WorldWideScience

Sample records for brassica rapa gene

  1. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2010-04-01

    Full Text Available Abstract Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa and vegetables (eg. B. rapa and B. oleracea. Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS to produce a TILLING (Targeting Induced Local Lesions In Genomes population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This

  2. Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa.

    Science.gov (United States)

    Piao, Yinglan; Jin, Kaining; He, Ying; Liu, Jiaxiu; Liu, Shuang; Li, Xiaonan; Piao, Zhongyun

    2018-01-01

    Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.

  3. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  4. Unleashing the genome of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Haibao eTang

    2012-07-01

    Full Text Available The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with Arabidopsis thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from Arabidopsis thaliana is used to find duplicated orthologs in Brassica rapa. These TOC1 genes are further analyzed to identify conserved noncoding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each 'cookbook style' analysis includes a step-by-step walkthrough with links to CoGe to quickly reproduce each step of the analytical process.

  5. Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa sucrose transporter gene family

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu

    2017-06-01

    Full Text Available In higher plants, sugars (mainly sucrose are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and development. Sucrose transporters, or sucrose carriers (SUCs, play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa var. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUC6.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative polymerase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.

  6. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  7. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating...... of Brassica oil and vegetable crops....

  8. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  9. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  10. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10 were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR, unigene-derived microsatellite (UGMS markers, and specific markers linked to published clubroot resistance (CR genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.

  11. Complete mitochondrial genome sequences of Brassica rapa (Chinese cabbage and mizuna), and intraspecific differentiation of cytoplasm in B. rapa and Brassica juncea.

    Science.gov (United States)

    Hatono, Saki; Nishimura, Kaori; Murakami, Yoko; Tsujimura, Mai; Yamagishi, Hiroshi

    2017-09-01

    The complete sequence of the mitochondrial genome was determined for two cultivars of Brassica rapa . After determining the sequence of a Chinese cabbage variety, 'Oushou hakusai', the sequence of a mizuna variety, 'Chusei shiroguki sensuji kyomizuna', was mapped against the sequence of Chinese cabbage. The precise sequences where the two varieties demonstrated variation were ascertained by direct sequencing. It was found that the mitochondrial genomes of the two varieties are identical over 219,775 bp, with a single nucleotide polymorphism (SNP) between the genomes. Because B. rapa is the maternal species of an amphidiploid crop species, Brassica juncea , the distribution of the SNP was observed both in B. rapa and B. juncea . While the mizuna type SNP was restricted mainly to cultivars of mizuna (japonica group) in B. rapa , the mizuna type was widely distributed in B. juncea . The finding that the two Brassica species have these SNP types in common suggests that the nucleotide substitution occurred in wild B. rapa before both mitotypes were domesticated. It was further inferred that the interspecific hybridization between B. rapa and B. nigra took place twice and resulted in the two mitotypes of cultivated B. juncea .

  12. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  13. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  14. DNA methylation alteration is a major consequence of genome doubling in autotetraploid Brassica rapa

    Directory of Open Access Journals (Sweden)

    Xu Yanhao

    2017-01-01

    Full Text Available Polyploids are typically classified as autopolyploids or allopolyploids based on the origin of their chromosome sets. Autopolyploidy is much more common than traditionally believed. Allopolyploidization, accompanied by genomic and transcriptomic changes, has been well investigated. In this study, genetic, DNA methylation and gene expression changes in autotetraploid Brassica rapa were investigated. No genetic alteration was detected using an amplified fragment length polymorphism (AFLP approach. Using a cDNA-AFLP approach, approximately 0.58% of fragments showed changes in gene expression in autotetraploid B. rapa. The methylation-sensitive amplification polymorphism (MSAP analysis showed that approximately 1.7% of the fragments underwent DNA methylation changes upon genome doubling, with hypermethylation and demethylation changes equally affected. Fragments displaying changes in gene expression and methylation status were isolated and then sequenced and characterized, respectively. This study showed that variation in cytosine methylation is a major consequence of genome doubling in autotetraploid Brassica rapa.

  15. The first generation of a BAC-based physical map of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lee Soo

    2008-06-01

    Full Text Available Abstract Background The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences. Results A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing. Conclusion The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.

  16. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  17. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  18. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  19. Identification of seed-related QTL in Brassica rapa

    NARCIS (Netherlands)

    Bagheri, H.; Pino del Carpio, D.; Hanhart, C.J.; Bonnema, A.B.; Keurentjes, J.J.B.; Aarts, M.G.M.

