WorldWideScience

Sample records for brazilian biofuels industry

  1. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  2. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  3. The macro-environment for liquid Biofuels in Brazilian science and public policies

    OpenAIRE

    E. Talamini; H. Dewes

    2012-01-01

    The purpose of this study is to identify the macro-environmental dimensions through which Brazilian scientists and government officials have framed issues surrounding liquid biofuels over a period of time. This study analyzes scientific papers published by researchers affiliated with Brazilian institutions and official documents of the Brazilian government related to liquid biofuels. Documents published during a ten-year period (1997--2006) were collected from electronic sources. Text-mining ...

  4. The Brazilian biofuels programme and trends for the future

    International Nuclear Information System (INIS)

    Penteado Neto, Renato de Arruda; Cunha, Ricardo Brasil Correa

    2008-01-01

    In Brazil the use of biofuels has increased along the last decades and the participation on the national energy matrix is expected to be more relevant in the near future. Ethanol and biodiesel are the main types of biofuel used in the transport sector. Brazil was responsible for 41% of the total world ethanol production in 2006. As far as vehicles are concerned, the participation of flexfuel cars in the Brazilian market in 2007 was 65%. The Brazilian Government implemented in 2005 its Biodiesel National Programme. In 2008 a mixture of 2% in diesel is mandatory, representing 840 million litres per year. (author)

  5. Practical implementation of liquid biofuels: The transferability of the Brazilian experiences

    International Nuclear Information System (INIS)

    Alonso-Pippo, Walfrido; Luengo, Carlos A.; Alonsoamador Morales Alberteris, Lidice; García del Pino, Gilberto; Duvoisin, Sergio

    2013-01-01

    The main purpose of this paper was to carry out a systematic analysis of the particularities and trends pertaining to the development of biofuels in Brazil—a country which has demonstrated its leadership in this field during the last 40 years. The Brazilian experiences with biofuels are often used as references for decision making by other developed and developing countries. The transferability of Brazil's biofuels practices would be appreciated by many researchers and energy policy markers across the world. This work uses an adapted 5W2H (what, when, where, why, who, how, and how much) analysis technique to answer a variety of questions about the subject. The data, facts, and figures herein are offered as resources for other researchers and policy makers seeking benchmarking. Also, this work discusses the main certainties and uncertainties of the sugarcane agro-industry, and also goes into detail about the ethanol supply chain structure, its management, and particularities. Finally, this research analyzes the central aspects of biofuels implementation in Brazil, lists the most important aspects to consider during a selection of possible standard biofuels, and presents the main aspects of the National Program of Biodiesel Production and its sustainability. - Highlights: • A systemic cause–effect analysis was carried out on biofuel program success. • Main questions concerning implementation of liquid biofuels in Brazil were studied. • Main weakness aspects of biofuel logistic were treated. • During selection of benchmarking strategy. What needs to take into account?

  6. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  7. Improving the environmental performance of biofuels with industrial symbiosis

    International Nuclear Information System (INIS)

    Martin, Michael; Eklund, Mats

    2011-01-01

    In the production of biofuels for transport many critics have argued about the poor energy efficiency and environmental performance of the production industries. Optimism is thus set on the production of second generation biofuels, while first generation biofuels continue to dominate worldwide. Therefore it is interesting to consider how the environmental performance of first generation biofuel industries can be improved. The field of industrial symbiosis offers many possibilities for potential improvements in the biofuel industry and theories from this research field are used in this paper to highlight how environmental performance improvements can be accomplished. This comes in the form of by-product synergies and utility synergies which can improve material and energy handling. Furthermore, the processes and products can gain increased environmental performance improvements by the adaption of a renewable energy system which will act as a utility provider for many industries in a symbiotic network. By-products may thereafter be upcycled through biogas production processes to generate both energy and a bio-fertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to provide support for these theories. -- Highlights: → By-product and utility synergies may improve the production processes of biofuel industries for reduced energy consumption and improved environmental performance. → Upcycling tenants can make use of wastes to upgrade waste to a valuable product and/or energy source. → Energy systems for biofuel production have a large influence on the performance of biofuel industries.

  8. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  9. Risks affecting the biofuels industry: A US and Canadian company perspective

    International Nuclear Information System (INIS)

    Pries, Fred; Talebi, Alireza; Schillo, R. Sandra; Lemay, Margaret A.

    2016-01-01

    Policymakers face the challenge of finding a mix of policies that are effective in growing the biofuels industry. We argue that a missing component of biofuel policy is consideration of the risks faced by companies in the biofuels industry. The purpose of this paper is to address the research question: What are the most important risks facing companies in the biofuels industry? We identify 22 risks in our analysis of 652 narrative risk factor descriptions disclosed by 26 publicly traded biofuel companies in the US and Canada. The results show that the most important risks are related to management and management processes, and to market conditions and profitability. Biofuel companies view technological risks, including those related to intellectual property protection, as less significant. These results suggest that, in order to be responsive to the risks companies face, biofuel policy needs to support the development of managers and management processes; to support market conditions and industry profitability; and to strike an appropriate balance between policy support for technology development and for business development. Further, we suggest a risk informed approach to setting government policy for the biofuels industry may support the industry's development. - Highlights: • Risk factors disclosed by 26 publicly traded biofuel companies were analyzed. • 22 risks were identified and assessed. • Key risks involved management, market conditions and profitability. • A risk focused approach to biofuel policy may support the industry's development.

  10. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  11. PERSPECTIVE: Learning from the Brazilian biofuel experience

    Science.gov (United States)

    Wang, Michael

    2006-11-01

    In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids

  12. U.S. Biofuels Industry. Mind the Gap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-04-01

    This report was prepared is intended to provide an objective view of the evolving biofuels industry and many of its key participants. It is the second “Year in Review” report created for use by an intended audience of industry, investor, policy maker, and regulator stakeholders. This report covers the 2-year period of 2008-2009.

  13. The Strategic Principles of Formation and Development of the Biofuel Industry in Ukraine

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2017-04-01

    Full Text Available The article is aimed at highlighting the strategic principles of formation and development of the biofuel production in Ukraine at a competitive level. The carried out comprehensive analysis of scientific publications indicates the relevance of the pace of development in the biofuel industry as in the world, so in Ukraine. However, the low level of consumption and production of biofuels in our country requires further research of strategic nature. It has been found that formation of the competitive production of biofuels in Ukraine would ensure the positive developments in the economic, energy, agro-industrial, and environmental directions. On the basis of the carried out SWOT-analysis, the author has evaluated internal forces and the system of internal shortages, as well as the resource potential of the agro-industrial complex towards the implementation of existing external opportunities and confronting various threats, emerging in the market conditions during the process of development and rise of the biofuel industry.

  14. Simulating the impact of new industries on the economy : The case of biorefining in Australia

    NARCIS (Netherlands)

    Malik, Arunima; Lenzen, Manfred; Ely, Romulo Neves; Dietzenbacher, Erik

    2014-01-01

    We investigate the economic and employment consequences of introducing a new sugarcane-based biofuel industry into Australia. We model the new biofuel industry on the production recipe of the existing large-scale gasoalcohol and alcohol sectors in the Brazilian economy. To this end we utilise a

  15. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  16. Analysis of the Romanian biofuels industry under the current economic conditions using PESTEL

    OpenAIRE

    OLTEANU Alin Paul

    2009-01-01

    Biofuels worldwide recorded considerable growth rates over the last years, making them one of the most flourishing young industries. The biofuels industry within the EU27 focused on the production of biodiesel, which is the equivalent of the regular fossil diesel. Main drivers, which led to this development, were a favorable legislative framework promoted by the EU, which was translated by each EU member state through excise tax exemptions and obligatory fuel blending levels, and higher produ...

  17. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  18. A conceptual lignocellulosic 'feed+fuel' biorefinery and its application to the linked biofuel and cattle raising industries in Brazil

    International Nuclear Information System (INIS)

    Mathews, John A.; Tan Hao; Moore, Michael J.B.; Bell, Geoff

    2011-01-01

    It has been argued by some that the substitution of biofuels for gasoline could increase greenhouse gas (GHG) emissions, rather than reduce them. The increase is attributed to the indirect land use change effects of planting new grain and corn crops around the world to replace those progressively being devoted to ethanol production. In this paper, indirect effects are minimised by allowing land to be used for both food and fuel, rather than for one or the other. We present a sugarcane 'feed+fuel' biorefinery, which produces bioethanol and yeast biomass, a source of single-cell protein (SCP), that can be used as a high-protein animal feed supplement. The yeast SCP can partially substitute for grass in the feed of cattle grazing on pasture and thereby potentially release land for increased sugarcane production, with minimal land use change effects. Applying the concept conservatively to the Brazilian ethanol and livestock industry our model demonstrates that it would be technically feasible to raise ethanol production threefold from the current level of 27 GL to over 92 GL. The extra ethanol would meet biofuel market mandates in the US without bringing any extra land into agricultural or pastoral use. The analysis demonstrates a viable way to increase biofuel and food production by linking two value chains as called for by industrial ecology studies. - Highlights: → A proposed sugarcane 'feed+fuel' biorefinery producing bioethanol and yeast. → Yeast used as a high-protein animal feed supplement. → In cattle grazing, yeast substitutes for grass to release land for biomass production. → In Brazil our model demonstrates ethanol production raised threefold.

  19. Competitiveness in the Brazilian oil industry. The Brazilian 'oil diamond'

    International Nuclear Information System (INIS)

    Zamith, R.; Moutinho Dos Santos, E.

    2000-01-01

    It is recognized the economic benefits that might follow the opening process of the Brazilian oil and natural gas industry, which shall experience a fast expansion with the arrival of national and international private investors. However, we should not neglect the broader impact of this process on the future development of all that cluster of national agents that lived around and served the former national oil monopoly, managed by the Brazilian National Oil Company, Petrobras. This work focuses on this larger perspective, discussing about the capacity of Brazil to sustain and expand its competitiveness in the oil business as well as to obtain the maximum economic development from the exploration of its oil and gas reserves. We adopt the work of Michael Porter, from the University of Harvard, about the Competitive Advantage of Nations, as a theoretical model to analyze the Competitive Advantage of Brazil in the global oil industry. By introducing the concept of ''oil diamond'', adapted from the notion introduced by this author, we develop a new understanding of national competitiveness in the oil sector. In this paper, we present the general model as well as a brief characterization of the results found for Brazil Subsequently, we focus on just one leg of the model, for which we discuss, with more detail, about the competitive condition of the country in the opening-up scenario. This leg regards the so-called supporting and supplementary industries that constitute what is denominated in the French tradition the ''para petroleum'' industry. We analyze the conditions for the Brazilian domestic ''para petroleum industry'' to survive and grow in the new competitive environment. (authors)

  20. Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis

    OpenAIRE

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.

    2009-01-01

    In this paper, we offer a general equilibrium analysis of the impacts of US and EU biofuel mandates for the global livestock sector. Our simulation boosts biofuel production in the US and EU from 2006 levels to mandated 2015 levels. We show that mandates will encourage crop production in both biofuel and non biofuel producing regions, while reducing livestock and livestock production in most regions of the world. The non-ruminant industry curtails its production more than other livestock indu...

  1. Estimation of carbon allocation of Macauba palm (Acrocomia aculeata) - A new Brazilian biofuel alternative

    Science.gov (United States)

    Imbuzeiro, H. A.; Moreira, S. L. S.; Motoike, S. Y.; Fernandes, R. B. A.

    2017-12-01

    The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation.

  2. Report about the optimization of the biofuel industry sustaining system

    International Nuclear Information System (INIS)

    Prevot, H.; Hespel, V.; Dupre, J.Y.; Baratin, F.; Gagey, D.

    2005-01-01

    At the end of 2004, the French government has fixed up the ambitious goal of developing biofuels conformably with the objectives of the 2003/30/CE European directive: the level of blending gasoline and diesel fuels with biofuels should reach 5.75% of the energetic value by 2010. In 2004 this level was only 0.8%, i.e. 7 times less. In order to reach such a goal, the government has implemented two tools: a classical tax exemption tool, already used by other European partners, and a new tool created by the 2005 finances law: the general tax on polluting activities (TGAP). This report presents the main characteristics of biofuel industries and the policies implemented in favor of biofuels. It analyzes the new system and its implementation (tax exemption and TGAP) and proposes new markets for the French agriculture. It recommends to take into considerations the constraints and needs of the fuels market, that the government establishes a new regulation for this market, reforms the existing fiscal system and takes complementary dispositions (intervention at the European Communities level, development of research..). Several appendixes illustrate this report. (J.S.)

  3. Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide

    OpenAIRE

    Fuglie, Keith O.; Heisey, Paul W.; King, John L.; Day-Rubenstein, Kelly A.; Schimmelpfennig, David E.; Wang, Sun Ling

    2011-01-01

    Meeting growing global demand for food, fiber, and biofuel requires robust investment in agricultural research and development (R&D) from both public and private sectors. This study examines global R&D spending by private industry in seven agricultural input sectors, food manufacturing, and biofuel and describes the changing structure of these industries. In 2007 (the latest year for which comprehensive estimates are available), the private sector spent $19.7 billion on food and agricultural ...

  4. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  5. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  6. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  7. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  8. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)

  9. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  10. A prospective analysis of Brazilian biofuel economy: Land use, infrastructure development and fuel pricing policies

    Science.gov (United States)

    Nunez Amortegui, Hector Mauricio

    Being the two largest ethanol producers in the world, transportation fuel policies in Brazil and the U.S. affect not only their domestic markets but also the global food and biofuel economy. Hence, the complex biofuel policy climate in these countries leaves the public with unclear conclusions about the prospects for supply and trade of agricultural commodities and biofuels. In this dissertation I develop a price endogenous mathematical programming model to simulate and analyze the impacts of biofuel policies in Brazil and the U.S. on land use in these countries, agricultural commodity and transportation fuel markets, trade, and global environment. The model maximizes the social surplus represented by the sum of producers' and consumers' surpluses, including selected agricultural commodity markets and fuel markets in the U.S., Brazil, Argentina, China, and the Rest-of-the-World (ROW), subject to resource limitations, material balances, technical constraints, and policy restrictions. Consumers' surplus is derived from consumption of agricultural commodities and transportation fuels by vehicles that generate vehicle-kilometers-traveled (VKT). While in the other regional components aggregate supply and demand functions are assumed for the commodities included in the analysis, the agricultural supply component is regionally disaggregated for Brazil and the U.S., and the transportation fuel sector is regionally disaggregated for Brazil. The U.S. agricultural supply component includes production of fourteen major food/feed crops, including soybeans, corn and wheat, and cellulosic biofuel feedstocks. The Brazil component includes eight major annual crops, including soybeans, corn, wheat, and rice, and sugarcane as the energy crop. A particular emphasis is given to the beef-cattle production in Brazil and the potential for livestock semi-intensification in Brazilian pasture grazing systems as a prospective pathway for releasing new croplands. In the fuel sector of both

  11. Analysis of the evolution of sustainable development in biofuels industry in Brazil

    Directory of Open Access Journals (Sweden)

    Carmen Rosa Loayza Rollano

    2015-06-01

    Full Text Available This paper presents an evaluation of sustainable development in the biofuel production sector. The Energy Indicators Tool for Sustainable Development (EISD and the Sustainability Indicators Tool Global Association for Bioenergy (GBEP were applied. Performing a comparison of indicators in each performance (economic, social and environmental, it was found that the production of biofuels in Brazil is positive in most of them. Biofuels showed a favorable trend in economic indicators, not only in terms of cost, but also through the use of energy available to the consumer market. Environmental indicators showed an improvement in the efficient use of land, water and energy resources, while pesticide applications are relatively low in relation to the limits. In addition, it appears that the biofuels industries have contributed positively to rural economies, since the social indicators showed a relatively significant and positive increase in labor supply and salary level of the labor market in this sector. Also appears that existing tools are complementary and the results provide a basis for future discussions and the development of sustainability assessments in systems and bioenergy-related projects.

  12. Evaluation of biofuels sustainability: can we keep biofuel appropriate and green?

    CSIR Research Space (South Africa)

    Amigun, B

    2009-11-01

    Full Text Available and Industrial Research (CSIR) Pretoria, South Africa bamigun@csir.co.za Outlines • State of biofuels in Africa - Biofuels initiatives in Africa • Barriers to biofuels market penetration and policy incentives to stimulate the market. • Sustainability... are then motivated to put these ideas into practice. The end of Phase I is the political decision to invest money and other resources into biofuel research. Biofuels developmental stages in Africa…explanation © CSIR 2009 www...

  13. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  14. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  15. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    Science.gov (United States)

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  16. Performance evaluation of the conventional Brazilian industries radiation protection in the small industrial gauges and industrial radiography areas

    International Nuclear Information System (INIS)

    Santos, Joyra Amaral dos

    1999-08-01

    This works evaluates by punctuation the performance in conventional Brazilian industries radiation protection area which make use of small industrial gauges and industrial radiography. It proposes, procedures for industry self-evaluation, besides a new radiation protection plans pattern for the small industrial gauges area. The data source where inspection reports of Dosimetry Radiation Protection Institute/Nuclear Energy Commission conventional Brazilian industries' radiation protection plans, beyond visitation to the inspection place. The performance evaluation has been realized both in the administrative and operational aspects of the industries. About of 60% of the industries have a satisfactory register control which does not happen to the operational control. The performance evaluation advantage is that industries may self-evaluate, foreseeing Dosimetry Radiation Protection Institute's regulation inspections, correcting its irregularities, automatically improving its services. The number of industries which have obtained satisfactory performance in both areas is below 70%, both in administrative and operational aspects. Such number can be considered a low one as it is radiation protection. The procedures propose in this work aim to improve such a situation. (author)

  17. Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

    International Nuclear Information System (INIS)

    Clark, Christopher M; Bierwagen, Britta G; Morefield, Philip E; Ridley, Caroline E; Lin, Yolanda; Vimmerstedt, Laura; Bush, Brian W; Eaton, Laurence M; Langholtz, Matthew H; Peterson, Steve

    2013-01-01

    Biofuels are expected to be a major contributor to renewable energy in the coming decades under the Renewable Fuel Standard (RFS). These fuels have many attractive properties including the promotion of energy independence, rural development, and the reduction of national carbon emissions. However, several unresolved environmental and economic concerns remain. Environmentally, much of the biomass is expected to come from agricultural expansion and/or intensification, which may greatly affect the net environmental impact, and economically, the lack of a developed infrastructure and bottlenecks along the supply chain may affect the industry’s economic vitality. The approximately 30 million acres (12 million hectares) under the Conservation Reserve Program (CRP) represent one land base for possible expansion. Here, we examine the potential role of the CRP in biofuels industry development, by (1) assessing the range of environmental effects on six end points of concern, and (2) simulating differences in potential industry growth nationally using a systems dynamics model. The model examines seven land-use scenarios (various percentages of CRP cultivation for biofuel) and five economic scenarios (subsidy schemes) to explore the benefits of using the CRP. The environmental assessment revealed wide variation in potential impacts. Lignocellulosic feedstocks had the greatest potential to improve the environmental condition relative to row crops, but the most plausible impacts were considered to be neutral or slightly negative. Model simulations revealed that industry growth was much more sensitive to economic scenarios than land-use scenarios—similar volumes of biofuels could be produced with no CRP as with 100% utilization. The range of responses to economic policy was substantial, including long-term market stagnation at current levels of first-generation biofuels under minimal policy intervention, or RFS-scale quantities of biofuels if policy or market conditions were

  18. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  19. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  20. The market and environmental effects of alternative biofuel policies

    Science.gov (United States)

    Drabik, Dusan

    This dissertation analyzes market and environmental effects of alternative U.S. and Brazilian biofuel policies. Although we focus on corn- and sugarcane-ethanol, the advanced analytical framework can easily be extended to other biofuels and biofuel feedstocks, such as biodiesel and soybean. The dissertation consists of three chapters. The first chapter develops an analytical framework to assess the market effects of a set of biofuel policies (including subsidies to feedstocks). U.S. corn-ethanol policies are used as an example to study the effects of biofuel policies on corn prices. We determine the 'no policy' ethanol price, analyze the implications for the 'no policy' corn price and resulting 'water' in the ethanol price premium due to the policy, and generalize the surprising interaction effects between mandates and tax credits to include ethanol and corn production subsidies. The effect of an ethanol price premium depends on the value of the ethanol co-product, the value of production subsidies, and how the world ethanol price is determined. U.S. corn-ethanol policies are shown to be a major reason for recent rises in corn prices. The ethanol policy-induced increase in corn prices is estimated to be 33 -- 46.5 percent in the period 2008 -- 2011. The second chapter seeks to answer the question of what caused the significant increase in ethanol, sugar, and sugarcane prices in Brazil in the period 2010/11 to 2011/12. We develop a general economic model of the Brazilian fuel-ethanol-sugar complex. Unlike biofuel mandates and tax exemptions elsewhere, Brazil's fuel-ethanol-sugar markets and fuel policies are unique in that each policy, in this setting, theoretically has an ambiguous impact on the market price of ethanol and hence on sugarcane and sugar prices. Our empirical analysis shows that there are two policies that seemingly help the ethanol industry but do otherwise in reality: a low gasoline tax and a high anhydrous tax exemption result in lower ethanol

  1. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  2. How policies affect international biofuel price linkages

    International Nuclear Information System (INIS)

    Rajcaniova, Miroslava; Drabik, Dusan; Ciaian, Pavel

    2013-01-01

    We estimate the role of biofuel policies in determining which country is the price leader in world biofuel markets using a cointegration analysis and a Vector Error Correction (VEC) model. Weekly prices are analyzed for the EU, US, and Brazilian ethanol and biodiesel markets in the 2002–2010 and 2005–2010 time periods, respectively. The US blender's tax credit and Brazil's consumer tax exemption are found to play a role in determining the ethanol prices in other countries. For biodiesel, our results demonstrate that EU policies – the consumer tax exemption and blending target – tend to determine the world biodiesel price. - Highlights: • We estimate the role of biofuel policies in determining biofuel prices. • We use a cointegration analysis and the Vector Error Correction (VEC) model. • The biofuel policies in US and Brazil determine the world ethanol prices. • EU biofuel policies tend to form the world biodiesel price

  3. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  4. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Tacconi, Daniela

    2014-01-01

    Highlights: • Routes to aviation biofuels are examined, focusing on drop-in biofuels, capable of high blend levels with fossil kerosene. • Industrial demonstration activities are reported. • Used cooking oil is considered as alternative sustainable biomass feedstock for paraffinic fuel production. - Abstract: Alternative fuels are expected to play a major role in EU in the coming years due European Directives on the promotion of renewable energies and reduction of greenhouse gas emissions in transports. However, while in road transports a variety of possible renewable fuels (mainly biofuels, but also electricity) can be considered, in aviation only high quality paraffinic biofuels can be adopted. This means that biomass must be converted through advanced processes into pure hydrocarbon fuels, fully compatible with the existing systems. The aviation sector is responsible for the 2% of the world anthropogenic CO 2 emissions and the 10% of the fuel consumption: airlines’ costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and CO 2 emissions should double in 25 years. Thus, more than 2 billion people and 40 Mt of good/cargo will have to be moved every year. In this context, the EU Flightpath set a target of 2 Mt per year for aviation alternative fuel by 2020 (i.e. 4% of annual fuel consumption). New processes towards bio-hydrocarbons are being developed, demonstrated and soon industrialized. The present work explores the possible routes from biomass feedstock to sustainable paraffinic fuels, either through bio or thermo-chemical processes, as well as discusses those more mature, focusing on industrial demonstration initiatives. In fact, while the number of possible options towards paraffinic biofuel production is very large, and covers both thermochemical and biochemical routes, as well as hybrid one, only two pathways are today ready for testing a significant

  5. The context of biofuels for road transportation in Brazil; O contexto dos biocombustiveis para o transporte rodoviario no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Email: mberni@uol.com.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: bajay@fem.unicamp.br

    2006-07-01

    Brazil is one of the countries with greatest potential for fuels production from biomass and has already given a good example to the world as how to implement a program and use of biofuel based on renewable energy source. The Brazilian ethanol program has already 30 years of experience and has produced a mature industry. Biogas and biodiesel, in turn, is just in the initial phase, with a supply chain being structured and looking for the best solutions from the economic, social and environment standpoint. In this context, this work analyzed the potential, implications and experiences for biofuels with ethanol, mainly biogas and biodiesel for road transport in Brazil. (author)

  6. Industrial development - consequences about the implantation of Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Syllus, C.

    1987-07-01

    The strategy to promote the growing industry participation in the Brazilian Nuclear Program, the difficulties, the measurements adopted for overcoming and the results obtained in terms of industrial development, are presented. (M.C.K.) [pt

  7. Lessons learned from Brazilian natural gas industry reform

    International Nuclear Information System (INIS)

    Mathias, Melissa Cristina; Szklo, Alexandre

    2007-01-01

    Over the past decades many countries have reformed their infrastructure industries. Although these reforms have been broadly similar for the most part, aiming at introducing competition in potentially competitive segments, the contexts in which they have been carried out differ. This is due to the past regulatory experience in each country, the maturity of the industry and/or the number of agents when the reform process started. The Brazilian natural gas reform stands out due to the country's singular conditions. The development of the natural gas industry in Brazil was grounded on stepping up supplies through integration with neighboring nations (particularly Bolivia) and establishing a competitive environment by lowering the barriers hampering the arrival of new investors. However, natural gas is located at the crossroads of two main energy chains: oil and hydroelectricity. This article analyzes the Brazilian natural gas reform, and extracts lessons from this process. The low capillarity of transportation and distribution systems continues to be the main bottleneck of the country's natural gas industry. The challenges of the new legal framework are to encourage investments in networks and guarantee supply, to allow the industry to consolidate and mature, against a backdrop of rapid changes in the world market. (author)

  8. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  9. Energy policy, social exclusion and sustainable development: The biofuels and oil and gas cases in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeremy; Matos, Stelvia; Silvestre, Bruno

    2010-09-15

    Recent Brazilian policies have encouraged impoverished communities to participate in the country's growing energy industry. This paper explores the country's attempts to encourage such participation within the oil and gas and biofuels sectors. Our research is based on interviews with industry executives, policymakers, non-governmental organizations and farmers conducted between 2005-2009 in Brazil, an emerging energy leader, yet a country grappling with social exclusion. We propose that some sectors have a propensity to be exclusive due to technological complexity, whereas other sectors, although less complex, tend to economize at the expense of social programs. We conclude with managerial and policy implications.

  10. Is Industry-University Interaction Promoting Innovation in the Brazilian Pharmaceutical Industry?

    Science.gov (United States)

    Paranhos, Julia; Hasenclever, Lia

    2011-01-01

    This paper analyses industry-university interaction and its characteristics in the Brazilian pharmaceutical system of innovation, taking account of the relevance of company strategies, the approach of the universities and the actions of government. By analysing primary and secondary data the authors show that, for as long as corporate investment…

  11. Activity report 2006 - INB - Brazilian Nuclear Industries Inc

    International Nuclear Information System (INIS)

    2006-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2006 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  12. Competitive integration. A new strategy for the brazilian industrialization

    International Nuclear Information System (INIS)

    Lucas, L.P.V.

    1989-01-01

    It is discussed a new strategy for brazilian industrialization: from importation substitution to structural changes. The strategy of competitive integration, technological progress and the new technologies. (A.C.A.S.)

  13. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  14. Current market of industrial bio-products and biofuels, and predictable evolutions by 2015/2030. Synthesis

    International Nuclear Information System (INIS)

    2007-04-01

    The main objectives of this study were to describe the current status of the energetic and industrial bio-product markets (biofuels, bio-lubricants, biomaterials, papers, cosmetics, and so on), to identify and analyze the evolution perspectives of these new markets on a long and medium term, to define scenarios of evolution for different sectors (agro-industry, energy, organic chemistry), to identify the most promising new markets, and to select the priority agro-industrial sectors

  15. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  16. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  17. Energy policy, social exclusion and sustainable development: The biofuels and oil and gas cases in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeremy; Matos, Stelvia; Silvestre, Bruno

    2010-09-15

    Recent Brazilian policies have encouraged impoverished communities to participate in the country's growing energy industry. This paper explores the country's attempts to encourage such participation within the oil and gas and biofuels sectors. Our research is based on interviews with industry executives, policymakers, non-governmental organizations and farmers conducted between 2005-2009 in Brazil, an emerging energy leader, yet a country grappling with social exclusion. We propose that some sectors have a propensity to be exclusive due to technological complexity, whereas other sectors, although less complex, tend to economize at the expense of social programs. We conclude with managerial and policy implications.

  18. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    International Nuclear Information System (INIS)

    Nielsen, Jason D.

    2006-07-01

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  19. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D.

    2006-07-15

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  20. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D

    2006-07-15

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  1. Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stright, Dana [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of

  2. Tracking U.S. biofuel innovation through patents

    International Nuclear Information System (INIS)

    Kessler, Jeff; Sperling, Daniel

    2016-01-01

    We use biofuel patents as a proxy for biofuel innovation. Through use of natural language processing and machine-learning algorithms, we expand patent classification capabilities to better explain the history of biofuels innovation. Results indicate that after the initial establishment of the U.S. biofuel industry, there were two surges in biofuel innovation: 1995–2000, characterized by heavy patenting by 1st generation (food-based) biofuel firms; and 2005–2010, characterized by a second surge of innovation by those same large firms, complemented by a large number of biotechnology firms producing a relatively small number of 2nd generation biofuel patents. Our analysis corroborates the widespread understanding that the first surge in biofuel innovation was linked to innovations in agriculture, and that the second surge of biofuel innovation was driven by demand-pull policies mandating and incentivizing biofuels. But the slow emergence of a 2nd generation cellulose-based biofuels industry, far slower than called for by policy, suggests that technology-push policies more focused on R&D and investment may be needed to accelerate the commercialization of 2nd generation biofuels. - Highlights: • Patenting activity closely corresponds to sociotechnical shifts in biofuel innovation. • The Renewable Fuel Standard likely contributed to the rise in biofuel patenting activity after 2005. • 2nd generation biofuel technology innovation appears lacking compared to 1st generation technologies.

  3. Biofuel investment in Tanzania: Omissions in implementation

    International Nuclear Information System (INIS)

    Habib-Mintz, Nazia

    2010-01-01

    Increasing demand for biofuels as a component of climate change mitigation, energy security, and a fossil fuel alternative attracts investors to developing countries like Tanzania. Ample unused land is critical for first generation biofuels production and an important feature to attract foreign direct investments that can contribute towards agricultural modernization and poverty reduction initiatives. Despite the economic justifications, the existing institutional and infrastructural capacities dictate the impacts of biofuels market penetrations. Furthermore, exogenous factors like global recessionary pressure depressed oil prices below the level at which biofuel production were profitable in 2007, making Tanzania's competitiveness and potential benefits questionable. This paper investigates the extent that first generation, jatropha-based biofuels industry development in Tanzania observed during fieldwork in Kisarawe and Bahi may fulfill policy objectives. This paper argues that without strong regulatory frameworks for land, investment management, and rural development, biofuel industrialization could further exacerbate poverty and food insecurity in Tanzania. The paper concludes with policy recommendations for first generation biofuel development while keeping in mind implications of second generation production. Since the topic is broad and multifaceted, a multidisciplinary approach is used that includes political, institutional, and agricultural economics to analyze and conceptualize biofuel industry development and food security.

  4. Material property characterization of co-products from biofuel industries: Potential uses in value-added biocomposites

    International Nuclear Information System (INIS)

    Diebel, William; Reddy, Murali M.; Misra, Manju; Mohanty, Amar

    2012-01-01

    This paper gives an insight of biofuel production and the status -into the co-products obtained from this industry. Furthermore this work explores the possibility of these co-products as raw materials for value-added uses in material applications. This is achieved by understanding composition, solid density, and moisture content of prominent co-products such as soy meal, DDGS (distillers’ dried grains with solubles) and jatropha meal. Moisture content and density measurements showed no trend. Soy meal has the highest protein content, followed by jatropha and DDGS. Thermal stability of these co-products was analyzed by thermogravimetric analysis (TGA), which revealed that the thermal stabilities are ranked as soy meal>DDGS>jatropha meal. FT-IR spectroscopy was used to understand the functional groups in these meals and it showed that the amide group was prominent in all of these meals. In pursuit of finding value-added uses for these co-products of biofuel industries, biodegradable polymer, i.e. polycaprolactone (PCL), based biocomposites were prepared by melt processing technique using extrusion followed by injection molding. Tensile, flexural and impact properties were evaluated. Also, scanning electron microscopy (SEM) of fractured sections of the biocomposites was examined. -- Highlights: ► This paper gives an insight of biofuel production and its co-products. ► We have characterized biofuel co-products such as soy meal, DDGS and jatropha meal. ► Thermal stability and functional groups of these co-products were determined. ► Polycaprolactone based biocomposites were prepared by melt processing technique. ► Tensile, flexural and impact properties of these biocomposites were evaluated.

