R; Karim, Shamsul; Philip, Rosamma

    2011-12-01

    Coryneform bacteria belonging to the genus Brevibacterium have emerged as opportunistic pathogens. Of the nine known species of Brevibacterium isolated from human clinical samples, Brevibacterium casei is the most frequently reported species from clinical specimens. We report the first case of B. casei brain abscess in an immunocompetent patient successfully treated by surgery and antimicrobial therapy.

  2. Brevibacterium otitidis: an elusive cause of neurosurgical infection.

    LENUS (Irish Health Repository)

    Fe Talento, Alida

    2013-03-01

    Coryneform bacteria are usually considered as non-pathogenic when isolated from clinical specimens. We present a case of Brevibacterium otitidis neurosurgical infection in an immunocompetent patient, and highlight the difficulty with identification and interpretation of antimicrobial susceptibility results for this unusual pathogen.

  3. Optimization of cholesterol oxidase production by Brevibacterium sp ...

    African Journals Online (AJOL)

    An ultrasound-assisted emulsification as a pretreatment for cholesterol oxidase production by submerge fermentation using Brevibacterium sp. in a batch system was studied. Medium improvement for the production employing response surface methodology (RSM) was optimized in this paper. The concentration of ...

  4. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...... and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg2+ and Ca2+ activated the proteinase, as did NaCl; however, Hg2+ Fe2+, and Zn2+ caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH2-Ala-Lys- Asn...

  5. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei.

    Science.gov (United States)

    Kiran, George Seghal; Sabarathnam, Balu; Selvin, Joseph

    2010-08-01

    The antibiofilm activity of a glycolipid biosurfactant isolated from the marine actinobacterium Brevibacterium casei MSA19 was evaluated against pathogenic biofilms in vitro. The isolate B. casei MSA19 was a potential biosurfactant producer among the 57 stable strains isolated from the marine sponge Dendrilla nigra. The biosurfactant production was optimized under submerged fermentation. The purified glycolipid showed a broad spectrum of antimicrobial activity. Based on the minimum inhibitory concentration/minimum bactericidal concentration ratio, the glycolipid was determined as bacteriostatic. The glycolipid biosurfactant disrupted the biofilm formation under dynamic conditions. The disruption of the biofilm by the MSA19 glycolipid was consistent against mixed pathogenic biofilm bacteria. Therefore, the glycolipid biosurfactant can be used as a lead compound for the development of novel antibiofilm agents.

  6. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.

    Science.gov (United States)

    Su, HaiFeng; Lin, JiaFu; Wang, YuanHong; Chen, Qiao; Wang, GuangWei; Tan, FuRong

    2017-09-01

    Biosynthesis of advanced biofuels by engineered non-natural microorganisms has been proposed to be the most promising approach for the replacement of dwindling fossil fuel resources. Brevibacterium flavum (Bf) is a model brevibacterium aerobe which lacks basic and applied research that could enable this species to produce biofuels. There are no reports regarding engineering this microorganism to produce advanced alcohols before. Here, for the first time, we developed the bacterium as a novel biosynthetic platform for advanced alcohols production via the mutagenesis and engineering to produce 2-ketoacids derived alcohols. In order to enhance the strain's capability of producing advanced alcohols, we preferentially improved intrinsic metabolism ability of the strain to obtain improved expression host (IEH) via generating mutagenesis libraries by whole cell mutagenesis (WCM). The IEH was determined via screening out the mutant strain with the highest production of branched-chain organic acids (BCOA) using high throughput screening method.. Subsequently, a novel vector system for Bf was established, and the corresponding biosynthetic pathway of directing carbon flux into the target advanced alcohols was recruited to make the bacterium possess the capability of producing advanced alcohols and further enhance the production using the IEH. Specifically, we generated bioengineered strains that were able to synthesize up to the highest 5362 and 4976 mg/L isobutanol, 1945 and 1747 mg/L 2-methyl-1-butanol (2 MB), and 785.34 and 781 mg/L 3-methyl-1-butanol (3 MB) from pure glucose and duckweed substrates, respectively. Our findings confirmed the feasibility and potential of using Bf as a novel biosynthetic platform to generate advanced biofuels with glucose and inexpensive renewable feedstock-duckweed as a fermentation substrate. Biotechnol. Bioeng. 2017;114: 1946-1958. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Some enzymatic properties of cholesterol oxidase produced by Brevibacterium sp Algumas propriedades enzimáticas da colesterol oxidase produzida por Brevibacterium sp.

    Directory of Open Access Journals (Sweden)

    Terezinha J.G. Salva

    1999-12-01

    Full Text Available In this study we determined some properties of the cholesterol oxidase from a Brevibacterium strain isolated from buffalo's milk and identified the cholesterol degradation products by the bacterial cell. A small fraction of the enzyme synthesized by cells cultured in liquid medium for 7days was released into the medium whereas a larger fraction remained bound to the cell membrane. The extraction of this fraction was efficiently accomplished in 1 mM phosphate buffer, pH 7.0, containing 0.7% Triton X-100. The enzyme stability under freezing and at 45oC was improved by addition of 20% glycerol. The optimum temperature and pH for the enzyme activity were 53°C and 7.5, respectively. The only steroidal product from cholesterol oxidation by the microbial cell and by the crude extract of the membrane-bound enzyme was 4-colesten-3-one. Chromatographic analysis showed that minor no steroidal compounds as well as 4-colesten-3-one found in the reaction media arose during fermentation process and were extracted together with the enzyme in the buffer solution. Cholesterol oxidation by the membrane-bound enzyme was a first order reaction type.Neste trabalho foram definidas algumas propriedades da enzima colesterol oxidase produzida por uma linhagem de Brevibacterium sp. isolada de leite de búfala e foram identificados os compostos resultantes da degradação do colesterol pela bactéria. Uma pequena fração da enzima sintetizada pelas células cultivadas em meio líquido por 7 dias foi liberada no meio de cultura e uma fração maior permaneceu ligada à membrana celular. A extração desta fração foi eficientemente efetuada em tampão fosfato 1mM, pH 7,0, contendo 0,7% de triton X-100. A estabilidade da enzima congelada e a 45oC foi aumentada pela adição de 20% de glicerol. A temperatura ótima para a atividade enzimática esteve ao redor de 53(0C e o pH ótimo esteve ao redor de 7,5. O único produto da degradação do colesterol, causada pela a

  8. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.

    Science.gov (United States)

    Wang, Lei; Huang, Rui; Gu, Guanbin; Fang, Hongying

    2008-10-01

    Trehalose production by a novel strain of Brevibacterium sp. SY361 was optimized in submerged fermentation. Different chemical and physical parameters such as carbon and nitrogen sources, inoculum level, initial pH, incubation temperature, aeration and time-course of fermentation, were studied in order to increase trehalose productivity. An optimal production medium containing 3% (w/v) glucose, 0.9% (v/v) corn steep liquor, 0.5% (w/v) KH(2)PO(4) and 0.4% (w/v) MgSO(4).7 H(2)O was found suitable for trehalose production. An optimal volume of medium in a 500 ml flask was 80 ml. The optimal levels of other parameters were 4.0% (v/v) of inoculum, initial pH of 6.0, incubation temperature of 28-32 degrees C and time-course of 60 h. Optimized parameters gave a maximum trehalose of 12.2 mg/ml with a conversion rate of 58.4%. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.