    2013-01-01

    To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin) with B. rapa ssp. trilocularis R-o-18 (spring oil seed), both rapid flowering and self-compatible. A linkage map

  20. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes.

    Science.gov (United States)

    Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang

    2013-02-01

    We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Regulatory network of secondary metabolism in Brassica rapa : insight into the glucosinolate pathway

    NARCIS (Netherlands)

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical

  2. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be Hepato-and/or cholangiotoxic in cattle?

    Science.gov (United States)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are generally regarded as “safe” feed for cattle during late summer and fall in New Zealand. However, when Pithomyces chartarum spore counts are high there are epidemics of sporidesmin toxicity (...

  3. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    Science.gov (United States)

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea

  5. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    Science.gov (United States)

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  6. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  7. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  8. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  9. Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa.

    Science.gov (United States)

    Halfhill, Matthew D; Millwood, Reginald J; Raymer, Paul L; Stewart, C Neal

    2002-10-01

    The movement of transgenes from crops to weeds and the resulting consequences are concerns of modern agriculture. The possible generation of "superweeds" from the escape of fitness-enhancing transgenes into wild populations is a risk that is often discussed, but rarely studied. Oilseed rape, Brassica napus (L.), is a crop with sexually compatible weedy relatives, such as birdseed rape (Brassica rapa (L.)). Hybridization of this crop with weedy relatives is an extant risk and an excellent interspecific gene flow model system. In laboratory crosses, T3 lines of seven independent transformation events of Bacillus thuringiensis (Bt) oilseed rape were hybridized with two weedy accessions of B. rapa. Transgenic hybrids were generated from six of these oilseed rape lines, and the hybrids exhibited an intermediate morphology between the parental species. The Bt transgene was present in the hybrids, and the protein was synthesized at similar levels to the corresponding independent oilseed rape lines. Insect bioassays were performed and confirmed that the hybrid material was insecticidal. The hybrids were backcrossed with the weedy parent, and only half the oilseed rape lines were able to produce transgenic backcrosses. After two backcrosses, the ploidy level and morphology of the resultant plants were indistinguishable from B. rapa. Hybridization was monitored under field conditions (Tifton, GA, USA) with four independent lines of Bt oilseed rape with a crop to wild relative ratio of 1200:1. When B. rapa was used as the female parent, hybridization frequency varied among oilseed rape lines and ranged from 16.9% to 0.7%.

  10. Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection

    Directory of Open Access Journals (Sweden)

    Xiaochun Wei

    2016-07-01

    Full Text Available Increasing evidence has revealed that microRNAs play a pivotal role in the post transcriptional regulation of gene expression in response to pathogens in plants. However, there is little information available about the expression patterns of miRNAs and their targets in Chinese cabbage (Brassica rapa ssp. pekinensis under Plasmodiophora brassicae stress. In the present study, using deep sequencing and degradome analysis, a genome-wide identification of miRNAs and their targets during P. brassicae stress was performed. A total of 221 known and 93 potentially novel miRNAs were successfully identified from two root libraries of one control (635-10CK and P. brassicae-treated Chinese cabbage samples (635-10T. Of these, 14 known and 10 potentially novel miRNAs were found to be differentially expressed after P. brassicae treatment. Degradome analysis revealed that the 223 target genes of the 75 miRNAs could be potentially cleaved. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the putative target genes of the miRNAs were predominately involved in selenocompound metabolism and plant hormone signal transduction. Then the expression of 12 miRNAs was validated by quantitative real-time PCR (qRT-PCR. These results provide insights into the miRNA-mediated regulatory networks underlying the stress response to the plant pathogen P. brassicae.

  11. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  12. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  13. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the B. rapa R500 x IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive glucosinolates are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  14. Phytotoxicity assay for seed production using Brassica rapa L.

    Science.gov (United States)

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...

  15. JST Thesaurus Headwords and Synonyms: Brassica rapa var. peruviridis [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Brassica rapa var. peruviridis 名詞... 一般 * * * * コマツナ コマツナ コマツナ Thesaurus2015 200906099324987960 C LS06/LS72 UNKNOWN_2 Brassica rapa var . peruviridis

  16. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  17. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard × Brassica napus (oilseed rape hybrid populations

    Directory of Open Access Journals (Sweden)

    Warwick Suzanne I

    2009-10-01

    Full Text Available Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed × Brassica napus (crop transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003 and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems, there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001, although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a

  18. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106 samples including Chinese ...