  5. Biofuels in Italy: obstacles and development opportunities

    International Nuclear Information System (INIS)

    Pignatelli, Vito; Clementi, Chiara

    2006-01-01

    Today biofuels are the sole realistically practical way to reduce CO 2 emissions in the transportation sector. In many countries, including Italy, biofuel production and use are already a reality corresponding to a large agro-industrial production system that uses essentially mature technologies. To significantly lower production costs and optimise land use, Italy needs to develop new, second-generation biofuel production operations that can offer significant opportunities to the nation's agro-industrial sector [it

  6. Supply Chain Management in The Brazilian Automobile Industry: Bottlenecks for Steadier Growth

    Directory of Open Access Journals (Sweden)

    W. F. Sorte Junior

    2011-06-01

    Full Text Available Taking the Lean Production System as the reference model, this paper analyses the supply chain management approach and the relationship between private and public sectors in the Brazilian automobile industry. Through a case study conducted from October 2006 to October 2008 in a private owned automaker, two bottlenecks in this Brazilian industrial sector are identified: (1 Emphasis on coordination rather than integration in supply chain management; and (2 Insufficient channels of communication between private and public sectors, resulting in inefficient policies to nurture automakers with low production volume.

  7. Industrial symbiosis and biofuels industry : Business value and organisational factors within cases of ethanol and biogas production

    OpenAIRE

    Mirata, Murat; Eklund, Mats; Gundberg, Andreas

    2017-01-01

    Industrial symbiosis (IS) involves collaborations among diverse, and predominantly local and re- gional, actors that create additional economic and environmental value through by-product ex- changes, utility and service sharing, and joint innovations. While the importance of IS for the de- velopment of biofuels is commonly recognised hypothetically, this study aims at advancing under- standing of the actual contribution provided in two real life examples–one focusing on grain-based ethanol pr...

  8. Windows of opportunities and technological innovation in the Brazilian pharmaceutical industry.

    Science.gov (United States)

    Tigre, Paulo Bastos; Nascimento, Caio Victor Machado França do; Costa, Laís Silveira

    2016-11-03

    The Brazilian pharmaceutical industry is heavily dependent on external sources of inputs, capital, and technology. However, the emergence of technological opportunities and the development of biotechnology and the decline of the patent boom and resulting advances by generic drugs have opened windows of opportunities for the local industry. The article examines the Brazilian industry's innovative behavior vis-à-vis these opportunities, showing that although the industry as a whole invests little in innovation, a few large Brazilian companies have expanded their market share and stepped up their investments in research and development, supported by public policies for innovation. Resumo: A indústria farmacêutica brasileira caracteriza-se pela grande dependência de fontes externas de insumos, capital e tecnologia. O surgimento de oportunidades tecnológicas, associadas ao desenvolvimento da biotecnologia e ao fim do boom das patentes com o consequente avanço dos medicamentos genéricos, entretanto, vem abrindo janelas de oportunidades para a indústria local. Este artigo examina o comportamento inovador da indústria brasileira à luz dessas oportunidades, revelando que, embora o conjunto da indústria mantenha baixos níveis de investimentos em inovação, um pequeno grupo de grandes empresas nacionais vem ampliando sua participação no mercado e intensificando seus investimentos em pesquisa e desenvolvimento, apoiados por políticas públicas de inovação.

  9. Biofuels made easy

    International Nuclear Information System (INIS)

    Hamilton, C.

    2004-01-01

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  10. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  11. Strategic Implications of Water Usage: an Analysis in Brazilian Mining Industries

    Directory of Open Access Journals (Sweden)

    Roberto Schoproni Bichueti

    2014-04-01

    Full Text Available This study aims at identifying the practices of water use management and the business performance in industries in the Brazilian mineral sector. To this end, a descriptive and quantitative study was developed, using the survey method, in industries associated with the Brazilian Mining Institute – IBRAM. The water use management practices were identified based in a model addressing the following aspects: water accounting, risk assessment, direct operations, supply chain, and stakeholders engagement. The business performance was measured from a model involving the following dimensions: economic, environmental and social. Among the results, the risks assessment involved and the direct operations practices stand out, in order to reduce the amount of water used and waste discharges. The need for greater engagement of industries with the stakeholders and the supply chain, through a more integrated and collaborative management, was also evident.

  12. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  13. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  14. Influence of biofuels on exhaust gas and noise emissions of small industrial diesel engines; Einfluss von Biokraftstoffen auf die Abgas- und Geraeuschemission kleiner Industriedieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Spessert, B.M. [Fachhochschule Jena (Germany). Fachgebiet Kraft- und Arbeitsmaschinen; Schleicher, A. [Fachhochschule Jena (Germany). Fachgebiet Umweltmesstechnik

    2007-03-15

    At small industrial diesel engines, as they were brought in oftentimes on building sites, in the farming and forest industry and on boats, biofuels are increasingly used. In a research project of the University of Applied Sciences Jena, Germany, thus the changes of the exhaust gas pollutant and noise emissions of these diesel engines were investigated. Test fuels were diesel fuel, and also biofuels as biodiesel (RME), rape seed oil and sun flower oil. Depending on the operating point these biofuels increased or reduced the emissions of exhaust gas and noise of the investigated engines clearly. (orig.)

  15. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  16. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    Science.gov (United States)

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Overview of Brazilian industrial radiography accidents with cutaneous radiation syndrome

    International Nuclear Information System (INIS)

    Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    It is well documented that industrial radiography is related to radiological accidents, which makes it the highest potential risk for human health. More than 80 radiological accidents happened in the world that includes 6 Brazilian accidents with Cutaneous Radiation Syndrome. Five of them happened with 192 Ir and one with 60 Co radioactive sources. Nineteen members of the public and 8 radiographers were involved. All of them suffered severe hands and fingers injuries. The Brazilian radiological accident happened in 1985 with 16 persons is analyzed showing causes, consequences, radiation doses and lessons learned. (author)

  18. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    Science.gov (United States)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  19. Biofuels 2.0 move to pilot plant

    International Nuclear Information System (INIS)

    Dupin, L.

    2010-01-01

    The second generation of biofuels, which use the non-energy parts of plants, do not compete with the food industry. These biofuels have been tried and tested at the laboratory but challenges are occurring with the transition to industrial plants. Demonstrators and prototypes are developing in Germany, Japan, USA and France and bet on two different processes, the biochemical way (enzymatic reaction and fermentation) and the thermochemical way (gasification and Fischer-Tropsch synthesis). Research is in progress on a possible third generation of biofuels which will use micro-algae. The interest of this third way is triple: no competition with the food industry, no land use (production in bioreactors), and enhanced CO 2 capture. (J.S.)

  20. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  1. The current potential of algae biofuels in the United Arab Emirates

    Science.gov (United States)

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  2. Increase of the investments for the biofuels

    International Nuclear Information System (INIS)

    Jemain, A.

    2005-01-01

    With the construction for 2007 of six new units of biofuels (three bio-diesel and three bio-ethanol), France is developing its energy policy in favor of the biofuels. This decision benefits Diester and Sofiproteol industries which will invest in the development of their deposits. The enthusiasm is less for the bio-ethanol industries. (A.L.B.)

  3. Biofuels: stakes, perspectives and researches; Biocarburants: enjeux, perspectives et recherches

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Ballerin, D.; Montagne, X.

    2004-07-01

    The French institute of petroleum (IFP) is a major intervener of the biofuels sector, from the production to the end-use in engines. In this press conference, the IFP takes stock of the technological, environmental and economical stakes of today and future biofuel production processes and of their impact on transports. This document gathers 2 presentations dealing with: IFP's research strategy on biofuels (transparencies: context; today's processes: ethanol, ETBE, bio-diesel; tomorrows processes: biomass to liquid; perspectives), bio-diesel fuel: the Axens process selected by Diester Industrie company for its Sete site project of bio-diesel production unit. The researches carried out at the IFP on biofuels and biomass are summarized in an appendix: advantage and drawbacks of biofuels, the ethanol fuel industry, the bio-diesel industry, biomass to liquid fuels, French coordinated research program, statistical data of biofuel consumption in France, Spain and Germany. (J.S.)

  4. Overview of Brazilian industrial radiography accidents with cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Silva, F.C.A. da, E-mail: dasilva@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    It is well documented that industrial radiography is related to radiological accidents, which makes it the highest potential risk for human health. More than 80 radiological accidents happened in the world that includes 6 Brazilian accidents with Cutaneous Radiation Syndrome. Five of them happened with {sup 192}Ir and one with {sup 60}Co radioactive sources. Nineteen members of the public and 8 radiographers were involved. All of them suffered severe hands and fingers injuries. The Brazilian radiological accident happened in 1985 with 16 persons is analyzed showing causes, consequences, radiation doses and lessons learned. (author)

  5. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  6. Liquid biofuels in the aeroderivative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    DiCampli, James; Schornick, Joe; Farr, Rachel

    2010-09-15

    While there are regional economic and political incentives for using liquid biofuels for renewable power generation, several challenges must be addressed. Given the fuel volumes required, base-load operation with renewable fuels such as biodiesel and ethanol are not likely sustainable with today's infrastructure. However, blending of biofuels with fossil fuels is a more economic option to provide renewable power. In turn, this lays the foundation to increase to more power generation in the future as new generation biofuels come on line. And, much like the automotive industry, the power industry will need to institute design changes to accommodate these fuels.

  7. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  8. The Brazilian energy matrix: Evolution analysis and its impact on farming

    International Nuclear Information System (INIS)

    Lamas, Wendell de Queiroz; Giacaglia, Giorgio Eugenio Oscare

    2013-01-01

    This work proposes a technical and economic analysis of the Brazilian matrix energy evaluation, aiming at the evaluation of impacts inherent to technological innovation involved on energy matrix and the sectoral development. Particular attention is given to biomass energy, natural gas, and conventional fuels, considering their impacts on agricultural activity, identifying the highest potential for investment in this sector. As a result, a clear view of the importance of agricultural sector participation in the context of the Brazilian energy is obtained, not only as a consumer, but mainly through self-production energy policy of waste reuse as biomass and of biofuels. - Highlights: • We analyze the impact of Brazilian energy matrix on farming. • We highlight the socio-political-economic impact on the agricultural sector. • We highlight the biofuels potential

  9. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations

    International Nuclear Information System (INIS)

    Vilcocq, L.; Cabiac, A.; Guillon, E.; Especel, C.; Duprez, D.

    2013-01-01

    Decreasing oil supplies and increasing energy demand provide incentives to find alternative fuels. First, the valorisation of edible crops for ethanol and bio-diesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic biomass as a source of renewable carbon (second generation biofuels). Whereas the cellulosic ethanol production is in progress, a new way consisting of the transformation of ex-lignocellulose sugars and polyols towards light hydrocarbons by heterogeneous catalysis in aqueous phase has been recently described. This process is performed under mild conditions (T < 300 deg. C and P < 50 bar). It requires on one hand hydrogen formation by catalytic reforming of carbohydrates in aqueous phase and on the other hand, the dehydration/hydrogenation of polyols leading to alkanes by selective C-O bond cleavages. The challenge here is to conceive multifunctional catalytic systems that are stable, active and selective under the reaction conditions. The aim of this article is to present the involved reactions, the catalytic systems described in literature for that kind of transformation and examples of industrial applications. (authors)

  10. Biofuels for transport in Europe: lessons from Germany and the UK

    International Nuclear Information System (INIS)

    Bomb, C.; McCormick, K.; Kaaberger, T.; Lund University, Lund

    2007-01-01

    The utilisation of biofuels is attracting growing support from the European Union and member states as a strategy to tackle climate change, enhance energy security, and contribute to regional development. This paper describes, compares, and analyses the markets for biofuels in Germany and the UK. The introduction of biofuels for transport in these member states provides contrasting pictures, and the success or failure of biofuels here is pertinent to the development and diffusion of biofuels across Europe. This paper concentrates on the socio-political context for the biofuels industry in Germany and the UK, discusses the lessons learned from the German and British experiences, and presents general conclusions for policy-makers that are predominantly relevant for the early stages of a biofuels industry. (author)

  11. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  12. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  13. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  14. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  15. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  16. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  17. Radiologic accidents in industrial gamma radiography - Brazilian cases

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da

    1997-01-01

    Three severe radiological accidents in industrial gamma radiography happened in Brazil during the period of 1985 to 1988. Five operators and nineteen public people were involved. These accidents caused some injuries in parts of the body, mainly hands and fingers. The main causes were faults in source monitoring, inadequate routine procedures and unknowing of radiation warning symbol by public people. The present paper shows the Brazilian cases of radiological accidents and makes some analysis of them. (author)

  18. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  19. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  20. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  1. Meeting the global demand for biofuels in 2021 through sustainable land use change policy

    International Nuclear Information System (INIS)

    Goldemberg, José; Mello, Francisco F.C.; Cerri, Carlos E.P.; Davies, Christian A.; Cerri, Carlos C.

    2014-01-01

    The 2013 renewable energy policy mandates adopted in twenty-seven countries will increase the need for liquid biofuels. To achieve this, ethanol produced from corn and sugarcane will need to increase from 80 to approximately 200 billion l in 2021. This could be achieved by increasing the productivity of raw material per hectare, expansion of land into dedicated biofuels, or a combination of both. We show here that appropriate land expansion policies focused on conservationist programs and a scientific basis, are important for sustainable biofuel expansion whilst meeting the increasing demand for food and fiber. The Brazilian approach to biofuel and food security could be followed by other nations to provide a sustainable pathway to renewable energy and food production globally. One sentence summary: Conservationist policy programs with scientific basis are key to drive the expansion of biofuel production and use towards sustainability

  2. The changing dynamics between biofuels and commodity markets

    International Nuclear Information System (INIS)

    Bole, T.; Londo, H.M.

    2008-06-01

    The recent development of the biofuel industries coincides with significant increases in prices of basic commodities such as food and feed. Against popular perception, it appears that there is not a straightforward causal relationship between the two; there are a number of factors that determine the level and strength of the impact of the biofuels sector on other commodities. For the case of markets of agricultural raw material these factors include the amount of feedstock claimed by the biofuels industry, its relative purchasing power, the responsiveness of the agricultural sector to price incentives and availability of substitutes. For consumer food markets we must additionally consider the relative share of agricultural input costs in the retail food price and the demand elasticity. Based on the analysis of these factors and estimates of other studies that attempted to quantify the price impacts of biofuels on crop prices, we conclude that the impact of biofuels is relatively small, especially when compared with other causes that triggered the recent price increases. We end the paper with a recommendation for future efforts in curbing food price inflations while keeping ambitious biofuel targets and suggest a shift in focus of the debate around the social costs of biofuels

  3. Policies of industrial market and science and technology: the case of Brazilian nuclear program

    International Nuclear Information System (INIS)

    Oliveira, R.G. de.

    1981-01-01

    The relationship between policies and the definition of a national program of nuclear energy, is considered. The case under study is the Brazilian one. It is shown that an overall evaluation of market, industry and science and technology is mandatory for the definition of a nuclear energy program, and serious fault and hesitation, leading to contradiction and failure, have their roots in a basic lack of definition in policies. The evolution of the Brazilian Nuclear Energy Program will probably remain at a mediocre level until a definition at the level of policy-making in marketing, industry and science and technology is firmly pursued and maintained. (Author) [pt

  4. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A literature review of the market effects of federal biofuel policy and recommendations for future policy

    Science.gov (United States)

    Ayers, Alex Elgin

    The United States has had a federal biofuels policy since the 1970s. The purpose of this policy was to help the development of a biofuel industry during a time of high fuel prices in order to provide a domestic alternative to expensive foreign oil. Later the policy was changed to help lower the environmental impact caused by conventional fuels. Since that time the industry has grown and currently produces around 15 billion gallons of biofuels every year. The current federal biofuel policy is largely based on one program, the Renewable Fuel Standard (RFS), which mandates the production and blending of several different classes of biofuels and provides a form of subsidy to the biofuel industry. This paper examines the market effects of the federal biofuel policy and provides recommendations for improving the policy to counteract any negative effects. Federal biofuel policy has many far-reaching market effects. Some are easily calculable through expenditures and lost revenues, while others are harder to quantify because their full effects are not yet known. By evaluating these market effects, this paper will provide ample evidence that the federal biofuels policy needs to change, and will show what effects these changes could induce. The biofuels industry largely owes its existence to government policies, however as the research shows the industry can now stand on its own. This paper will examine what will happen if the federal policy is eliminated and what the future of the biofuels industry could hold. Based on these examinations, it is unlikely that the industry needs further government support and policies should be adjusted in light of this.

  6. Drivers of multidimensional eco-innovation: empirical evidence from the Brazilian industry.

    Science.gov (United States)

    da Silva Rabêlo, Olivan; de Azevedo Melo, Andrea Sales Soares

    2018-03-08

    The study analyses the relationships between the main drivers of eco-innovation introduced by innovative industries, focused on cooperation strategy. Eco-innovation is analysed by means of a multidimensional identification strategy, showing the relationships between the independent variables and the variable of interest. The literature discussing environmental innovation is different from the one discussing other types of innovation inasmuch as it seeks to grasp its determinants and to mostly highlight the relevance of environmental regulation. The key feature of this paper is that it ascribes special relevance to cooperation strategy with external partners and to the propensity of innovative industry introducing eco-innovation. A sample of 35,060 Brazilian industries were analysed, between 2003 and 2011, by means of Binomial, Multinomial and Ordinal logistic regressions with microdata collected with the research and innovation department (PINTEC) from the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). The econometric results estimated by the Logit Multinomial method suggest that the cooperation with external partners practiced by innovative industries facilitates the adoption of eco-innovation in dimension 01 with probability of 64.59%, 57.63% in dimension 02 and 81.02% in dimension 03. The data reveal that the higher the degree of eco-innovation complexity, the harder industries seek to obtain cooperation with external partners. When calculating with the Logit Ordinal and Binomial models, cooperation increases the probability that the industry is eco-innovative in 65.09% and 89.34%, respectively. Environmental regulation and innovation in product and information management were also positively correlated as drivers of eco-innovation.

  7. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  8. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  9. Constitutional issues of Brazilian tax system in the biodiesel industry; Aspectos constitucionais do regime tributario aplicado a industria brasileira do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Monica Medeiros; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent insertion of biodiesel derived from oily vegetables in the Brazilian genetic matrix calls for the analysis of some aspects that belong to it. This study begins with an introduction to 'sustainable development' definition, it goes through the concept of biodiesel and a brief historical, the paper analyzes it's advantages - social, economic and environmental - related to the fossil fuels predominantly used. With the purpose to look into the 'Programa Nacional de Producao e Uso de Biodiesel - PNPB' created by the Federal Government in 2004, this study searches about the Brazilian regulating legislation on this subject, fundamental for the comprehension of the plans and objectives sought by the Brazilian Government with the encouragement to the production of the biodiesel. This study also investigates the role of the 'Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis - ANP' in the regulation of the activities involving this biofuel. In this manner, from the analysis of the related legislation of this new energy source, the present article aims to delineate a view of the the tax system for this new market according to Constitution and pointing out the economic impacts of the biodiesel insertion in the Brazilian national energetic matrix. (author)

  10. Solid and liquid biofuels markets in Finland. A study on international biofuels trade. IEA bioenergy task 40 and EUROBIONET II. Country report of Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.; Alakangas, E.

    2006-01-01

    This study considered the current situation of solid and liquid biofuels markets and international biofuels trade in Finland and identified the challenges of the emerging international biofuels markets for Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production (CHP) and a high share of biofuels in the total energy consumption are specific to the Finnish energy system. One third of the electricity is generated in CHP plants. As much as 27% of the total energy consumption is met by using wood and peat, which makes Finland the leading country in the use of biofuels. Finland has made a commitment to maintain greenhouse gas emissions at the 1990 level at the highest during the period 2008-2012. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In this study, the wooden raw material streams of the forest industry were included the international biofuels trade in addition to biomass streams that are traded for energy production. In 2004, as much as 45% of the raw wood imported into Finland ended up in energy production. The total international trading of biofuels was evaluated at 72 PJ, of which the majority, 58 PJ, was raw wood. About 22% of wood based energy in Finland originated from imported raw wood. Tall oil and wood pellets composed the largest export streams of biofuels. The annual turnover of international biofuels trade was estimated at about euro 90 million for direct trade and at about euro 190 million for indirect trade. The forest industry as the biggest user of wood, and the producer and user of wood fuels has a central position in biomass and biofuels markets in Finland. Lately, the international aspects of Finnish biofuels markets have been emphasised as the import of raw wood and the export of wood pellets have increased. Expanding the use of biofuels in the road

  11. Technological Interfaces of the Brazilian Shipbuilding and Offshore Industry

    Directory of Open Access Journals (Sweden)

    Andre Cherubini Alves

    2014-06-01

    Full Text Available The recent challenges of the Brazilian naval and offshore industry have generated a unique opportunity for studies on technological innovation and economic development. This paper presents the recent developments and future prospects of this industry under the theoretical framework of ‘technological interfaces’. Technological interfaces are defined as the thread of knowledge and technology necessary for establishing a transaction between two or more agents. It is both a theoretical construct and a tool for better understanding industrial coherence and dynamics. The development project of ship and platform construction in Brazil, unveils a potential dynamic similar to large national projects, such as the U.S. space project in the 50s. By establishing scientific parameters of analysis for the study, it is possible to generate a broader diagnosis of the technological interface matrix of the industry, but mainly it is possible to map the framework of operational gaps and the needs for technical-scientific development.

  12. Methodological aspects on international biofuels trade: International streams and trade of solid and liquid biofuels in Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.

    2008-01-01

    The use of biomass for fuel is increasing in industrialised countries. Rapidly developing biomass markets for energy purposes along with weak information on biofuels trade that statistics offer have been incentives for several recently published studies investigating the status of biofuels trade. The comparison of the studies is often challenging due particularly to the various approaches to the indirect trade of biofuels and the diverse data sources utilised. The purpose of this study was to provide an overview of the Finnish situation with respect to the status of the streams of international biofuels trade. Parallel to this, the study aimed to identify methodological and statistical challenges in observing international biofuels trade. The study analysed available statistical information and introduced a procedure to obtain a clear overview on import and export streams of biofuels. In Finland, the total direct import and export of biofuels, being mainly composed of wood pellets and tall oil, is tiny in comparison with the total consumption of biofuels. Instead, the indirect trade has remarkable importance. Large import volumes of industrial raw wood make Finland a net importer of biofuels. In 2004, approximately 22% (64 PJ) of wood-based energy in Finland originated from imported wood. The study showed that the indirect trade of biofuels may be a significant sector of global biofuels trade. In the case of Finland, a comprehensive compilation of statistics on energy and forestry enabled the determination of the trade status satisfactory. However, national and international statistics should be further developed to take better into consideration international trade and to support continuously developing biofuels markets. (author)

  13. Transitioning to sustainable use of biofuel in Australia★

    Directory of Open Access Journals (Sweden)

    Sasongko Nugroho Adi

    2017-01-01

    Full Text Available Biofuel is identified as one of the key renewable energy sources for sustainable development, and can potentially replace fossil-based fuels. Anticipating the competition between food and energy security, the Australian Government is intensively exploring other biofuel resources. There have been numerous research projects in Australia using the second and third generation model based on different feedstocks including lignocellulosic and microalgae. Such projects have been successfully demonstrated but are yet to be commercially viable. Moreover, transition pathways to realize the potential benefits of these value chains are not well understood. This preliminary study tried to provide an alternative framework and proposes future long-term transport biofuel pathways in Australia which can be seen as a solution for a post-carbon society. The study is targeted to outline the milestone of the Australian biofuel industry and its roadmap into the future. An investigation has been carried out on biofuel status and barrier, technology development, market and the chronology of biofuel related policies in Australia to understand the current situation and possibilities to develop further strategies, while also providing an insight into the consequences of producing biofuel for transportation. Several methods have been proposed to introduce the transition into a post-carbon society. Seven scenarios were divided, covering the roadmap of first, second and third generation of biofuel, alternative transportation modes such as electric vehicles (EVs and fuel cell vehicles (FCVs and the elimination of the fossil fuel running vehicles within a time frame of 20 years. The utilization of biofuel can be seen as a short to medium mode for transition into a green transportation society. Our investigation also showed that microalgae gave a better ecological footprint which offers the strongest potential for future Australian biofuel industry and aviation. Meanwhile, EVs

  14. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    Science.gov (United States)

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  15. The Brazilian Aerospace Industry: A Cast Study of the Technological Impact of Offset Agreements in a Recipient Industry

    Science.gov (United States)

    1989-12-01

    sector, the most important development was the creation of the Secretaria de Tecnologia Industrial (STI) of the Ministry of Industry and Commerce (MIC...political and financial problems, Brazil’s space program, called Brazilian Complete Space Mission, Missdo Espacial Completa Brasileira - MECB, continues to...Pesquisa Espacial - INPE, also located in S&o Jos6 dos Campos’". It is responsible for the design and construction of satellites󈧼. The other activities

  16. Productivity and Openness: Firm Level Evidence in Brazilian Manufacturing Industries

    OpenAIRE

    Wenjun Liu; Shoji Nishijima

    2012-01-01

    This study investigates the productivity of Brazilian manufacturing industries, particularly addressing the influence of liberalization on productivity. We first calculate total factor productivity (TFP) by estimating the stochastic frontier production function and the inefficiency determination equation simultaneously. Then TFP growth rates are regressed on openness-related variables and other firm characteristics. The results show that firm openness to the world is a crucial determinant of ...

  17. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  18. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study

    Directory of Open Access Journals (Sweden)

    E. Virmond

    2013-06-01

    Full Text Available Besides high industrial development, Brazil is also an agribusiness country. Each year about 330 million metrics tons (Mg of biomass residues are generated, requiring tremendous effort to develop biomass systems in which production, conversion and utilization of bio-based products are carried out efficiently and under environmentally sustainable conditions. For the production of biofuels, organic chemicals and materials, it is envisaged to follow a biorefinery model which includes modern and proven green chemical technologies such as bioprocessing, pyrolysis, gasification, Fischer-Tropsch synthesis and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This paper presents promising options for valorization of Brazilian agroindustrial biomass sources and residues originating from the biofuel production chains as renewable energy sources and addresses the main aspects of the thermochemical technologies which have been applied.

  19. Round table on bio-fuels; Table ronde sur les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  20. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  1. Biofuels - Answering the energy and environmental challenges of transports

    International Nuclear Information System (INIS)

    Ballerini, Daniel and others

    2011-01-01

    The change of the worldwide energy context with the weight of the environmental stakes has led to increase the research works on biofuels of second and third generation. This book is an updated and enriched version of a previous edition published in 2006 and entitled 'biofuels - development status, perspectives and stakes'. It presents a detailed state-of-the-art of the production processes of biofuels of first generation. It describes the new production processes, named 'second generation' which use the lignocellulosic biomass as raw material. These new processes are progressively leading to industrial facilities which reduce the competition effect between the biofuel industry development and the agriculture for feeding purposes. A technical point is addressed which concerns the energy valorization of algae (the third generation) and the methane and hydrogen production by biochemical processes. (J.S.)

  2. Technical potential for developing natural gas use in the Brazilian red ceramic industry

    International Nuclear Information System (INIS)

    Schwob, Marcelo Rousseau Valenca; Henriques, Mauricio Jr.; Szklo, Alexandre

    2009-01-01

    The red ceramic industry in Brazil, consisting of over 7000 companies, requires large amounts of thermal energy, currently being met mainly by native fuelwood, which causes serious deforestation and soil erosion problems. The use of firewood does not allow achieving good energy performance in industrial ceramic kilns, causing high energy losses, low productivity and low quality products (bricks and roof tiles). Thus, to implement higher added value products, besides mitigate environmental problems caused by deforestation, the use of natural gas by the sector seems to be a promising alternative. Brazil's natural gas market has grown at a fast pace in recent years. Its share in the country's primary energy consumption increased from 3.7% to 9.3% between 1998 and 2007, compared to almost 21% in the world. The development of the Brazilian natural gas industry was grounded on stepping up supplies through integration with Bolivia from where natural gas is imported, together with fiscal incentives for promoting the demand. This paper estimates that the natural gas market that could be developed in the Brazilian red ceramic industry corresponds to less than 5% of the total industrial natural gas consumption, meaning that a major technological transformation of the country's red ceramic industry will not severely affect the natural gas market equilibrium, contributing to reduce the country's high rates of deforestation. (author)

  3. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    Science.gov (United States)

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  4. Sustainability of biofuels and bioproducts: socio-economic impact assessment

    NARCIS (Netherlands)

    Rutz, D.; van Eijck, J.A.J.|info:eu-repo/dai/nl/297954296; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial uses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by European policies, but support for bioproducts is still lacking behind. Thus,

  5. Innovation and productivity: empirical evidence for Brazilian industrial enterprises

    Directory of Open Access Journals (Sweden)

    Luciana Carvalho

    Full Text Available Abstract The aim of this paper is to carry out an empirical investigation into the relationship between innovation and the productive performance of Brazilian businesses measured by Work Productivity and Total Factor Productivity. Data taken from the Research of Innovation and estimated cross section models and panel data was used. The results suggest that innovation produces an incipient impact on competition in the national industry, reflected in the small magnitude of coefficients associated with the diverse indicators of innovation.

  6. Techno-economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil

    NARCIS (Netherlands)

    Alves, Catarina; Valk, Misha; de Jong, S.A.; Bonomi, Antonio; van der Wielen, Luuk; Mussatto, Solange

    2017-01-01

    Abstract: Production of aviation biofuels has been strongly encouraged by the volatility of oil prices and environmental concerns. Brazilian society, companies, and government are taking a step forward in the production of renewable jet fuel from biomass feedstocks largely available in the

  7. Aviation Management Perception of Biofuel as an Alternative Fuel Source

    Science.gov (United States)

    Marticek, Michael

    The purpose of this phenomenological study was to explore lived experiences and perceptions from a population of 75 aviation managers in various locations in Pennsylvania about the use of aviation biofuel and how it will impact the aviation industry. The primary research question for this study focused on the impact of biofuel on the airline industry and how management believes biofuel can contribute to the reduction of fossil fuel. Grounded in the conceptual framework of sustainability, interview data collected from 27 airline and fueling leaders were analyzed for like terms, coded, and reduced to 3 themes. Data were organized and prioritized based on frequency of mention. The findings represented themes of (a) flight planning tools, (b) production, and (c) costs that are associated with aviation fuel. The results confirmed findings addressed in the literature review, specifically that aviation biofuel will transform the airline industry through lower cost and production. These findings have broad applicability for all management personnel in the aviation industry. Implications for social change and improved business environments could be realized with a cleaner environment, reduced fuel emissions, and improved air quality.

  8. Biofuels - the UFIP position

    International Nuclear Information System (INIS)

    2004-01-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  9. Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.