    Science.gov (United States)

    Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, Ana

    2017-12-21

    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH 4 -N, and Ca 2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.

  10. Biosynthetic preparation of L-[13C]- and [15N]glutamate by Brevibacterium flavum

    International Nuclear Information System (INIS)

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with [3- 13 C]pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, [1- 13 C]- or [2- 13 C]acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-[ 15 N]glutamate from [ 15 N]ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms

  11. Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina

    Science.gov (United States)

    Maizel, Daniela; Blum, Jodi S.; Ferrero, Marcela A.; Utturkar, Sagar M.; Brown, Steven D.; Rosen, Barry P.; Oremland, Ronald S.

    2015-01-01

    Brevibacterium linens AE038-8, isolated from As-contaminated groundwater in Tucumán (Argentina), is highly resistant to arsenic oxyanions, being able to tolerate up to 1 M As(V) and 75 mM As(III) in a complex medium. Strain AE038-8 was also able to reduce As(V) to As(III) when grown in complex medium but paradoxically it could not do this in a defined minimal medium with sodium acetate and ammonium sulfate as carbon and nitrogen sources, respectively. No oxidation of As(III) to As(V) was observed under any conditions. Three copies of the ars operon comprising arsenic resistance genes were found on B. linens AE038-8 genome. In addition to the well known arsC, ACR3 andarsR, two copies of the arsO gene of unknown function were detected.

  12. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    Science.gov (United States)

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  13. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp

    International Nuclear Information System (INIS)

    Ojoawo, S. O.; Rao, C. V.; Goveas, L. C.

    2016-01-01

    The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and p H adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24 hours in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination. Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation. Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.

  14. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    Science.gov (United States)

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Report: Bioconversion of agriculture waste to lysine with UV mutated strain of brevibacterium flavum and its biological evaluation in broiler chicks.

    Science.gov (United States)

    Tabassum, Alia; Hashmi, Abu Saeed; Masood, Faiza; Iqbal, Muhammad Aamir; Tayyab, Muhammad; Nawab, Amber; Nadeem, Asif; Sadeghi, Zahra; Mahmood, Adeel

    2015-07-01

    Lysine executes imperative structural and functional roles in body and its supplementation in diet beneficial to prevent the escalating threat of protein deficiency. The physical mutagenesis offers new fascinating avenues of research for overproduction of lysine through surplus carbohydrate containing agriculture waste especially in developing countries. The current study was aimed to investigate the potential of UV mutated strain of Brevibacterium flavum at 254 nm for lysine production. The physical and nutritional parameters were optimized and maximum lysine production was observed with molasses (4% substrate water ratio). Moreover, supplementation of culture medium with metal cations (i.e. 0.4% CaSO₄, 0.3% NaCl, 0.3% KH₂PO₄, 0.4% MgSO₄, and 0.2% (NH₄) ₂SO₄w/v) together with 0.75% v/v corn steep liquor significantly enhanced the lysine production up to 26.71 ± 0.31 g/L. Though, concentrations of urea, ammonium nitrate and yeast sludge did not exhibit any profound effect on lysine production. Biological evaluation of lysine enriched biomass in terms of weight gain and feed conversion ratio reflected non-significant difference for experimental and control (+ve) groups. Conclusively, lysine produced in the form of biomass was compatible to market lysine in its effectiveness and have potential to utilize at commercial scale.

  16. Bioconversion of Agricultural By-Products to Lysin by brevibacterium flavum and physico-chemical optimization for hyper-production

    International Nuclear Information System (INIS)

    Irshad, S.; Hashmi, A. S.; Babar, M. E.; Awan, A. R.; Anjum, A. A.; Javed, M. M.

    2015-01-01

    Poultry and agriculture industry has a great role in the development of food sector in Pakistan. Whole of the Lysine required for poultry feed is imported to fulfil the desired dietary needs. Present study was designed to utilize different agricultural by-products like molasses, wheat bran, rice polishing and corn steep liquor. Different Physico-Chemical parameters were optimized to have hyper-production of Lysine through fermentation by using Brevibacterium flavum as a fermentative agent. From wheat bran, rice polishing and molasses (as best carbon source), significantly high concentrations of lysine (10.4 g/L) after 72h of incubation was observed with molasses (4 percentage) with 3 percentage (v/v) inoculum size at 30 degree C and pH 7. Among different nitrogen sources, 0.25 percentage (NH/sub 4/)2SO/sub 4/ showed significantly (P< 0.05) high yield of Lysine (16.89 g/L). Addition of different optimum levels of ionic salts; 4 percentage CaCO/sub 3/, 0.4 percentage MgSO/sub 4/.7H/sub 2/O, 0.1 percentage NaCl and 0.2 percentage KH/sub 2/PO/sub 4/ gave significantly (P< 0.05) higher quantity of Lysine 19.01 g/L. Inclusion of 0.6 percentage corn steep liquor and 0.4 mg/100mL biotin significantly (P< 0.05) raised the Lysine from 19.4 g/L - 19.45 g/L. The presence of Lysine in fermented broth was detected by TLC. Thus a cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially to save foreign exchange. (author)

  17. Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium lines as evaluated in situ on soft cheese.

    Science.gov (United States)

    Eppert, I; Valdés-Stauber, N; Götz, H; Busse, M; Scherer, S

    1997-01-01

    The undefined microbial floras derived from the surface of ripe cheese which are used for the ripening of commercial red smear cheeses have a strong impact on the growth of Listeria spp. In some cases, these microbial consortia inhibit Listeria almost completely. From such undefined industrial cheese-ripening floras, linocin M18-producing (lin+) (N. Valdés-Stauber and S. Scherer, Appl. Environ. Microbiol. 60:3809-3814, 1994) and -nonproducing Brevibacterium linens strains were isolated and used as single-strain starter cultures on model red smear cheeses to evaluate their potential inhibitory effects on Listeria strains in situ. On cheeses ripened with lin+ strains, a growth reduction of L. ivanovii and L. monocytogenes of 1 to 2 log units was observed compared to cheeses ripened with lin strains. Linocin M18 activity was detected in cheeses ripened with lin+ strains but was not found in those ripened with lin strains. We suggest that production of linocin M18 contributes to the growth reduction of Listeria observed on model red smear cheeses but is unsufficient to explain the almost complete inhibition of Listeria caused by some undefined microbial floras derived from the surface of ripe cheeses. PMID:9406400

  18. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    Science.gov (United States)

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  19. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard

    Directory of Open Access Journals (Sweden)

    Tomasz ePłociniczak

    2016-02-01

    Full Text Available Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants.The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%, Zn (86% and Cu (39% in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  20. Autoinducer-2 activity produced by bacteria found in smear of surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Moslehi Jenabian, Saloomeh; Purrotti, Micol

    2011-01-01

    -2) activity using the Vibrio harveyi (BB170) bioluminescence assay. In contrast, Brevibacterium casei and Brevibacterium linens strains were not found to have AI-2 activity. When exposed to low pH and high NaCl concentrations, AI-2 activities increased between 5.0 and 11.6× for C. casei 44701, M...