  19. Genomic inferences of domestication events are corroborated by written records in Brassica rapa.

    Science.gov (United States)

    Qi, Xinshuai; An, Hong; Ragsdale, Aaron P; Hall, Tara E; Gutenkunst, Ryan N; Chris Pires, J; Barker, Michael S

    2017-07-01

    Demographic modelling is often used with population genomic data to infer the relationships and ages among populations. However, relatively few analyses are able to validate these inferences with independent data. Here, we leverage written records that describe distinct Brassica rapa crops to corroborate demographic models of domestication. Brassica rapa crops are renowned for their outstanding morphological diversity, but the relationships and order of domestication remain unclear. We generated genomewide SNPs from 126 accessions collected globally using high-throughput transcriptome data. Analyses of more than 31,000 SNPs across the B. rapa genome revealed evidence for five distinct genetic groups and supported a European-Central Asian origin of B. rapa crops. Our results supported the traditionally recognized South Asian and East Asian B. rapa groups with evidence that pak choi, Chinese cabbage and yellow sarson are likely monophyletic groups. In contrast, the oil-type B. rapa subsp. oleifera and brown sarson were polyphyletic. We also found no evidence to support the contention that rapini is the wild type or the earliest domesticated subspecies of B. rapa. Demographic analyses suggested that B. rapa was introduced to Asia 2,400-4,100 years ago, and that Chinese cabbage originated 1,200-2,100 years ago via admixture of pak choi and European-Central Asian B. rapa. We also inferred significantly different levels of founder effect among the B. rapa subspecies. Written records from antiquity that document these crops are consistent with these inferences. The concordance between our age estimates of domestication events with historical records provides unique support for our demographic inferences. © 2017 John Wiley & Sons Ltd.

  20. Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa

    Directory of Open Access Journals (Sweden)

    Jiancan Du

    2017-09-01

    Full Text Available The teosinte branched1/cycloidea/proliferating cell factor (TCP gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips (Brassica rapa ssp. rapa. In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.

  1. Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives

    Science.gov (United States)

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-01-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. PMID:21768136

  2. Metabolomic variation of brassica rapa var. rapa (var. raapstelen) and raphanus sativus l. at different developmental stages

    International Nuclear Information System (INIS)

    Jahangir, M.; Farid, I.B.A.

    2014-01-01

    Brassica rapa (var. raapstelen) and Raphanus sativus (red radish) are being used as food and fodder while also known as model in recent plant research due to the diversity of metabolites as well as genetic resemblance to Arabidopsis. This study explains the change in metabolites (amino acids, organic acids, chlorophyll, carotenoids, tocopherols, ascorbic acid, sucrose, phenylpropanoids and glucosinolates) during plant development. In present study the metabolomic variation in relation to plant growth has been evaluated, for Brassica rapa (var. raapstelen) and red radish (Raphanus sativus) at three different developmental stages. A non-targeted and targeted metabolomic approach by NMR and HPLC in combination with Principal component analysis (PCA) of the data was used to identify phytochemicals being influenced by plant growth. The results lead to the better understanding of metabolic changes during plant development and show the importance of plant age with respect to the metabolomic profile of vegetables. (author)

  3. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  4. Metabolomic variation of brassica rapa var. rapa (var. raapstelen) and raphanus sativus l. at different developmental stages

    NARCIS (Netherlands)

    Jahangir, M.; Abdel-Farid, I.B.; Vos, de C.H.R.; Jonker, H.H.; Choi, Y.H.; Verpoorte, R.

    2014-01-01

    Brassica rapa (var. raapstelen) and Raphanus sativus (red radish) are being used as food and fodder while also known as model in recent plant research due to the diversity of metabolites as well as genetic resemblance to Arabidopsis. This study explains the change in metabolites (amino acids,

  5. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    Science.gov (United States)

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  6. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  7. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  8. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Xiaonan eLi

    2015-06-01

    Full Text Available Chromosome segment substitution lines (CSSLs represent a powerful method for precise quantitative trait loci (QTL detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: ‘Chiifu’ (ssp. pekinensis, the Brassica A genome-represented line used as the donor, and ‘49caixin’ (ssp. parachinensis, a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, 6 for plant diameter, 2 for leaf width, and 5 for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.