    Science.gov (United States)

    Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia

    2018-01-01

    Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  11. Performance evaluation of the conventional Brazilian industries radiation protection in the small industrial gauges and industrial radiography areas; Sistema de avaliacao de desempenho em radioprotecao das industrias convencionais brasileiras nas areas de medidores nucleares e radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joyra Amaral dos

    1999-08-01

    This works evaluates by punctuation the performance in conventional Brazilian industries radiation protection area which make use of small industrial gauges and industrial radiography. It proposes, procedures for industry self-evaluation, besides a new radiation protection plans pattern for the small industrial gauges area. The data source where inspection reports of Dosimetry Radiation Protection Institute/Nuclear Energy Commission conventional Brazilian industries' radiation protection plans, beyond visitation to the inspection place. The performance evaluation has been realized both in the administrative and operational aspects of the industries. About of 60% of the industries have a satisfactory register control which does not happen to the operational control. The performance evaluation advantage is that industries may self-evaluate, foreseeing Dosimetry Radiation Protection Institute's regulation inspections, correcting its irregularities, automatically improving its services. The number of industries which have obtained satisfactory performance in both areas is below 70%, both in administrative and operational aspects. Such number can be considered a low one as it is radiation protection. The procedures propose in this work aim to improve such a situation. (author)

  12. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  13. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  14. Constitutional issues of Brazilian tax system in the biodiesel industry; Aspectos constitucionais do regime tributario aplicado a industria brasileira do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Monica Medeiros; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent insertion of biodiesel derived from oily vegetables in the Brazilian genetic matrix calls for the analysis of some aspects that belong to it. This study begins with an introduction to 'sustainable development' definition, it goes through the concept of biodiesel and a brief historical, the paper analyzes it's advantages - social, economic and environmental - related to the fossil fuels predominantly used. With the purpose to look into the 'Programa Nacional de Producao e Uso de Biodiesel - PNPB' created by the Federal Government in 2004, this study searches about the Brazilian regulating legislation on this subject, fundamental for the comprehension of the plans and objectives sought by the Brazilian Government with the encouragement to the production of the biodiesel. This study also investigates the role of the 'Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis - ANP' in the regulation of the activities involving this biofuel. In this manner, from the analysis of the related legislation of this new energy source, the present article aims to delineate a view of the the tax system for this new market according to Constitution and pointing out the economic impacts of the biodiesel insertion in the Brazilian national energetic matrix. (author)

  15. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  16. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  17. STRATEGIC ENTREPRENEURSHIP: A CASE IN THE BRAZILIAN AUTOMOBILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Afonso Carneiro Lima

    2010-07-01

    Full Text Available This work addresses an entrepreneurial phenomenon of strategic administration within the automobile industry: the creation of the automaker Troller Veículos Especiais (TVE. The case study at hand is justified by the positioning of this company around two market niches and its relative success in an industry characterized by few and powerful players. Our aim was to analyze the entrepreneurial and strategic process of discovering opportunity, the analysis used for internal and external factors, and the adoption of its strategic positioning in exploring two automobile market niches: in the B2B market, vehicles adapted to specific operational functions; and in the B2C, off-road vehicles with a strong appeal to consumers’ life styles. This case study allowed us to visualize the challenging path of a genuinely Brazilian small company in a sector dominated by large multinational groups, besides demonstrating decision-related dilemmas and aspects related to managerial creativity.Key-words: Automobile industry. Case study. Strategic entrepreneurship. Discovery theory. Strategic positioning.

  18. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    Braga, Antonio Luiz; Luedtke, Diogo Seibert; Schneider, Paulo Henrique; Andrade, Leandro Helgueira; Paixao, Marcio Weber

    2013-01-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  19. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    Science.gov (United States)

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  20. Fuelling expectations: A policy-promise lock-in of UK biofuel policy

    International Nuclear Information System (INIS)

    Berti, Pietro; Levidow, Les

    2014-01-01

    Controversy over EU-wide biofuel policy resonated within the UK, fuelling policy disagreements among UK public authorities. They disagreed over how to protect a space for future second-generation biofuels, which were expected to overcome harm from first-generation biofuels. The UK government defended rising targets for available biofuels as a necessary stimulus for industry to help fulfil the UK's EU obligations and eventually develop second-generation biofuels. By contrast, Parliamentary Select Committees opposed biofuel targets on grounds that these would instead lock-in first-generation biofuels, thus delaying or pre-empting second-generation biofuels. Those disagreements can be explained by different institutional responsibilities and reputational stakes towards ‘promise-requirement cycles’, whereby techno-optimistic promises generate future requirements for the actors involved. The UK government's stance illustrates a ‘policy-promise lock-in’, a dilemma whereby promised support is a requirement for credibility towards technology innovators and thus technoscientific development – but may delay the redirection of support from incumbent to preferable emerging technologies. Thus the sociology of expectations – previously applied to technological expectations from technology innovators – can be extended to analyse public authorities. - Highlights: • Controversy over EU-wide biofuel policy resonated within the UK. • At issue was how to stimulate future 2nd-generation biofuels. • The government defended targets for 1st-generation as necessary to stimulate industry. • Parliamentary Committees opposed biofuel targets as locking in 1st-generation. • The UK government′s stance illustrates a ‘policy-promise lock-in’

  1. Effect of biofuel on environment

    International Nuclear Information System (INIS)

    Kalam, M.A; Masjuki, H.H.; Maleque, M.A.

    2001-01-01

    Biofuels are alcohols, esters, and other chemical made from cellulosic biomass such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal solid and industrial waste. Biofuels are renewable and mostly suitable for diesel engines due to their similar physiochemical properties as traditional diesel oil. Demand of biofuel is increasing and some European countries have started using biofuel in diesel engine. This interest has been grown in many countries mainly due to fluctuating oil prices because of diminishing availability of conventional sources and polluted environment. However, the use of biofuel for diesel engine would be more beneficial to oil importing countries by saving foreign exchange, because biofuel is domestic renewable fuels. This paper presents the evaluation results of a multi-cylinder diesel engine operated on blends of ten, twenty, thirty, forty and fifty percent of ordinary coconut oil (COCO) with ordinary diesel (OD). The test results from all the COCO blends were compared with OD. The fuels were compared based on the emissions results including, exhaust temperature, NO x , smoke, CO, HC, benzene and polycyclic aromatic hydrocarbon (PAH). Carbon deposit on injector nozzles was also monitored. Exhaust emissions results showed that increasing coconut oil in blend decreases all the exhaust emissions. Carbon deposited on injector nozzles was observed where no hard carbon was found on injector tip when the engine was running on COCO blends. (Author)

  2. Potential for energy conservation and reduction of CO2 emissions in the Brazilian cement industry through 2015

    International Nuclear Information System (INIS)

    Soares, J.B.; Tolmasquim, M.T.

    1999-01-01

    The cement industry is characterized by intensive energy consumption throughout its production stages which, together with the calcination of its raw materials, accounts for significant amounts of greenhouse gases (GHG) emissions. In 1996, the Brazilian cement industry consumed 4.3% of the energy required by the industrial sector, contributing over 22 Mtons (Million of tons) of CO 2 . The prospects for growth in this sector in Brazil indicate rising demands for fossil fuels, with a consequent upsurge in emissions. The purpose of this article is to present the prospects for energy conservation in the Brazilian cement industry through to 2015, taking into account the introduction of new production technologies in this sector, the use of waste and low-grade fuels, cogeneration, the use of additives, and other measures, based on a technical and economic energy demand simulation model

  3. VARIATION IN BIOFUEL POTENTIAL OF TWELVE CALOPYLLUM INOPHYLLUM POPULATIONS IN INDONESIA

    OpenAIRE

    Leksono Budi; Laksmi Hendrati Rina; Windyarini Eritrina; Hasnah Trimaria

    2014-01-01

    The global energy crisis has raises demand for biofuel prices. It has driven the world to enhance environmentally-friendly renewable-energy (biofuel) production. Oil from the seeds of Calophyllum inophyllum (nyamplung) which can be harvested up to 50 years, is one of  such potential biofuel source. Methods for biofuel production from nyamplung seeds have been developed at an industrial scale by cooperative in Cilacap (Java) and Energy Self-Sufficient Villages (Desa Mandiri Energi) in Banyuwan...

  4. Brazilian energy

    International Nuclear Information System (INIS)

    O'Shaughnessy, H.

    1997-04-01

    Brazilian Energy provides all the information necessary for energy companies to invest and operate in Brazil, including: a review of Brazil's natural resources; an assessment of privatisation strategies at the federal, state and regional level; an analysis of the electricity industry and the future for Electrobras; an analysis of the oil industry and, in particular, Petrobras; a discussion of the fuel alcohol industry; the discovery of local natural gas, its prospects and the involvement of the auto industry; an assessment of the problems facing the coal industry and its future; a discussion of the regulatory framework for the newly privatised companies; the importance of intra-regional energy links and the booming membership of Mercosur; the difficulties experienced by foreign investors doing business in Brazil; brief profiles of the key energy companies; profiles of key people influencing the privatisation process in Brazil. Brazilian energy is essential reading for those wishing to advise and assist Brazil in this period of change and development, as well as those who wish to invest or become key players in the Brazilian energy sector. (author)

  5. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  6. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    International Nuclear Information System (INIS)

    Machado, G.V.; Schaeffer, R.

    1997-01-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole

  7. Ensuring sustainability in developing world biofuel productoin

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2009-06-01

    Full Text Available el N at io n al an d in te rn at io n al liq u id fu el s bl en ds Type 1 projects E.g. Mali Folkecentre Ghana Dumpong Biofuels See text box A and B Type 4 projects E.g. Large scale commercial plantations... approach Mali farmer growing jatropha as a fuel source to fuel 3 X 100 KW generators that will provide power to his village Brazilian ethanol production from large scale mechanised sugar cane fields Is certification and setting...

  8. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  9. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  10. Biofuel implementation agendas. A review of Task 39 Member Countries

    International Nuclear Information System (INIS)

    Van Neeft, J.; Van Thuijl, E.; Wismeijer, R.; Mabee, W.

    2007-01-01

    Biofuels for use in the transportation sector have been produced on a significant scale since the 1970's, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors which include biomass availability, an active industry, and competitive energy prices

  11. An overview of applications and radiation safety aspects of linear accelerators in Brazilian industry

    International Nuclear Information System (INIS)

    Lourenco, M.J.M.; Silva, F.C.A. da

    2002-01-01

    This work presents a brief description of the situation of Brazilian Regulatory Authority about safety control on Industrial Linear Accelerators Installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying the radiation protection officer. Some results of regulatory safety inspections are also showed in this work. (author)

  12. COMPETITIVE INTELLIGENCE AT BRAZILIAN INDUSTRIAL MAINTENANCE DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Robson Quinello

    2006-11-01

    Full Text Available The industrial maintenance activities, generally, were considered as more one problem to the organizations. This image needs to change in Brazil , because this sector is part of the companies supply chain, is responsible to maintain equipments reliability and availability and it is a generator of the companies costs. This responsibility increases in a country where the productive capacity is in the limit, demanding extra efforts and where increasing pressures for reductions of the costs and restrictions techniques and human beings are increasing, ask to paradigms changes. The present study had for purpose to identify main canals of captation of the information used by the Brazilian industrial maintenance professionals, demonstrating systematic use of Competitive Intelligence can bring technological advance and profit of competitive advantage. For this, a qualitative research was made, using as research instruments the Delphi method, interviews with professionals and an experimental delineation C.I- Competitive Intelligence in a department-pilot (automotive sector.The results had shown to the use of formal and informal sources in different frequencies of access and the fragility in these departments in the not-systematic use of C.I, harming the above-mentioned challenges.

  13. The biofuels excellence network; Rede de excelencia em biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo de Tarso; Nascimento Filho, Lenart Palmeira do; Campos, Michel Fabianski [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Freire, Luiz Gustavo de Melo [Accenture, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The organization of the Biofuels Excellence Network, inside PROMINP - the Program of Mobilization of the National Industry of Oil and Natural Gas, has the objective of improving the actions of technical innovation and management in the chain of Oil, Gas Natural and Biofuels, through the optimized use of physical, financial, technological resources, of information and staff, with maximum qualification in areas of the human knowledge, whose purpose is to make decisions on specific problems of improvement of processes and/or products, besides promoting actions for the development and reinforcement of the markets of ethanol and biodiesel. The organization of the Biofuels Excellence Network became necessary, in order to enable Brazil to reach vanguard standards in biofuels (ethanol and biodiesel) in a sustainable, competitive and environmentally responsible way. Among the main reasons for the creation of the Biofuels Excellence Network are: to speed up the acquisition of knowledge and innovation, through partnerships with academical, technological, and government institutions; to contribute with PETROBRAS Strategical Planning planned goals; to capture synergies through the accomplishment of Projects of the Strategical Partners interest; to create sustainable economic value as a result of the Network Projects; to foster specialized professional qualification for the alcohol industry. (author)

  14. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  15. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  16. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  17. Developing competition while building up the infrastructure of the Brazilian gas industry

    International Nuclear Information System (INIS)

    De Mello Sant Ana, Paulo Henrique; De Martino Jannuzzi, Gilberto; Valdir Bajay, Sergio

    2009-01-01

    For the last 20 years, countless countries have been carrying out structural reforms in the natural gas industry, trying to achieve efficiency and economic rationality with the introduction of competition. The objective of the paper is to present an approach to the development of competition and infrastructure of the Brazilian natural gas industry. This approach is based on a market projection to 2011, on the international experience and on the characteristics of the Brazilian market, infrastructure and regulatory framework. Possible impacts of the proposed measures are also provided. According to the market projection carried out in this paper, in 2011 there will be a possible surplus of natural gas in the country, which includes a dependence diminishing of the Bolivian gas supply. This gas surplus, allied to an upcoming Gas Law and the trade liberalization in the states of Sao Paulo and Rio de Janeiro, can stimulate the development of competition, if some changes that proposed in this paper are made in the current Gas Bills. The approach proposed herein seeks to stimulate non-discriminatory open access, focused on information transparency and tariff regulation to help the development of infrastructure and competition. (author)

  18. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  19. Natural resources conflicts and the biofuel industry: implications and ...

    African Journals Online (AJOL)

    2010-09-07

    Sep 7, 2010 ... Keywords: Bio.fuel; natural resources conflicts,- land grabbing; Jatropha curcas .... arrangement, the legal interest in the Ashanti and Akyem lands went to the ..... economically competitive with it, and be producible in sufficient ...

  20. Radiologic accidents in industrial gamma radiography - Brazilian cases; Acidentes radiologicos em gamagrafia industrial - casos brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Cesar Augusto da [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    Three severe radiological accidents in industrial gamma radiography happened in Brazil during the period of 1985 to 1988. Five operators and nineteen public people were involved. These accidents caused some injuries in parts of the body, mainly hands and fingers. The main causes were faults in source monitoring, inadequate routine procedures and unknowing of radiation warning symbol by public people. The present paper shows the Brazilian cases of radiological accidents and makes some analysis of them. (author) 1 ref., 1 tab.; e-mail: dasilva at ird.gov.br

  1. Opportunities to improve the private capital in Brazilian electricity supply industry

    International Nuclear Information System (INIS)

    Medeiros, R.A. de.

    1993-08-01

    The Brazilian electricity supply industry has passed substantial changes in the last fifty years. In the 50's was almost completely controlled by foreign companies. In the 70's, it turned to be almost exclusively ruled by Federal and State Enterprises. In the 80's the electricity supply sector started a financial and institutional crises. Some changes, already in course, indicate new changes of it for the next years. This study give emphasis to: the reasons that lead to a fast and well succeeded State intervention in the post-war; the multiple reasons of the recent crisis in sector, trying to insert it in the general context of the country; the alternative that have being formulated to overcome the obstacles created by the crisis; and the main factors for an efficient re-structure of the Brazilian electricity sector for the next years, included privatisation. (author)

  2. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    Science.gov (United States)

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  4. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  5. Sizing for the apparel industry using statistical analysis - a Brazilian case study

    Science.gov (United States)

    Capelassi, C. H.; Carvalho, M. A.; El Kattel, C.; Xu, B.

    2017-10-01

    The study of the body measurements of Brazilian women used the Kinect Body Imaging system for 3D body scanning. The result of the study aims to meet the needs of the apparel industry for accurate measurements. Data was statistically treated using the IBM SPSS 23 system, with 95% confidence (P 0,58) and from the Hip-to-Height Ratio - HHR (bottom portion): Small (HHR 0,68).

  6. Automobile industry and new bio-fuel oils: International panorama

    International Nuclear Information System (INIS)

    Hampel, G.

    1992-01-01

    In assessing the technical/economic feasibility of the direct combustion of vegetable oils in diesel type engines, this paper first points out the good results obtained in performance tests on these fuels in Elsberg engines, and their low sulfur and nitrogen oxides and carbon dioxide emission characteristics. It then assesses the improvements that are necessary in the development of marketable bio-fuel oils that conform to European Communities air pollution standards for automobiles. Further efforts must be made to reduce bio-fuel oil smoke emission levels, to compensate for their lower calorific value as compared with conventional diesel fuels, and to make them compatible with automobile finishing materials - paints and plastics. The paper suggests a set of suitable fiscal policies designed to favour the marketing of bio-diesel fuels based on their favourable pollution abating qualities - low greenhouse gas emissions and biodegradability

  7. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  8. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    International Nuclear Information System (INIS)

    Jumbe, Charles B.L.; Msiska, Frederick B.M.; Madjera, Michael

    2009-01-01

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  9. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L., E-mail: charlesjumbe@bunda.unima.m [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M., E-mail: frederickmsiska@yahoo.co [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael, E-mail: michael.madjera@onlinehome.d [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  10. Biofuels development in Sub-Saharan Africa. Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L. [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M. [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops. (author)

  11. Annual and activity report 2005 - INB - Brazilian Nuclear Industries. Nuclear fuel: technology for the essential

    International Nuclear Information System (INIS)

    2005-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2005 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  12. The biofuels in France; Les biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO{sub 2} accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  13. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  14. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  15. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  16. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Economy-wide impacts of biofuels in Argentina

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Chisari, Omar O.; Romero, Carlos A.

    2013-01-01

    Argentina is one of the world's largest biodiesel producers and the largest exporter, using soybeans as feedstock. Using a computable general equilibrium model that explicitly represents the biofuel industry, this study carries out several simulations on two sets of issues: (i) international markets for biofuel and feedstock, such as an increase in prices of soybean, soybean oil, and biodiesel, and (ii) domestic policies related to biofuels, such as an introduction of biofuel mandates. Both sets of issues can have important consequences to the Argentinean economy. The simulations indicate that increases in international prices of biofuels and feedstocks would increase Argentina's gross domestic product and social welfare. Increases in international prices of ethanol and corn also can benefit Argentina, but to a lesser extent. The domestic mandates for biofuels, however, would cause small losses in economic output and social welfare because they divert part of biodiesel and feedstock from exports to lower-return domestic consumption. An increase in the export tax on either feedstock or biodiesel also would lead to a reduction in gross domestic product and social welfare, although government revenue would rise. - Highlights: ► Argentina is one of the largest biodiesel producer and exporter using soybeans. ► Economy-wide impacts are assessed using a CGE model for Argentina. ► Policies simulated are feedstock and biodiesel price change, and domestic mandates. ► Increases in international prices of biofuels and feedstock benefit the country. ► Domestic mandates for biofuels cause small losses in economic output

  18. Strategic environmental assessment for sustainable expansion of palm oil biofuels in Brazilian north region

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Carolina

    2010-09-15

    Biofuels development in Brazil is a key factor for the environment and sustainable development of the country. Brazil has great potential of available areas and has favourable climate and geography for biofuel production, such as palm oil, soy, sugar cane, etc. This research aims to evaluate palm oil production and expansion in Para state, in the north of Brazil and also Amazonian territory. Degraded land will be evaluated through remote sensing, because palm oil crops should be placed in these lands, and secondly, expansion scenarios would be created. This PhD research will be a decision support tool for public policies.

  19. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  20. Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market

    Energy Technology Data Exchange (ETDEWEB)

    Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Peterson, Steve [Lexidyne LLC, Colorado Springs, CO (United States)

    2017-04-01

    Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit, carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.

  1. Report about the optimization of the biofuel industry sustaining system; Rapport sur l'optimisation du dispositif de soutien a la filiere biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, H.; Hespel, V.; Dupre, J.Y.; Baratin, F.; Gagey, D

    2005-07-01

    At the end of 2004, the French government has fixed up the ambitious goal of developing biofuels conformably with the objectives of the 2003/30/CE European directive: the level of blending gasoline and diesel fuels with biofuels should reach 5.75% of the energetic value by 2010. In 2004 this level was only 0.8%, i.e. 7 times less. In order to reach such a goal, the government has implemented two tools: a classical tax exemption tool, already used by other European partners, and a new tool created by the 2005 finances law: the general tax on polluting activities (TGAP). This report presents the main characteristics of biofuel industries and the policies implemented in favor of biofuels. It analyzes the new system and its implementation (tax exemption and TGAP) and proposes new markets for the French agriculture. It recommends to take into considerations the constraints and needs of the fuels market, that the government establishes a new regulation for this market, reforms the existing fiscal system and takes complementary dispositions (intervention at the European Communities level, development of research..). Several appendixes illustrate this report. (J.S.)

  2. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  3. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  4. Radioscopy applied to the improvement of industrial processes of quality control in the Brazilian footwear production

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcela Tatiana Fernandes; Mello Filho, Mauro Otto de Cavalcanti, E-mail: mbeserra@cefet-rj.br, E-mail: maurootto@cefet-rj.br [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Raupp, Fernanda Maria Pereira, E-mail: fraupp@puc-rio.br [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Industrial

    2013-07-01

    According to the Ministry of Development, Industry and Foreign Trade, China has the last five years in the Brazilian footwear market for imports, representing 70% of total imports. Brazil has been recording declines in footwear exports; in 2011 there was an average reduction of 21.5% compared to 2010. Thus, Brazil has moved to the eighth position in the export market. Moreover, Asians have been improving the quality and technological level of their footwear for niche markets. It is well known that the introduction of new technologies into industrial organizations enables adding value to their products, making the organizations more competitive in the global market. In this work, we present a study on the use of radioscopy technique to improve quality control of the Brazilian footwear industry. Being already used by some international footwear manufactures, aiming at the identification of strange bodies, control jumps, among other aspects, this technique brings innovation to the referred industry, since it is a non-destructive test approach that makes use of X-rays. We also propose a tool for the application of radioscopy technique to improve quality control processes of footwear production, employing concepts of Failure Modes and Effects Analysis (FMEA). (author)

  5. Radioscopy applied to the improvement of industrial processes of quality control in the Brazilian footwear production

    International Nuclear Information System (INIS)

    Fernandes, Marcela Tatiana Fernandes; Mello Filho, Mauro Otto de Cavalcanti; Raupp, Fernanda Maria Pereira

    2013-01-01

    According to the Ministry of Development, Industry and Foreign Trade, China has the last five years in the Brazilian footwear market for imports, representing 70% of total imports. Brazil has been recording declines in footwear exports; in 2011 there was an average reduction of 21.5% compared to 2010. Thus, Brazil has moved to the eighth position in the export market. Moreover, Asians have been improving the quality and technological level of their footwear for niche markets. It is well known that the introduction of new technologies into industrial organizations enables adding value to their products, making the organizations more competitive in the global market. In this work, we present a study on the use of radioscopy technique to improve quality control of the Brazilian footwear industry. Being already used by some international footwear manufactures, aiming at the identification of strange bodies, control jumps, among other aspects, this technique brings innovation to the referred industry, since it is a non-destructive test approach that makes use of X-rays. We also propose a tool for the application of radioscopy technique to improve quality control processes of footwear production, employing concepts of Failure Modes and Effects Analysis (FMEA). (author)

  6. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  7. Methodological Foundations of Clustering and Innovativeness for Establishing the Competitive Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2016-05-01

    Full Text Available The article is aimed to study the worldwide trends in development of innovative processes and creation of cluster structures for elaborating methodological foundations for establishing the competitive production of biofuels. The article highlights the cluster approaches in conducting the global commercial activities that create effective mechanisms and tools to encourage innovation-investment regional development and can be characterized by their relevance for the Ukrainian economy. Emphasis is made on the matter that clustering is one of the key tools for structuring the energy market, integrated exploiting the potential of bioenergy industry sector, management of the economic policies of redistribution of value added, implementation of the growth of investment attractiveness of the biofuel industry in our country. It has been concluded that cluster development in the biofuel production will stimulate specialization and cooperation processes in the agro-industrial economy sector, bringing together related businesses in the direction of an effective interaction, thereby ensuring a high level of competitiveness of biofuels in both the national and the international markets.

  8. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  9. Natural-gas-powered thermoelectricity as a reliability factor in the Brazilian electric sector

    International Nuclear Information System (INIS)

    Fernandes, E.; Oliveira, J.C.S. de; de Oliveira, P.R.; Alonso, P.S.R.

    2008-01-01

    The introduction of natural-gas-powered thermoelectricity into the Brazilian generation sector can be considered as a very complex energy, economic, regulatory and institutional revision. Brazil is a country with very specific characteristics in electricity generation, as approximately 80% of the generating capacity is based on hydroelectricity, showing strong dependency on rain and management of water reservoirs. A low rate of investment in the Brazilian Electricity Industry in the period of 1995-2000, associated with periods of low rainfall, led to a dramatic lowering of the water stocks in the reservoirs. With this scenario and the growing supply of natural gas, both from within Brazil and imported, natural gas thermal electric plants became a good option to diversify the electrical supply system. In spite of the Brazilian Government's efforts to install such plants, the country was faced with severe electricity rationing in 2001. The objective of this work is to show the need to continue with the implementation of natural gas thermal electricity projects, in a manner that allows flexibility and guarantees greater working reliability for the entire Brazilian electricity sector. Taking into account the world trend towards renewable energy, the perspectives of usage of biofuels in the Brazilian Energy Matrix and in electrical energy generation are also analyzed. The very issue of electrical power efficiency in Brazil and its challenges and strategic proposals from the standpoint of Government Programs and results provided so far are presented. The technological constraints in order to put on stream the thermal electric plants are also analyzed. The article concludes with a positive perspective of the usage of natural gas as to be the third pillar in the Brazilian Energy Matrix for the years to come

  10. Driving biofuels in Europe. A research on the interaction between external regulation and value chain governance

    International Nuclear Information System (INIS)

    Aantjes, J.C.

    2007-05-01

    To explain the unforeseen ascendancy of biofuels in the transport sector, a thorough understanding of the biofuel industry (i.e. the value chain) is crucial. Next to the industry structure, it seems that the regulatory framework surrounding the chain also contributes to the formation and structure of the biofuel industry in Europe. This assumption rests on the 2003 European Union (EU) biofuel directives for the promotion of biofuels in EU member states. With tax exemptions and reference values, the European Commission (EC) achieves to raise the amount of biofuels in transportation. The hypothesis in this thesis is that the European biofuel industry reflects a correlation between external regulation and value chain structure. More specifically, it is expected to be a mutual relation. The proposition is that value chain actors not only anticipate to the regulatory environment, they are also likely to influence decision-making on regulations in their advantage. Simply stated, value chain actors are concerned with the regulatory framework in order to enhance their position in the chain. From an empirical and theoretical point of view, this is an interesting proposition since the interaction between regulations and value chain governance receive little attention in theory. For the food industry, this approach contributes to understand the development in biofuel regulations and the European biofuel industry. Chapter Two reports the theoretical foundation of this study. The research framework rests on two rather independent streams of literature. The first part discusses 'value chain theory' and enables to examine how the biofuel value chains in Europe looks like. Among the analytical instruments of this research tradition, the role of powerful actors in controlling the value chain is elaborated in depth. The second stream is rooted in political theory and is characterized as 'political decision-making theory'. Its focus is on the formulation of governmental regulation. A

  11. The convergence of the natural gas industry and electric power industry: the Brazilian case; Convergencia entre a industria do gas natural e a industria de energia eletrica: o caso brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jose Ricardo Uchoa Cavalcanti [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The main purpose of this paper is to analyze the convergence between power (electric sector) and natural gas industries in Brazil. It also shows how this convergence happens in the USA market and its applicability in the Brazilian market. At the end some conclusions and suggestions are presented to satisfy the Brazilian market, which behaves in a different way as the USA market, i.e. the Brazilian market does not follow seasonal pattern but an aleatory pattern in thermoelectric plants. (author)

  12. Biofuel characteristics of beniseed (Sesanum indicum) oil

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... Local method was used to extract oil from beniseed (Sesanum indicum). ... fuel properties similar to common biofuels, hence beniseed could be utilized as an .... industries for the manufacture of soap and vegetable oil –.

  13. Physiology limits commercially viable photoautotrophic production of microalgal biofuels.

    Science.gov (United States)

    Kenny, Philip; Flynn, Kevin J

    2017-01-01

    Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.

  14. The biofuel support policy. Public thematic report. Assessing a public policy

    International Nuclear Information System (INIS)

    2012-01-01

    In its first part, this detailed report gives an overview of some key facts regarding biofuels: energy context, biofuels and energy, biofuels and agriculture, multiple and superimposed regulation levels, financial data, and international comparisons. The second part analyses the positions of the different actors (oil industry and dealers, car manufacturers, bio-diesel producers, ethanol producers, farmers producing raw materials, consumer associations, defenders of the environment, public bodies). The third part reports the assessment of the French public policy in terms of efficiency. Some recommendations are made

  15. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain. (author)

  16. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in the parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain

  17. The effectiveness of take-or-pay clauses under the Brazilian courts; A eficacia das clausulas de 'take-or-pay' nos tribunais brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Bruno A.; Travassos, Cristiano H. [Tess Advogados, Sao Paulo, SP (Brazil)

    2008-07-01

    The international energy industry, where the sale of their commodities (oil, natural gas, biofuels and its derivatives), typically uses in its long-term contracts clauses take-or-pay. However, questioning about the Brazilian judicial effectiveness of such clauses appears each day. This paper aims to establish a rationale clause of take-or-pay; have terms and typical conditions of one clause of take-or-pay; discuss the existing national law on the subject; list the main questions arising from the applicability of the terms of take-or-pay, and the potential solutions to the current scenario.

  18. Panorama 2014 - Overview of second-generation biofuel projects

    International Nuclear Information System (INIS)

    Bouter, Anne; Lorne, Daphne

    2013-12-01

    Second-generation biofuels produced from lingo-cellulosic biomass are now one of the main technological options for reducing the climatic impacts imposed by fuels used in transportation. These processes are designed to significantly boost the quantities of biofuels available and to take over from their first-generation counterparts, given the ready availability of raw materials and their excellent environmental performances. They are already the subject of multiple pre-industrial scale projects in many regions of the world as part of R and D programs, and the first industrial installations are already operational or under construction, the majority of them in Europe and the United States. They now require a stable regulatory framework in order to progress to the industrial learning stage required for them to become fully competitive. This is why the current uncertainties surrounding regulations in Europe and to a lesser extent in the United States could delay their development. (authors)

  19. Biofuel application of biomass obtained from a meat industry wastewater plant through the flotation process. A case study

    Energy Technology Data Exchange (ETDEWEB)

    De Sena, Rennio F.; Claudino, Andreia; Moretti, Karine; Bonfanti, Iris C.P.; Moreira, Regina F.P.M.; Jose, Humberto J. [Laboratory of Energy and the Environment LEMA, Department of Chemical Engineering and Food Engineering EQA, Federal University of Santa Catarina UFSC, Center of Tecnology CTC, 88040-900 Florianopolis, SC (Brazil)

    2008-01-15

    Physicochemical treatment of meat industry wastewater is used to increase the organic matter removal efficiency, and it generates great amounts of sludge. Treatment using commercial ferric sulfate as coagulant for this specific wastewater gave high organic matter removals, decreasing considerably the amount of waste material to be treated in biological systems, and also allowing the obtention of 0.83-0.87 kg of biomass fuel for each m{sup 3} of treated wastewater. Due to sanitary, environmental problems and operational costs related to the discharge, land disposal and re-use of wastes, the utilization of this Biofuel (dried sludge) for steam generation has shown to be a viable alternative. This type of fuel has a high heating value, and it is a renewable energy source. The combustion test with a Biofuel to sawdust ratio of 4:1 met the technical requirements for the characterization of this promising fuel; nevertheless, operating conditions must be well designed to achieve NO{sub X} and SO{sub 2} emissions below local and/or international limits. (author)

  20. Biofuels for transportation. From R and D to market

    Energy Technology Data Exchange (ETDEWEB)

    Pilo, C [comp.