  1. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  2. GenBank blastx search result: AK107397 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107397 002-127-D06 AB052295.1 Brevibacterium fuscum var. dextranlyticum genes for... ABC membrane transporter homologues, putative alpha-glucosidase, isomaltotrio-dextranase precursor, partial and complete cds.|BCT BCT 1e-122 +2 ...

  3. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil

    DEFF Research Database (Denmark)

    Zheng, Bang-Xiao; Hao, Xiuli; Ding, Kai

    2017-01-01

    to Arthrobacter, Bacillus, Brevibacterium and Streptomyces. Long-term P fertilization had no significant effect on the abundance of iPSB communities. Rather than P and potassium (K) additions, long-term nitrogen (N) fertilization decreased the iPSB abundance, which was validated by reduced relative abundance...

  4. Comparison of ViTEK 2, MALDI-TOF and Partial Sequencing of 16S ...

    African Journals Online (AJOL)

    All the strains were susceptible to Vancomycin, Linezolid and Rifampicin while they were all resistant to Penicillin, Fusidic acid, and Trimethoprim. Brevibacterium epidermidis were generally resistant to Erythromycin and Clindamycin while B. iodinum and B. oceani were susceptible. Conclusion - 16S rRNA identification is ...

  5. L-Glutamic acid production by Bacillus spp. isolated from vegetable ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... 2Department of Botany and Microbiology, University of Ibadan, Ibadan, Oyo state, Nigeria. ... monosodium salt as a flavor enhancer in foods (Kikunae, ...... Madhavan KN, Ashok P (1996). Solid state fermentation for L – glutamic acid production using Brevibacterium sp. DSM 20411. J. Food. Sci. Technol.

  6. Antibacterial action of an aqueous grape seed polyphenolic extract ...

    African Journals Online (AJOL)

    The potential of a polyphenolic grape seed extract for use as a natural antibacterial agent was evaluated. Pure catechin (CS) and a previously LC-MS characterized grape seed phenolic extract (PE) were evaluated as antibacterial agents against Escherichia coli and Brevibacterium linens on solid and in liquid culture media ...

  7. in Escherichia coli with native cholesterol oxidase expressed

    African Journals Online (AJOL)

    The structure and bio-activity of an endogenous cholesterol oxidase from Brevibacterium sp. was compared to the same enzyme exogenously expressed in Escherichia coli BL21 (DE3) with and without N- or C-terminal his-tags. The different proteins were purified with affinity and subtractive protocols. The specific activity of ...

  8. Optimization of cholesterol oxidase production by Brevibacterium sp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    When ultrasonic wave propagates in a liquid medium, it can produce cavitation and acoustic streaming. This cavi- tation generates powerful shear forces, while the acoustic streaming increases the convection of solution (Guo et ... optimal media design of the factors. MATERIALS AND METHODS. Microorganism and culture ...

  9. Isolation and Identification of a Brevibacterium linens strain ...

    African Journals Online (AJOL)

    nitrophenol (PNP). Subsequent subcultures in agar, nutrient agar plates and agar slants by streaking led to isolation of pure colonies. The pure culture could degrade up to 300 mg/L PNP in presence of yeast extract. It was Gram positive rods, ...

  10. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Science.gov (United States)

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  11. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Directory of Open Access Journals (Sweden)

    Ma. Fabiola León-Galván

    2015-01-01

    Full Text Available Thirty-two farms (n=535 cows located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM and clinical mastitis (CLM were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT (≥3 and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY, lactation number (LN, herd size (HS, and number of days in milk (DM were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH, LN, HS, and DM P<0.01, and correlations between udder quarters from the CMT were around 0.49 P<0.01. Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study.

  12. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    Science.gov (United States)

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  13. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, H; Komagata, K

    1964-01-01

    Hydrocarbon-utilizing bacteria were isolated from oil-brine, soils etc. sampled in oil fields in Japan during 1956, and the following species were identified: Corynebacterium hydrocarboclastus nov. sp., 11 strains; Pseudomonas nitroreducens nov. sp., 1 strain; Pseudomonas maltophila Hugh and Ryschenkow, 5 strains: Brevibacterium lipolyticum (Huss) Breed, 2 strains; Pseudomonas desmolytica Gray and Thornton, 5 strains; Flavobacterium ferrugineum Sickles and Shaw, 1 strain; and Alcaligenes faecalis Chastellani and Chalmers, 1 strain. One difference between Gram-negative bacteria and Gram-positive bacteria was described on the basis of the ability of assimilating hydrocarbons.

  14. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands

    Directory of Open Access Journals (Sweden)

    Nasrin Sabourmoghaddam

    2015-06-01

    Full Text Available Imidacloprid (1-[(6-chloro-3-pyridinylmethyl]-N-nitro-2-imidazolidinimine, with a novel mode of action is a recent systemic and contact insecticide with high activity against a wide range of pests. Continuous dispersion of this pesticide in the environment and its stability in soil results in environmental pollution which demands remediation. The present research was attempted to isolate and characterize imidacloprid degrading bacteria from vegetable farms of Cameron Highlands in Malaysia. The degradation ability of the isolates was tested in minimal salt medium (MSM for a duration of 25 days and the selected strains were characterized based on their biochemical and molecular characteristics. Levels of imidacloprid in MSM medium were analyzed by high performance liquid chromatography (HPLC. Among 50 soil bacterial isolates Bacillus sp., Brevibacterium sp., Pseudomonas putida F1, Bacillus subtilis and Rhizobium sp. were able to degrade 25.36–45.48% of the initial amount of imidacloprid at the concentration of 25 mg L−1 in C limited media. Brevibacterium sp. was isolated from organic farms that had never been exposed to imidacloprid while the other farms had previously been exposed to different levels of imidacloprid. All bacteria introduced in this study were among the first reports of imidacloprid degrading isolates in C limited media from tropical soil. Therefore, the results of this study demonstrate the effectiveness of using soil bacteria for microbial degradation of imidacloprid. These findings suggest that these strains may be promising candidates for bioremediation of imidacloprid-contaminated soils.

  15. Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications.

    Science.gov (United States)

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Yi, Young-Joo; Cho, Min; Jang, Jum-Suk; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    In the present study, we investigated a novel green route for synthesis of zinc oxide (ZnO) nanocrystals using Prunus × yedoensis Matsumura leaf extract as a reducing agent without using any surfactant or external energy. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, TEM, and XRD. In addition, the synthesized ZnO nanocrystals were coated onto fabric and leather samples to study their bacteriostatic effect against odor-causing bacteria Brevibacterium linens and Staphylococcus epidermidis. Zinc oxide nanocrystal-coated fabric and leather showed good activity against both bacteria.

  16. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    International Nuclear Information System (INIS)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro

    1984-01-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both [1- 14 C]-acetate and [2 14 C] malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases. (author)

  17. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  18. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    International Nuclear Information System (INIS)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-01-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion

  19. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  20. Brevibacterium siliguriense sp nov., a facultatively oligotrophic bacterium isolated from river water

    NARCIS (Netherlands)

    Kumar, A.; Ince, I.A.; Kati, A.; Chakraborty, R.