  9. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  10. Identification of seed-related QTL in Brassica rapa

    Directory of Open Access Journals (Sweden)

    H. Bagheri

    2013-10-01

    Full Text Available To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin with B. rapa ssp. trilocularis R-o-18 (spring oil seed, both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL were detected for nine traits. A strong seed colour QTL (LOD 26 co-localized with QTL for seed size (LOD 7, seed weight (LOD 4.6, seed oil content (LOD 6.6, number of siliques (LOD 3 and number of seeds per silique (LOD 3. There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas.

  11. Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: Regulation of sulfur uptake and assimilation

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Hawkesford, M.J.; De Kok, L.J.

    2016-01-01

    Brassica juncea and Brassica rapa were able to utilize foliarly absorbed H2S and SO2 as sulfur source for growth and resulted in a decreased sink capacity of the shoot for sulfur supplied by the root and subsequently in a partial decrease in sulfate uptake capacity of the roots. Sulfate-deprived

  12. Respon Tiga Varietas Sawi (Brassica Rapa L.) Terhadap Cekaman Air

    OpenAIRE

    Moctava, Mohammad Aries; Koesriharti, Koesriharti; Maghfoer, Mochammad Dawam

    2013-01-01

    Kebutuhan air tanaman berbeda-beda tergantung pada jenis tanamannya. Ketersediaan air bagi tanaman yang tidak mencukupi akan mempengaruhi morfologi dan fisiologis sehingga pertumbuhan dan hasil tanaman. Tujuan dari penelitian mendapatkan varietas sawi (Brassica rapa L.) yang tahan terhadap cekaman air. Penelitian dilaksanakan pada bulan Oktober sampai dengan Desember 2012. Tempat penelitian Kebun Percobaan Fakultas Pertanian Brawijaya, Desa Jatikerto, Kabupaten Malang.Penelitian menggunakan ...

  13. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    Science.gov (United States)

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  14. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Turnip (Brassica rapa var. rapa

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2017-07-01

    Full Text Available The calcineurin B-like protein (CBL–CBL-interacting protein kinase (CIPK complex has been identified as a primary component in calcium sensors that perceives various stress signals. Turnip (Brassica rapa var. rapa has been widely cultivated in the Qinghai–Tibet Plateau for a century as a food crop of worldwide economic significance. These CBL–CIPK complexes have been demonstrated to play crucial roles in plant response to various environmental stresses. However, no report is available on the genome-wide characterization of these two gene families in turnip. In the present study, 19 and 51 members of the BrrCBL and BrrCIPK genes, respectively, are first identified in turnip and phylogenetically grouped into three and two distinct clusters, respectively. The expansion of these two gene families is mainly attributable to segmental duplication. Moreover, the differences in expression patterns in quantitative real-time PCR, as well as interaction profiles in the yeast two-hybrid assay, suggest the functional divergence of paralog genes during long-term evolution in turnip. Overexpressing and complement lines in Arabidopsis reveal that BrrCBL9.2 improves, but BrrCBL9.1 does not affect, salt tolerance in Arabidopsis. Thus, the expansion of the BrrCBL and BrrCIPK gene families enables the functional differentiation and evolution of some new gene functions of paralog genes. These paralog genes then play prominent roles in turnip's adaptation to the adverse environment of the Qinghai–Tibet Plateau. Overall, the study results contribute to our understanding of the functions of the CBL–CIPK complex and provide basis for selecting appropriate genes for the in-depth functional studies of BrrCBL–BrrCIPK in turnip.

  15. Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L

    Science.gov (United States)

    The crop species Brassica rapa L. has significant economic importance around the globe. Crop domestication and improvement has resulted in extreme phenotypic diversity and subspecies that are used for oilseed, food for human consumption and fodder for livestock. However, the global distribution and ...

  16. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  17. Male fitness of oilseed rape (¤Brassica napus¤), weedy ¤B-rapa¤ and their F1 hybrids when pollinating ¤B-rapa¤ seeds

    DEFF Research Database (Denmark)

    Pertl, M.; Hauser, T.P.; Damgaard, C.

    2002-01-01

    The likelihood that two species hybridise and backcross may depend strongly on environmental conditions, and possibly on competitive interactions between parents and hybrids. We studied the paternity of seeds produced by weedy Brassica rapa growing in mixtures with oilseed rape (B. napus) and the...... is strongly influenced by their local frequencies, and that male fitness of F(1)hybrids, when pollinating B. rapa seeds, is low even when their female fitness (seed set) is high.......The likelihood that two species hybridise and backcross may depend strongly on environmental conditions, and possibly on competitive interactions between parents and hybrids. We studied the paternity of seeds produced by weedy Brassica rapa growing in mixtures with oilseed rape (B. napus......) and their F(1) hybrids at different frequencies and densities. Paternity was determined by the presence of a transgene, morphology, and AFLP markers. In addition, observations of flower and pollen production, and published data on pollen fertilisation success, zygote survival, and seed germination, allowed us...