    1996-11-01

    The aim of the Workshop was to bring together stakeholders in industry, government and science to identify technical, economic and institutional opportunities and/or barriers to the market penetration of biofuels and to tackle these issues jointly in an international environment. The Workshop was to cover the role of biofuels in replacing fossil fuels and achieving sustainable transportation. It was to be more oriented towards policy issues than towards analyses of scientific and technical details. The Workshop was focused on the conditions in Northern Europe and North America. Three main themes were chosen: THEME 1. Biomass Feedstocks. How do we produce them cost-effectively and for what purpose? THEME 2. Biofuels for Transportation. What will make them technically and economically competitive? THEME 3. Market Penetration of Biofuels. How do we remove barriers? The following biofuels were considered during the Workshop: Alcohols, such as ethanol and methanol. Ethers, such as MTBE (methyl-tertio-butyl-ether) and ETBE (ethyl-tertio-butyl-ether). Vegetable oils and esters, such as VME (vegetable-oil-methylester), RME (rape-oil-methyl-ester) and REE (rape-oil-ethyl-ester)

  1. Empresariado industrial e a educação profissional brasileira Industrial businessmen and the Brazilian professional education

    Directory of Open Access Journals (Sweden)

    Ramon de Oliveira

    2003-12-01

    Full Text Available Considerando as mudanças políticas e econômicas transcorridas na sociedade brasileira na última década do século passado, marcadas, entre outros fatos, pela ascensão da ideologia neoliberal e por mudanças no setor produtivo, além da ênfase discursiva de governo e de setores empresariais sobre a necessária reformulação do sistema educacional visando o alcance de uma economia competitiva, objetiva-se analisar o papel que o empresariado industrial reserva à educação profissional visando a consecução do seu projeto de desenvolvimento econômico. Foram utilizados como fontes primárias documentos técnicos da Confederação Nacional da Indústria (CNI e da Federação das Indústrias do Estado de São Paulo (Fiesp, além de depoimentos das lideranças dessas instituições em diversos periódicos brasileiros. Concluiu-se que embora o empresariado brasileiro tenha enfatizado o investimento na educação básica e na educação profissional, tal ênfase busca ajustar a educação brasileira aos interesses econômicos e não considerá-la um direito social a ser garantido pelo Estado a todos cidadãos brasileiros. As análises e proposições do empresariado para a educação estruturam-se em bases semelhantes às proferidas pelo Banco Mundial, o qual segue enfaticamente a Teoria do Capital Humano. Afirma-se também que suas proposições concernentes ao desenvolvimento econômico e à política educacional foram incorporadas na agenda do governo central brasileiro no transcorrer da década de 1990.Considering the political and economical changes that took place in the Brazilian society during the last decade of the 20th century, characterized as they were, among other facts, by the rising of the neoliberal ideology and by changes in the productive sector, apart from the professed emphasis government and business sectors have placed on the necessary reform of the education system aimed at achieving a competitive economy, the objective

  2. Bio-fuels and Food Security: A Case Study of South Africa ...

    African Journals Online (AJOL)

    The impact of an expanding bio-fuels sector in South Africa is expected to be widespread and substantial and could affect the agricultural sector. For example, an expanded bio-fuels industry in the country is predicted to lead to marginal price increases of 7.5% for milk, 2% for chicken, 9.6% for beef and 2.5% for eggs per ...

  3. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  4. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  5. Flux and concentration processes of radioactive elements in the forest industry; dosimetry, biofueled heating plants, the alkaline and the acidic pulp mill processes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1992-01-01

    A fraction of the radionuclides released to the forest ecosystem will be incorporated into different parts of the trees and the wood. A common factor for both biofueled power plants and pulp mills is that they concentrate the radionuclides initially present in the in the biofuel or wood in ashes or other products. The enrichment of radioactive elements is due to the combustion process or in a pulp mill, the combustion of bark and liquors, and also the processes in the pulp mill recycling system. The radiological impacts to man from forest industry arises form radiation emitted from the radionuclides present in ash and pulp mill liquors and liquor sludge. The quantification and calculation of past, present and future activity concentrations in biofuels, ash and pulp mill waste products are all important when assessments of the radiation dose is done. In order to assess the resulting dose to staff working close to radionuclide containing recycling systems and waste dumps, it is necessary to know the dynamics (inflow rate and residence time) of the radionuclides in that system

  6. Development of a sustainability reporting scheme for biofuels: A UK case study

    International Nuclear Information System (INIS)

    Chalmers, Jessica; Archer, Greg

    2011-01-01

    In 2008, the UK launched the first regulatory sustainability reporting scheme for biofuels. The development of the scheme, managed by the Low Carbon Vehicle Partnership for the Department for Transport, involved extensive stakeholder engagement. The scheme has significantly increased understanding by policy-makers, the biofuels industry and its supply chains on how to monitor and manage the sustainability risks of biofuels and increase their greenhouse-gas benefits. It is providing a practical model for similar developments globally. To receive certificates in order to meet volume obligations under the Renewable Transport Fuel Obligation (RTFO), suppliers must provide a monthly carbon and sustainability report on individual batches of renewable fuels they supply into the UK. The Renewable Fuels Agency produces aggregate monthly reports of overall performance and quarterly updates of individual supplier performance. This scheme is an important first step to assist the biofuels industry to demonstrate its environmental credentials and justify the subsidies received. The paper provides a case study of the development of the scheme, its initial outcomes and outstanding challenges.

  7. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    Energy Technology Data Exchange (ETDEWEB)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo; Middendorf, Gerad; Bain, Carmen

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.

  8. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  9. Brazilian industry evaluation system of performance on radiation protection in radioisotope gauges area

    International Nuclear Information System (INIS)

    Santos, Joyra A.; Borges, Jose C.

    1999-01-01

    The conventional industries more can see the advantages on doing their activities by using radioisotope gauges. This paper presents the methodology used to evaluation, by means of regulatory inspections, the performance on radiation protection of the Brazilian conventional industries in the field of radioisotope gauges. Sixty one inspections were analysed in the year of 1997 in these installations, taking into account the principal administrative and operational aspects. With the objective to have a final evaluation of the installation, it was given a value of each item of the inspection report, related of its importance. Finally, the values have been added and it had obtained a final evaluation, which has a range from 0 to 10 (poor or excellent). (author)

  10. Experience of improving quality assurance in the Brazilian industry

    International Nuclear Information System (INIS)

    Syllus, C.

    1986-04-01

    The growing participation of local engineering companies and industry in nuclear power plant implementation programs is highly important to developing countries which have decided for such programs. This participation is quite necessary and important on a political, economic and operational basis. Politically, two aspects should be taken into account; firstly, no country should develop a large and unforeseable dependence upon foreign sources for its power supply, and secondly, services and supplies which can be provided locally should not be purchased abroad. Regarding to the economic aspects, it would be very difficult to import complete nuclear power plants, taking into account the limited foreign currency unavailability to the country. As for the plant operation, if one considers the need for maintenance and repair throughout plants service life time, it would not be wise to have to fall back on foreign supply whenever a problem arises in a plant. This paper deals only with local industry participation in the construction of nuclear power plants. The first and foremost actions to be taken toward such participation should be identifying those industrial companies which have potential qualifications to participate in the construction program, and detecting the difficulties and shortcomings which must be overcome for the qualification of the various industrial companies. The difficulties for local industry participation are mainly of economic and technical nature. Economic difficulties refer to economy of scale and the amount of investments to be made by the industry in order to become qualified to participate in the program. These issues are connected with the cost of equipment to be manufactured and therefore with plant cost. As regards to the technical difficulties to be faced one has to consider the know-how for technical specifications and standards, product engineering, manufacturing procedures and above all quality assurance. The Brazilian experience

  11. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  12. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    CERN Document Server

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  13. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  14. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    Science.gov (United States)

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50 mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250 °C) and residence times (1, 3, 8 h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1 MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  16. Viability of biofuel use in CDM (Clean Development Mechanisms) projects; Viabilidade do uso do biodiesel para projetos de MDL (Mecanismo de Desenvolvimento Limpo)

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Julio; Lima, Luciana Santana de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    Biodiesel, renewable energy source, has been adopted by several countries as a possible substitute for fossil fuels. Brazil, by its own, included oil and fat derived biofuel in its energetic matrix through National Politics for Biofuel Use and Production (NPBUP), issue in Law n. 11.097 of 01/13/2005. Many studies demonstrate the contribution of biofuel for Greenhouse Gases reduction, what turns projects using it into possible candidates for Clean Development Mechanism (CDM), instrument described in Kyoto Protocol. With purpose of studying the Brazilian potentiality of the insertion of biofuel into CDM projects, this report approaches many aspects related to CDM, as well the terms for being accepted as so. Through bibliographic review were listed the possibilities and the restraints for including biofuel in carbon market resulted, principally, by the obligation of its use; what goes against the principle of voluntary, for seen in the Protocol. I concluded analyzing the advantages of biofuel comparatively to environmental issues, emphasizing the necessity of making viable its entrance into carbon credits market. (author)

  17. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  18. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  19. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  20. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  1. Transitioning to Biofuels: A System-of-Systems Perspective; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Riley, C.; Sandor, D.

    2008-06-01

    Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

  2. Thermostable enzymes as biocatalysts in the biofuel industry.

    Science.gov (United States)

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  3. International trade in biofuels: Good for development? And good for Environment?

    Energy Technology Data Exchange (ETDEWEB)

    Dufey, Annie

    2007-01-15

    Biofuels are heating up debates and energising activities on many policy fronts. On the surface, they offer significant opportunities to pursue environment and development goals both globally and domestically. There are both synergies and trade-offs between these goals and levels. Trade will drive biofuels growth, yet current trade regimes are not fit for maximising benefits nor minimising risks from the sector. The novelty of biofuels, the vast array of issues involved and the lack of knowledge to tackle many of them, together with diverging political and business interests, mean that consensus is elusive. It is therefore increasingly urgent to map a path for the global biofuels industry that supports sustainable development. Based on a new analysis of the sector, this briefing lays out some of the options for achieving this.

  4. Integrating sustainable biofuels and byproducts into forest industry supply chains

    Science.gov (United States)

    Reid Hensen; Maureen Essen; Nathaniel Anderson; Larry Peters; April Kimmerly

    2016-01-01

    Forest biomass is a promising feedstock for the production of bioenergy, biofuels, and bioproducts because it is renewable and widely available as a byproduct of forest management. Its harvest and use also has the potential to positively impact rural communities, especially those negatively impacted by upheaval in the forest sector.

  5. The economic impacts of the upstream activities after the reform of the Brazilian oil industry; Impactos economicos da exploracao e producao apos a abertura da industria petrolifera brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Canelas, Andre [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico

    2004-07-01

    This paper analyzes the macroeconomic impacts of the investments in the oil and gas upstream, which took place after the reform of the Brazilian oil industry. The reason why I chose to analyze such a period of time was the institutional change which took place in the Brazilian oil industry after the Brazilian Parliament approved Law n. 9.478 in 1997. The law represented the new regulation of the activities related to the oil industry in Brazil. Since then, there has been a very large amount of capital spending in the oil and gas upstream, not only by PETROBRAS, the state-owned oil company, but also by the oil companies which entered the Brazilian oil industry after it was opened to foreign and private upstream investments. This paper analyses the economic impacts of these upstream investments by PETROBRAS and by the new players in Brazil, addressing the impacts of these investments on the generation of aggregate value and yield and the economic activity of other industries. This paper is dedicated, in its entirety, to Prof. Carmen Alveal, whose knowledge, support, encouragement and friendship were, for me, the most important of all, professionally and morally. (author)

  6. Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-06-01

    Full Text Available In recent years, biofuels have emerged as a suitable alternative to hydrocarbon fuel due to their foreseen potential of being a future energy resource. Biofuel development initiatives have been successfully implemented in countries like Brazil, United States of America, European Union, Canada, Australia, and Japan. However, such programmes have been stagnant in Africa due to various constraints, such as financial barriers, technical expertise, land availability, and government policies. Nonetheless, some countries within the continent have realized the potential of biofuels and have started to introduce similar programmes and initiatives for their development. These include the bioethanol production initiatives and the plantation of jatropha oil seeds in most Sub-Saharan African countries for biodiesel production. Therefore, this paper examines the biofuel development initiatives that have been implemented in several countries across Sub-Saharan Africa over the past few years. It also discusses the opportunities and challenges of having biofuel industries in the continent. Finally, it proposes some recommendations that could be applied to accelerate their development in these Sub-Saharan African countries.

  7. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  8. 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-22

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) conducted its first annual survey update of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey, describes the survey methodology, and documents important changes since the 2013 survey.

  9. Exergy and environmental comparison of the end use of vehicle fuels: The Brazilian case

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M.; Oliveira Jr, Silvio de

    2015-01-01

    Highlights: • Total and non-renewable exergy costs of Brazilian transportation service are evaluated. • Specific CO 2 emissions of the Brazilian transportation service are determined. • Overall exergy efficiency of the end use of vehicle fuels in transportation sector is calculated. • A comparative extended analysis of the production and end use of transportation fuels is presented. - Abstract: In this work, a comparative exergy and environmental analysis of the vehicle fuel end use is presented. This analysis comprises petroleum and natural gas derivatives (including hydrogen), biofuels (ethanol and biodiesel), and their mixtures, besides of the electricity generated in the Brazilian electricity mix, intended to be used in plug in electric vehicles. The renewable and non-renewable unit exergy costs and CO 2 emission cost are proposed as suitable indicators for assessing the renewable exergy consumption intensity and the environmental impact, and for quantifying the thermodynamic performance of the transportation sector. This allows ranking the energy conversion processes along the vehicle fuels production routes and their end use, so that the best options for the transportation sector can be determined and better energy policies may be issued. It is found that if a drastic CO 2 emissions abatement of the sector is pursued, a more intensive utilization of ethanol in the Brazilian transportation sector mix is advisable. However, as the overall exergy conversion efficiency of the sugar cane industry is still very low, which increases the unit exergy cost of ethanol, better production and end use technologies are required. Nonetheless, with the current scenario of a predominantly renewable Brazilian electricity mix, based on more than 80% of renewable sources, this source consolidates as the most promising energy source to reduce the large amount of greenhouse gas emissions which transportation sector is responsible for

  10. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  11. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de

    2015-01-01

    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  12. Challenges and technological opportunities for the oil refining industry: A Brazilian refinery case

    International Nuclear Information System (INIS)

    Castelo Branco, David A.; Gomes, Gabriel L.; Szklo, Alexandre S.

    2010-01-01

    The worldwide oil refining industry currently faces strong challenges related to uncertainties about future feedstock and characteristics of oil products. These challenges favor two main strategies for the sector: the first strategy is increasing refinery complexity and versatility; the second is integrating the refining and petrochemical industries, adding value to the crude oil while guaranteeing market share to premium oil products. Both strategies aim at increasing production of highly specified oil products, simultaneously reducing the environmental impacts of the refining industry. This paper analyses the case of a Brazilian refinery, Gabriel Passos Refinery (REGAP), by proposing additional investments to alter and/or expand its current production scheme. All the proposed options present relatively low investment rates of return. However, investments in a hydrocracking based configuration with a gasification unit providing hydrogen and power can further improve the operational profitability, due to reduced natural gas consumption.

  13. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  14. The use of VMI to manage inventory in the Brazilian footwear industry: developing a model

    Directory of Open Access Journals (Sweden)

    Paulo Renato de Sousa

    2017-03-01

    Full Text Available This study aims to offer a model to apply the VMI to manage purchasing and inventory in the Brazilian footwear industry as this industry’s is inserted in a rising product diversity environment, with shorter product lifecycle while facing heavy, international competitive pressures. The model that is being proposed is also related to establishing minimum inventory levels and the ideal inventory replenishment cycle for industrial operations, and it also classifies materials according to their financial impact and to how critical their provision is. This research, which is defined as an exploratory and qualitative one, addresses a case study of a Brazilian footwear company to gather fundamental information associated with operations history, strategic operational characteristics in the purchasing area, and purchasing management systems, all performed by means of an in-depth interview. When data was analyzed, it showed that among the various materials used by a footwear company, the use of VMI would be needed for materials that were classified as being non-critical components and competitive components, that is, those with a low degree of uncertainty regarding to offer and both high and low financial impact, respectively.

  15. Effectiveness of business strategies in Brazilian textile industry

    OpenAIRE

    Batista, Paulo César de Sousa; Lisboa, João Veríssimo de Oliveira; Augusto, Mário Gomes; Almeida, Fátima Evaneide Barbosa de

    2016-01-01

    ABSTRACT This research analyses how the interaction between strategy capabilities, strategy types, strategy formulation quality and implementation capability affect organizational performance in Brazilian textiles companies. This article proposes and tests a conceptual framework, using a structural equation modeling of a set of 211 valid questionnaires on Brazilian textiles firms. The results support links between focus strategy and marketing capabilities, and between cost leadership strategy...

  16. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  17. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    also demanded by other sectors, particularly the energy sector to produce renewable electricity and heat, and the forest-based industries to produce wood products. Yet, policy support and initiatives can stimulate the synergies between the stationary energy sector and biofuels and the forest industry can include biofuels among the wide range of products already produced. One possible option is to stimulate supply side development by promoting dedicated biomass plantations to achieve learning and cost reduction in the production of short rotation woody plants and perennial herbaceous plants. This can for instance be done by linking credits for green electricity from co-firing applications with the requirement that a certain share of the biomass fuel is derived from production of such plants within EU. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Integration initiatives may involve cooperation between actors that earlier have not invested in biofuel production, such as municipalities having large district heating networks and power companies that see new opportunities for optimizing their production and improving resource use efficiency. In an increasingly globalized economy, decreasing negative impacts of biofuels on commodity markets and the environment require not only integration of various policy domains but also strategies that are internationally recognized. The early stimulation and learning in new biomass supply systems and the involvement of new types of actors cooperating in biofuel production can facilitate a positive development by reducing strains between sectors and offering opportunities for improving economic and resource use efficiency.

  18. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  19. 77 FR 23673 - Notice of Stakeholder Meeting: Industry Roundtable-DON/USDA/DOE/DOT-FAA Advanced Drop-In Biofuels...

    Science.gov (United States)

    2012-04-20

    ...--DON/USDA/DOE/ DOT-FAA Advanced Drop-In Biofuels Initiative AGENCY: Department of the Navy, DoD. ACTION... participants in the biofuels supply chain. The purpose of the roundtable meeting is for the federal government... Biofuels Production Project. Questions related to the Special Notices or the pending Broad Agency...

  20. The net cost of biofuels in Thailand. An economic analysis

    International Nuclear Information System (INIS)

    Bell, David R.; Kamens, Richard; Silalertruksa, Thapat; Gheewala, Shabbir H.

    2011-01-01

    Biofuels are expected to represent a growing portion of liquid fuel consumption in Thailand due to environmental and social considerations in conjunction with policy goals supporting their domestic production and consumption. This paper reviews the economic costs associated with biofuel policy implementation in Thailand in the short term target year of 2011. Internal (production) and external (environmental, social, etc.) costs and benefits are evaluated, and, where possible, monetized. Domestic production of biofuel is calculated to be 9.5 billion THB (317 million USD) more expensive than importing the equivalent amount of petroleum. The environmental benefits from GHG savings as well as losses due to increased ground level ozone formation and government expenditure to support the biofuel industry yield a total 'net cost' of 8.6 billion THB or 121 THB (4.04 USD) per capita for the year 2011. This result is contextualized with the (non-monetized) consideration that although biofuels are somewhat more expensive in the short term, their domestic production allows virtually all of the money to stay within the Thai economy as opposed to being sent abroad. This fact, coupled with significant uncertainty in future petroleum prices, could strongly influence the direction of Thai policy with respect to biofuels. (author)

  1. No substitute for oil? How Brazil developed its ethanol industry

    International Nuclear Information System (INIS)

    Hira, Anil; De Oliveira, Luiz Guilherme

    2009-01-01

    The world is presently mired in an energy crisis that challenges our ability to maintain standards of living in the North and raise them in the South. With accelerating demand for fossil fuels and relatively stagnant supplies, the fundamental bases of our transportation, energy, and agricultural systems are being questioned. Biofuels provide a more feasible technology than other renewables that could serve immediately to substitute for petroleum products in transportation. However, biofuels have been much reviled as leading to increased food prices and being environmental unfriendly. This article examines the case of Brazil. As a pioneer of biofuel use, Brazil is a key case for studying the possibilities, trade-offs, costs and benefits, of ethanol as an alternative to petroleum. Brazil has had an active program for over 30 years and is the world leader both in terms of technology and usage of ethanol. With relatively low economies of scale, a number of developing countries could successfully adopt the Brazilian system, reducing their dear dependence on petroleum. The evolution of the Brazilian ethanol system and its parameters are therefore of paramount interest to those interested in energy policy around the world. (author)

  2. Water and Biofuels in 2030. Water impacts of French biofuel development at the 2030 time horizon

    International Nuclear Information System (INIS)

    Lorne, D.; Bonnet, J.F.

    2009-09-01

    In 2006, French biofuel production occupied nearly 800,000 hectares, amounting to around 2.8% of agricultural land and supplying 1.8% of the country's total fuel supply. By 2020, each Member State of the European Union is required to source at least 10% of its national fuel consumption from renewable sources. One of the main goals of this requirement is to contribute to greenhouse gas reductions in the transport sector, all while conserving natural resources. Against this backdrop, diverse environmental issues are involved in the planning and development of these industries. Protecting water resources is a main concern for the French, especially when it comes to formulating agricultural strategy for any given territory. The goal of the present study is thus to propose a prospective assessment of the potential water impacts of different biofuel production scenarios in France through the year 2030. These scenarios, with their contrasting situations regarding agriculture, technology, and environmental priority, put forth a vision of possible futures in biofuel development. Their evaluation at the level of the Adour-Garonne and Seine-Normandy Basins has made it possible to produce comparative results, based on indicators quantified at this scale. (authors)

  3. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications

    DEFF Research Database (Denmark)

    Beato, Felipe B.; Bergdahl, Basti; Rosa, Carlos A.

    2016-01-01

    Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although...

  4. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  5. Brazilian new patterns of an industrial, technological and foreign trade policy.

    Directory of Open Access Journals (Sweden)

    José Matias Pereira

    2006-08-01

    Full Text Available The objective of this paper is to deepen the discussion about the unavoidable way Brazil has to go through in order to construct a modern industrial and technological policy, based on knowledge and technological innovation, which will work as a stimulator of economic development. The different theories about this subject (SCHUMPETER, 1985; PAVITT, 1998; FREEMAN, 1995; KRUGMAN, 1995; COUTINHO & FERRAZ, 1994; MATIAS-PEREIRA & KRUGLIANSKAS, 2005, so as the principles set by the Brazilian Development Ministry (“Diretrizes de Política Industrial, Tecnológica e de Comércio Exterior”, give support in the search for defining a new model of industrial, technological policy and foreign trade for the country. The strategic role of industrial policy seems to be very evident, if it takes on its co-ordination work involving the productive agents, which are responsible for crucial decisions, such as those related to investments and/or innovation, in a context of great incertitude about the consequences of their decisions in the future. Finally, the conclusion arising from this discussion demonstrates that it is crucial for the country to define a modern industrial policy, which could be able to integrate the incentive to innovation as well as to exports, in order to serve as a tool to foster development. The paper also argues that the feasibility to this policy depends on Government’s ability in supplying agents with a favorable context towards adequate regulation, purchasing policy, availability on financing facilities and fiscal incentives.

  6. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  7. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    First generation biofuels as an environmental solution are showing their own negative environmental, social and economic side effects. These need to be dealt with, because it is apparent that those same biofuels can be produced in a sustainable manner, thereby contributing to a healthier planet. Since both Argentina and the Netherlands would benefit from sustainable biofuels trade, policy measures need to be taken to guide the proper way. In what manner could bilateral cooperation concerning biofuels, optimize trade and policy output in both countries? By answering this question, one can hand solutions to upcoming problems - barriers to a sustainable energy structure - while at the same time facilitating trade between Argentina and the Netherlands. Besides providing information about the European, Dutch and Argentine market, this report presents an overview of biofuel policies. Special attention is given to the issue of sustainable biofuel production, in order to spread the necessary awareness, create wide support for corresponding politics, and offer opportunities for cooperation to prevent future entrapment. An entrapment, which could easily occur when actors in politics and business ignore international requirements for sustainable biofuel production. The research aims to produce the following output: Policy recommendations regarding the promotion of environmentally sound biofuels in both countries; A set arena to support a policy dialogue between both countries; An overview of current Dutch and Argentinean biofuel policies; Up to date information on current volumes of production, consumption and trade; Data with contact information of partners in both countries. Argentina shows an extremely professional agricultural sector, producing large quantities of vegetable oils, specifically of soybean. This sector has started to turn its attention towards biofuels - particularly to biodiesel. Projected production (for 2007-2008) is astonishingly high. The sector mainly

  8. The association between socioeconomic characteristics and consumption of food items among Brazilian industry workers.

    Science.gov (United States)

    Vinholes, Daniele B; Melo, Ione M F; Machado, Carlos Alberto; de Castro Chaves, Hilton; Fuchs, Flavio D; Fuchs, Sandra C

    2012-01-01

    Dietary pattern plays a causative role in the rising of noncommunicable diseases. The SESI (Serviço Social da Indústria) study was designed to evaluate risk factors for noncommunicable diseases. We aimed to describe food items consumed by Brazilian workers and to assess their association with socioeconomic status. Cross-sectional study was carried out among Brazilian industrial workers, selected by multistage sampling, from 157 companies. Interviews were conducted at the work place using standardized forms. 4818 workers were interviewed, aged 35.4 ± 10.7 years, 76.5% were men. The workers had an average of 8.7 ± 4.1 years of schooling and 25.4 ± 4.1 kg/m² of BMI. Men and individuals with less than high school education were less likely to consume dairy products, fruits, and vegetables daily, even after control for confounding factors. Men consumed rice and beans daily more often than women. In comparison to workers aged 50-76 years, those under 30 years old consumed less fruits and green leafy vegetables daily. The food items consumed by Brazilian workers show that there are insufficient consumption according to the guidelines of healthy foods, particularly of dairy products, vegetables, and fruits.

  9. Optimal localisation of next generation Biofuel production in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wetterlund, Elisabeth [Linkoeping Univ., Linkoeping (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Mossberg, Johanna [SP Technical Research Inst. of Sweden, Boraas (Sweden)] [and others

    2013-09-01

    With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how. This report describes the development of Be Where Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying

  10. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL; Bunce, Michael [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL

    2011-04-01

    The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.

  11. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  12. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  13. Algal biofuels: key issues, sustainability and life cycle assessment

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2011-01-01

    wastewater. Algae capture CO2 from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides......In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases...... (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal...

  14. Main factors influencing the production of biofuels in Romania

    Directory of Open Access Journals (Sweden)

    Alin Paul OLTEANU

    2009-06-01

    Full Text Available Despite the considerable progress achieved by Romania in regenerative energies, especially for the hydro energy, the energy production from biomass still has a great unused potential compared with other EU countries. The interest for biomass has increased over the last years in the EU also in the context of biofuels for the transport sector and has lead to a series of strategic choices to increase their use in the economy. Biofuel production in Romania is at a low level compared with other more developed countries like Germany or France. Thus, outlining the country profile of Romania from the perspective of a national production of biofuels becomes imperative for the integration in the EU market and the development of a new industrial branch, with high growth rates and a positive impact on other economic branches (e.g. agriculture. The present study aims at laying the foundation for a strategic analysis of the biofuels production in Romania. In this regard different factors with a direct impact on the sustainable biofuels production were identified and analyzed. For the purpose of this study information from various reports, issued by both governmental and non-governmental bodies from Romania and internationally, were used.

  15. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  16. Catching up and Falling behind: An Appraisal of Brazilian Industrial Policy in the Twenty-First Century

    Directory of Open Access Journals (Sweden)

    Yuri Kasahara

    2016-04-01

    Full Text Available Amidst analyses of industrial policy’s renaissance in Latin America, Brazil is often hailed as the paragon of this movement. The mix of old and new institutions and instruments would constitute a unique effort in promoting industrial development in the post-neoliberal period. However, this experience has been followed by middling results of industrial performance. Reviewing an emerging literature about the institutionalization and results of the Brazilian industrial policy, we argue that important aspects of path-dependency have been ignored. Organizational and ideational resistance have led to a much more traditional and conservative industrial policy than would be expected. Grounded historical analysis about intra-government conflicts, combined with studies about policy and sectoral developments, could give us elements to better assess the failures and achievements of the Brazilian case. Resumen: Avances y retrocesos: Una evaluación de la política industrial brasileña en el siglo XXI A la luz de diversos análisis sobre el renacimiento de la política industrial en América Latina, Brasil es frecuentemente alabado como el país arquetipo de la mencionada coyuntura. La combinación de instituciones e instrumentos antiguos y modernos constituiría un singular esfuerzo para promover el desarrollo industrial en el periodo post-neoliberal.  Sin embargo, la consecución de dicha experiencia fueron mediocres resultados de actividad industrial. Habiendo efectuado un examen de reciente literatura sobre la institucionalización y los resultados de la política industrial brasileña, sostenemos que, en dicho material, han sido ignorados importantes aspectos de la dependencia de la trayectoria (path-dependency. Resistencia organizativa y de formación de ideas han conducido a la implementación de una política industrial mucho más tradicional y conservadora de lo que se hubiera esperado. Un profundo análisis histórico acerca de conflictos

  17. Estimating and interpreting a common stochastic component for the Brazilian industrial production index

    Directory of Open Access Journals (Sweden)

    Paulo Picchetti

    2002-03-01

    Full Text Available This paper employs a state-space formulation to model a common stochastic component in four different series that constitute the aggregate index of industrial production in Brazil. This estimated common component is then interpreted as a measurement of behavior of fundamentals in the brazilian economy and compared to the actual aggregate index.A partir de uma formulação em espaço de estado, modelamos um componente estocástico comum para quatro séries distintas que compõem o índice agregado de produção industrial calculado pelo IBGE para o Brasil. Esse componente estocástico comum estimado é então interpretado como uma medida do comportamento de fundamentos da economia brasileira, e comparado com o índice agregado efetivo.

  18. 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bacovsky, Dina [Bioenergy 2020+ GmbH (Germany)

    2017-02-01

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) updated its annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey update, describes the survey methodology, and documents important changes since the 2015 survey published at the end of 2015 (Schwab et al. 2015).

  19. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  20. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  1. Bio-fuels are not so green

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2007-01-01

    Today there is an unrelenting trend for bio-fuels but some scientists question their utility. Some surveys show that the environmental balance sheet for bio-fuels is strongly positive for instance it is assessed that the production of 1 MJ of ethanol from beet roots of wheat requires only 0.49 MJ of fossil energy, interesting figure when compared to the 1.14 MJ of fossil energy needed to produce 1 MJ of gasoline. Other studies are less optimistic, all depends strongly on the basic data used and on the approach followed. Some scientists wonder whether all the pollutants generated in the transformation processes are well taken into account. In fact the environment benefit of the first generation of bio-fuels is mild because scientists do not know how to use efficiently the wood-cellulose by-products of plants. There is a notably exception to that, it is the sugar cane in Brazil, this plant has a good energy conversion rate and its by-products are completely and efficiently used in industry. A way to valorize cellulose by-products is to transform them in ethanol and hydrogen through the use of mushroom enzymes. (A.C.)

  2. Byproducts for biofuels

    International Nuclear Information System (INIS)

    Bondt, N.; Meeusen, M.J.G.

    2008-02-01

    This report examines the market for residues from the Dutch food and beverage industry, and the appeal of these residues for the production of bio-ethanol and biodiesel. The firstgeneration technology is readily suited to the conversion of no more than 29% of the 7.5 million tonnes of residues into biofuels. Moreover, when non-technological criteria are also taken into account virtually none of the residues are of interest for conversion into bioethanol, although vegetable and animal fats can be used to produce biodiesel. The economic consequences for sectors such as the animal-feed sector are limited [nl

  3. Biorefinery of instant noodle waste to biofuels.

    Science.gov (United States)

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biofuels and the role of space in sustainable innovation journeys.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  5. Biofuels and the role of space in sustainable innovation journeys☆

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  6. Listeria monocytogenes incidence changes and diversity in some Brazilian dairy industries and retail products.

    Science.gov (United States)

    Oxaran, Virginie; Lee, Sarah Hwa In; Chaul, Luíza Toubas; Corassin, Carlos Humberto; Barancelli, Giovana Verginia; Alves, Virgínia Farias; de Oliveira, Carlos Augusto Fernandes; Gram, Lone; De Martinis, Elaine Cristina Pereira

    2017-12-01

    Listeria monocytogenes can cause listeriosis, a severe foodborne disease. In Brazil, despite very few reported cases of listeriosis, the pathogen has been repeatedly isolated from dairies. This has led the government to implement specific legislation to reduce the hazard. Here, we determined the incidence of L. monocytogenes in five dairies and retail products in the Southeast and Midwest regions of Brazil over eight months. Of 437 samples, three samples (0.7%) from retail and only one sample (0.2%) from the dairies were positive for L. monocytogenes. Thus, the contamination rate was significantly reduced as compared to previous studies. MultiLocus Sequence Typing (MLST) was used to determine if contamination was caused by new or persistent clones leading to the first MLST profile of L. monocytogenes from the Brazilian dairy industry. The processing environment isolate is of concern being a sequence-type (ST) 2, belonging to the lineage I responsible for the majority of listeriosis outbreaks. Also, ST3 and ST8 found in commercialized cheese have previously been reported in outbreaks. Despite the lower incidence, dairy products still pose a potential health risk and the occurrence of L. monocytogenes in dairies and retail products emphasize the need for continuous surveillance of this pathogen in the Brazilian dairy industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. National Biofuels Action Plan, October 2008

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  8. Energetics of Brazilian ethanol: Comparison between assessment approaches

    International Nuclear Information System (INIS)

    Ramirez Triana, Carlos Ariel

    2011-01-01

    As with any other bioenergy product, bioethanol production requires fossil fuel inputs; hence the alleged benefits of energy security and carbon mitigation depend on the extent to which these inputs are capable of drawing a substantive bioenergetic yield. Brazilian ethanol, made out of sugarcane, has been reported as the most efficient gasoline substitute that is commercially available nowadays. For that reason it has been the object of several analyses on the energetics, i.e. energy balances. These studies surprisingly vary widely according with the scholar approach and are not fully comparable among them due to divergences in the assessment method. This paper standardises results of the four most prominent authors in the field, establishing a point of comparison and drawing some light on the energetics studies on biofuels. The main result is shown in , which homogenises the outcomes for referred studies in terms of unit of assessment in the energy input analysis. Subsequently, this information is also charted () explaining the source of divergence among authors. This work ends with a short reference and comparison to some energy balance studies carried out on feedstocks of diverse nature, highlighting the potential that sugarcane-based bioethanol represents nowadays. - Highlights: → Distribution stage could reduce energy ratio but its contribution is not significant. → In Pimentel and Patzek there is an evident impact of the industrial stage. → A coincidence across the studies was the major impact of the agricultural stage. → Brazilian technology to produce ethanol was proved the most energy efficient one.