    2013-01-01

    A Gram-positive-staining, rod-shaped, facultatively oligotrophic bacterial strain, designated MB18(T), was isolated from a water sample collected from the River Mahananda at Siliguri (26 degrees 44' 23.20' N, 88 degrees 25' 22.89' a West-Bengal, India. On the basis of 16S rRNA gene sequence

  1. Estudios de resistencia al estrés de una bacteria poliextremófila relevante para estudios de habitabilidad en planetas solares y extrasolares

    Science.gov (United States)

    Maizel, D.; Alché, L.; Mauas, P. J. D.

    2017-10-01

    Recent astrobiology studies have focused in the search for life in Earth-like planets within the Habitable Zone. In an attempt to find possible extraterrestrial forms of life, it becomes fundamental to study extreme life in our own planet, known as ``extremophiles''. In the present work, a study was conducted regarding the capability of the poly-extremophilic bacterial strain Brevibacterium linens AE038-8 to resist different stress factors. Strain AE038-8 was able to grow in presence of high salt concentrations and different doses of UV radiation. In addition to the extreme resistance observed in previous research of this strain, we propose B. linens AE038-8 as a model microorganism for astrobiology studies.

  2. Identification and characterisation of potential biofertilizer bacterial strains

    Science.gov (United States)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  3. New methods for isolation of keratolytic bacteria inducing intractable hoof wall cavity (Gidoh) in a horse; double screening procedures of the horn powder agar-translucency test and horn zymography.

    Science.gov (United States)

    Kuwano, Atsutoshi; Niwa, Hidekazu; Arai, Katsuhiko

    2017-01-01

    To establish a new system to isolate keratolytic bacteria from the hoof wall cavity ( Gidoh ) of a racehorse, we invented the horn powder agar-translucency (HoPAT) test and horn zymography (HZ). Using routine bacteriological techniques and these methods, we isolated five strains of keratolytic soil bacteria, which were then identified by means of 16S ribosomal RNA (rRNA) gene sequencing analysis. The findings from the study on the horse suggested that Brevibacterium luteolum played the main role in the local fragility of the hoof, eventually forming a Gidoh in coordination with four other strains of keratolytic bacteria. The double screening procedures of the HoPAT test and HZ were useful and easy techniques for isolating the keratolytic bacteria from the horn lesions.

  4. Effet des polyamines sur la réduction du chrome hexavalent par des souches bactériennes et leur résistance

    Directory of Open Access Journals (Sweden)

    Tahri Joutey, N.

    2014-01-01

    Full Text Available Effect of polyamines on the reduction of hexavalent chromium by bacterial strains and their resistance. Polyamines are involved in several functions in bacteria. In this study, we examined the role of polyamines in hexavalent chromium (Cr[VI] reduction by three bacterial strains isolated from sites contaminated by tannery effluents. The strains were identified as Serratia proteamaculans, Leucobacter chromiireducens and Brevibacterium frigoritolerans. The inhibition of polyamine synthesis by α-difluoromethylornithine (DFMO caused a decrease in Cr(VI tolerance in the bacterial isolates, indicating the role of endogenous polyamines in resistance to Cr(VI. The exogenous application of polyamines (putrescine, spermidine, cadaverine was found to stimulate growth and Cr(VI reduction by the bacterial strains in Luria-Bertani medium. The results show the importance of polyamines in response to heavy metal stresses, especially Cr(VI toxicity.

  5. Brevibacterium oceanic sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bhadra, B.; Raghukumar, C.; Pindi, P.K.; Shivaji, S.

    ., Schuetze, B. & Augsten, K. (1997). Demetria terragena gen. nov., sp. nov., a new genus of actinobacteria isolated from compost soil. Int J Syst Bacteriol 47, 1129–1133. Heyrman, J., Verbeeren, J., Schumann, P., Devos, J., Swings, J. & De Vos, P. (2004...

  6. Investigation of the activity of the microorganisms in a Reblochon-style cheese by metatranscriptomic analysis

    Directory of Open Access Journals (Sweden)

    Christophe eMonnet

    2016-04-01

    Full Text Available The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, one ripening bacterium (Brevibacterium aurantiacum, and two yeasts (Debaryomyces hansenii and Geotrichum candidum. RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated approximately 75 million reads per sample. Except for Brevibacterium aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to day 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The

  7. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    Science.gov (United States)

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  8. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles.

    Science.gov (United States)

    Deepak, Venkataraman; Pandian, Suresh babu Ram Kumar; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2009-12-01

    In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100-125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 degrees C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also.

  9. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  10. A murC gene from coryneform bacteria.

    Science.gov (United States)

    Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K

    1999-02-01

    The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.

  11. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    Full Text Available Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or ultimately killed the algal cells.

  12. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.

    Science.gov (United States)

    Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan

    2017-08-01

    Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effect of prolonged flooding of an oil deposit on the special composition and the activity of hydrocarbon-oxidizing microflora

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevskaya, M V

    1982-07-01

    The special composition of hydrocarbon-oxidizing bacteria was studied in terrigenous and carbonate oil-bearing strata from several deposits of the Permian Cis-Ural region. We isolated 43 strains and assigned them to the following genera: Mycobacterium, Micrococcus, Brevibacterium, Corynebacterium, Flavobacterium, Achromobacter and Pseudomonas. The special composition of the hydrocarbon-oxidizing microflora was shown to depend on the flooding of an oil stratum, as a result of which the ecological environment in a deposit changed. Gram-positive coryneform bacteria were found in stratal salinized waters and in diluted stratal waters. Gram-negative hydrocarbon-oxidizing bacteria were isolated from pumped-in river waters and from stratal waters diluted by 70-100% as the result of flooding. The metabolic activity of Corynebacterium fascians (2 strains), Mycobacterium rubrum (1 strain), Pseudomonas mira (1 strain) and Flavobacterium perigrinum (1 strain) was assayed in stratal waters with different concentrations of salts. The coryneform hydrocarbon-oxidizing bacteria were shown to be very halotolerant as the result of adaptation; that is why the incidence of these microorganisms is very great in highly mineralized stratal water of oil deposits.

  14. Effect of gamma-irradiation to prevent the spoilage of 'retainer type Kamaboko'

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Iizuka, Hiroshi.

    1978-01-01

    The species of main microorganisms which can grow in retainer-Kamaboko a kind of fish meat jelly products were Bacillus subtilis and B. pumilus at 20 0 C, and B. pumilus, B. megaterium, b. cereus, Pseudomonas and yeasts at 10 0 C. When Kamaboko was stored at 5 0 C, microorganisms capable to grow were the species of Pseudomonas, Brevibacterium, Aeromonas and yeasts. Irradiation of Kamaboko at 300 krad and 450 krad reduced the aforementioned flora to the Bacillus and yeasts, and the storage life of Kamaboko was extended about 2 times at 10 0 C. The growth of Bacillus strains at 10 0 C was suppressed for 3 days or more after destruction to about 95% of the total viable cells by irradiation at 300 krad. The putrefaction in retainer-Kamaboko was brought mainly by Bacillus, which seemed to be originated mainly from starch at a manufacturing process. The number of microorganisms in Potato starch was 200 per gram, and they were consisted mainly of Bacillus. These bacteria in starch could be almost eliminated by means of 500 krad irradiation. (auth.)