  18. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    Science.gov (United States)

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of Foliar Selenite on the Nutrient Components of Turnip (Brassica rapa var. rapa Linn.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2018-03-01

    Full Text Available We administered foliar applications of 50, 100, and 200 mg L−1 selenium (Se, selenite on turnip (Brassica rapa var. rapa Linn. and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (IV significantly increased the Se content in turnip, and Se (IV positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese, and copper. Se (IV treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (IV could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L−1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 μg person−1 day−1 and its favorable effects on the nutrient components of turnip.

  20. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.)

    Science.gov (United States)

    Li, Xiong; Li, Boqun; Yang, Yongping

    2018-03-01

    We administered foliar applications of 50, 100 and 200 mg L‑1 selenium (Se, selenite) on turnip (Brassica rapa var. rapa Linn.) and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (Ⅳ) significantly increased the Se content in turnip, and Se (Ⅳ) positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese and copper. Se (Ⅳ) treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (Ⅳ) could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L‑1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 µg person‑1 day‑1) and its favourable effects on the nutrient components of turnip.

  1. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH, we mined unmapped reads, revealing 2,031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest.

  2. Occurrence of Diaretiella rapae (Mc´Intosh, 1855 (Hymenoptera: Aphidiidae Parasitising Lipaphis erysimi (Kaltenbach, 1843 and Brevicoryne brassicae (L. 1758 (Homoptera: Aphididae in Brassica napus in Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Mussury Rosilda Mara

    2002-01-01

    Full Text Available The occurrence of Diaretiella rapae parasitising Lipaphis erysimi and Brevicoryne brassicae in canola field (Brassica napus was evaluated through two sample methods in Dourados-MS. The methods, used weekly, were: entomologic sweep net and plants sacking. The aphids population was observed from initial to the senescence plant development. Aphids were more abundant during the flowering phase, and they were usually located in the stems of the inflorescence and development fruits. In this phase the largest parasitism level for D. rapae (89,7% occurred. The sample method with a sweep net captured significantly (t=4,484, P <= 0,01 more D. rapae while sacking method captured more parasitise aphids (t=2,199 with P <= 0,05 and active aphids (t=3,513, P <= 0,01.

  3. Progressive introgression between ¤Brassica napus¤ (oilseed rape) and ¤B-rapa¤

    DEFF Research Database (Denmark)

    Hansen, L.B.; Siegismund, H.R.; Bagger Jørgensen, Rikke

    2003-01-01

    We have earlier shown extensive introgression between oilseed rape (Brassica napus) and B. rapa in a weedy population using AFLP markers specific for the nuclear genomes. In order to describe the progress of this introgression, we examined 117 offspring from 12 maternal plants from the introgress...

  4. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis).

    Science.gov (United States)

    Ren, Yanjing; Wu, Junqing; Zhao, Jing; Hao, Lingyu; Zhang, Lugang

    2017-02-15

    Research on the yellow-seeded variety of heading Chinese cabbage will aid in broadening its germplasm resources and lay a foundation for AA genome research in Brassica crops. Here, an F 2 segregating population of 1575 individuals was constructed from two inbred lines (brown-seeded '92S105' and yellow-seeded '91-125'). This population was used to identify the linkage molecular markers of the yellow seed coat trait using simple sequence repeat (SSR) techniques combined with a bulk segregant analysis (BSA). Of the 144 SSR primer pairs on the A01-A10 chromosomes from the Brassica database (http://brassicadb.org/brad/), two pairs located on the A06 chromosome showed polymorphic bands between the bulk DNA pools of eight brown-seeded and eight yellow-seeded F 2 progeny. Based on the genome sequence, 454 SSR markers were designed to A06 to detect these polymorphic bands and were synthesized. Six SSR markers linked to the seed coat color gene were successfully selected for fine linkage genetic map construction, in which the two closest flanking markers, SSR449a and SSR317, mapped the Brsc-ye gene to a 40.2 kb region with distances of 0.07 and 0.06 cM, respectively. The molecular markers obtained in this report will assist in the marker-assisted selection and breeding of yellow-seeded lines in Brassica rapa L. and other close species. © 2017. Published by The Company of Biologists Ltd.