  9. Electric vehicles need biofuels; Elektroautos brauchen Biotreibstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Tomi

    2008-09-15

    The debate over electromobility is in full swing. The effects on the electric power grid and on the biofuels industry are quire different than expected, even paradox. (orig.) [German] Die Debatte um Elektromobilitaet ist in vollem Gang. Die Auswirkung auf das Stromnetz und auf die Biotreibstoffbranche sind ganz anders, als man denkt. Sie wirken fast schon paradox. (Orig.)

  10. Panorama 2011: New bio-fuel production technologies: overview of these expanding sectors and the challenges facing them

    International Nuclear Information System (INIS)

    Lorne, D.; Chabrelie, M.F.

    2011-01-01

    The numerous research programmes looking at new-generation biofuels that were initiated over the last ten years are now starting to bear fruit. Although no plants are producing and marketing biofuels yet, the large-scale, industrial feasibility of second-generation bio-fuel production at competitive cost may be demonstrated in the short-term. As far as third generation biofuels derived from algal biomass are concerned, there is a great deal of R and D interest in the sector, but the technology is still only in its infancy. (author)

  11. Induced market disturbances related to biofuels. Report D2.2 of ELOBIO subtask 2.3

    International Nuclear Information System (INIS)

    Pelkmans, L.; Kessels, K.; Bole, T.

    2009-07-01

    The current market introduction of biofuels coincides with significant price increases on other commodity markets. However it is not clear to what extend biofuels really cause an increased demand for raw materials and thus an important price impact for all alternative applications of these raw materials. While the introduction of biofuels will have a positive impact on some of the related markets and negative on others, the magnitude of this impact needs to be analysed in more detail. Although at this stage, the European biofuel industry does not seem to be a threat to global food production, real concerns exist to what might happen in the future if the current biofuels expansion rates persist. Future growth rates must take due account of the feedback loops that exist between the profitability of biofuel production and feedstock cost, as well as a number of uncertainty factors that will affect the availability and price of raw material for everyone. Such factors include physical aspects of production (land availability, yields, crushing capacities), market factors (e.g. concentration, price elasticity of demand, availability of substitutes), governmental interference (subsidy levels) and international trade agreements. It is important to avoid policy-induced market disturbances as these can become a major barrier for industry and public support for biofuels. The ELOBIO project aims at the development of low-disturbing policy options, enhancing biofuels while minimising the impacts on e.g. markets for food, feed, and biomass for power and heat. This report shows the result of task 2.3 of the ELOBIO project. In this task the status of knowledge of induced market disturbances towards feed, food and other markets will be described. Possible market interferences of various biofuels and feedstocks for biofuels will be described in general and some cases will be treated in more depth, documented with market figures. In a next stage of the ELOBIO project - that is outside

  12. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  13. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  14. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  15. VARIATION IN BIOFUEL POTENTIAL OF TWELVE CALOPYLLUM INOPHYLLUM POPULATIONS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Budi Leksono

    2016-05-01

    Full Text Available The global energy crisis has raises demand for biofuel prices. It has driven the world to enhance environmentally-friendly renewable-energy (biofuel production. Oil from the seeds of Calophyllum inophyllum (nyamplung which can be harvested up to 50 years, is one of  such potential biofuel source. Methods for biofuel production from nyamplung seeds have been developed at an industrial scale by cooperative in Cilacap (Java and Energy Self-Sufficient Villages (Desa Mandiri Energi in Banyuwangi, Purworejo, Kebumen, Ujung Kulon (Java and Selayar (South Sulawesi. However, there is only a limited-information available on biofuel potential, in term of  productivity and quality, from nyamplung populations. This paper reports the variations in biofuel potential among 12 populations in Indonesia (6 from Java, 6 outside Java. The oil was extracted using a combination of  vertical hot press (VHP and screw press expeller (SPE methods, followed by degumming to make refined oil, and esterification-transesterification to turn it into biodiesel. The result show great variation of  biofuel content among the population. Oil production percentage varies from 37-48.5% (VHP and 50-58% (SPE crude oil, 36-48% (VHP and 40-53% (SPE refined oil, and 1733% (SPE for biodiesel. Seed resin content is responsible for most of the variation after degumming. DNA analysis shows genetic variation among populations ranges from intermediate within Java to high ouside Java and is intermediate within populations. Information about biofuel content and potential of  populations and genetic variation between and within population are important factors for establishment of  geneticallyimproved seed-sources for biofuel production from nyamplung.

  16. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  17. The European biofuels policy: from where and where to?

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, H.; Silveira, S.

    2011-05-15

    Biofuels for transport had a long history prior to their formal introduction in the European Union by means of formal directives in 2003 and 2009. Dating back to years before the First World War, busses were already rolling in Paris on a mixture of ethanol and petrol. Between 1920 and 1950 the French continued using sugar-beet-based ethanol as a tool to improve energy independence and reduce trade deficits. Ethanol utilization as a fuel blend only fell once oil prices achieved record lows in the 1960s., as large reserves started being tapped in the middle-east. In the 1970s. oil price shocks brought concerns about the European dependence on foreign energy, and the following decades saw many actions which started to change the biofuels panorama in Europe. By 1973 biodiesel research was already being conducted in Wieselburg, Austria, and in 1982 the country had its first pilot plant for biodiesel (producing fatty-acid methyl ester - FAME). After successful experiences with ethanol in Brazil, the first European directive which opened potential large markets for biofuels in Europe was the Council Directive 85/536/ECC, which authorized blends of 5% ethanol and 15% Ethyl Tertiary Butyl Ether (ETBE, a bio-ether) on petrol. The usage of bioethanol for blending, however, was hampered by the low prices of oil products which marked the late 1980s. and most of the 1990s. (the same reasons which dealt a blow to the Brazilian ethanol program during that time). In tandem with the development of biofuels in Europe, carbon emissions were already consolidated in scholarly literature as the major causal factor behind climate change. Since the UN's Brundtland commission report from 1987, alternatives to de-carbonize the transport sector were in high demand, but the deployment of alternatives was hampered by a conjuncture of low oil prices. The following years in the 1990s. were instrumental for the emergence of the modern environmental policy pursued by the EU, which became

  18. Current market of industrial bio-products and biofuels, and predictable evolutions by 2015/2030. Synthesis; Marche actuel des bioproduits industriels et des biocarburants et evolutions previsibles a echeance 2015 / 2030. Synthese

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The main objectives of this study were to describe the current status of the energetic and industrial bio-product markets (biofuels, bio-lubricants, biomaterials, papers, cosmetics, and so on), to identify and analyze the evolution perspectives of these new markets on a long and medium term, to define scenarios of evolution for different sectors (agro-industry, energy, organic chemistry), to identify the most promising new markets, and to select the priority agro-industrial sectors

  19. Possibilities and performance of international biofuel trade from CEEC to WEC

    International Nuclear Information System (INIS)

    Van Dam, J.; Faaij, A.P.C.; Lewandowski, I.M.; Van Zeebroeck, B.

    2005-01-01

    The aim of the VIEWLS-project is to achieve clear views on information and future perspectives of biofuels for transportation. The project aims at assisting policy makers, NGO's and industrial decision makers in the selection of optimal pathways for the development and market introduction of biofuels in Europe. This report concerns the results of Work Package 4, Chain Definition and Analysis. The main objectives are to define the critical factors to set up a stable international biofuel trade between Central and Eastern European Countries (CEEC) and Western European Countries (WEC); to estimate the cost performance of the energy carriers delivered in the WEC from CEEC; and to analyze the regional differences in cost performance of the energy carriers in the CEEC

  20. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe

    2015-06-01

    The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways: Economic impacts of biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan A.

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinery processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.

  2. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  3. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Second-generation pilot biofuel units worldwide - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The production of biofuels from agricultural raw material is attracting great interest for many reasons, among them global warming, oil price hikes, the depletion of oil reserves and the development of new agricultural markets. However, the technologies currently under development are hindered by the fact that available land is limited and by a risk of competition with food crops. In the last few years, research and development efforts have sought to alleviate these limitations by exploring new pathways to convert little-used plant feedstocks to biofuels with better efficiencies. Large-scale research programs concentrating on these new technologies are underway in the U.S. and Europe, with industrial development expected between 2012 and 2020

  5. Water and Land Use Efficiency in Current and Potential Future US Corn and Brazilian Sugarcane Ethanol Systems

    Science.gov (United States)

    Warner, E. S.; Zhang, Y.; Newmark, R. L.

    2012-12-01

    Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent

  6. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  7. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Overview of the technological enhancement of natural radiation in the Brazilian non-uranium mining industry

    International Nuclear Information System (INIS)

    Fernandes, H.M.; Pires do Rio, M.A.; Rosa, R.; Veiga, L.H.S.; Amaral, E.C.S.

    2002-01-01

    The mining and milling of ores with significant amounts of uranium and thorium associated to the main ore has the potential to pose undue health risks to members of the general public and workers. In order to assess the status of this problem in the Brazilian non-uranium mining industries a comprehensive investigation project has been undertaken. The adopted methodology was based on the detailed analysis of each investigated industry operational flowplan, mass balance calculations, risk assessment (operational and post-operational scenarios taken into account) and environmental management principles. This papers addresses the main issues arising from the investigation effort, reports the most relevant conclusions and states the future studies to be implemented. It could be observed that these industries have the potential to cause relevant radiological impacts and must be regulated/controlled as to avoid these problems. (author)

  9. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  10. Economic and social implications of biofuel use and production in Canada

    International Nuclear Information System (INIS)

    Klein, K.

    2005-01-01

    The potential role of biofuels in meeting Canadian commitments to greenhouse gas emissions was discussed. The characteristics of various biofuels were presented, including ethanol, methanol, biodiesel and biogas. Benefits of biofuels included a reduction in air contaminants as well as lower greenhouse gas emissions. Federal and provincial programs are currently in place to encourage production and use of biofuels. The Federal Ethanol Expansion Plan was outlined with reference to its target to increase ethanol production from 238 m litres to 1400 m litres by 2010. The main instruments of the program include excision of the gasoline tax exemption, ethanol expansion and the fact that ethanol can operate a polyfuels vehicle fleet. Provincial policies on ethanol were outlined, driven by characteristics of provincial economies. Provincial tax exemptions for ethanol were provided and an overview of the global ethanol market was presented. A map of existing and projected ethanol projects in Canada was presented, along with a forecast of Canadian ethanol production capacity. A time-line of Nebraska's ethanol production from the years 1985 to 2004 was provided. Economic drivers for ethanol include additional markets for products of agricultural, marine and forestry industries; the enhancement and diversification of rural and regional economies; employment; and energy security. Challenges to growth in biofuel production include technological knowledge and a lack of public awareness concerning the benefits of biofuel. The production and use of biofuels may increase environmental amenities but decrease economic growth. Issues concerning the economics of biofuel research were reviewed. The demand for biofuels has grown slowly in Canada, but has been promoted or mandated federally and in several provinces. The costs of biofuel production were reviewed, with a chart presenting ethanol production costs by plant size. Barriers to trade include the complexity of provincial tax

  11. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  12. The nuclear agreement with Germany in the context of Brazilian 'model' and the crisis

    International Nuclear Information System (INIS)

    Rosa, L.P.; Pires, R.L.N.F.

    1984-01-01

    The Brazilian Nuclear Program is discussed in the context of the so-called Brazilian 'model' which conditions the industrial and technological structure of Brazil. The relations between the Brazilian private industry, the Brazilian state industry and the foreign multinational industry in the nuclear agreement Brazil - Germany are indicated. The economic crisis, the 'energy crisis', the mistakes of the nuclear program, the political fight for the revision of the agreement, the present situation and the problems of technological transfer are also discussed. Some alternatives are suggested for NUCLEBRAS. In an annex, comments are made on the question of Brazilian reactors safety. The so-called system of Protection to the Nucleare Program is also mentioned. (I. de C.R.) [pt

  13. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering

    Directory of Open Access Journals (Sweden)

    C Sangavai

    2017-12-01

    Full Text Available Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways. Keywords: Biofuel, Amino acid catabolism, Genome-scale model, Metabolic engineering, Systems biology, ABE fermentation, Clostridium sticklandii

  14. The role of sustainability and life cycle thinking in U.S. biofuels policies

    International Nuclear Information System (INIS)

    Soratana, Kullapa; Harden, Cheyenne L.; Zaimes, George G.; Rasutis, Daina; Antaya, Claire L.; Khanna, Vikas; Landis, Amy E.

    2014-01-01

    A comprehensive review of the U.S. federal biofuel-related policies, from 1955 to 2012, was conducted to examine the progression of life cycle thinking within the policies. Over 1300 past and present federal and state biofuel laws and incentives were analyzed to identify the establishment of Life-cycle thinking (LCT) in the biofuel policies. The policies were searched for search terms representing the three themes: life cycle assessment, environmental impact and sustainability. LCT in policies was first seen in the Renewable Fuel Standard under the Energy Independence and Security Act of 2007, where life-cycle greenhouse gas emissions reduction of biofuels was required. Existing U.S. biofuel policies were also characterized to define types of policy as tax incentive, grants, mandate, etc. The results suggested that climate change or energy incentives, air quality or emissions, etc. should be more emphasized in fuel legislation for a continuous improvement of biofuels industry. Only 13% of both the federal and state policies reviewed in this study employed some aspect of LCT. Policies that incorporate LCT often only focused on greenhouse gas emissions; policies should include other environmental impacts to avoid any environmental tradeoffs and unintended consequences from biofuel production. - Highlights: • Identified the establishment of sustainability and life-cycle thinking in biofuel policy. • Presented the spatial distribution of state U.S. biofuels policies and production via GIS. • Analyzed past and present federal and state environmental policies progression toward biofuels. • Life-cycle thinking was only present in 13% of federal and state policies current as of 2013

  15. Study of by-products of agro-food industries which could be used for bio-fuel production (animal fat, used food oils, and wine production by-products). Synthesis of the final report

    International Nuclear Information System (INIS)

    Gomy, Catherine; Thonier, Gregoire; Gagnepain, Bruno; Mhiri, Tarek

    2015-04-01

    As the Renewable Energy directive proposes the implementation of incentive arrangements for the production of bio-fuels from biomass, this report proposes a synthesis of a study which addressed three by-products of agro-food industry and of catering (collective, traditional, fast) which can help to reach objectives of energy production from biomass: used food oils, rendered animal fat of category 1 and 2, and vinification by-products (grape marc, lees, sludge). The objectives were to quantify, at the French national and regional levels, present resources and uses for these three by-products, non-valorised volumes and thus potentially available volumes for the production of liquid bio-fuels, to identify present actors and their interactions, and to study the potential of local production of liquid bio-fuels. The study comprised a comprehensive analysis of production and valorisation sectors for the three addressed types of by-products, and an identification of recent experiments implemented for the production of liquid bio-fuels. This synthesis states the lessons learned from the study of these three different sectors, and proposes recommendations for further developments

  16. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  17. Loss reduction in industrial motor systems: the structure of the Brazilian program structure focusing the autosustainability (optimization of industrial motor systems); Reducao de perdas em sistemas motrizes industriais: a estrutura do programa brasileiro com foco na autosustentabilidade (otimizacao de sistemas motrizes industriais)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vanda Alves dos; Soares, George Alves; Perrone, Fernando Pinto Dias; Ferreira, Carlos Aparecido; Oliveira, Humberto Luiz de; Motta, Braulio Romano; Silva, Humberto Reis Braga da [ELETROBRAS, Rio de Janeiro, RJ (Brazil). Dept. de Desenvolvimento de Projetos Especiais. Div. de Projetos Setoriais de Eficiencia Energetica]. E-mails: vandaas@eletrobras.com; georgesoares@eletrobras.com; carlosaparecido@eletrobras.com; humberto.oliveira@eletrobras.com; brauliorm@eletrobras.com; hhbraga@eletrobras.com

    2006-07-01

    This paper presents the achievements and goals of the Industrial Motor System Optimization Project as developed by the PROCEL INDUSTRIA -Brazilian Energy Efficiency Industrial Program, within the scope of PROCEL - National Program for Electric Power Conservation, carried out ELETROBRAS since 1985. Its main objective is to minimize losses in the motor driven systems already installed in the Brazilian industry. In order to implement this program, ELETROBRAS is continuous making agreements with the state industry federations aiming to develop mechanisms and to manage energy efficiency implementation projects looking forward its self supporting. PROCEL INDUSTRIA aims to reduce the waste of electric energy in the industrial sector, to increase the industries competition, by reducing their costs and to contribute to the preservation and cleanness of environment. (author)

  18. An assessment of biofuel use and burning of agricultural waste in the developing world

    Science.gov (United States)

    Yevich, Rosemarie; Logan, Jennifer A.

    2003-12-01

    We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.

  19. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    International Nuclear Information System (INIS)

    Laak, W.W.M. van der; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies

  20. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  1. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  2. 2016 National Algal Biofuels Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bioenergy Technologies Office, Washington, DC (United States); Wolfe, Alexis [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); English, Christine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bioenergy Technologies Office, Washington, DC (United States); Ruddick, Colleen [BCS, Incorporated, Washington, DC (United States); Lambert, Devinn [Bioenergy Technologies Office, Washington, DC (United States)

    2016-06-01

    The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with national laboratories, academia, and industry.

  3. Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels.

    Science.gov (United States)

    Dauvergne, Peter; Neville, Kate J

    2010-01-01

    The global political economy of biofuels emerging since 2007 appears set to intensify inequalities among the countries and rural peoples of the global South. Looking through a global political economy lens, this paper analyses the consequences of proliferating biofuel alliances among multinational corporations, governments, and domestic producers. Since many major biofuel feedstocks - such as sugar, oil palm, and soy - are already entrenched in industrial agricultural and forestry production systems, the authors extrapolate from patterns of production for these crops to bolster their argument that state capacities, the timing of market entry, existing institutions, and historical state-society land tenure relations will particularly affect the potential consequences of further biofuel development. Although the impacts of biofuels vary by region and feedstock, and although some agrarian communities in some countries of the global South are poised to benefit, the analysis suggests that already-vulnerable people and communities will bear a disproportionate share of the costs of biofuel development, particularly for biofuels from crops already embedded in industrial production systems. A core reason, this paper argues, is that the emerging biofuel alliances are reinforcing processes and structures that increase pressures on the ecological integrity of tropical forests and further wrest control of resources from subsistence farmers, indigenous peoples, and people with insecure land rights. Even the development of so-called 'sustainable' biofuels looks set to displace livelihoods and reinforce and extend previous waves of hardship for such marginalised peoples.

  4. Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials

    Energy Technology Data Exchange (ETDEWEB)

    Machado de Castro, Silvia [Federal University of Rio de Janeiro, Environmental Engineering Program, Rio de Janeiro (Brazil); Machado de Castro, Aline [PETROBRAS, Biotechnology Division, Research and Development Center, Rio de Janeiro (Brazil)

    2012-03-15

    Brazil is one of the largest bioethanol and biodiesel producers in the world. Its biodiversity and environmental characteristics create the opportunity to make Brazil a major producer of biotechnological products, such as enzymes for the bioenergy industry. This review gives a brief status of the production of amylases, cellulases, xylanases, and lipases and their application on the synthesis of bioethanol and biodiesel. The historical utilization of several agroindustrial by-products as feedstocks in such processes are presented, as well as the Brazilian market for these enzymes. Finally, an innovative and multidisciplinary approach based on geographic information systems is used in a case study for the estimation of the potential production of the biocatalysts in Brazil. Results indicate that the national production of concentrated preparations based on amylases, cellulases, lipases, and xylanases could reach 3.1 x 10{sup 7}, 3.2 x 10{sup 7}, 3.1 x 10{sup 8}, and 2.9 x 10{sup 9} t, respectively. Therefore, Brazil presents a huge potential for the production of biocatalysts from renewable materials. (orig.)

  5. The prospects for large-scale import of biomass and biofuels to Sweden - A review of critical issues

    International Nuclear Information System (INIS)

    Hansson, Julia; Berndes, Goeran; Boerjesson, Paal

    2006-01-01

    Sweden is one of the biggest consumers of both domestic and imported biofuels in the EU. This paper evaluates the prospects for an increased and large-scale import of biofuels to Sweden in the future. The parameters included are prospective Swedish and global biofuel supply and demand, the cost, energy input and environmental impact of long-distance biofuel transport as well as the capacity of global freight and of Swedish ports to handle increased biofuel flows. The Swedish bioenergy potential seems large enough to accommodate a substantial increase in the domestic use of biofuels. However, an extensive import of biofuel feedstock would be needed for a prospective Swedish biofuel industry to be able to export substantial volumes of biofuels. The costs, including transport, of imported biofuels from regions, where the assessed potential supply of biomass are higher than the estimated future regional demand, are estimated to be equivalent to or lower than current costs of domestic biofuels. But the price is dependent on future competition for biofuels as well as freight and port capacity. Current specialization at Swedish ports may in the short term be an obstacle to a rapid increase in biofuel import. The energy input in long-distance biofuel transport is estimated to be low. However, to make large-scale biofuel trade flows acceptable special attention needs to be paid, e.g., to the impact on biodiversity and socioeconomic conditions in the exporting countries

  6. Brazilian industry of natural gas: criteria for definition of relevant markets concerning the defense of competition; Industria brasileira do gas natural: criterios de definicao dos mercados relevantes para efeito de defesa da concorrencia

    Energy Technology Data Exchange (ETDEWEB)

    Mano, Gustavo; Tiryaki, Gisele Ferreira [Universidade de Salvador (UNIFACS), BA (Brazil)

    2008-07-01

    A key point in the examination of the legality of antitrust practices is the delimitation of the relevant markets where the economic relations object of the analysis take place. This is the basis for the evaluation of the market power of the agents involved and the possible harm to competition they may cause. This work offers a study of the criteria for the determination of the relevant market in the scope of the natural gas industry in Brazil. It aims at identifying the performance of the agencies taking part in the Brazilian Antitrust System (SBDC) with regards to the examination of the related antitrust practices. These agencies work in connection with the National Petroleum, Natural Gas and Biofuels Regulatory Agency (ANP), which is responsible for issuing technical reports on the subjects related to its area of competence. The analysis presented here has the main goal of verifying if the most important technical, operational and legal aspects are being adequately considered by the SBDC and ANP in the definition of the relevant markets as a basis for the judgment of the antitrust practices, and if they are coherent with the principles for fostering economic competition. The results points out that, despite the successful cooperation between the SBDC and the ANP, there are the used definition of the relevant markets for the natural gas industry still needs refinement. (author)

  7. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  8. Policies for second generation biofuels: current status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Haakan; Greaker, Mads; Potter, Emily

    2011-07-01

    support to RandD in line with other low emission fuel alternatives. RandD on cellulosic ethanol can also be supported by indirect measures. The most important measure in this respect is to ensure a correct pricing of fossil fuels now and in the future. Many argue that production and use of first generation biofuels will bridge the conversion to second generation biofuels. We doubt that the necessary cost reductions for second generation biofuels can be obtained from widespread use of first generation biofuels. First, the production processes are simply too different, and second, the advantage with all kinds of biofuels are that it easy to introduce into the transport market at once the technology is ripe. Some also argue that second generation biofuels need to be protected against competition from import of low cost first generation biofuels made in developing countries. However, with targeted support to second generation biofuels, there is no need to pay attention to the infant industry argument. Trade policy should only aim to correct for insufficient internalizing of GHG emission costs from the production of biofuels in countries without a price on carbon. It is by no means certain that second generation biofuels will play a central role in the decarbonizing of the transport market. Necessary cost reductions may not be achieved. The GHG emissions from land use change connected to large-scale growing of cellulosic feedstock may turn out to offset the gains from changing fuel. It is important to avoid a technological or political lock-in in biofuels. In other words, policies should be flexible, and it should be possible to terminate support programs within a short notice.(Author)

  9. Four myths surrounding U.S. biofuels

    International Nuclear Information System (INIS)

    Wetzstein, M.; Wetzstein, H.

    2011-01-01

    The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in clarifying these market relations, the following four biofuel myths are presented: (1) biofuels will be adopted because we will soon run out of oil, (2) biofuels will solve the major external costs associated with our automobile driving, (3) biofuels cause food price inflation (the food before fuel issue), and (4) biofuels will become a major vehicle fuel. - Highlights: → Biofuels will be adopted because we will soon run out of oil. → Biofuels will solve the major external costs associated with our automobile driving. → Biofuels cause food price inflation (the food before fuel issue). → Biofuels will become a major vehicle fuel.

  10. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  11. Biofuels - Meeting the energy and environmental challenges of the transportation sector

    International Nuclear Information System (INIS)

    Ballerini, Daniel

    2012-07-01

    Changes in the world energy context, the increasing awareness of the environmental stakes and the development of research on the production of second and third generation biofuels revealed a clear need to write a new book which updates and complements all technical, financial and environmental aspects of Les Biocarburants - etat des lieux, perspectives et enjeux du developpement (Biofuels - Current status, outlook and development stakes) published in 2006. This book provides a detailed state of the art of the first generation biofuel production technologies. It describes the new 'second generation' pathways which use lignocellulosic biomass as raw material and are starting to find industrial applications, thereby reducing the competition between the food resource and the use of agricultural materials for energy purposes. It also provides a technical update on the algae-to-energy pathway (third generation) and the production of methane and hydrogen by biochemical pathways. The book arrives at exactly the right time to renew the interest in biofuels, including for air transport, and provide an insight on the technological research and development axes currently being investigated. It is intended for transport companies, refiners, forestry companies, the agricultural and agribusiness sectors as well as the public authorities, students, university teachers and researchers. Contents: 1. Biofuels: a partial solution with several challenges. 2. First generation biofuels for spark ignition engines: ethanol and ETBE. 3. First generation biofuels for diesel engines. 4. Lignocellulosic biomass resources. 5. Conversion of lignocellulosic biomass by thermochemical pathway. 6. Conversion of lignocellulosic biomass by biochemical pathway, production of ethanol and ABE. 7. Other biomass-to-energy biochemical pathways. Appendixes

  12. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-01

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. First generation biofuels -- which are mainly produced from food crops such as grains, sugarcane and vegetable oils -- have triggered one of the most highly contentious debates on the current international sustainability agenda, given their links to energy security, transport, trade, food security, land-use impacts and climate change concerns. Developing second generation biofuels has emerged as a more attractive option, as these are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  13. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. This is the second in a series of policy briefs providing an update on the project. The first brief was issued in March 2012. The project focus is on looking at developing second generation biofuels that hope to improve on issues seen with the first generation options. Second generation biofuels are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  14. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  15. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  16. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  17. How sustainable are 1{sup st} and 2{sup nd} generation biofuels for transportation?

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Guido; Hienz, Gunnar [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2013-06-01

    After the successful implementation of 1{sup st} generation biofuels in the transport sector of several countries all over the world, 2{sup nd} generation biofuels are also being produced in the meantime. Recently, there is a distinct increase in publications on the question and the concerns of many stakeholders whether these biofuels are sustainable and public awareness of this issue is prevalent. This paper summarises the state of the art of the debate whether 1{sup st} and 2{sup nd} generation biofuels are a sustainable alternative for fossil fuels for transportation. Results of several life cycle assessments are compared and conclusions are stated. An environmental assessment identifies the potentials for a sustainable development of biofuels for transportation. Conclusions are that 1{sup st} and 2{sup nd} generation biofuels show both environmental advantages and disadvantages. The analyses of energy and greenhouse gas balances show a wide range of results. Lifecycle assessments and environmental impact assessments provide a method to determine whether biofuels are environmentally sustainable. Impacts on sustainable development are exemplified in the categories land use competition, biomass use competition and CO{sub 2} avoidance costs. Not all biofuels are regarded as being advantageous from an environmental perspective. However, 1{sup st} and 2{sup nd} generation biofuels for transportation show a great potential that needs to be harmonised with other needs (e.g. land for food production or biomass use for industry and chemistry towards an overall sustainable approach). (orig.)

  18. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  19. The use of renewable energy in Brazilian energy matrix: economic and environmental aspects protected in the Brazilian Federal Constitution; O uso de energias renovaveis na matriz energetica: aspectos economicos e ambientais defendidos na Constituicao Federal

    Energy Technology Data Exchange (ETDEWEB)

    Sa Junior, Edinaldo Benicio de; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    This work presents the problems of consolidations of biofuels programs in Brazil, especially in a time when the use of renewable energy is essential for restructuring of the energy matrix of the countries. This wok also highlights the regulatory model and the difficulty of the Brazilian government in organizing a regulatory framework, strictly, responsible for the bioenergy issue in Brazil. (author)

  20. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  1. Sustainable Process Design of Lignocellulose based Biofuel

    DEFF Research Database (Denmark)

    Mangnimit, Saranya; Malakul, Pomthong; Gani, Rafiqul

    the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic...... materials such as agricultural residual, straw and wood chips, the residual from wood industry. However, those sugar and starchy materials can be used not only to make biofuels but they are also food sources. Thus, lignocellulosic materials are interesting feed-stocls as they are inexpensive, abundantly...... available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process...

  2. Biofuel chain development in Germany: Organisation, opportunities, and challenges

    International Nuclear Information System (INIS)

    Dautzenberg, Kirsti; Hanf, Jon

    2008-01-01

    Increasing production activities have been observed in many EU member states since the EU Commission sent a clear signal establishing and supporting the bioenergy industry. This article discusses current sector developments and therewith evolving biofuel value chain activities and management requirements by means of two German biofuel processing firms. Usually, the processing company can be regarded as the initiator of the regional value chains. In order to safeguard the high initial investments and secure efficient supply, the processing company relies on contract farming or profit participation rights rather than spot market interactions. In addition to discussing that point, this paper also explores opportunities and threats for the suppliers of raw materials as well as for the processors. (author)

  3. Investing today in energy for tomorrow. U.S. civilian nuclear industry: high-level oversight. Oil prices: getting close to the psychological threshold. The future of biofuels in question

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Investing today in energy for tomorrow: Whether to increase or to replace generating capacity, the amount of investment needed in energy infrastructure to meet rising demand has been identified, but many obstacles must be overcome before they become a reality. A status report and personal perspective from Pierre Gadonneix, CEO of EDF, in the 'Expert opinion' section. 2 - U.S. civilian nuclear industry - high-level oversight: The approaches are clearly different, but the licensing processes for nuclear reactor development and operation in France and the United States are both strictly regulated. Alternatives delves further. 3 - Oil prices - getting close to the psychological threshold: Are we going to stop using oil sooner rather than later if crude prices keep going up? European commodities expert Philippe Chalmin shares his opinion. 4 - The future of biofuels in question In many countries, biofuels are seen as an alternative to oil. Still, farmland is not expandable forever and the economics of biofuels deserve some scrutiny

  4. Brazilian Biodiesel Policy: Social and environmental considerations of sustainability

    International Nuclear Information System (INIS)

    Garcez, Catherine Aliana Gucciardi; Vianna, Joao Nildo de Souza

    2009-01-01

    The objective of this article is to analyze the Brazilian Biodiesel Policy (PNPB) and to identify the social and environmental aspects of sustainability that are present or absent within it. Biofuels, namely alcohol and biodiesel, have been increasing in popularity on a global scale due to their potential as alternative and renewable energy sources. Brazil, a vast country blessed with abundant natural resources and agricultural land, has emerged as a global leader in the production of biofuels. This article includes a brief analysis of the concept of sustainable development, which served as a basis to evaluate the Policy documents. Although PNPB's implementation, which began in 2004, is still within its initial stage, it was possible to identify and elaborate on the environmental and social aspects of the Policy, namely: the social inclusion of family farmers; regional development; food security; influencing the carbon and energy balance of biodiesel; promoting sustainable agricultural practices and a diversity of feedstock. (author)

  5. Scenarios for world agriculture and the Brazilian biofuels program; Cenarios para a agricultura mundial e o programa brasileiro de biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Demanboro, Antonio Carlos; Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues do [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: anto1810@fec.unicamp.br, cam@fec.unicamp.br

    2006-07-01

    Three scenarios are elaborated denominated: 'tendency', 'sustainable development' and 'equilibrium'. The scenario 'tendency' tries to show how serious issues such as environmental, economic and social will be pushed to the limit, if current trends persist. The level of awareness of population, businesses and governments about the severity of current and future environmental problems does not change. In the 'sustainable development' scenario are introduced changes in economic, ecological and social developments seeking to reach the sustainable development in long term. There is a slow change in the current economic paradigm for the economic 'sustainable' and also the level of awareness of the population. The competitive paradigm gives way slowly to the place of community cooperation. Some of the technologies type 'end of pipe' and the substitution of dangerous technologies to the environment are introduced. In the 'equilibrium' scenario deep changes are proposed in the man's relationship with the nature and of man himself. The current economic paradigm is changed to the state stable in the medium term. The level of awareness of the population increases greatly, resulting in the reduction of waste, leading to demand for products with greater durability and repairability and agricultural products without pesticides. The competitive paradigm is changed to the community cooperation. The main conclusion is that it is necessary to do a strategic evaluation of the brazilian biofuels program.