  15. Biochemical reference intervals and intestinal microflora of free-ranging Ricord's iguanas (Cyclura ricordii).

    Science.gov (United States)

    Maria, Roberto; Ramer, Jan; Reichard, Tim; Tolson, Peter J; Christopher, Mary M

    2007-09-01

    Caribbean iguanas, including the Ricord's iguana (Cyclura ricordii) are ranked as critically endangered on the International Union of the Conservation of Nature (IUCN) Red List. The taxon is endemic to Hispaniola, where it inhabits xeric lowlands and is found in a very limited range in two subpopulations in the southwestern area of the island. The goals of this study were to obtain and analyze plasma biochemical and intestinal microbiological data from Ricord's iguanas in the subpopulation of the Neiba Valley, on Cabritos Island National Park, Dominican Republic, and to establish biochemical reference intervals. A total of 23 blood samples from clinically healthy iguanas (16 males, 7 females) and 14 fecal samples from clinically healthy iguanas were analyzed. Adult female iguanas had higher concentrations of cholesterol, phosphorus, triglycerides, urea, uric acid, and aspartate transaminase activity compared with male iguanas, although the difference was not statistically significant. Seventeen bacterial isolates were obtained, including: Salmonella sp. (serogroup B; serogroup D negative) Escherichia coli, Brevibacterium sp., Enterobacter cloacae, and Enterococcus durans. These data will help contribute to the management and recovery of Ricord's iguana populations.

  16. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp

    Science.gov (United States)

    Chicken feces are vectors of human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a pre...

  17. Temperature and relative humidity influence the microbial and physicochemical characteristics of Camembert-type cheese ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Trelea, I C; Picque, D; Corrieu, G

    2012-08-01

    To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on

  18. Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja Diversity and biotechnological potential of endophytic bacterial community of soybean seeds

    Directory of Open Access Journals (Sweden)

    Laura de Castro Assumpção

    2009-05-01

    Full Text Available O objetivo deste trabalho foi isolar, caracterizar e identificar a comunidade bacteriana endofítica de sementes de soja e avaliar o seu potencial biotecnológico. Foram utilizadas sementes de 12 cultivares de soja. Os isolados bacterianos endofíticos obtidos foram avaliados in vitro quanto ao antagonismo a fungos fitopatogênicos, síntese de ácido indolacético (AIA e solubilização de fosfato. A caracterização foi realizada com técnicas de isolamento, análise de restrição do DNA ribossomal amplificado (ARDRA e sequenciamento parcial do gene 16S rDNA. Os isolados com maior potencial biotecnológico foram inoculados em sementes de soja, para se avaliar a capacidade de promoção de crescimento de plantas. Foi possível identificar 12 ribótipos por meio da ARDRA, que foram classificados como: Acinetobacter, Bacillus, Brevibacterium, Chryseobacterium, Citrobacter, Curtobacterium, Enterobacter, Methylobacterium, Microbacterium, Micromonospora, Pantoea, Paenibacillus, Pseudomonas, Ochrobactrum, Streptomyces e Tsukamurella. Quanto ao potencial biotecnológico da comunidade, 18% dos isolados controlaram o crescimento de fungos fitopatogênicos, 100% produziram AIA, e 39% solubilizaram fosfato. O isolado 67A(57 de Enterobacter sp. aumentou significativamente a massa de matéria seca da raiz. A inoculação de isolados com elevado potencial biotecnológico em avaliações in vitro não promoveu o crescimento de plantas de soja na maioria dos casos.The objectives of this work were to isolate, characterize and identify the endophytic bacterial community of soybean seeds, and to test the biotechnological potential of this community. Seeds from 12 soybean cultivars were used. The endophytic bacterial isolates were evaluated for in vitro antagonism against phytopathogenic fungi, synthesis of indoleacetic acid (IAA, and capacity to solubilize phosphate. Isolation techniques, amplified ribosomal DNA restriction analysis (ARDRA grouping, and

  19. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  20. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Science.gov (United States)

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  1. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma

    2016-04-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  2. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    Science.gov (United States)

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  3. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    Science.gov (United States)

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Science.gov (United States)

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum

    Czech Academy of Sciences Publication Activity Database

    Bukovska, G.; Klucar, L.; Vlček, Čestmír; Adamovic, J.; Turna, J.; Timko, J.

    2006-01-01

    Roč. 348, č. 1 (2006), s. 57-71 ISSN 0042-6822 Grant - others:Slovenská akademie věd(SK) VEGA2/5068/25; Science and Technology Assistance Agency(SK) APVT-51-025004 Institutional research plan: CEZ:AV0Z50520514 Keywords : Bacteriophage * Complete genome sequence * Sequence analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.525, year: 2006

  6. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor.

    Science.gov (United States)

    Cassidy, D P; Hudak, A J

    2001-06-29

    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were maintained in 8l vessels for 180 days to treat a soil contaminated with diesel fuel (DF). Concentrations of Candida tropicalis, Brevibacterium casei, Flavobacterium aquatile, Pseudomonas aeruginosa, and Pseudomonas fluorescens were determined using fatty acid methyl ester (FAME) analysis. DF removal (biological and volatile) and biosurfactant concentrations were measured. The SS-SBR encouraged the growth of biosurfactant-producing species relative to the CSTR. Counts of biosurfactant-producing species (C. tropicalis, P. aeruginosa, P. fluorescens) relative to total microbial counts were 88% in the SS-SBR and 23% in the CSTR. Biosurfactants were produced in the SS-SBR to levels of nearly 70 times the critical micelle concentration (CMC) early in the cycle, but were completely degraded by the end of each cycle. No biosurfactant production was observed in the CSTR. DF biodegradation rates were over 40% greater and DF stripping was over five times lower in the SS-SBR than the CSTR. However, considerable foaming occurred in the SS-SBR. Reversing the mode of operation in the reactors on day 80 caused a complete reversal in microbial consortia and reactor performance by day 120. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  7. Controlled production of camembert-type cheeses: part III role of the ripening microflora on free fatty acid concentrations.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Corrieu, Georges; Spinnler, Henry-Eric

    2007-05-01

    Phenomena generating FFAs, important flavour precursors, are significant in cheese ripening. In Camembert-like cheeses, it was intended to establish the relationships between the dynamics of FFA concentrations changes and the succession of ripening microflora during ripening. Experimental Camembert-type cheeses were prepared in duplicate from pasteurised milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum under aseptic conditions. For each cheese and each cheesy medium, concentrations of FFAs with odd-numbered carbons, except for 9:0 and 13:0, did not change over time. For long-chain FFAs, concentrations varied with the given cheese part (rind or core). K. lactis produced only short or medium-chain FFAs during its growth and had a minor influence on caproic, caprylic, capric, and lauric acids in comparison with G. candidum, the most lipolytic of the strains used here. It generated all short or medium-chain FFAs (4:0-12:0) during its exponential and slowdown growth periods and only long-chain ones (14:0-18:0) during its stationary phase. Pen. camemberti produced more long-chain FFAs (14:0-18:0) during its sporulation. Brev. aurantiacum did not generate any FFAs. The evidence of links between specific FFAs and the growth of a given microorganism is shown.