  6. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: Impact on the glucosinolate composition

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Kopriva, S; Hawkesford, M.J.; Koprivova, A.; De Kok, L.J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and Brasscia rapa. Both species contained a number of aliphatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold

  7. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    NARCIS (Netherlands)

    Bagheri, H.; Soda, El M.; Kim, H.K.; Fritsche, S.; Jung, C.; Aarts, M.G.M.

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs)

  8. Processes affecting genetic structure and conservation: a case study of wild and cultivated Brassica rapa

    DEFF Research Database (Denmark)

    Andersen, Naja Steen; Poulsen, Gert; Andersen, Bente Anni

    2009-01-01

    When planning optimal conservation strategies for wild and cultivated types of a plant species, a number of influencing biological and environmental factors should be considered from the outset. In the present study Brassica rapa was used to illustrate this: to develop Scandinavian conservation...

  9. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    Science.gov (United States)

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  10. Growth and "1"3"7Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain

    International Nuclear Information System (INIS)

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-01-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and "1"3"7Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in "1"3"7Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of "1"3"7Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased "1"3"7Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased "1"3"7Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots. - Highlights: • Out of 56 Brassica cultivars, inoculation significantly increased shoot dry weight in 12 cultivars. • Inoculation triggered a significant increase and decrease in "1"3"7Cs uptake, respectively in 22 and 7 cultivars. • Five cultivars had an enhanced shoot dry weight and decreased "1"3"7Cs

  11. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters

    DEFF Research Database (Denmark)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven

    2017-01-01

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss......-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited...... over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed...

  12. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    Science.gov (United States)

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  13. Genome-Wide Gene Expression Disturbance by Single A1/C1 Chromosome Substitution in Brassica rapa Restituted From Natural B. napus

    Directory of Open Access Journals (Sweden)

    Bin Zhu

    2018-03-01

    Full Text Available Alien chromosome substitution (CS lines are treated as vital germplasms for breeding and genetic mapping. Previously, a whole set of nine Brassica rapa-oleracea monosonic alien addition lines (MAALs, C1-C9 was established in the background of natural B. napus genotype “Oro,” after the restituted B. rapa (RBR for Oro was realized. Herein, a monosomic substitution line with one alien C1 chromosome (Cs1 in the RBR complement was selected in the progenies of MAAL C1 and RBR, by the PCR amplification of specific gene markers and fluorescence in situ hybridization. Cs1 exhibited the whole plant morphology similar to RBR except for the defective stamens without fertile pollen grains, but it produced some seeds and progeny plants carrying the C1 chromosome at high rate besides those without the alien chromosome after pollinated by RBR. The viability of the substitution and its progeny for the RBR diploid further elucidated the functional compensation between the chromosome pairs with high homoeology. To reveal the impact of such aneuploidy on genome-wide gene expression, the transcriptomes of MAAL C1, Cs1 and euploid RBR were analyzed. Compared to RBR, Cs1 had sharply reduced gene expression level across chromosome A1, demonstrating the loss of one copy of A1 chromosome. Both additional chromosome C1 in MAAL and substitutional chromosome C1 in Cs1 caused not only cis-effect but also prevalent trans-effect differentially expressed genes. A dominant gene dosage effects prevailed among low expressed genes across chromosome A1 in Cs1, and moreover, dosage effects for some genes potentially contributed to the phenotype deviations. Our results provided novel insights into the transcriptomic perturbation and gene dosage effects on phenotype in CS related to one naturally evolved allopolyploid.

  14. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  15. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?

    Science.gov (United States)

    Collett, Mark G; Stegelmeier, Bryan L; Tapper, Brian A

    2014-07-30

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are regarded as "safe" feed for cattle during late summer and fall in the North Island of New Zealand when high Pithomyces chartarum spore counts in pastures frequently lead to sporidesmin toxicity (facial eczema). Sporadic acute severe cases of turnip photosensitization in dairy cows characteristically exhibit high γ-glutamyl transferase and glutamate dehydrogenase serum enzyme activities that mimic those seen in facial eczema. The two diseases can, however, be distinguished by histopathology of the liver, where lesions, in particular those affecting small bile ducts, differ. To date, the hepato-/cholangiotoxic phytochemical causing liver damage in turnip photosensitization in cattle is unknown. Of the hydrolysis products of the various glucosinolate secondary compounds found in high concentrations in turnip and rape, work has shown that nitriles and epithionitriles can be hepatotoxic (and nephro- or pancreatotoxic) in rats. These derivatives include β-hydroxy-thiiranepropanenitrile and 3-hydroxy-4-pentenenitrile from progoitrin; thiiranepropanenitrile and 4-pentenenitrile from gluconapin; thiiranebutanenitrile and 5-hexenenitrile from glucobrassicanapin; phenyl-3-propanenitrile from gluconasturtiin; and indole-3-acetonitrile from glucobrassicin. This perspective explores the possibility of the preferential formation of such derivatives, especially the epithionitriles, in acidic conditions in the bovine rumen, followed by absorption, hepatotoxicity, and secondary photosensitization.