  6. Strategic niche management for biofuels : analysing past experiments for developing new biofuels policy

    NARCIS (Netherlands)

    Laak, W.W.M.; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for

  7. Assessment of biofuel potential of dead neem leaves ( Azadirachta ...

    African Journals Online (AJOL)

    Unfortunately, the lack of information on the biomass and energy potentials of these wastes empedes any initiative for its industrial biomethanization. This study was investigated with the aim of evaluating the biofuel potentials of dead neem leaves in Maroua town. The number of neem trees, as well as biomass produced by ...

  8. Biofuels - the UFIP position; Biocarburants - la position de l'UFIP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  9. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  10. STRATEGIES FOR NEW INTERNATIONAL VENTURES IN THE BRAZILIAN SUGARCANE INDUSTRY: THE CASE OF ETH BIONERGIA

    Directory of Open Access Journals (Sweden)

    Marina Carrilho Soares

    2010-07-01

    Full Text Available This study aims to identify cases of new international ventures in the Brazilian sugarcane industry, specifically as regards ethanol production, i.e., companies that are established from start to have an international profile. The paper explores the case of one such enterprise in the light of the theories addressed. In the last few years, a rising number of companies with this profile have appeared. This runs contrary to the main classical theories of internationalization, which present this process as evolutionary. As for the sugarcane industry, it has expanded considerably in recent years, which led many groups to invest in this segment. This study is a descriptive, qualitative piece of research and is based on the case study of a company recently established in this sector. Analyzing the chosen organization and comparing it to the studied theories, the authors concluded that there is, indeed, a type of organization with the profile of a new international venture. Key-words: Internationalization. New international ventures. Sugarcane industry. Brazil.

  11. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  12. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Global biofuel use, 1850-2000

    Science.gov (United States)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  14. Composition of Algal Oil and Its Potential as Biofuel

    Directory of Open Access Journals (Sweden)

    Pascal Schlagermann

    2012-01-01

    Full Text Available First test flights using blends with algae oil are already carried out and expectations by the aviation and other industries are high. On the other hand technical data about performance of cultivation systems, downstream processing, and suitability of algae oil as fuel are still limited. The existing microalgae growing industry mainly produces for the food and feed market. Energy efficiency is so far out of scope but needs to be taken into account if the product changes to biofuel. Energy and CO2 balances are used to estimate the potential of algae oil to fulfil the EU sustainability criteria for biofuels. The analysis is supported by lab tests as well as data gained by a pilot scale demonstrator combined with published data for well-known established processes. The algae oil composition is indicator of suitability as fuel as well as for economic viability. Approaches attaining high value fractions are therefore of great importance and will be discussed in order to determine the most intended market.

  15. The challenges of biofuels from the perspective of small-scale producers in Ohio

    International Nuclear Information System (INIS)

    Morrone, Michele; Stuart, Ben J.; McHenry, Izaak; Buckley, Geoffrey L.

    2009-01-01

    Increased interest in renewable fuels in the United States, such as biodiesel and ethanol, is mainly the result of higher cost for traditional fuels after years of low prices. A growing concern over oil imports from politically unstable parts of the world has also led people to seriously consider alternatives to gasoline. Despite this attention, there are issues that challenge the widespread acceptance of biofuels, including the availability of raw materials and food security concerns. Ohio is one of the most productive agricultural states in the country, able to contribute significant amounts of corn and soybeans, the main feedstock for biofuels. Even though Ohio is rich in the raw materials needed for biofuel production, it is still an endeavor that mainly involves small businesses that face numerous challenges. Some of these challenges are national in scope, while others are localized. Interviews with small-scale biofuels producers in Ohio identify some of the major political, economic, and perceptual hurdles confronting this fledgling industry

  16. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  17. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  18. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  19. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Cortes S, Simon; Chavarriaga, Paul; Lopez, Camilo

    2010-01-01

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscript reviews the current state of biofuels worldwide and at the national level,and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  20. Effectiveness of business strategies in Brazilian textile industry

    Directory of Open Access Journals (Sweden)

    Paulo César de Sousa Batista

    2016-06-01

    Full Text Available ABSTRACT This research analyses how the interaction between strategy capabilities, strategy types, strategy formulation quality and implementation capability affect organizational performance in Brazilian textiles companies. This article proposes and tests a conceptual framework, using a structural equation modeling of a set of 211 valid questionnaires on Brazilian textiles firms. The results support links between focus strategy and marketing capabilities, and between cost leadership strategy and management capabilities. However, the relationship between technologic capabilities and differentiation strategy was not statistically significant. The existence of an inter-relationship between generic strategies of focus, cost leadership and differentiation indicates the use of combined strategies. Concerning the firms' financial performance, the results show that management capability and market performance have a statistically significant relationship with financial performance.

  1. Decomposing Brazilian manufacturing industry dynamics in the mid-2000s: Macroeconomic factors and their sectoral impacts

    Directory of Open Access Journals (Sweden)

    Edson Paulo Domingues

    2017-09-01

    Full Text Available The manufacturing industry's loss in participation, phenomena called “deindustrialization”, has been observed for the Brazilian economy for a while and seems to have intensified from mid-2000s. However, the literature has not developed a consistent or integrated analysis of this process. We have used a detailed simulation model to identify how macroeconomic factors (such as exchange rate, labor costs, and household consumption have contributed to manufacturing dynamics. Our results indicate that the macroeconomic scenario explains a large portion of the manufacturing industry's participation loss. The rise in households consumption and investment, important factors in this period, were responsible for dampening of the pressures coming from the currency appreciation and the workforce costs, benefiting some industrial sectors, but not avoiding the manufacturings participation loss. Keywords: Manufacturing, Growth, Development, Simulations, JEL classification: O14, C68, D58

  2. The Liability of Corporate Social Influence in Brand Image: A Study in Brazilian Cosmetics Industry

    Directory of Open Access Journals (Sweden)

    Márcio Ribeiro da Fonseca

    2014-12-01

    Full Text Available This study evaluate the influence of Corporate Social Responsibility (CSR in brand image (BI and corporate reputation (CR analyzing Brazilian companies in the cosmetics industry. The empirical investigation explores the perception of two large Brazilian brand cosmetic companies interviewing undergraduate students belonging to highincome classes. The objective was to compare the perceptions and the differences between the two companies that publish social reports with GRI methodology. The development of this study occurred in two stages: the first stage involved a literature review, verifying theories and published research on corporate social responsibility, IM and CR. The second stage involved collecting data through a survey. The results demonstrate that the CSR has a positive influence on the IM, but such effect demonstrated only significant for one of the brands studied, and moderately to the second. Among the contributions of this work are to review the literature on the subject, identified the influence of variables of CSR in BI and RC and the differences in consumer perception for each of the brands studied, as well recommendations for future studies.

  3. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [University of Washington

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  4. The Brazilian electric power industry restructuring: an evaluation of the competition through the contestable market theory

    International Nuclear Information System (INIS)

    Vinhaes, Elbia; Santana, Edvaldo de

    1999-01-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of the work is to evaluate the competition in the Brazilian electric power industry through the Contestable Market Theory proposed by Baumol

  5. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  6. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.

    Science.gov (United States)

    Tiwari, Rameshwar; Nain, Lata; Labrou, Nikolaos E; Shukla, Pratyoosh

    2018-03-01

    Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.

  7. Life Cycle Assessment of Biofuels in Sweden; Livscykelanalys av svenska biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Tufvesson, Linda; Lantz, Mikael

    2009-05-15

    The purpose with this study is to carry out updated and developed life cycle assessments of biofuels produced and used in Sweden today. The focuses are on making the assessments as relevant and transparent as possible and identify hot spots having significant impacts on the environmental performance of the specific biofuel production chains. The study includes sensitivity analyses showing the impact on changed future conditions. The results should be seen as actual and average environmental performance based on updated calculation methods, thus individual systems developed by specific companies may have somewhat different performance. Biofuels analysed are ethanol from wheat, sugar beet and sugar cane (imported from Brazil), RME from rape seed, biogas from sugar beet, ley crops, maize and organic residues, such as municipal waste, food industry waste and liquor manure. The study also includes co-production of ethanol and biogas from wheat. Final use in both light and heavy duty vehicles, and related emissions, are assessed. Environmental impact categories considered are climate change, eutrophication, acidification, photochemical oxidants, particles and energy balances. The calculations include emissions from technical systems, e.g. energy input in various operations and processes, and biogenic emissions of nitrous oxide and carbon dioxide from direct land use changes (LUC). The potential risk of indirect land use changes (ILUC) is also assessed. By-products are included by three different calculation methods, system expansion, energy allocation and economic allocation. The results are presented per MJ biofuel, but the alternative functional unit per hectare cropland is also used regarding the greenhouse gas performance of crop-based biofuels. Finally, estimations are carried out regarding the current environmental performance of the actual various biofuel systems based on system expansion, recommended by the ISO-standardisation of LCA, and energy allocation

  8. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  9. Competition for forest resources between the biofuels and the forest industry in Sweden

    NARCIS (Netherlands)

    Dijkman, Teunis

    2009-01-01

    The aim of this project was to determine the consequences of the large-scale introduction of wood-based biofuels in the road transport sector. Therefore a model has been developed to project the de-mand for wood in Sweden in the period from 2007 to 2050.

  10. Oil price, biofuels and food supply

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Mevel, Simon; Shrestha, Ashish

    2011-01-01

    The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels. - Highlights: ► A global CGE model to analyze impacts of oil price on biofuels and food supply. ► Global biofuel penetration increases from 2.4% (2009) to 5.4% (2020) in baseline. ► A 150% rise of oil price boosts biofuels more than current mandates and targets do. ► Biofuels partially offset drops in agricultural outputs caused by oil price rise. ► Biofuels as well as oil price rise negatively affect global food supply.

  11. Is it necessary to import biofuels?

    International Nuclear Information System (INIS)

    Jensen, V.

    1997-01-01

    This conference paper discusses whether it is necessary to import biofuels into Denmark. As far as resources and capacities are concerned, the answer is no. From a commercial point of view the answer is yes. The electricity utilities and the district heating companies have established import as an alternative to domestic production of biomass. This is because agreements among suppliers had led to the absence of competition on price. This tendency to form cartels are seen for straw and chips. With pellets the situation is different; the market is controlled by the supply of shavings and filings from the furniture industry. This means that the market is very sensitive to changes in the export of furniture to Germany. Importing pellets has been difficult because of transportation problems. The prices of biofuels have been slightly falling. From 2005 the need for bioenergy will increase beyond the domestic resources of straw and chips. To secure that the Danish prices will not exceed those on the world market, in spite of the governmentally planned choice of fuels, some import of biomass will be required. 5 figs

  12. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  13. Biofuels in Central America, a real potential for commercial production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.L. (Regional Coordinator Energy and Environmental Partnership with Central America EEP (El Salvador))

    2007-07-01

    The purpose of this paper is to show the current capabilities of the Central American countries regarding the production of biofuels, and the real potential in increasing the volumes produced and the impacts that can be generated if a non sustainable policy is followed for achieving the targets of biofuel production. Due to the world oil price crisis, and the fact that Central American counties are fully dependant on oil imports (just Guatemala and Belize produce little amounts of oil), just to mention, in some countries the imports of oil is equivalent to the 40% of the total exports, the region started to look for massive production of biofuels, something that it is not new for us. The countries have started with programs for producing ethanol from sugar cane, because it is one of the most strongest industries in Central America and they have all the infrastructure and financial sources to develop this project. The ethanol is a biofuel that can be mixed with gasoline or a complete substitute. Another biofuel that is currently under develop, is the production of biodiesel, and the main source for it nowadays is the Palm oil, where Costa Rica, Honduras and Guatemala have already commercial productions of crude palm oil, but the principal use of it is for the food industry, but now it is under assessment for using part of it for biodiesel. EEP is now developing pilot programs for production of biodiesel from a native plant named Jatropha curcas, and up to now we have a commercial plantation in Guatemala, and we started as well in Honduras for start spreading this plantations. In El Salvador we installed a pilot processing plant for biodiesel that can be operated with multiple feed stock, such as Jatropha, palm oil, castor oil, vegetable used oil and others. Currently we have interesting and good results regarding the production of Jatropha, we have developed a methodology for its cropping, harvesting and processing. All the vehicles and equipment involved in the

  14. Strategic Management at Mormaii - the Brazilian Surf Industry Leader

    Directory of Open Access Journals (Sweden)

    Marcos Abilio Bosquetti

    2017-01-01

    Full Text Available The sport of surfing has been growing rapidly in popularity worldwide and Brazil is among the countries with the largest surfing population, behind the United States and Australia, however, multinational surf companies are rushing in emerging markets like Brazil to find new opportunities for growth. This paper intends to provide insights on how local companies in these markets can overcome and even take advantage of differences with global competitors by re-thinking their core competencies and business models. Therefore, empirical research applying qualitative case study methodology was developed to investigate the role of strategy in the surf industry - a fairly unexplored research topic. Semi-structured in-depth interviews with the founder and CEO and the executive directors at the Brazilian surf industry leader - Mormaii, were conducted to understand how the 4-decade local company found its way to success. Although the theories: RBV, Core Competencies, and Dynamic Capabilities complement each other and help to explain firms’ performance and strategic choices, in empirical studies strategy has been analyzed only by one or another theory. Therefore, the simultaneous use of these three theories intended to fill this gap in the literature and bring more consistency to the discussion of this case study. As a result, this empirical study illustrates the RBV perspective, which stems from the principle that the source of firms’ competitive advantage lies in their internal resources and capabilities, rather than simply evaluating environmental opportunities and threats in conducting business. It also highlights the role that core competence and dynamic capabilities play in the company’s virtuous circle of sustainable growth and provides practitioners clues for re-thinking their strategies.

  15. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  16. Estimates of US biofuels consumption, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  17. Climate risk management for the U.S. cellulosic biofuels supply chain

    Directory of Open Access Journals (Sweden)

    Matthew Langholtz

    2014-01-01

    Full Text Available As U.S. energy policy turns to bioenergy, and second-generation biofuels in particular, to foster energy security and environmental benefits, consideration should be given to the implications of climate risk for the incipient bioenergy industry. As a case-in-point, we review evidence from the 2012 U.S. drought, underscoring the risk of extreme weather events to the agricultural sector in general, and the bioenergy supply chain in particular, including reductions in feedstock production and higher prices for agricultural commodities and biofuels. We also use a risk management framework developed by the Intergovernmental Panel on Climate Change to review current understanding regarding climate-related hazards, exposure, and vulnerability of the bioenergy supply chain with a particular emphasis on the growing importance of lignocellulosic feedstocks to future bioenergy development. A number of climate-related hazards are projected to become more severe in future decades, and future growth of bioenergy feedstocks is likely to occur disproportionately in regions preferentially exposed to such hazards. However, strategies and opportunities are available across the supply chain to enhance coping and adaptive capacity in response to this risk. In particular, the implications of climate change will be influenced by the expansion of cellulosic feedstocks, particularly perennial grasses and woody biomass. In addition, advancements in feedstock development, logistics, and extension provide opportunities to support the sustainable development of a robust U.S. bioenergy industry as part of a holistic energy and environmental policy. However, given the nascent state of the cellulosic biofuels industry, careful attention should be given to managing climate risk over both short- and long-time scales.

  18. Brazilian oil and gas supply and service industry's: context and perspectives; Contexto e perspectivas do segmento para-petrolifero brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio Ricardo Pimentel de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper describes the goods and services supply oil segment, as different than the oil companies segment itself. It points to the transformations in the goods and services supply segment from the 1980s until now. At that time with low international oil prices, the oil companies induced the goods and services firms to assume a major role in development of technology. Inside the country here, the goods and services segment had high local content performance but it was associated to low technology intensity or to branches of large multinational firms installed in the Brazilian market. The paper points the French approaching on this same oil segment and its applicability to the Brazilian case, giving one example of financial R and D resources for supporting such a target. Otherwise than in France some specific obstacles can be found here in that development purpose. As alternative some others scenarios were finally explored in the paper for further suggestions for institutional approaching in this Brazilian industrial oil segment. (author)

  19. Forecasting China’s Annual Biofuel Production Using an Improved Grey Model

    Directory of Open Access Journals (Sweden)

    Nana Geng

    2015-10-01

    Full Text Available Biofuel production in China suffers from many uncertainties due to concerns about the government’s support policy and supply of biofuel raw material. Predicting biofuel production is critical to the development of this energy industry. Depending on the biofuel’s characteristics, we improve the prediction precision of the conventional prediction method by creating a dynamic fuzzy grey–Markov prediction model. Our model divides random time series decomposition into a change trend sequence and a fluctuation sequence. It comprises two improvements. We overcome the problem of considering the status of future time from a static angle in the traditional grey model by using the grey equal dimension new information and equal dimension increasing models to create a dynamic grey prediction model. To resolve the influence of random fluctuation data and weak anti-interference ability in the Markov chain model, we improve the traditional grey–Markov model with classification of states using the fuzzy set theory. Finally, we use real data to test the dynamic fuzzy prediction model. The results prove that the model can effectively improve the accuracy of forecast data and can be applied to predict biofuel production. However, there are still some defects in our model. The modeling approach used here predicts biofuel production levels based upon past production levels dictated by economics, governmental policies, and technological developments but none of which can be forecast accurately based upon past events.

  20. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  1. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  2. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    Science.gov (United States)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  3. DETERMINANTS FOR LIQUID BIOFUELS PRODUCTION IN POLAND AFTER 2006 – MODEL APPROACH

    Directory of Open Access Journals (Sweden)

    Michał Borychowski

    2017-06-01

    Full Text Available Liquid biofuels from agricultural raw materials (mainly cereals and oilseeds are produced in Poland on an industrial scale since 2005. Poland, implementing guidelines for the energy policy of the European Union, is committed to ensure the share of liquid biofuels in the total fuel consumption in transport in at least 10% by 2020. The development of liquid biofuels market is therefore dependent on the one hand on institutional factors (legal and administrative regulations, and on the other hand, primarily on the situation of agricultural raw materials markets (supply-demand relationships and prices and macroeconomic factors, mainly crude oil prices. The aim of the paper is empirical identification of determinants for the production of liquid biofuels (bioethanol and biodiesel in Poland. For this purpose there were built two econometric models based on multiple regression, indicating exactly which factors contribute to the increase or decrease in the production of liquid biofuels. For the bioethanol production importance are mainly sales of bioethanol, the variables concerning the cereals market (prices, purchase and export and macroeconomic factors – interest rate, GDP growth rate (change and USD / PLN exchange rate. Important determinants for the biodiesel production include total sale of biodiesel, production of rapeseed oil, import of rapeseed and vegetable oils (rapeseed oil and palm oil and their prices, as well as crude oil prices, which represent the macroeconomic environment. 

  4. Investments of petroleum companies in biofuels. Scope, integration, diversification; Investimentos de empresas de petroleo em biocombustiveis. Escopo, integracao, diversificacao

    Energy Technology Data Exchange (ETDEWEB)

    Oberling, Daniel Fontana; Obermaier, Martin [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIMA/COPPE/UFRJ), RJ (Brazil). Lab. Interdisciplinar de Meio Ambiente/Centro Clima], Emails: daniel@lima.coppe.ufrj.br; martin@ppe.ufrj.br

    2010-07-01

    This paper argues on the implicit strategy of petroleum enterprises in the biofuel chain analysing the hypothesis that their present investments are made viewing to control, in accordance with their interests, the growing of biofuel chain. It is presented the concept of technological lock-in, showing that the industrial economies are locked up in their technological systems and traditional structures that increase the scale reward of a technological option, hardly allowing the ascensions of technological alternatives. The paper analyses the present and future perspectives of technological and institutional lock-in in favouring the biofuel chain, particularly referring to the implicit strategies and perceptions of petroleum enterprises as function of the investments in declared biofuels.

  5. The Brazilian sugarcane innovation system

    International Nuclear Information System (INIS)

    Tosi Furtado, Andre; Gaya Scandiffio, Mirna Ivonne; Barbosa Cortez, Luis Augusto

    2011-01-01

    Ethanol has recently been of great interest worldwide because it is a viable economic alternative to petroleum products and it is a renewable source of energy that mitigates the emission of greenhouse gases. Brazilian bioethanol from sugarcane is the most successful case at the world level because of its low cost and low level of greenhouse gas emissions. Brazil's success with sugarcane cannot be understood as based solely on a natural comparative advantage, but as a result of efforts that culminated in a positive trajectory of technological learning, relying mostly on incremental innovations. The purpose of this article is to analyze the key aspects of the innovation system built around the Brazilian sugarcane industry. It is based on the national innovation systems approach according to which innovation results from the interaction of different institutional actors. Institutional arrangements are analyzed as the basis for the innovative process, in particular R and D and the innovation policies and strategies of the main players in the sugarcane sector, including sugar and ethanol mills, industrial goods suppliers, public and private research institutions, and governmental agencies. - Research Highlights: → The Brazilian success in bioethanol is due to the sugarcane innovation system. → Private funds for R and D became central after IAA closure. → Nowadays Brazilian innovation system is transforming to keep its leadership. → Public funds for research in the second generation bioethanol.

  6. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  7. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  8. Pequi: a Brazilian fruit with potential uses for the fat industry

    Directory of Open Access Journals (Sweden)

    Guedes Andréa Madalena Maciel

    2017-09-01

    Full Text Available Pequi is a native fruit from Brazil, found in the Amazon, Caatinga, Cerrado and Atlantic Rain Forest regions. It is one of the main plants with great potential for sustainable use in Central Brazil. Among 16 species comprising Caryocar genus, three are highlighted: C. brasiliense, C. villosum, and C. coriaceum, of economic importance for families in small communities of Brazilian Cerrado. They are generally organized in cooperatives and use the leaves for preparing medicinal extracts, and the fruits for culinary purposes. When the sale of fresh fruits is reduced, they produce and commercialize fruit preserves, and liqueur products, as well as extract the oil. Harvesting of mature fruits after falling from the tree while keeping some fruits at the plant is the best way for its sustainable production. The internal mesocarp contains from 36 to 66% dry weight of oil having traditional culinary, medicinal and cosmetic uses. This oil has 60% of oleic acid and 35% palmitic acid, thus suitable for industrial fat hardstocks. The presence of the triacylglycerols POO and POP makes the oil of interest for cosmetic and food industries. Both pulp and kernel oils have been studied for their health effects. By physical, enzymatic or chemical modification, the oil has shown potential uses as cocoa butter substitute and zero trans fat product.

  9. Biofuel use assessments in Africa: Implications for greenhouse gas emissions and mitigation strategies.

    Science.gov (United States)

    Kgathi, D L; Zhou, P

    1995-01-01

    The energy balances of most African countries suggest that biofuels (woodfuel, crop and wood residues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan Africa countries). There is, however, an increasing scarcity of woodfuel (fuelwood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce woodfuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation.

  10. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  11. Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Zeidan, Ahmad; Nielsen, Alex Toftgaard

    2014-01-01

    Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level...

  12. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  13. PENGARUH KATALIS BASA (NaOH PADA TAHAP REAKSI TRANSESTERIFIKASI TERHADAP KUALITAS BIOFUEL DARI MINYAK TEPUNG IKAN SARDIN

    Directory of Open Access Journals (Sweden)

    Diah Probo Ningtyas

    2013-06-01

    Full Text Available Biofuel is an alternative diesel engine fuel is produced from oils/fats of plants and animals (including the fisheries industry waste through the esterification and transesterifiksi reactions. A transesterification is reaction to form esters and glycerol from trigliserin (fat/oil and bioalcohol (methanol or ethanol. Transesterification is an equilibrium reaction so that the presence of a catalyst can accelerate the achievement of a state of equilibrium. Process of the transesterification reaction of sardine flour oil waste with NaOH as base catalyst in producing biofuels was conducted.The research purpose has studied the influence of NaOH concentration in transesterification process and examinate its effect on the quality of biofuels production, conversion, and physic quality. The variables that analysed was the effect of NaOH concentration as catalyst (0.5%, 1.0%, 1.5%, and 2.0% from amount of oil and methanol in the transesterification reaction step. The result showed that the increasing NaOH concentration (0.5 - 1.5%, enhanced the biofuel conversion (%. The highest conversion of biofuels was achieved by using 1.50% NaOH (w/w with 45.34% biofuels conversion. The major component in the biofuels was methyl palmitate (20.31%. ASTM analysis data also supported that the biofuel product was in agreement with automotive diesel fuel specification.

  14. State-of-art in liquid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Poitrat, E. [Agency for Environment and Energy Management, Dept. of Agriculture and Bioenergies, Paris (France)

    2001-09-01

    European production of fuel alcohol/ETBE and VOME has now become significant and the research work undertaken i) to reduce the energy requirements and financial costs and ii) to improve environmental benefits, are of major importance. While optimisation still seems necessary, the gain to be achieved should come from the valorisation of co-products and increasing the size of production plants. Larger production plants will make it possible to implement techniques with higher investment costs but having greater energy efficiency. For VOME, the importance of the cost of producing the agricultural feedstock remains very critical, more so than the size of the industrial plant where the size of new plants (100 000 tons up to 250 000 tons) seems a good compromise. Wider use of biofuels will also depend on agricultural policy (setaside status), tax system and harmonisation of the European legislation on oxyfuels. It will improve the greenhouse effect in harmony with the KYOTO agreement. Environmental impacts, and more particularly their quantification in terms of externalities, remain a very crucial topic. In this situation, the quantity of produced biofuels is or will be more 2 millions tons now, including forecasted quantities, which represent 11% of the objective by 2010. Otherwise, the repartition of this current production is very unequal between the different countries of EC. The first production is planned by Germany with 1 millions tons, the second by France with 570 000 tons and the third by Spain with 306 000 tons. Smaller quantities are linked at Italy, Austria, Sweden and Belgium. Other countries have not biofuels production currently. (au)

  15. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  16. The Brazilian national para-petroleum industry and the role played in the competitiveness of the Brazilian 'petroleum diamond'; A industria para-petroleira nacional e o seu papel na competitividade do 'diamante petroleiro' brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Zamith, Maria Regina Macchione de Arruda

    1999-07-01

    The author uses the Michael Porter framework, (from the University of Harvard), about the 'Competitive Advantage of Nations', as a theoretical instrument to analyze the Brazilian oil industry. The document studies, specifically, the related and supporting industries, one of the four determinants that, according to the author, promote the creation of national competitive advantages; the others are: the factors conditions; the demand conditions; and the firm strategy, structure and rivalry. The study aims at building a general view of competitiveness for the so called supply industries to the oil sector, which have a fundamental role in this model. Although Brazil has developed, with the leadership of PETROBRAS, a complex industrial system, this structure of related and supporting industries will have to face new challenges, having to improve efficiency, reduce costs and redefine its global strategies. (author)

  17. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  18. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  19. Biofuels. Environment, technology and food security

    International Nuclear Information System (INIS)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J.; Yanez, Edgar E.; Castillo, Edgar F.; Almazan, Oscar

    2009-01-01

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  20. Promoting biofuels: Implications for developing countries

    International Nuclear Information System (INIS)

    Peters, Joerg; Thielmann, Sascha

    2008-01-01

    Interest in biofuels is growing worldwide as concerns about the security of energy supply and climate change are moving into the focus of policy makers. With the exception of bioethanol from Brazil, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result, promotion measures such as tax exemptions or blending quotas are indispensable for ascertaining substantial biofuel demand. With particular focus on developing countries, this paper discusses the economic justification of biofuel promotion instruments and investigates their implications. Based on data from India and Tanzania, we find that substantial biofuel usage induces significant financial costs. Furthermore, acreage availability is a binding natural limitation that could also lead to conflicts with food production. Yet, if carefully implemented under the appropriate conditions, biofuel programs might present opportunities for certain developing countries

  1. Testing for heterogeneous business practices across firms in developing countries: The case of the Brazilian soft drink industry

    OpenAIRE

    Salvo, Alberto

    2006-01-01

    This paper estimates a structural model of the Brazilian carbonated soft drink industry to test the claim that the observed low prices of low-end entrants owe to marginal cost advantages over the large, established brands, allegedly stemming chiefly from tax evasion. Such entrants, numbering in the hundreds, are typically small-scale operations, with limited geographic reach and no advertising. In addition to the low-cost hypothesis, advocated by the incumbent duopolists, the model allows for...

  2. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    Science.gov (United States)

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  3. The Use of Biofuel for Sustainable Growth in Developing Countries

    Science.gov (United States)

    Tsang, J.

    2014-12-01

    The biofuel industry is divided into four categories comprising of feedstocks used in 1st and 2nd generation bioethanol and biodiesel. In order to identify and quantify each biofuel feedstock's potential for sustainable growth, each were evaluated according to self-developed social, financial, and environmental criteria. From the investigation and analysis carried out, 1st generation biodiesel and bioethanol were determined to be feedstocks not capable of facilitating sustainable growth. Results showed low earnings before interest, taxes, depreciation and amortization (EBITDA) of -0.5 to 1 USD per gallon for biodiesel and 0.25 to 0.5 USD per gallon for bioethanol. Results also showed a poor return on asset (ROA). The energy required to produce one MJ of 1st generation biofuel fuel was at least 0.4 MJ, showing poor energy balance. Furthermore, high land, water, pesticide, and fertilizer requirements strained surrounding ecosystems by affecting the food web, thus reducing biodiversity. Over 55% of land used by the biodiesel industry in Indonesia and Malaysia involved the deforestation of local rainforests. This not only displaced indigenous organisms from their habitat and decreased their scope of nutrition, but also contributed to soil erosion and increased the probability of flooding. If left unregulated, imbalances in the ecosystem due to unsustainable growth will result in a permanent reshaping of tropical rainforest ecosystems in Southeast Asia. Algae, an example of 2nd generation biodiesel feedstock, was concluded to be the biofuel feedstock most capable of supporting sustainable growth. This is due to its low production costs of $1-1.5/gal, high biological productivity of 5000 gallons of biodiesel per acre per year, and high ROA of 25-35%. Additionally, algae's adaptability to varying environmental conditions also makes it an appealing candidate for businesses in developing countries, where access to resource supplies is unstable. Additionally, its reduced net

  4. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  5. Biofuels – On the way to sustainability?: Opinion

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2016-12-01

    and income in rural areas as well as development of perspectives for farmers;Convenient inclusion into existing technology and market structures of transportation based on fossil fuels;Development and demonstration of technological processes with a high export potential and thus the option of creation of value.These arguments were always questioned critically by parts of the public and especially by environmental NGOs. Among others, the following arguments have been presented:The GHG savings are marginal because the production process for biofuels is quite energy consuming (i.e. no or only negligible net GHG savings;Due to direct and indirect land use change effects (LUC and iLUC possible GHG reductions are inverted  to  (significantly  higher  GHG  emissions compared to  fossil fuel  use  (i.e.  biofuels contribute to rain forest clearing;Biofuels contribute to food scarcity and hunger especially in less developed countries due to increasing food prices that are triggered by an increasing demand for land and agricultural products as well certain political instruments that distort the market (e.g. subsidies;Biofuels contribute to monoculture and industrial agriculture as well as to the reduction of biodiversity.Due to this ongoing social debate, significant efforts to minimize negative consequences and to increase acceptance have been made especially within the European Union (EU in recent years. For example, the following measures have been implemented by the European Commission (EC:Agricultural feedstocks used for biofuel production need to come from sustainable sources; this has to be certified by an independent body. In contrast, no legal sustainability requirements for agricultural feed and food products exist.The subsidies for biofuels are tied up with an assessment of the achieved GHG savings, which are calculated based on a pre-defined mandatory methodology [4]. By decision of the European Parliament, indirect land use change effects are not taken

  6. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  7. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  8. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  9. The production of biofuels in Germany. State of the art and optimization approaches; Die Biokraftstoffproduktion in Deutschland. Stand der Technik und Optimierungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Braune, Maria; Groengroeft, Arne [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Oehmichen, Katja; Zech, Konstantin

    2015-07-01

    Determining the status quo of existing biofuel plants in Germany, an extensive database of process configurations was received. This information was used to develop simulation models of virtual biofuel plants, which are now available for further investigations. The GHG emissions of biofuels can partly be improved by the studied optimization approaches. The studied optimization approaches can hence contribute to the increasing requirements for GHG reductions of biofuels. The integration of multiple optimization approaches in one concept would improve its GHG balance further. In addition to the investigated technical measures, emissions could also be reduced by adapting the energy supply. The use of biofuels for heat generation, for example, could have an additional reducing effect on total GHG emissions, because a fossil fuel-based heat and electricity supply is the main driver of the GHG balance. From the communication with contacts in the industry it can be said that the German biofuel industry operates production plants that have already reached a high level of efficiency. At many locations, additional measures and modifications are planned, not only driven by economic reasons but also to further improve the GHG balance. The overall results of the project will be published as DBFZ Report No. 22 ''Die Biokraftstoffproduktion in Deutschland - Stand der Technik und Optimierungsansaetze'' in 2015.