  8. Scanning electron and light microscopic study of microbial succession on bethlehem st. Nectaire cheese.

    Science.gov (United States)

    Marcellino, S N; Benson, D R

    1992-11-01

    St. Nectaire cheese is a semisoft cheese of French origin that, along with Brie and Camembert cheeses, belongs to the class of surface mold-ripened cheese. The surface microorganisms that develop on the cheese rind during ripening impart a distinctive aroma and flavor to this class of cheese. We have documented the sequential appearance of microorganisms on the cheese rind and in the curd over a 60-day ripening period. Scanning electron microscopy was used to visualize the development of surface fungi and bacteria. Light microscopy of stained paraffin sections was used to study cross sections through the rind. We also monitored the development of bacterial and yeast populations in and the pH of the curd and rind. The earliest stage of ripening (0 to 2 days) is dominated by the lactic acid bacterium Streptococcus cremoris and multilateral budding yeasts, primarily Debaryomyces and Torulopsis species. Geotrichum candidum follows closely, and then zygomycetes of the genus Mucor develop at day 4 of ripening. At day 20, the deuteromycete Trichothecium roseum appears. From day 20 until the end of the ripening process, coryneforms of the genera Brevibacterium and Arthrobacter can be seen near the surface of the cheese rind among fungal hyphae and yeast cells.

  9. Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota.

    Science.gov (United States)

    Hoyles, Lesley; Clear, Jessica A; McCartney, Anne L

    2013-08-01

    With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intensity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Science.gov (United States)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.

  11. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  12. Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4°C.

    Science.gov (United States)

    Silbande, Adèle; Adenet, Sandra; Chopin, Christine; Cornet, Josiane; Smith-Ravin, Juliette; Rochefort, Katia; Leroi, Françoise

    2018-02-02

    The effect of vacuum (VP - 4°C) and CO 2 /N 2 -atmosphere (MAP - 4°C) packaging on the quality of red drum fillets compared with whole gutted iced fish was investigated. A metagenomic approach, bacterial enumeration and isolation, biochemical and sensory analyses were carried out. The organoleptic rejection of whole fish was observed at day 15 whereas VP and MAP fillets appeared unacceptable only after 29days. At these dates, total mesophilic counts reached 10 7 -10 8 CFU g -1 . According to Illumina MiSeq sequencing, Arthrobacter, Chryseobacterium, Brevibacterium, Staphylococcus and Kocuria were the main genera of the fresh red drum fillets. At the sensory rejection time, lactic acid bacteria (LAB), particularly Carnobacterium sp., dominated the microbiota of both types of packaging. The pH value of fresh samples was between 5.96 and 6.37 and did not vary greatly in all trials. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA) concentrations were low and not represent reliable indicators of the spoilage, contrary to some biogenic amines (cadaverine, putrescine and tyramine). Chilled packed fillets of red drum have an extended shelf-life compared to whole gutted iced fish. Overall, few differences in sensory and microbial quality were observed between the VP and MAP samples. Next-Generation Sequencing (NGS) provided data on the microbiota of a tropical fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  14. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  15. Evaluation of quality measurement of Olomouc cake of cheese (Olomoucké tvarůžky during ripening

    Directory of Open Access Journals (Sweden)

    Daniela Strnadová

    2012-01-01

    Full Text Available Olomouc cake of cheese (Olomoucké tvarůžky is smear-ripened cheese, which is produced from sour industrial curd. Brevibacterium linens, which are added during the production process, are reproducing and make gold-yellow smear cover. The aim of this work was to assess the chemical analysis of the quality of Olomouc cake of cheese. Changes in chemical composition were evaluated during different stages of production and at the same time it was detected whether changes in chemical composition during the manufacturing process are same in spring as well as in summer, without statistically significant differences. Dry matter of Olomouc cake of cheese was ranged from 35 % to 39 %. The increase of dry matter during production is evident, but these changes were in the most cases not statistically signifiant (P > 0.05. The value of titratable acidity of the cheese considerably changes during the manufacturing process, it has a decreasing tendency. Titratable acidity of cheese after shaping was 106.64 (136.12 SH and at the end of life it was 49.91 (65.06 SH. These changes were very highly statistically significant (P 0.05 in cheese from summer period. Content of salt is increased from 5.30 % to 5.98 %, respectively 6.10 %. In spring period the oposite changes in most cases occured (P 0.05.

  16. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    Science.gov (United States)

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  18. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  19. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Divergence in Bacterial Components Associated with Bactrocera dorsalis across Developmental Stages

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2018-02-01

    Full Text Available Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven by ecological variables. The diet and living environment of the oriental fruit fly, Bactrocera dorsalis, diversify during development, providing a natural system to explore convergence, divergence, and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny, and environment. Here, we characterized the microbiotas of 47 B. dorsalis individuals from three distinct populations by 16S rRNA amplicon sequencing. A significant deviation was found within the larvae, pupae, and adults of each population. Pupae were characterized by an increased bacterial taxonomic and functional diversity. Principal components analysis showed that the microbiotas of larvae, pupae, and adults clearly separated into three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the predominant families in larval and adult samples, and PICRUSt analysis indicated that phosphoglycerate mutases and transketolases were significantly enriched in larvae, while phosphoglycerate mutases, transketolases, and proteases were significantly enriched in adults, which may support the digestive function of the microbiotas in larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly Brachybacterium and Brevibacteriaceae (mainly Brevibacterium were significantly higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic transport system permease protein pathways were significantly enriched there as well, indicating the defensive function of microbiotas in pupae. Overall, differences in the microbiotas of the larvae, pupae, and adults are likely to contribute to differences in nutrient assimilation and living environments.

  1. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques.

    Science.gov (United States)

    Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene

    2015-12-23

    Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented surface ripened semi-hard cheeses. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of a novel compound microbial agent for degradation of kitchen waste

    Directory of Open Access Journals (Sweden)

    Kaining Zhao

    Full Text Available Abstract Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis, A3 (Paenibacillus polymyxa, E3 (Aspergillus japonicus, F9 (Aspergillus versicolor and A5 (Penicillium digitatum, were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG, "Yilezai" (YLZ and Effective Microorganisms (EM, by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2 ppm and that of H2S reduced from 0.7 to 0.2 ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.

  3. Exploring the diversity and antimicrobial potential of marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2016-07-01

    Full Text Available Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%, PKS I (18% and PKS II (73%.Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.