  16. Developmental variation during seed germination and biochemical responses of Brassica rapa exposed to various colored lights.

    Science.gov (United States)

    Nawaz, Tausif; Ahmad, Nisar; Ali, Shahid; Khan, Maaz; Fazal, Hina; Khalil, Shahid Akbar

    2018-02-01

    Light acting as elicitor or stress inducer, it plays a pivotal role in all developmental processes of plant providing necessary building blocks for growth and primary and secondary metabolites production. The main objective of the current study was to investigate the individual effect of colored lights on developmental processes and production of polyphenolics contents in Brassica rapa. In this study, the red and white lights (control) were found to be the most effective sources for seed germination (91%) in Brassica rapa. Similarly, red light enhanced radicle growth (102 mm), while green light suppressed radicle growth (60 mm) as compared to control (67 mm). The red light also promoted the plumule growth (50 mm) as compared to control (37 mm). The maximum biomass gain (67 mg) was observed under red light as compared to control (55 mg). Currently, the maximum total phenolics content (9.49 mg/g-DW) and phenolics production (379.616 mg/L) was observed under the influence of blue lights as compared to control (0.23 mg/g-DW and 8.91 mg/L). Similarly, the blue lights also enhanced the biosynthesis of total flavonoids content (2.2611 mg/g-DW) and flavonoids production (90.44 mg/L) as compared to control (0.0318 md/g-DW and 0.8268 mg/L). The current results represents that red and blue lights are the most effective sources for plantlets development and production of polyphenolics content in Brassica rapa. Copyright © 2018. Published by Elsevier B.V.

  17. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  18. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina.

    Science.gov (United States)

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2018-03-01

    Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.

  19. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa

    NARCIS (Netherlands)

    Jianjun Zhao, Jianjun; Jamar, D.C.L.; Lou, P.; Wang, Y.; Wu, J.; Wang, X.; Bonnema, A.B.; Koornneef, M.; Vreugdenhil, D.

    2008-01-01

    Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa

  20. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlović, I.; Pěnčík, Aleš; Novák, Ondřej; Vujčić, V.; Radić Brkanac, S.; Lepeduš, H.; Strnad, Miroslav; Salopek-Sondi, B.

    2018-01-01

    Roč. 125, APR (2018), s. 74-84 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : Auxin metabolism * Brassica rapa ssp. pekinensis * Growth inhibition * Principal component analysis * Reactive oxygen species * Short-term salinity stress * Stress hormones Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.724, year: 2016

  1. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Allelism analysis of BrRfp locus in different restorer lines and map-based cloning of a fertility restorer gene, BrRfp1, for pol CMS in Chinese cabbage (Brassica rapa L.).

    Science.gov (United States)

    Zhang, Huamin; Wu, Junqing; Dai, Zihui; Qin, Meiling; Hao, Lingyu; Ren, Yanjing; Li, Qingfei; Zhang, Lugang

    2017-03-01

    In Chinese cabbage, there are two Rf loci for pol CMS and one of them was mapped to a 12.6-kb region containing a potential candidate gene encoding PPR protein. In Chinese cabbage (Brassica rapa), polima cytoplasmic male sterility (pol CMS) is an important CMS type and is widely used for hybrid breeding. By extensive test crossing in Chinese cabbage, four restorer lines (92s105, 01s325, 00s109, and 88s148) for pol CMS were screened. By analyzing the allelism of the four restorer lines, it was found that 92s105, 01s325, and 00s109 had the same "restorers of fertility" (Rf) locus (designated as BrRfp1), but 88s148 had a different Rf locus (designated as BrRfp2). For fine mapping the BrRfp1 locus of 92s105, a BC 1 F 1 population with 487 individuals and a BC 1 F 2 population with 2485 individuals were successively constructed. Using simple sequence repeat (SSR) markers developed from Brassica rapa reference genome and InDel markers derived from whole-genome resequencing data of 94c9 and 92s105, BrRfp1 was mapped to a 12.6-kb region containing a potential candidate gene encoding pentatricopeptide repeat-containing protein. Based on the nucleotide polymorphisms of the candidate gene sequence between the restoring and nonrestoring alleles, a co-segregating marker SC718 was developed, which would be helpful for hybrid breeding by marker-assisted screening and for detecting new restorer lines.