  10. Plant-based biofuels [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Hood

    2016-02-01

    Full Text Available This review is a short synopsis of some of the latest breakthroughs in the areas of lignocellulosic conversion to fuels and utilization of oils for biodiesel. Although four lignocellulosic ethanol factories have opened in the USA and hundreds of biodiesel installations are active worldwide, technological improvements are being discovered that will rapidly evolve the biofuels industry into a new paradigm. These discoveries involve the feedstocks as well as the technologies to process them.

  11. The regional effects of a biomass fuel industry on US agriculture

    International Nuclear Information System (INIS)

    Gallagher, Paul W.

    2014-01-01

    This study looks at the potential competitiveness of the emerging biomass-based biofuel industry in the current economic environment. A simulation model suggests that a mature biomassbased biofuel industry is potentially competitive with gasoline, and capable of filling a significant fraction of motor fuel supplies. However, the existing land policy has a narrow definition of agricultural land for a biomass-based fuel industry. A broader definition of agricultural land suitable for biomass inputs would reduce biofuel processing costs, relieve the food versus fuel conflict, and increase the net gain to fuel consumers, food consumers, and producers of food and fuel. - Highlights: • We look at the potential competitiveness of a mature biomass fuel (BF) industry in the US. • We model a land policy that allows BF-cattle competition for forage, crop residues, and pasture. • We estimate the cost reductions and welfare gains associated with modifying the land use policy

  12. Innovation Networks: the Contribution of Partnerships to Innovative Performance of Firms in the Brazilian Electrical-Electronics Industry

    Directory of Open Access Journals (Sweden)

    Silvye Ane Massaini

    2015-01-01

    Full Text Available Innovation networks have been identified in the literature as a way to complement firms’ innovative capabilities through collaboration with other partners. To provide empirical evidence for this assertion, this paper investigates the contribution of partners established in innovation networks for innovative performance of firms in the Brazilian electricalelectronics industry. For this purpose, we carried out an exploratory and descriptive survey among 185 companies. The data were analyzed using structural equation modeling (SEM. As the main findings, we observed that the establishment of collaborative relationships with customers, competitors and universities/research institutions can contribute to organizational and process innovation. However, despite obtaining some significant results concerning the contribution of different partners in the network, electrical-electronics industry companies also attach great importance to internal activities to develop their innovations.

  13. Organization and development of the Brazilian nuclear programme

    International Nuclear Information System (INIS)

    Pinto, C.S.M.; Souza, J.A.M. de; Grinberg, M.; Alves, R.N.; Costa, H.M. da; Grimberg, M.

    1977-01-01

    The paper presents the Brazilian Nuclear Energy Programme, its development, the organizations and the distribution of responsibilities involved in its execution at the present time. The nuclear power policy is established at the Presidency of the Republic and is planned, executed and controlled through the Ministry of Mines and Energy. Directly subject to the Ministry is the Brazilian Nuclear Energy Commission (CNEN), which has regulatory, standardization, licensing, planning and surveillance functions. The nuclear fundamental research and manpower formation are also under CNEN responsibility. Also subject to the Ministry are two companies responsible for the execution of the Programme: the Centrais Eletricas Brasileiras S.A. - Eletrobras, which advises on the granting of permits for the construction and operation of nuclear power plants, and the Empresas Nucleares Brasileiras S.A. - Nuclebras, which holds the monopoly of the nuclear fuel cycle in the country, designs and builds nuclear power plants and provides assistance to the electric utilities and promotes the participation of Brazilian industry. Besides describing the new distribution of regulatory functions given by law to CNEN, the paper gives special emphasis to the large industrial complex in the process of being established through the setting-up of the many Nuclebras subsidiaries in joint venture with German firms under the Industrial Co-operation Agreement Between Brazil and the Federal Republic of Germany in the Field of the Peaceful Uses of Nuclear Energy. The programmes for these subsidiaries are presented and their participation in the Brazilian Nuclear Energy Programme is discussed. The technology transfer aspects of the industrial activities are also discussed. (author)

  14. Biofuels, a bad thing?; Boeser Biokraftstoff?

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.; Bensmann, M.

    2008-05-15

    The discussions over biofuels are still going on. Critics claim that biofuels ruin engine components, destroy rainforests and cause high food prices and global hunger. According to this contribution, the Federal government's biofuels policy was wrong and was doomed to fail. (orig.)

  15. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    De Castro, J.F.M.

    2007-05-01

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  16. Biofuel use assessments in Africa. Implications for greenhouse gas emissions and mitigation strategies

    International Nuclear Information System (INIS)

    Kgathi, D.L.; Zhou, P.

    1995-01-01

    The energy balances of most African countries suggest that biofuels (wood fuel, crop and wood dues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan African countries). There is, however an increasing scarcity of wood fuel (fuel wood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce wood fuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation. 5 tabs., 42 refs

  17. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  18. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. The Brazilian nuclear industries - INB - in the field of the rare earth

    International Nuclear Information System (INIS)

    Blatt, Victoria

    1996-01-01

    The Brazilian Nuclear Industries - INB is responsible for the execution of part of the cycle of uranium as nuclear reactor fuel for alternative energy generation. Soon INB shall increase the participation in this cycle, through the implantation of the line of powder and pastille. INB is also the successor of the monazite processing industries. The last one was NUCLEMON that was incorporated by INB. The connection of INB with this area is due to the presence of the strategic elements uranium and thorium in the monazite. The know-how was and continues to be developed by a chemical team of the National Commission of Nuclear Energy (CNEN) with the collaboration of the technical team of INB. The ever wider applications of the individual Rare Earth in the most different fields of the electrical, electronics, communication, optical, metallurgical, catalysis and other industries, as well as INB incessant inquire for the economical workability, brought INB to appraise the position regarding to the industrial production of the Rare Earth. The choice is bringing to the separation and commercialization of the individual elements and/or in groups containing a reduced number of Rare Earth, instead of the production and commercialization of the mixture of monazitic Rare Earth. This paper illustrates through quantitative information some aspects regarding to reserves, mining and physical separations of the monazite, as well as projections about INB resuming its industrial activities with insertion of technical improvements in both, the chemical treatment of the monazite and the Rare Earth separation. In this field, there will be presented in this paper the qualitative and quantitative results recently reached in a large dimension pilot plant. These results add to the technical conquest reached in the late years by the foregoers of INB, and that will be also presented. The paper contains also some appreciations regarding to the perspectives of INB's ingression in the field of

  20. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  1. Stagnating Jatropha Biofuel Development in Southwest China: An Institutional Approach

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-05-01

    Full Text Available Biodiesel from jatropha has been considered as a promising alternative to fossil fuels for some time. Consequently, China started promoting jatropha as one of the options to meet its ever-increasing energy consumption, and the Chinese biodiesel industry also gained interest. However, the excitement of the biofuel industry in jatropha faded after it did not bring about the expected results. This article investigates the stagnation in jatropha development and production for biodiesel in China, using two detailed case studies of jatropha biofuel production in southeast China. It is found that the underdeveloped biodiesel policy and regulation, such as a rather late formulation of standards for biodiesel (especially the B5 and the absence of mandatory targets, is an important reason for hampering jatropha development. Besides that, lack of financial support undermined sustained jatropha planting at the farm level and lack of sustained commitment from state-owned enterprises or private companies over a long time span further contributed to jatropha project’s failure. Better implementation of the rule of law, mandatory blending requirements, hazard insurance, as well as continuous financial support, might improve the continuation of jatropha plantation schemes.

  2. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    Science.gov (United States)

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  3. New approaches to energy efficiency programs in the Brazilian industry; Novas abordagens para programas de eficiencia energetica na industria brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Sant' ana, Paulo Henrique de Mello [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia e Ciencias Sociais Aplicadas. Nucleo Interdisciplinar de Planejamento Energetico; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico

    2010-07-01

    A modern approach often used in international literature says that the government has the role to create favorable conditions for improving energy efficiency in industry, either through policies, programs or actions. This article's main objective is to describe the main programs for promoting energy efficiency in industry in Brazil and in other countries, for later to propose a new approach for the management and development of energy efficiency programs for the Brazilian industry. The creation of an executive agency, connected to the MME and with strong ties to ELETROBRAS and PETROBRAS, could manage effectively the enormous resources that are needed to mobilize the energy efficiency programs as real alternatives to programs for additional expansion in energy supply. The creation of energy assessment centers, along with an energy efficiency program for energy-intensive industry, would help in promoting energy efficiency in industry. These actions would likely bounce in other industries, and would assist in achieving optimal management standards in the energy industry, consistent with ISO 9000 and ISO 14000, used in countries like the USA and Sweden. (author)

  4. Application of FT-IR Absorption Spectroscopy to Characterize Waste and Bio-Fuels for Pyrolysis and Gasification

    Czech Academy of Sciences Publication Activity Database

    Kalisz, S.; Svoboda, Karel; Robak, Z.; Baxter, D.; Andersen, L. K.

    2008-01-01

    Roč. 8, - (2008), s. 51-52 ISSN 1733-4381 Institutional research plan: CEZ:AV0Z40720504 Keywords : ft-Iir spectroscopy * bio-fuels * gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  6. The rationality of biofuels

    International Nuclear Information System (INIS)

    Horta Nogueira, Luiz Augusto; Moreira, Jose Roberto; Schuchardt, Ulf; Goldemberg, Jose

    2013-01-01

    In an editorial of a recent issue of a known academic journal, Prof. Hartmut Michel affirmed that “…the production of biofuels constitutes an extremely inefficient land use… We should not grow plants for biofuel production.”, after comparing the area occupied with plants for bioenergy production with the one required for photovoltaic cells to supply the same amount of energy for transportation. This assertion is not correct for all situations and this comparison deserves a more careful analysis, evaluating the actual and prospective technological scenarios and other relevant aspects, such as capacity requirements, energy consumed during the life cycle of energy systems and the associated impacts. In this communication this comparison is revaluated, presenting a different perspective, more favorable for the bioenergy routes. - Highlights: • Energy systems and life cycle impacts are compared under equal conditions. • The comparison is done between biofuels and photovoltaic/battery in mobility uses. • Biofuels are a valuable option when produced sustainably by efficient routes

  7. System visualization of integrated biofuels and high value chemicals developed within the MacroAlgaeBiorefinery (MAB3) project

    DEFF Research Database (Denmark)

    Seghetta, Michele; Hasler, Berit; Bastianoni, Simone

    MacroAlgaeBiorefinery (MAB3) may functions as production platform and raw material supplier for future sustainable production chains of biofuels and high value chemicals. Biofuels are interesting energy source but challenges in terms of the composition of the biomass and resulting energy...... efficiencies has to be compensated for to make the biofuel prices competitive in replacing fossil fuel. Since it is difficult to increase the yield of the single biorefinery, the overall system productivity can be improved integrating different sub-systems. In this study, macroalgae cultivation in Denmark...... is integrated with a biogas biorefinery, a bioethanol biorefinery and a fish feed industry. The modeled system is able to adapt itself to different amount and quality of feedstock and to maximize valuable outputs (e.g. bio-fuels and chemical). Macroalgae are harvested and utilized as feedstock in bioethanol...

  8. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Treese II, J. Van [Southwest Florida Research and Education Center, Immokalee, FL (United States); Hanlon, Edward A. [Southwest Florida Research and Education Center, Immokalee, FL (United States); Amponsah, Nana [Intelligentsia International, LaBelle, FL (United States); Izursa, Jose -Luis [Intelligentsia International, LaBelle, FL (United States); Capece, John C. [Univ. of Florida, Gainesville, FL (United States)

    2013-03-01

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic) and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability

  9. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  10. The biofuel potential of crop based biomass in Denmark in 2020; Danmarks potentiale for afgroedebaseret biobraendstofproduktion i aar 2020

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen Blume, S

    2008-02-15

    According to climate change observations and foresights several countries including Denmark have committed to reduce GHGemissions. However, the transport sector is still increasing its GHGemissions. Substitution of fossil fuels with biofuels seems to be the best way to reduce CO{sub 2}-emission from this sector on the shorter term. This project evaluates how Denmark can produce enough biofuels to fulfil the political goal of 10 % substitution of the fossil fuel consumption in the year of 2020. This project also approaches the suitability of different crop species to the biofuel industry. Maize and sugar beet are the most suitable crops for biofuel production when only focusing on maximum biofuel yield. Alfalfa is likewise showings great potential and is the most suitable crop in terms of sustainable biofuel production, because of low energy requirements (diesel, fertilizer, pesticide and irrigation) during cropping. Even though maize has higher needs for energy during cropping, it will still be suitable for sustainable biofuel production because of the high biofuel yield. Present calculations show that it is possible to meet the required amount of biofuels by using domestic biomass, which is currently exported (cereal grain) or not utilized (eg. straw). However, these calculations assume that it will become possible to convert the whole amount of carbohydrates into biofuel before 2020. In terms of assessing the biofuel production potential three storylines are defined for the development until 2020. Changes in land use and crop composition are suggested for each storyline to adjust the biofuel production to Danish agriculture. The biofuel production potential is also assessed for two regions in Denmark. Here the region of Storstroem shows greater potential than the region of Soenderjylland because of low density of domestic animals. (au)

  11. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  12. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  13. Potential of biofuels for shipping. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Florentinus, A.; Hamelinck, C.; Van den Bos, A.; Winkel, R.; Cuijpers, M. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-01-15

    Biofuels could be one of the options to realize a lower carbon intensity in the propulsion of ships and also possibly reduce the effect of ship emissions on local air quality. Therefore, EMSA, the European Maritime Safety Agency, is evaluating if and how biofuels could be used in the shipping sector as an alternative fuel. To determine the potential of biofuels for ships, a clearer picture is needed on technical and organizational limitations of biofuels in ships, both on board of the ship as in the fuel supply chain to the ship. Economic and sustainability analysis of biofuels should be included in this picture, as well as an overview on current and potential policy measures to stimulate the use of biofuels in shipping. Ecofys has determined the potential of biofuels, based on analysis of collected data through literature review, own expertise and experiences, direct communication with EMSA, research publications, market developments based on press and other media, and consultations with relevant stakeholders in the shipping market.

  14. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  15. Fugitive emission inventory from Brazilian oil and gas industry (2000-2005) and discussion of mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, Flavia A.; D' Avignon, Alexandre; La Rovere, Emilio L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Centro Clima

    2008-07-01

    The objective of this work is to evaluate current emissions of GHGs within the Brazilian oil and gas industry, specifically the fugitive emissions arising from exploration and production. Besides, projects for mitigating these emissions and opportunities for the national industry are investigated. Results show that N{sub 2}O contributes little to fugitive emissions from the oil and gas industry, principally from gas sector. NMVOC emissions are significant, principally from the oil sector. In relation to CO{sub 2} and CH{sub 4} emissions, the oil sector emits more CO{sub 2} while the gas sector contributes more to CH{sub 4} emissions. In both sectors flaring is the activity that emits most CO{sub 2}. In relation to CH{sub 4} the principal contribution to emissions are from exploration and production onshore, although offshore activities as a whole play a greater part in the national industry. The results make it clear that the use of gas from flaring activity is a great opportunity for emission mitigation projects. From a business point of view, methane emissions could mean lost opportunities in selling natural gas. The Kyoto Protocol mechanisms, as the Clean Development Mechanism and Joint Implementation actions, provide the opportunity to stimulate investments in projects for reducing flaring and venting of associated gas. (author)

  16. Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production.

    Science.gov (United States)

    Ferrera-Lorenzo, N; Fuente, E; Bermúdez, J M; Suárez-Ruiz, I; Ruiz, B

    2014-01-01

    A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  18. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  19. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  1. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  2. External governance and the EU policy for sustainable biofuels, the case of Mozambique

    International Nuclear Information System (INIS)

    Di Lucia, Lorenzo

    2010-01-01

    Growing demand for transport biofuels in the EU is driving an expansion of the industry in developing countries. Large-scale production of energy crops for biofuel, if mismanaged, could cause detrimental environmental and social impacts. The aim of this study is to examine whether the newly adopted EU Directive 2009/28/EC and its sustainability certification system can effectively ensure sustainable production of biofuels outside the EU. Mozambique, a least developed country with biofuels ambitions, is selected as empirical case. The effectiveness of the EU policy in analysed employing ideal models of external governance (hierarchical, market and network governance) as analytical framework. The findings show that the EU attempts to impose its rules and values on sustainable biofuels using its leverage through trade. The market approach adopted by the EU is expected to produce only unstable (subject to abrupt changes of market prices and demand) and thin (limited to climate and biodiversity issues) policy results. Stronger emphasis on a network oriented approach based on substantial involvement of foreign actors, and on international policy legitimacy is suggested as a way forward. - Research highlights: →The EU attempts to impose its rules and values on sustainable biofuels using its leverage through trade. →The market approach adopted by the EU is expected to produce only unstable (subject to abrupt changes of market prices and demand) and thin (limited to climate and biodiversity issues) policy results.→In order to promote simultaneously stable and substantial impacts, the EU governance approach based on market access should be integrated with a network mode of governance based on policy legitimacy.

  3. The potential of liquid biofuels in France

    International Nuclear Information System (INIS)

    Poitrat, Etienne

    1999-01-01

    The objective fixed by the European Commission in 1995 was that 5% of the fuel used for transport in Fance should be produced from renewable energy by 2005. As opposed to some other European countries, there is no environmental tax on fossil fuels in France, but the Government has agreed to a tax incentive system on biofuels. Experimental work on liquid biofuels as a transport fuel started in France in the early 80's, but the use of biofuels on a commercial basis really started to develop when the setaside rules and tax incentives came into force in 1991. Out of the two routes originally considered for development; bioethanol and its ETBE derivative, and vegetable oils and their methyl ester derivatives, priority has now been given to: ETBE produced from sugar beet and wheat and now from sub-products of starch industry, which are widely grown in France; ETBE is blended with gasoline for use in spark ignition engines. Production of wheat and beet for energy purposes is very similar to food production. In France, ethanol produce from sugar beet is a traditional industry; this was the first route to be developed. The results of a life cycle analysis made for ETBE produce from sugar beet will be given, showing advantages and limitations. Alcohol produced from wheat is a more recent activity; two industrial plants have been built since beginning of the 90's and other projects are planned like for example a production from starch industry. RME (rapeseed methyl ester) for use in diesel engines at various blend rates. Vegetable oils or their derivatives such as esters can be used directly in diesel engines. Pure, filtered and degummed oils can be used in pre-chamber engines. Relatively advanced knowledge has now been gained about esters; because their characteristics are very similar to those of conventional diesel fuel, they are considered suitable for use in direct injection diesel engines without engine modification. In France, methyl ester is at present produced mainly

  4. Biofuels: Network Analysis of the Literature Reveals Key Environmental and Economic Unknowns

    Science.gov (United States)

    2012-01-01

    Despite rapid growth in biofuel production worldwide, it is uncertain whether decision-makers possess sufficient information to fully evaluate the impacts of the industry and avoid unintended consequences. Doing so requires rigorous peer-reviewed data and analyses across the entire range of direct and indirect effects. To assess the coverage of scientific research, we analyzed over 1600 peer-reviewed articles published between 2000 and 2009 that addressed 23 biofuels-related topics within four thematic areas: environment and human well-being, economics, technology, and geography. Greenhouse gases, fuel production, and feedstock production were well-represented in the literature, while trade, biodiversity, and human health were not. Gaps were especially striking across topics in the Southern Hemisphere, where the greatest potential socio-economic benefits, as well as environmental damages, may co-occur. There was strong asymmetry in the connectedness of research topics; greenhouse gases articles were twice as often connected to other topics as biodiversity articles. This could undermine the ability of scientific and economic analyses to adequately evaluate impacts and avoid significant unintended consequences. At the least, our review suggests caution in this developing industry and the need to pursue more interdisciplinary research to assess complex trade-offs and feedbacks inherent to an industry with wide-reaching potential impacts. PMID:22229835

  5. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  6. Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts.

    Science.gov (United States)

    Xu, Ke; Lv, Bo; Huo, Yi-Xin; Li, Chun

    2018-04-01

    Rising feedstock costs, low crude oil prices, and other macroeconomic factors have threatened biofuel fermentation industries. Energy-efficient reactors, which provide controllable and stable biological environment, are important for the large-scale production of renewable and sustainable biofuels, and their optimization focus on the reduction of energy consumption and waste gas emission. The bioreactors could either be aerobic or anaerobic, and photobioreactors were developed for the culture of algae or microalgae. Due to the cost of producing large-volume bioreactors, various modeling strategies were developed for bioreactor design. The achievement of ideal biofuel reactor relies on not only the breakthrough of reactor design, but also the creation of super microbial factories with highest productivity and metabolic pathway flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Oil and development in Brazil: Between an extractive and an industrialization strategy

    International Nuclear Information System (INIS)

    Paz, M. José

    2014-01-01

    In the wake of the commodity boom, “new development strategies” in Latin America are centering on the industrialization of natural resources, thereby questioning the “resource curse” thesis and linking the economic performance of this activity with the institutional framework. In this context, the aim of this paper focusing on the Brazilian oil sector is to analyze the implementation of a resource-based industrialization strategy. After analyzing the Brazilian institutional framework and identifying the key features of a resource-based industrialization strategy, we assess its development and identify its scope and limitations. - Highlights: • We analyze the Brazilian oil sector’s institutional framework. • We analyze the influence of the institutional framework in the Brazilian oil sector performance. • We identify the key features of a resource-based industrialization strategy. • We assess the performance of the Brazilian oil sector and, in particular, its industrialization path

  8. TECHNOLOGY REPRESENTATION IN SOME BRAZILIAN POEMS

    Directory of Open Access Journals (Sweden)

    Rubel Maria Fanini

    2010-07-01

    Full Text Available Abstract: This article analyses how the universe of technology and labour are depicted in literary terms in some Brazilian poems from the writers Castro Alves, Mario de Andrade and Oswald de Andrade. The poets portray this universe in the following approaches: modern technology dissociated from the Brazilian context painted as traditional and archaic; associated to industrial production and to workers’ exploitation; linked to high class entertainment and as an imported good subjected to central capitalistic economies, facing difficulties to be aggregated to local production.

  9. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hidden costs of a typical embodied energy analysis: Brazilian sugarcane ethanol as a case study

    International Nuclear Information System (INIS)

    Agostinho, Feni; Siche, Raul

    2014-01-01

    Worldwide human production systems are tightly coupled to fossil-based energy, the source of which will not be available at low cost in the foreseeable future. Alternative energy sources are being sought for, among which those derived from biomass are considered to have great potential. Brazilian ethanol sugarcane produced at a large scale is being classified in scientific papers and politics as a renewable energy source. However, only the energy return on investment (EROI) and/or the amount of CO 2 released to atmosphere have been considered as indicators of renewability. This work aims to discuss some theoretical points, within an embodied energy analysis, that make its use inappropriate for answering all issues related to the concept of renewability. Emergy accounting (with an “m”) is used as a comparative tool and the Brazilian sugarcane ethanol is evaluated as case study. An EROI of 6.7 for ethanol was obtained, showing that for each unit of “commercial energy” invested within the process, 6.7 units of another kind of energy is obtained – this index shows an excellent value for energy efficiency, but it does not reflect the renewability of ethanol. On the other hand, emergy accounting shows a renewability index of 19%, indicating a low rating for sugarcane ethanol. All scientific methodologies available to assess potential energy sources have their pros and cons, but the analyst must be aware that each methodology supplies different indicators with different meanings. Energy analysts should use methodologies appropriately, avoiding wider conclusions not actually represented by indices calculated. - Highlights: • The renewability discourse of biofuels is discussed focusing on the Brazilian sugarcane ethanol. • Both energy efficiency and CO 2 emitted hardly indicate the renewability of biofuels. • Emergy evaluation is introduced as a potential tool when assessing renewability. • Analysts must use methodologies accordingly and avoid general

  11. Evaluating the effect of exchange rate and labor productivity on import penetration of Brazilian manufacturing sectors

    OpenAIRE

    Faleiros, João Paulo Martin; da Silva, José Carlos Domingos; Nakaguma, Marcos Yamada

    2016-01-01

    In recent years, several economists have argued that the sharp loss of competitiveness of the Brazilian industry was caused by a strong exchange rate appreciation. However, other economists have attributed this loss of competitiveness to the dismal growth of labor productivity in the Brazilian industrial sector. The present paper proposes to estimate the differential impacts of variations in exchange rate and labor productivity on the Brazilian market share of imports measured by the coeffici...

  12. Biofuels and their by-products: Global economic and environmental implications

    International Nuclear Information System (INIS)

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.; Beckman, Jayson F.; Birur, Dileep K.

    2010-01-01

    Recently a number of papers have used general equilibrium models to study the economy-wide and environmental consequences of the first generation of biofuels (FGB). In this paper, we argue that nearly all of these studies have overstated the impacts of FGB on global agricultural and land markets due to the fact that they have ignored the role of biofuel by-products. Feed by-products of FGB, such as dried distillers grains with solubles (DDGS) and oilseed meals (VOBP), are used in the livestock industry as protein and energy sources. Their presence mitigates the price impacts of biofuel production. More importantly, they reduce the demand for cropland and moderate the indirect land use consequences of FGB. This paper explicitly introduces DDGS and VOBP into a global computational general equilibrium (CGE) model, developed at the Center for Global Trade Analysis at Purdue University, to examine the economic and environmental impacts of regional and international mandate policies designed to stimulate bioenergy production and use. We show that models with and without by-products reveal different portraits of the economic impacts of the US and EU biofuel mandates for the world economy in 2015. While both models demonstrate significant changes in the agricultural production pattern across the world, the model with by-products shows smaller changes in the production of cereal grains and larger changes for oilseeds products in the US and EU, and the reverse for Brazil. Models that omit by-products are found to overstate cropland conversion from US and EU mandates by about 27%. (author)

  13. Options for suitable biofuel farming: Experience from Southern Africa

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2017-04-01

    Full Text Available sugarcane-based ethanol project that has been operational since 1982. Furthermore, sugarcane for sugar production is a well established crop in the region, with projects operational in South Africa, Swaziland, Mozambique, Zambia, and Zimbabwe. Biofuel... in the sugar industry where sugarcane is grown was also investigated. Data were obtained from detailed case studies undertaken previously by the author. Further data were gathered from a wide selection of Southern African sugar projects using key informant...

  14. 'Supply Push’ or ‘Demand Pull?’: Strategic Recommendations for the Responsible Development of Biofuel in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Goodsite, Michael; Sovacool, Benjamin

    2015-01-01

    factors affecting the development of the biofuel industry in China. It then prioritizes their importance using the FAHP method. The study finds that high production costs, competition with other renewable energy resources, inconsistent policy and legislation support, and poor technical standards......This study investigates China's biofuel industry—the third largest in the world—by combining a strength, weakness, opportunity and threats (SWOT) analysis with a method known as fuzzy analytic hierarchy process (FAHP). More specifically, the study employs SWOT analysis to identify the influential...

  15. Trade of Solid Biofuels, and Fuel Prices in Europe

    International Nuclear Information System (INIS)

    Alakangas, E.; Hillring, B.; Nikolaisen, L.S.

    2002-01-01

    Traditionally, biomass fuels are used in the same geographical region, in which they are produced. In more recent years, this pattern has been changed in Northern Europe by large-scale use of biomass for district heating and a vast supply of recycled wood and forest residues. The trade situation has come about as a result of means of control on waste and energy. Sea shipments allow bulk transports of biomass over long distances at low cost. In most countries, the customs statistics do not record trade in such a detail that the international trade of different biomass types could be identified. Today, solid biofuels like wood residues, pellets and wood chips are already traded in Europe and have reached a level of almost 50 PJ/a. In some countries, there is a growing interest in the international biomass trade, because the trade can provide biofuels at lower prices. The largest volumes of biomass are traded from the Baltic countries (Estonia, Latvia, Lithuania) to the Nordic countries (especially Sweden and Denmark, but also Finland). Some volumes are also traded from Finland to other Nordic countries, and between neighbouring countries in Central Europe, especially the Netherlands, Germany, Austria, Slovenia and Italy. The traded biofuel is most often of refined wood fuels (pellets and briquettes) and industrial by-products (sawdust, chips), in Central Europe also wood waste

  16. Trade of Solid Biofuels, and Fuel Prices in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [VTT Processes, Jyvaeskylae (Finland); Hillring, B. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Nikolaisen, L.S. [Danish Technological Inst. (DTI), Aarhus (Denmark). Centre for Biomass Technology

    2002-07-01

    Traditionally, biomass fuels are used in the same geographical region, in which they are produced. In more recent years, this pattern has been changed in Northern Europe by large-scale use of biomass for district heating and a vast supply of recycled wood and forest residues. The trade situation has come about as a result of means of control on waste and energy. Sea shipments allow bulk transports of biomass over long distances at low cost. In most countries, the customs statistics do not record trade in such a detail that the international trade of different biomass types could be identified. Today, solid biofuels like wood residues, pellets and wood chips are already traded in Europe and have reached a level of almost 50 PJ/a. In some countries, there is a growing interest in the international biomass trade, because the trade can provide biofuels at lower prices. The largest volumes of biomass are traded from the Baltic countries (Estonia, Latvia, Lithuania) to the Nordic countries (especially Sweden and Denmark, but also Finland). Some volumes are also traded from Finland to other Nordic countries, and between neighbouring countries in Central Europe, especially the Netherlands, Germany, Austria, Slovenia and Italy. The traded biofuel is most often of refined wood fuels (pellets and briquettes) and industrial by-products (sawdust, chips), in Central Europe also wood waste.

  17. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  18. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  19. Biofuels: Project summaries. Research summaries, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    Domestic transportation fuels are almost exclusively derived from petroleum and account for about two-thirds of total US petroleum consumption. In 1990, more than 40% of the petroleum used domestically was imported. Because the United States has only 5% of the world`s petroleum reserves, and the countries of the Middle East have about 75%, US imports are likely to continue to increase. With our heavy reliance on oil and without suitable substitutes for petroleum-based transportation fuels, the United States is extremely vulnerable, both strategically and economically, to fuel supply disruptions. In addition to strategic and economic affairs, the envirorunental impacts of our use of petroleum are becoming increasingly evident and must be addressed. The US Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE), through its Biofuels Systems Division (BSD), is addressing these issues. The BSD is aggressively pursuing research on biofuels-liquid and gaseous fuels produced from renewable domestic feedstocks such as forage grasses, oil seeds, short-rotation tree crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams.