  4. Microbiological Synthesis of 2H-Labeled Phenylalanine, Alanine, Valine, and Leucine/Isoleucine with Different Degrees of Deuterium Enrichment by the Gram-Positive Facultative Methylotrophic Bacterium Вrevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg V. Mosin, PhD¹

    2013-06-01

    Full Text Available The microbiological synthesis of [2H]amino acids was performed by the conversion of low molecular weight substrates ([U-2H]MeOH and 2H2O using the Gram-positive aerobic facultative methylotrophic bacterium Brevibacterium methylicum, an L-phenylalanine producer, realizing the NAD+ dependent methanol dehydrogenase (EC 1.6.99.3 variant of the ribulose-5-monophosphate (RuMP cycle of carbon assimilation. In this process, the adapted cells of the methylotroph with enhanced growth characteristics were used on a minimal salt medium M9, supplemented with 2% (v/v [U-2H]MeOH and an increasing gradient of 2Н2O concentration from 0; 24.5, 49.0; 73.5 up to 98% (v/v 2Н2O. Alanine, valine, and leucine/isoleucine were produced and accumulated exogeneously in quantities of 5–6 mol, in addition to the main product of biosynthesis. This method enables the production of [2Н]amino acids with different degrees of deuterium enrichment, depending on the 2Н2O concentration in the growth medium, from 17 at.% 2Н (on the growth medium with 24.5 % (v/v 2Н2О up to 75 at.% 2Н (on the growth medium with 98 % (v/v 2Н2О. This has been confirmed with the data from the electron impact (EI mass spectrometry analysis of the methyl ethers of N-dimethylamino(naphthalene-5-sulfochloride [2H]amino acids under these experimental conditions.

  5. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  6. Effective pesticide nano formulations and their bacterial degradation

    Science.gov (United States)

    Ramadass, M.; Thiagarajan, P.

    2017-11-01

    The use of chemical pesticides for agricultural pest control and the consequent damage to the ecosystem at air, water and soil levels has become a factor of common knowledge. This alarming trend has led to research and development in the area of nanoformulations to achieve the end use of pest control with very low concentrations of pesticides. Such formulations are being proven to be as effective as traditional formulations due to their inherent ability to achieve controlled delivery of their respective active ingredients. The end result is a successful pest control with minimum environmental damage. Despite this, certain organic groups, that form the essential structural constituents of these pesticides, are not readily degraded due to their complex nature. They continue to persist, accumulate and biomagnify in the environment leading to short and long term hazards. In this context, it has been noted that certain common genera of bacteria such as Bacillus, Pseudomonas, Flavobacterium, Sphingomonas, Brevibacterium, Burkholderia, etc possess the inherent ability to utilise specific chemical groups in the pesticides as their sole source of either carbon and / or nitrogen and consequently achieve their conversion into non-toxic end products. A potential bioremediation process is thus slowly gaining popularity and being implemented on a pilot scale. However, large scale successful pesticide microbial remediation will involve experimentation with several combinations of a variety of nano pesticide formulations with different genera of bacteria under optimised conditions. Such studies will throw light on the precise genus and species of bacteria that may degrade the required groups of pesticides, for environmental damage control in the long run.

  7. Development of a novel compound microbial agent for degradation of kitchen waste.

    Science.gov (United States)

    Zhao, Kaining; Xu, Rui; Zhang, Ying; Tang, Hao; Zhou, Chuanbin; Cao, Aixin; Zhao, Guozhu; Guo, Hui

    Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG), "Yilezai" (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH 3 and H 2 S emissions significantly during composting process. The concentration of NH 3 decreased from 7.1 to 3.2ppm and that of H 2 S reduced from 0.7 to 0.2ppm. Moreover, E 4 /E 6 (Extinction value 460nm /Extinction value 665nm ) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Molla Gianluca

    2010-04-01

    Full Text Available Abstract Background Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO. Results Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from ~500 up to ~25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. Conclusions Comparison of our results with those published on non-covalent (type I COs expressed in recombinant form (either in E. coli or Streptomyces spp., shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.

  9. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons

    Directory of Open Access Journals (Sweden)

    Saiqa Tufail

    Full Text Available ABSTRACT Polyhydroxyalkanoates (PHA are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349, Klebsiella pneumoniae (KF270350, Bacillus subtilis (KF270351, Brevibacterium halotolerance (KF270352, Pseudomonas aeruginosa (KF270353, and Stenotrophomonas rhizoposid (KF270354 by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72 h in all cases. P. aeruginosa led to maximum PHA production after 72 h at 37 °C and 100 rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750 cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs.

  10. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  11. Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric

    2004-08-01

    Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.

  12. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance)

    International Nuclear Information System (INIS)

    Hassanshahian, Mehdi

    2014-01-01

    Highlights: • Biosurfactant producing bacteria were isolated from Persian Gulf. • There is high diversity of biosurfactant producing bacteria in the Persian Gulf. • These bacteria are very useful for management of oil pollution in the sea. - Abstract: Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted

  13. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  14. [Microbiological analysis of terrestrial biotopes of the Antarctic region].

    Science.gov (United States)

    Tashirev, A B; Romanovskaia, V A; Rokitko, P V; Shilin, S O; Chernaia, N A; Tashireva, A A

    2010-01-01

    Microbiological analysis has been made of 120 samples from biotopes of the western coast of the Antarctic peninsula (Rasmussen cope, Tuxen cope, Waugh mountain), Argentine archipelago islands (Galindez, Skua, Corner, Barchans, Irizar, Uruguay, Cluls, Three Little Pigs, King-George), as well as neighbouring islands (Petermann--on the north, a group of Jalour islands--on the east, Berthelot--on the south-east); and more remote islands (Darboux, Lippmann, Booth). It was found out that the total number of chemoorganotrophic aerobic microorganisms was 10(6) - 10(8) cells/g of soil, that was by 2-3 orders lower than in the regions with temperate climate. One can observe a tendency of decreasing the quantity of chemoorganotrophic microorganisms in the Antartic biotopes (cells/g of a sample) in the following order: soil (1 x 10(7) - 8 x 10(8)), underground part of moss (1 x 10(6) - 5 x 10(7)), grass Deschampsia antarctica (10(6) - 10(8), slit of fresh-water reservoir (10(5) - 10(7)), ground part of moss (10(3) - 10(6)), lichens (10(3) - 10(6)). Representatives of several phylogenetic lines: Proteobacteria (genera Pseudomonas, Methylobacterium, Enterobacter), Firmicutes (genera Bacillus, Staphylococcus), Actinobacteria (genera Brevibacterium, Actinomyces, Streptomyces) have been found in the Antarctic samples. As a rule, genera of bacteria found in the Antarctic Region are widely distributed in different regions of the Earth with temperate climate. Microorganisms similar to the species Exophiala nigra (Issatsch.) Haats et de Hoog 1999, which was first detected 100 years ago by Academician B.L. Isachenko in the Arctic region water, were also isolated from biofilms on vertical rocks of the Galindez Island as well as from the soil of the Irizar Island.

  15. Ecosystème fromager : de l'étude du métabolisme du soufre chez Kluyveromyces lactis et Yarrowia lipolytica à l'interaction entre Kluyveromyces lactis et Brevibacterium aurantiacum

    OpenAIRE

    Hébert , Agnès

    2010-01-01

    Sulphur metabolism, which has a central role in the cell, is also important during the manufacturing of smear ripened cheeses. The cheese ecosystem degrades sulphur aminoacids, producing volatile sulphur compounds (VSCs) indispensable for the flavour of these products. We studied sulphur metabolism in two cheese-ripening microorganisms, the hemiascomycetous yeasts Kluyveromyces lactis and Yarrowia lipolytica. The in silico analysis of the phylum of hemiascomycetes gave us for the first time a...