  20. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  1. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  2. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    NARCIS (Netherlands)

    de Jong, S.A.|info:eu-repo/dai/nl/41200836X; Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.|info:eu-repo/dai/nl/202130703

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  4. Emergence of green business models: The case of algae biofuel for aviation

    International Nuclear Information System (INIS)

    Nair, Sujith; Paulose, Hanna

    2014-01-01

    Emergent business models seek to take advantage of new market mechanisms driven by technological changes, particularly those related to the production and delivery of clean or sustainable energy. Such business models often function at the intersection of various industries, with global views, and the resulting systems have distinct social, political, environmental, economic, technological, and business dimensions. Such holistic systems are not only difficult to develop but also require support from a broad range of actors with effective regulations and policies in place, such that the firm functions within a framework that integrates various factors. This study substantiates such a framework by detailing the nascent algae-based bio-fuel industry that caters to the aviation sector while arguing that businesses in the energy industry can emerge as a next-practice platform that drive a sixth wave of innovation. The framework begins with three basic enablers, innovation, flexibility, and sustainability, and explains how value from renewable energy technologies can be created and captured sustainably and innovatively with new market mechanisms implemented by firms with green business models. - Highlights: • We develop a framework that enables the emergence of green energy business models. • We present a case study on the algae based biofuel system for airline industry. • The green business models in energy are global in nature and are next practice platforms. • New market mechanisms and policy measures lead to sustainable energy business models. • Innovation, flexibility and sustainability are the basic enablers of the framework

  5. Avaliação quantitativa de cardenolídeos no cultivar experimental de Digitalis lanata do maciço do itatiaia e perspectivas de seu emprego industrial Quantitative evaluation of cardenolides in a brazilian digitalis lanata cultivar and perspectives of its industrial use

    Directory of Open Access Journals (Sweden)

    Fernão Castro Braga

    1997-10-01

    Full Text Available The content of digoxin and lanatoside C (jointly quantified, lanatoside A, lanatoside B, glucoevatromonoside, odorobioside G, glucogitoroside, glucoverodoxine, glucodigifucoside and digitalinum verum was determined by HPLC in Digitalis lanata harvested in Brazil, as well as in clones industrially employed for the production of cardenolides. The Brazilian plants presented greater variation in the contents of cardenolides than the analyzed clones. Lanatoside C and digoxin concentrations were higher in the clones (6120±640 nmol/g dry leaf than in the Brazilian plants (1820±900 nmol/g dry leaf. The concentrations of these glycosides were found to be within the range described for native species and also were similar to an European cultivar, what makes possible its industrial use for the cardenolides production.

  6. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  7. Socio-economic aspects of different biofuel development pathways

    International Nuclear Information System (INIS)

    Duer, Henrik; Christensen, Pernille Ovre

    2010-01-01

    There are several policy drivers for biofuels on a larger scale in the EU transport sector, including increased security of energy supply, reduced emission of greenhouse gases (GHG), and new markets for the agricultural sector. The purpose of this socio-economic cost analysis is to provide an overview of the costs of meeting EU biofuels targets, taking into account several external costs and benefits. Biofuels are generally more expensive than traditional fossil fuels, but the expected increasing value of GHG emission reductions will over time reduce the cost gap. High crude oil prices significantly improve the economic benefit of biofuels, but increased demand for biomass for energy purposes is likely to increase the price of biofuels feedstock and biofuels costs. The key question is to what extent increasing oil prices will be passed on to biofuels costs. Socio-economic least costs for biofuels production require a market with a clear pricing of GHG emissions to ensure that this factor is included in the decision-making of actors in all links of the fuel chain.

  8. Biofuels - Illusion or Reality? - The european experience

    International Nuclear Information System (INIS)

    Furfari, A.

    2008-01-01

    Environmental issues, rising prices and security of supply are putting energy at the centre of all attentions. Policy-makers pushed by various stakeholders are struggling to find more sustainable solutions to the world legitimate demand for energy. The transport sector is especially under pressure as it relies for 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable transport. This book analyses the real possibility of biofuels. Does Europe has enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable? The reader will find some indications in this book to make up his mind on this complex, multifaceted and highly political subject. Contents: Summary. Introduction. Biofuels in the U.S.A. and Brazil. Do we have enough land in Europe? Biofuels life cycle analysis. Greenhouse gases reduction and efficiency. Case of the glycerin price. Variables affecting biofuels sustainability. Standard for Biofuels. Conclusion. General Bibliography. Annexes. References

  9. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  10. Integrated micro-economic modelling and multi-criteria methodology to support public decision-making: the case of liquid bio-fuels in France

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.; Vanderpooten, D.

    2001-01-01

    Decision making to determine government support policy for agro-energy industry can be assisted by mathematical programming and Multiple Criteria procedures. In this case study, tax credit policy in the French bio-fuel industry producing ethanol and esters is determined. Micro-economic models simulate the agricultural sector and the bio-fuel industry through multi-level mixed integer linear programming. Aggregate supply of energy crops at the national level is estimated using a staircase model of 450 individual farm sub-models specialising in arable cropping. The government acts as a leader, since bio-fuel chains depend on subsidies. The model provides rational responses of the industry, taking into account of the energy crops' supply, to any public policy scheme (unitary tax exemptions for bio-fuels subject to budgetary constraints) as well as the performance of each response regarding total greenhouse gases emissions (GHG), budgetary expenditure and agents' surpluses. Budgetary, environmental and social concerns will affect policy decisions, and a multi-criteria optimisation module projects the decision maker aims at the closest feasible compromise solutions. When public expenditure is the first priority, the best compromise solution corresponds to tax exemptions of about 2 FF l -1 [FF: French Franc (1Euro equivalent to 6.559FF)] for ester and 3FF l -1 for ethanol (current tax exemptions amount at 2.30FF l -1 for ester and 3.30FF l -1 for ethanol). On the other hand, a priority on the reduction of GHG emissions requires an increase of ester volume produced at the expense of ethanol production (2.30 FF l -1 for both ester and ethanol chains proposed by the model). (Author)

  11. Modern biofuel-fired power plants in power and heat production

    International Nuclear Information System (INIS)

    Tuominen, J.

    1993-01-01

    This article gives a survey of the gasification techniques, power plant technology and boiler solutions for small power plants using biofuels. Also some experiences from commercial projects and targets of development work are presented. At present, fluidized bed combustion is by far the most important combustion technique for biomass fuels in small power plants. Compared with grate combustion, fluidized bed combustion is a distinctly more economical combustion method, and so the thermic dimensioning of a steam boiler is easier. Besides, a wider range of fuels can be used in fluidized bed combustion. Fluidized bed combustion is an excellent combustion technique for biofuels. Plenty of experience has been gained in the combustion of peat and industrial waste wood, as far as both bubbling fluidized bed combustion (BFBC) and circulating fluidized bed combustion (CFBC) are concerned. Both of the fluidized bed techniques are suitable for the combustion of biomasses

  12. Corporate Culture and Productive Restructuring in Brazilian industry: The Lupo Case S / A

    Directory of Open Access Journals (Sweden)

    Helena Carvalho de Lorenzo

    2015-06-01

    Full Text Available Founded in 1921, the company currently known as Lupo S/A is one of the most ancient textile and clothing industries in Brazil. In this article we aim to describe the general lines of the trajectory of this family company, currently producing socks, nightwear and sports articles. The focus of this paper is on the analysis of some strategies used by the company along its formation and development process, and, particularly, the way these strategies made possible the productive restructuring associated to the overcoming of the strong crisis which began in the end of the 80's and early 90's, contributing to its recent consolidation in the clothing industry. The leading hypothesis of the study is that pioneering connected to a strong organizational culture that has been formed and constructed since its foundation and that was reestablished in a more recent management were the factors which were responsible for the advances able to generate an innovation environment in products as well as in processes and management. The theoretical reflection selected to subsidize the cognitive construction of the study of the company is based on the historical approach of the development of the textile industry in Brazil and in studies about the importance of the action of the entrepreneur, in the role of the organizational culture and LORENZO, H.C. & CAÍRES, A.C.R. of innovation to choose strategies in companies. The research involved the analysis of documents and data of the company, as well as interviews with directors and employees. The results show a traditional company model, but also show the presence of a very advanced entrepreneurial dynamic. Modern world – known as a fordist industrial model – could already be noticed in the company when this production pattern was not clearly defined yet in the Brazilian industry. Nowadays, the company faces the challenge of globalization and the open competition in the international market which brings the rivalry

  13. Organization and development of the Brazilian nuclear program

    International Nuclear Information System (INIS)

    Pinto, C. Syllus M.; Alves, R. Nazare; Lepecki, W.; Costa, H.M. da; Grinberg, M.; Grimberg, M.

    1977-01-01

    The paper presents the Brazilian Nuclear Energy Program: its development until the present stage, as well as the organizations and the distribution of responsibilities involved in its execution at the present time. The nuclear power policy is established at the Presidency of the Republic and is planned, executed and controlled through the Ministry of Mines and Energy. Directly subject to the Ministry is the Brazilian Nuclear Energy Commission (CNEN), which has regulatory, standardization, licensing, planning and surveillance functions. The nuclear fundamental research and manpower formation are also under CNEN responsibility. Also subject to the Ministry are two companies responsible for the execution of the Programme: the Centrais Eletricas Brasileiras S.A. - ELETROBRAS, which advises on the granting of permits for the construction and operation of nuclear power plants, and the Empresas Nucleares Brasileiras S.A. - NUCLEBRAS, which holds the monopoly of the nuclear fuel cycle in the country, designs and builds nuclear power plants and provides assistance to the electric utilities as well as promotes the participation of the Brazilian industry in the nuclear field. Besides describing the new distribution of regulatory functions given by law to the CNEN, this paper gives special emphasis to the large industrial complex which is in the process of being established with the setting-up of the many NUCLEBRAS subsidiaries in joint-venture with German firms in the nuclear field, as a consequence of the Industrial Cooperation between Brazil and the Federal Republic of Germany in the Field of the Peaceful Uses of Nuclear Energy signed between the two countries on June 27, 1975. The programs for these subsidiaries are presented and their participation in the Brazilian Nuclear Energy Programme is discussed. The technology transfer aspects of the industrial activities are also discussed, based on the Government's policy on the subject [es

  14. Frames in the Ethiopian Debate on Biofuels

    Directory of Open Access Journals (Sweden)

    Brigitte Portner

    2013-01-01

    Full Text Available Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

  15. The Brazilian equipment for photovoltaic systems industry: current concepts; A industria brasileira de equipamentos para sistemas fotovoltaicos: panorama atual

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Fabiana Karla de Oliveira Martins; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: fkv@fem.unicamp.br, e-mail: cavaliero@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], e-mail: lh2ennio@ifi.unicamp.br

    2008-07-01

    The use of renewable alternative sources of energy in the world has been growing in the last few decades due to concerns about dependence on fossil sources and to environmental reasons, related to climatic change and its effects on mankind. Tax and/or financial incentives have been instituted for the population, to have access to renewable source technologies, and for the local equipment industry, to develop more quickly. In Brazil, the PV (photovoltaic) equipment to convert solar into electricity is more often used in low income rural communities, located distant from the grid network. However, since there is no currently specific regulatory incentive mechanism for this source in the country, the Brazilian PV equipment industry has not made great advances and the market is largely dominated by multinationals. Against this background, this work has as objective to analyze the current PV equipment industry in Brazil, in such way that the obtained information can aid in a future elaboration of a national program development to promote the use of this technology, stimulating the domestic industry and reducing the dependence on imported equipment. (author)

  16. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel.

    Science.gov (United States)

    Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d(-1)) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  17. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  18. Beyond the low-skill equilibrium? A case study of the local content policy in the Brazilian oil and gas industry

    OpenAIRE

    Melby, Maria

    2015-01-01

    This master thesis wishes to explore the labor market in the Brazilian oil and gas industry during the peak years of the oil boom, seen from Norwegian multinational companies (MNC) point of view. The theoretical perspective applied in the analysis is the hierarchical market economy (HME) typology, deriving from the varieties of capitalism (VOC) framework. In HMEs, the low-skill equilibrium is a prominent feature, in which none of the actors involved has incentives to invest in education and ...

  19. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  20. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  1. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  2. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Devereaux, Charan; Lee, Henry

    2009-06-01

    Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to

  3. A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods

    International Nuclear Information System (INIS)

    German, Laura; Schoneveld, George

    2012-01-01

    The rapid expansion of biofuel production and consumption has raised concerns over the social and environmental sustainability of biofuel feedstock production, processing and trade. The European Union (EU) has thus balanced its commitment to biofuels as one option for meeting its renewable energy targets with sustainability criteria for economic operators supplying biofuels to member states. Seven voluntary “EU sustainability schemes” were approved in July, 2011 as a means to verify compliance. While mandated sustainability criteria have a strong environmental focus, a number of these voluntary schemes have social sustainability as a significant component of the requirements put forward for achieving certification. As several of these voluntary schemes are incipient, thereby limiting evidence on their effectiveness in practice, this analysis is based on a comparative analysis of the substantive content or ‘scope’ of these schemes and the likely procedural effectiveness of the same. Findings show that while some schemes have considerable coverage of social sustainability concerns, poor coverage of some critical issues, the presence of schemes lacking any social sustainability requirements, and gaps in procedural rules are likely to undermine the likelihood that social sustainability is achieved through these schemes or the EU sustainability policies lending credibility to them. - Highlights: ► Among 7 voluntary schemes approved by EC-RED for biofuel, social sustainability is sorely lacking. ► 2 Schemes lacking any social sustainability criteria collectively cover all feedstock/regions. ► The strong climate metric effectively sidelines development aspirations of southern producers. ► Only one of 7 standards will leverage the industry's potential as a stimulus to rural development. ► Policies in consumer markets are critical to give teeth to industry-led sustainability schemes.

  4. System aspects of black liquor gasification - Consequences for both industry and society

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The pulp and paper industry consumes large quantities of biofuels (mainly bark and black liquor) to satisfy process requirements. Biomass is however a limited resource, and biofuel usage should therefore be as effective as possible. Modern pulp mills and integrated pulp and paper mills have excess fuel compared to the amounts needed to satisfy the process steam demand. The excess fuel is often used for cogeneration of electric power in CHP units. For integrated pulp and paper mills, this usually requires import of supplementary fuel to the plant. For market pulp mills, the excess internal biofuel quantities are sufficient to also allow electric power generation in condensing power plant units. If biofuel availability at a reasonable price is limited, import/export to, from a mill changes the amount of such biofuel available to alternative users. The goal of this thesis is to compare different mill powerhouse technologies and CHP plant configurations (including conventional recovery boiler technology and black liquor gasification technology) in order to identify the technology and CHP plant configuration that can produce the most electric power output from a given fuel resource for a given process steam demand. Different process steam demand levels for different representative mill types are considered. The comparison accounts for increased/decreased electricity production in an alternative energy system when biofuel is imported/exported to/from from the mill. The alternative energy system considered includes a district heating system with CHP capacity and natural gas fired combined cycle power plant capacity. The results show that black liquor gasification is in all cases considered an attractive powerhouse recovery cycle technology compared to conventional recovery boiler technology. If the marginal electric power generation efficiency for biofuel exported to the reference alternative energy system is 49%, excess mill internal biofuel should be used on mill

  5. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  6. Interrogating Social Sustainability in the Biofuels Sector in Latin America: Tensions Between Global Standards and Local Experiences in Mexico, Brazil, and Colombia

    Science.gov (United States)

    Selfa, Theresa; Bain, Carmen; Moreno, Renata; Eastmond, Amarella; Sweitz, Sam; Bailey, Conner; Pereira, Gustavo Simas; Souza, Tatiana; Medeiros, Rodrigo

    2015-12-01

    Across the Americas, biofuels production systems are diverse due to geographic conditions, historical patterns of land tenure, different land use patterns, government policy frameworks, and relations between the national state and civil society, all of which shape the role that biofuels play in individual nations. Although many national governments throughout the Americas continue to incentivize growth of the biofuels industry, one key challenge for biofuels sustainability has been concern about its social impacts. In this article, we discuss some of the key social issues and tensions related to the recent expansion of biofuels production in Mexico, Colombia, and Brazil. We argue that a process of "simplification" of ecological and cultural diversity has aided the expansion of the biofuels frontier in these countries, but is also undermining their viability. We consider the ability of governments and non-state actors in multi-stakeholder initiatives (MSI) to address social and environmental concerns that affect rural livelihoods as a result of biofuels expansion. We analyze the tensions between global sustainability standards, national level policies for biofuels development, and local level impacts and visions of sustainability. We find that both government and MSI efforts to address sustainability concerns have limited impact, and recommend greater incorporation of local needs and expertise to improve governance.

  7. Interrogating Social Sustainability in the Biofuels Sector in Latin America: Tensions Between Global Standards and Local Experiences in Mexico, Brazil, and Colombia.

    Science.gov (United States)

    Selfa, Theresa; Bain, Carmen; Moreno, Renata; Eastmond, Amarella; Sweitz, Sam; Bailey, Conner; Pereira, Gustavo Simas; Souza, Tatiana; Medeiros, Rodrigo

    2015-12-01

    Across the Americas, biofuels production systems are diverse due to geographic conditions, historical patterns of land tenure, different land use patterns, government policy frameworks, and relations between the national state and civil society, all of which shape the role that biofuels play in individual nations. Although many national governments throughout the Americas continue to incentivize growth of the biofuels industry, one key challenge for biofuels sustainability has been concern about its social impacts. In this article, we discuss some of the key social issues and tensions related to the recent expansion of biofuels production in Mexico, Colombia, and Brazil. We argue that a process of "simplification" of ecological and cultural diversity has aided the expansion of the biofuels frontier in these countries, but is also undermining their viability. We consider the ability of governments and non-state actors in multi-stakeholder initiatives (MSI) to address social and environmental concerns that affect rural livelihoods as a result of biofuels expansion. We analyze the tensions between global sustainability standards, national level policies for biofuels development, and local level impacts and visions of sustainability. We find that both government and MSI efforts to address sustainability concerns have limited impact, and recommend greater incorporation of local needs and expertise to improve governance.

  8. PERCEPTION OF UNCERTAINTY AND OPERATIONAL PERFORMANCE OF THE BRAZILIAN INDUSTRY FROM 2007 TO 2009

    Directory of Open Access Journals (Sweden)

    Marta Sambiase Lombardi

    2010-11-01

    Full Text Available This article poses to explore the relationship between the manager´s perception of uncertainty and the Brazilian industry´s operational performance during the period from 2007 to 2009. This timeframe was chosen because it comprised both positive and negative cycles of the global economic panorama, and thus capable of interfering in the manager´s perception of uncertainty and consequent business strategies. Periods of market fluctuations and more dynamic and complex business environments clearly demonstrate that managerial models which are applicable to static or predictable scenarios, become fragile and of dubious applicability; that is, practices adopted and described in business administration bibliographies might not produce expected results.  A key factor for sound performance is the positioning of companies in relation to future planning (Knight, 2002, the latter defined as actions taken by the entrepreneur given a certain degree of uncertainty, inherent to the management activity.  The relationship between uncertainty and corporate performance has been studied, at least, ever since Knight in 1921. The author affirmed that we live in a world of change and in a world of uncertainty. The level of entrepreneur trust from the National Industry Confederation represented the perception of uncertainty, whilst operational performance was formed as of industrial production and employment IBGE indexes. Results demonstrate that both constructs have equivalent movements during the course of the period, presenting a positive correlation. Key-words: Uncertainty. Operational performance. Trust. 

  9. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  10. Brazilian agriculture and environmental legislation: status and future challenges.

    Science.gov (United States)

    Sparovek, Gerd; Berndes, Göran; Klug, Israel L F; Barretto, Alberto G O P

    2010-08-15

    Brazilian agriculture covers about one-third of the land area and is expected to expand further. We assessed the compliance of present Brazilian agriculture with environmental legislation and identified challenges for agricultural development connected to this legislation. We found (i) minor illegal land use in protected areas under public administration, (ii) a large deficit in legal reserves and protected riparian zones on private farmland, and (iii) large areas of unprotected natural vegetation in regions experiencing agriculture expansion. Achieving full compliance with the environmental laws as they presently stand would require drastic changes in agricultural land use, where large agricultural areas are taken out of production and converted back to natural vegetation. The outcome of a full compliance with environmental legislation might not be satisfactory due to leakage, where pristine unprotected areas become converted to compensate for lost production as current agricultural areas are reconverted to protected natural vegetation. Realizing the desired protection of biodiversity and natural vegetation, while expanding agriculture to meet food and biofuel demand, may require a new approach to environmental protection. New legal and regulatory instruments and the establishment of alternative development models should be considered.

  11. The Brazilian national para-petroleum industry and the role played in the competitiveness of the Brazilian 'petroleum diamond'; A industria para-petroleira nacional e o seu papel na competitividade do 'diamante petroleiro' brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Zamith, Maria Regina Macchione de Arruda

    1999-07-01

    The author uses the Michael Porter framework, (from the University of Harvard), about the 'Competitive Advantage of Nations', as a theoretical instrument to analyze the Brazilian oil industry. The document studies, specifically, the related and supporting industries, one of the four determinants that, according to the author, promote the creation of national competitive advantages; the others are: the factors conditions; the demand conditions; and the firm strategy, structure and rivalry. The study aims at building a general view of competitiveness for the so called supply industries to the oil sector, which have a fundamental role in this model. Although Brazil has developed, with the leadership of PETROBRAS, a complex industrial system, this structure of related and supporting industries will have to face new challenges, having to improve efficiency, reduce costs and redefine its global strategies. (author)

  12. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels

    International Nuclear Information System (INIS)

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims: The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope: We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions: Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). - Highlights: • Controversy surrounding 1G biofuels is relevant to sustainability appraisal of 2G. • Challenges for policy in managing the transition to 2G biofuels are highlighted. • A key lesson is that sustainability challenges are complexly interconnected

  13. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials.

    Science.gov (United States)

    Hu, Guangrong; Ji, Shiqi; Yu, Yanchong; Wang, Shi'an; Zhou, Gongke; Li, Fuli

    2015-01-01

    In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

  14. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  15. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  16. Indirect land use change and biofuel policy

    International Nuclear Information System (INIS)

    Kocoloski, Matthew; Griffin, W Michael; Matthews, H Scott

    2009-01-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO 2 emissions (including from land use) than gasoline, would still be cost-effective at a CO 2 price of $80 per ton or less, well above estimated CO 2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  17. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  18. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change.

    Science.gov (United States)

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'Hare, Michael

    2015-03-03

    Few of the numerous published studies of the emissions from biofuels-induced "indirect" land use change (ILUC) attempt to propagate and quantify uncertainty, and those that have done so have restricted their analysis to a portion of the modeling systems used. In this study, we pair a global, computable general equilibrium model with a model of greenhouse gas emissions from land-use change to quantify the parametric uncertainty in the paired modeling system's estimates of greenhouse gas emissions from ILUC induced by expanded production of three biofuels. We find that for the three fuel systems examined--US corn ethanol, Brazilian sugar cane ethanol, and US soybean biodiesel--95% of the results occurred within ±20 g CO2e MJ(-1) of the mean (coefficient of variation of 20-45%), with economic model parameters related to crop yield and the productivity of newly converted cropland (from forestry and pasture) contributing most of the variance in estimated ILUC emissions intensity. Although the experiments performed here allow us to characterize parametric uncertainty, changes to the model structure have the potential to shift the mean by tens of grams of CO2e per megajoule and further broaden distributions for ILUC emission intensities.

  19. Reverse logistics in the Brazilian construction industry.

    Science.gov (United States)

    Nunes, K R A; Mahler, C F; Valle, R A

    2009-09-01

    In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.

  20. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  1. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  2. Uncertainty, irreversibility, and investment in second-generation biofuels

    Science.gov (United States)

    McCarty, Tanner Joseph

    The present study formalizes and quantifies the importance of uncertainty for investment in a corn-stover based cellulosic biofuel plant. Using a real options model we recover prices of gasoline that would trigger entry into the market and calculate the portion of that entry trigger price required to cover cost and the portion that corresponds to risk premium. We then discuss the effect of managerial flexibility on the entry risk premium and the prices of gasoline that would trigger mothballing, reactivation, and exit. Results show that the risk premium required by plants to enter the second-generation biofuel market is likely to be substantial. The analysis also reveals that a break-even approach (which ignores the portion of entry price composed of risk premium), and the traditional Marshallian approach (which ignores the portion of entry price composed of both the risk premium and the drift rate), would significantly underestimate the gasoline entry trigger price and the magnitude of that underestimation increases as both volatility and mean of gasoline prices increase. Results also uncover a great deal of hysteresis (i.e. a range of gasoline prices for which there is neither entry nor exit in the market) in entry/exit behavior by plants. Hysteresis increases as gasoline prices become more volatile. Hysteresis suggests that, at the industry level, positive (negative) demand shocks will have a significant impact on prices (production) and a limited impact on production (prices). In combination all of these results suggest that policies supporting second generation biofuels may have fallen short of their targets because of their failure to alleviate uncertainty.

  3. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries

    International Nuclear Information System (INIS)

    Adenle, Ademola A.; Haslam, Gareth E.; Lee, Lisa

    2013-01-01

    The possibility of economically deriving fuel from cultivating algae biomass is an attractive addition to the range of measures to relieve the current reliance on fossil fuels. Algae biofuels avoid some of the previous drawbacks associated with crop-based biofuels as the algae do not compete with food crops. The favourable growing conditions found in many developing countries has led to a great deal of speculation about their potentials for reducing oil imports, stimulating rural economies, and even tackling hunger and poverty. By reviewing the status of this technology we suggest that the large uncertainties make it currently unsuitable as a priority for many developing countries. Using bibliometric and patent data analysis, we indicate that many developing countries lack the human capital to develop their own algae industry or adequately prepare policies to support imported technology. Also, we discuss the potential of modern biotechnology, especially genetic modification (GM) to produce new algal strains that are easier to harvest and yield more oil. Controversy surrounding the use of GM and weak biosafety regulatory system represents a significant challenge to adoption of GM technology in developing countries. A range of policy measures are also suggested to ensure that future progress in algae biofuels can contribute to sustainable development. - Highlights: • Algae biofuels can make positive contribution to sustainable development in developing countries. • Bibliometric and patent data indicate that many lack the human capital to develop their own algae industry. • Large uncertainties make algae biofuels currently unsuitable as a priority for many developing countries

  4. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  5. The importance of the industrialization of Brazilian shale when faced with the world energy scenario; A importancia da industrializacao do xisto brasileiro frente ao cenario energetico mundial

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marilin Mariano dos; Matai, Patricia Helena Lara dos Santos [Universidade de Sao Paulo (USP), SP (Brazil). Programa de Pos-Graduacao em Energia], Emails: marilinsantos@usp.br, pmatai@usp.br

    2010-10-15

    This article discusses the importance of the industrialization of Brazilian shale based on factors such as: security of the national energy system security, global oil geopolitical, resources available, production costs, oil prices, environmental impacts and the national oil reserves. The study shows that the industrialization of shale always arises when issues such as peak oil or its geopolitics appear as factors that raise the price of oil to unrealistic levels. The article concludes that in the Brazilian case, shale oil may be classified as a strategic resource, economically viable, currently in development by the success of the retorting technology for extraction of shale oil and the price of crude oil. The article presents the conclusion that shale may be the driving factor for the formation of a technology park in Sao Mateus do Sul, due to the city's economic dependence on PETROSIX. (author)

  6. Determinants of inter-firm governance mode in the biofuel value chain: Cases from China, Thailand and Vietnam

    OpenAIRE

    Chan, Jin Hooi; Reiner, David; Zhang, Jin

    2011-01-01

    The bio-ethanol, which is the main type of biofuel, industry has expanded rapidly in the past decade, particularly as a fuel serves as a substitute for gasoline. This industry is built on a complicated politico-economic landscape, where the ecosystems of the oil and agricultural industries confront each other. Despite this, there is little understanding of the formation of inter-firm governance structures.\\ud \\ud With particular focus on the manufacturer, we employ multiple case studies to pr...

  7. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  8. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  9. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  10. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry; Catalise assimetrica no Brasil: desenvolvimento e potencialidades para o avanco da industria quimica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Antonio Luiz, E-mail: braga.antonio@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Luedtke, Diogo Seibert; Schneider, Paulo Henrique [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Quimica; Andrade, Leandro Helgueira [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica; Paixao, Marcio Weber [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  11. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  12. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  14. Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development

    International Nuclear Information System (INIS)

    Killeen, Timothy J.; Schroth, Goetz; Turner, Will; Harvey, Celia A.; Steininger, Marc K.; Dragisic, Christine; Mittermeier, Russell A.

    2011-01-01

    We evaluate the potential of a proposed policy model that would explicitly link the cultivation of biofuels with forest conservation (Biofuel + FC) as part of the United Nations Framework Convention on Climate Change. The model postulates that a ratio of 4:1 forest conservation to biofuel cultivation be linked to proposals for reducing emissions from deforestation and forest degradation (REDD + Biofuel), while a ratio of 9:1 biofuel cultivation to reforestation on degraded landscape (RDL + Biofuel) be linked to the afforestation/reforestation component of the Clean Development Mechanism. Both biofuel production options would be limited to the cultivation of woody perennial biofuel species on low biomass landscapes in order to maximize the carbon benefits of the proposed policy model. The potential to conserve forest, avoid GHG emissions, improve carbon sequestration, and produce renewable energy are evaluated by an illustrative model for five case studies (Pará – Brazil, East Kalimantan – Indonesia, Madagascar, Colombia and Liberia). The Biofuel + FC policy model is then compared with three counterfactual scenarios: REDD Alone with no biofuel cultivation; Biofuel Alone with expanded biofuel cultivation in the absence of REDD and a Most Likely scenario where REDD and biofuel cultivation are implemented without explicit regulatory linkages. The proposed policy model would leverage forest carbon with biofuel markets, which would reduce greenhouse gas emissions and conserve biodiversity, as well as improve human welfare in developing countries, a win–win–win strategy for sustainable development. -- Highlights: ► We propose to link biofuel cultivation with forest conservation (REDD + Biofuels). ► A similar proposal to support reforestation on degraded landscapes (RDL + Biofuels). ► Woody perennial biofuel species on low biomass landscapes maximize carbon benefits. ► REDD+ revenues can subsidize and foster sustainable biofuels. ► Production of

  15. Integrated micro-economic modelling and multi-criteria methodology to support public decision-making: the case of liquid bio-fuels in France

    Energy Technology Data Exchange (ETDEWEB)

    Rozakis, S.; Sourie, J.-C. [Institut National de la Recherche Agronomique, Economie et Sociologie Rurales, Thiveral-Grignon, 78 (France); Vanderpooten, D. [Universite Paris-Dauphine, LAMSADE, Paris, 75 (France)

    2001-07-01

    Decision making to determine government support policy for agro-energy industry can be assisted by mathematical programming and Multiple Criteria procedures. In this case study, tax credit policy in the French bio-fuel industry producing ethanol and esters is determined. Micro-economic models simulate the agricultural sector and the bio-fuel industry through multi-level mixed integer linear programming. Aggregate supply of energy crops at the national level is estimated using a staircase model of 450 individual farm sub-models specialising in arable cropping. The government acts as a leader, since bio-fuel chains depend on subsidies. The model provides rational responses of the industry, taking into account of the energy crops' supply, to any public policy scheme (unitary tax exemptions for bio-fuels subject to budgetary constraints) as well as the performance of each response regarding total greenhouse gases emissions (GHG), budgetary expenditure and agents' surpluses. Budgetary, environmental and social concerns will affect policy decisions, and a multi-criteria optimisation module projects the decision maker aims at the closest feasible compromise solutions. When public expenditure is the first priority, the best compromise solution corresponds to tax exemptions of about 2 FF l{sup -1} [FF: French Franc (1Euro equivalent to 6.559FF)] for ester and 3FF l{sup -1} for ethanol (current tax exemptions amount at 2.30FF l{sup -1} for ester and 3.30FF l{sup -1} for ethanol). On the other hand, a priority on the reduction of GHG emissions requires an increase of ester volume produced at the expense of ethanol production (2.30 FF l{sup -1} for both ester and ethanol chains proposed by the model). (Author)

  16. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    Science.gov (United States)

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

  17. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.

    Science.gov (United States)

    Subhadra, Bobban

    2011-01-15

    Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind. Copyright © 2010 Society of Chemical Industry.

  18. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  19. Biofuels barometer - EurObserv'ER - July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    13,6 % the increase in EU biofuel consumption in 2010. In 2010 biofuel continued to gnaw away at petrol and diesel consumption in the European Union. However its pace backs the assertion that EU biofuel consumption growth slackened off. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total biofuel consumption figure for 2010 should hover at around 13,9 Mtoe

  20. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...