  16. Ecosystème fromager : de l'étude du métabolisme du soufre chez Kluyveromyces lactis et Yarrowia lipolytica à l'interaction entre Kluyveromyces lactis et Brevibacterium aurantiacum

    OpenAIRE

    Hebert , Agnès

    2010-01-01

    Sulphur metabolism, which has a central role in the cell, is also important during the manufacturing of smear ripened cheeses. The cheese ecosystem degrades sulphur amino acids, producing volatile sulphur compounds (VSCs) indispensable for the flavour of these products. We studied sulphur metabolism in two cheese-ripening microorganisms, the hemiascomycetous yeasts Kluyveromyces lactis and Yarrowia lipolytica. The in silico analysis of the phylum of hemiascomycetes gave us for the first time ...

  17. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  18. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Directory of Open Access Journals (Sweden)

    Zhong-ke Jiang

    2018-05-01

    Full Text Available Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory

  19. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  20. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Science.gov (United States)

    Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein

  1. Assessment of bacterial superficial contamination in classical or ritually slaughtered cattle using metagenetics and microbiological analysis.

    Science.gov (United States)

    Korsak, N; Taminiau, B; Hupperts, C; Delhalle, L; Nezer, C; Delcenserie, V; Daube, G

    2017-04-17

    The aim of this study was to investigate the influence of the slaughter technique (Halal vs Classical slaughter) on the superficial contamination of cattle carcasses, by using traditional microbiological procedures and 16S rDNA metagenetics. The purpose was also to investigate the neck area to identify bacteria originating from the digestive or the respiratory tract. Twenty bovine carcasses (10 from each group) were swabbed at the slaughterhouse, where both slaughtering methods are practiced. Two swabbing areas were chosen: one "legal" zone of 1600cm 2 (composed of zones from rump, flank, brisket and forelimb) and locally on the neck area (200cm 2 ). Samples were submitted to classical microbiology for aerobic Total Viable Counts (TVC) at 30°C and Enterobacteriaceae counts, while metagenetic analysis was performed on the same samples. The classical microbiological results revealed no significant differences between both slaughtering practices; with values between 3.95 and 4.87log CFU/100cm 2 and 0.49 and 1.94log CFU/100cm 2 , for TVC and Enterobacteriaceae respectively. Analysis of pyrosequencing data showed that differences in the bacterial population abundance between slaughtering methods were mainly observed in the "legal" swabbing zone compared to the neck area. Bacterial genera belonging to the Actinobacteria phylum were more abundant in the "legal" swabbing zone in "Halal" samples, while Brevibacterium and Corynebacterium were encountered more in "Halal" samples, in all swabbing areas. This was also the case for Firmicutes bacterial populations (families of Aerococcaceae, Planococcaceae). Except for Planococcoceae, the analysis of Operational Taxonomic Unit (OTU) abundances of bacteria from the digestive or respiratory tract revealed no differences between groups. In conclusion, the slaughtering method does not influence the superficial microbiological pattern in terms of specific microbiological markers of the digestive or respiratory tract. However

  2. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Buono, Frédéric; Lambert, Denis; Latrille, Eric; Spinnler, Henry-Eric; Corrieu, Georges

    2004-08-01

    A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were

  3. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia's Caribbean coast.

    Science.gov (United States)

    Vivero, Rafael José; Jaramillo, Natalia Gil; Cadavid-Restrepo, Gloria; Soto, Sandra I Uribe; Herrera, Claudia Ximena Moreno

    2016-09-13

    Lutzomyia evansi, a phlebotomine insect endemic to Colombia's Caribbean coast, is considered to be the main vector of visceral and cutaneous leishmaniasis in the region. Although insects of this species can harbor pathogenic and non-pathogenic microorganisms in their intestinal microbiota, there is little information available about the diversity of gut bacteria present in Lutzomyia evansi. In this study, conventional microbiological methods and molecular tools were used to assess the composition of bacterial communities associated with Lutzomyia evansi guts in immature and adult stages of natural populations from the department of Sucre (Caribbean coast of Colombia). Sand flies were collected from two locations (peri-urban and jungle biotype) in the Department of Sucre (Caribbean coast of Colombia). A total of 752 Lutzomyia evansi intestines were dissected. In this study, 125 bacterial strains were isolated from different culture media (LB Agar, MacConkey Agar). Different methods were used for bacterial identification, including ribosomal intergenic spacer analysis (RISA) and analysis of the 16S rRNA and gyrB gene sequences. The genetic profiles of the bacterial populations were generated and temporal temperature gradient gel electrophoresis (TTGE) was used to compare them with total gut DNA. We also used PCR and DNA sequence analysis to determine the presence of Wolbachia endosymbiont bacteria and Leishmania parasites. The culture-dependent technique showed that the dominant intestinal bacteria isolated belong to Acinetobacter, Enterobacter, Pseudomonas, Ochrobactrum, Shinella and Paenibacillus in the larval stage; Lysobacter, Microbacterium, Streptomyces, Bacillus and Rummeliibacillus in the pupal stage; and Staphylococcus, Streptomyces, Brevibacterium, Acinetobacter, Enterobacter and Pantoea in the adult stage. Statistical analysis revealed significant differences between the fingerprint patterns of the PCR-TTGE bands in bacterial communities from immature and

  4. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.

    Science.gov (United States)

    Waters, Sinéad M; Murphy, Richard A; Power, Ronan F G

    2006-08-01

    Undefined Nurmi-type cultures (NTCs) have been used successfully to prevent salmonella colonisation in poultry for decades. Such cultures are derived from the caecal contents of specific-pathogen-free birds and are administered via drinking water or spray application onto eggs in the hatchery. These cultures consist of many non-culturable and obligately anaerobic bacteria. Due to their undefined nature it is difficult to obtain approval from regulatory agencies to use these preparations as direct fed microbials for poultry. In this study, 10 batches of prototype NTCs were produced using an identical protocol over a period of 2 years. Traditional microbiological techniques and a molecular culture-independent methodology, polymerase chain reaction combined with denaturing gradient gel electrophoresis (PCR-DGGE), were applied to characterise these cultures and also to examine if the constituents of the NTCs were identical. Culture-dependent analysis of these cultures included plating on a variety of selective and semi-selective agars, examination of colony morphology, Gram-staining and a series of biochemical tests (API, BioMerieux, France). Two sets of PCR-DGGE studies were performed. These involved the amplification of universal and subsequently lactic acid bacteria (LAB)-specific hypervariable regions of a 16S rRNA gene by PCR. Resultant amplicons were subjected to DGGE. Sequence analysis was performed on subsequent bands present in resultant DGGE profiles using the Basic Local Alignment Search Tool (BLAST). Microbiological culturing techniques tended to isolate common probiotic bacterial species from the genera Lactobacillus, Lactococcus, Bifidobacterium, Enterococcus, Clostridium, Escherichia, Pediococcus and Enterobacterium as well as members of the genera, Actinomyces, Bacteroides, Propionibacterium, Capnocytophaga, Proteus, and Klebsiella. Bacteroides, Enterococcus, Escherichia, Brevibacterium, Klebsiella, Lactobacillus, Clostridium, Bacillus, Eubacterium