  3. THE ELUCIDATION OF STRESS MEMORY INHERITANCE IN BRASSICA RAPA PLANTS

    Directory of Open Access Journals (Sweden)

    Andriy eBilichak

    2015-01-01

    Full Text Available Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  4. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    Science.gov (United States)

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. ANALISIS WAKTU PEMUPUKAN TANAMAN SAWI HIJAU (Brassica rapa var. parachinensis DENGAN TEKNIK PERUNUT RADIOAKTIF

    Directory of Open Access Journals (Sweden)

    Gusti Ngurah Sutapa

    2016-11-01

    Full Text Available Telah dilakukan penelitian analisis waktu pemupukan pada tanaman sawi hijau (Brassica rapa var. parachinensisdengan teknik perunut radioaktif. Untuk menuju sistem pertanian berkelanjutan perlu adanya perbaikan pertanian(intensifikasi selama beberapa tahun yang lalu masih signifikan, karena ketersediaan sumber daya alam danteknologi pertanian cukup memadai dan berimbang dengan ketersediaan lahan dan peningkatan jumlah penduduk.Keadaan ini sulit untuk dipertahankan dimasa yang akan datang, kecuali ada pendekatan baru yang menawarkan ide dan teknik untuk meningkatkan produktifitas pertanian. Efesiensi pemupukan tanaman dengan teknik perunut (tracer radioisotop adalah salah satu potensi menujusistem pertanian berkelanjutan. Teknik perunut dapat digunakan antara lain untuk mempelajari hubungan antaratanah dan tanaman, menentukan kondisi optimal dalam penggunaan pupuk (waktu pemupukan, pola perakaranaktif tanaman, jenis dan takaran pupuk, mempelajari proses dekomposisi dan mineralisasi bahan organik, sertamempelajari proses fotosintesis tanaman,baik dengan metoda langsung maupun tidak langsung.Waktu pemupukanyang lebih tepat dapat ditentukan dengan teknik perunut tersebut, sehingga optimalisasi pemupukan dapat dicapai,tanpa pemborosan yang tidak berguna.Dari penelitian dengan menggunakan radioisotop P, ternyata waktupemupukan pada tanaman sawi hijau (Brassica rapa var. parachinensis yang paling signifikan adalah padapukul 9.00 pagi. Waktu siang hari mulai pukul 11.00 sampai pukul 15.00 adalah waktu pemupukan yang sangatburuk. Sedangkan waktu sore hari yaitu pukul 15.00 sampai 17.00 menunjukkan waktu pemupukan yang semakinbaik namun tidak signifikan.32

  6. ANALISIS WAKTU PEMUPUKAN TANAMAN SAWI HIJAU (Brassica rapa var. parachinensis DENGAN TEKNIK PERUNUT RADIOAKTIF

    Directory of Open Access Journals (Sweden)

    Gusti Ngurah Sutapa

    2016-06-01

    Full Text Available Telah dilakukan penelitian analisis waktu pemupukan pada tanaman sawi hijau (Brassica rapa var. parachinensisdengan teknik perunut radioaktif. Untuk menuju sistem pertanian berkelanjutan perlu adanya perbaikan pertanian(intensifikasi selama beberapa tahun yang lalu masih signifikan, karena ketersediaan sumber daya alam danteknologi pertanian cukup memadai dan berimbang dengan ketersediaan lahan dan peningkatan jumlah penduduk.Keadaan ini sulit untuk dipertahankan dimasa yang akan datang, kecuali ada pendekatan baru yang menawarkan ide dan teknik untuk meningkatkan produktifitas pertanian. Efesiensi pemupukan tanaman dengan teknik perunut (tracer radioisotop adalah salah satu potensi menujusistem pertanian berkelanjutan. Teknik perunut dapat digunakan antara lain untuk mempelajari hubungan antaratanah dan tanaman, menentukan kondisi optimal dalam penggunaan pupuk (waktu pemupukan, pola perakaranaktif tanaman, jenis dan takaran pupuk, mempelajari proses dekomposisi dan mineralisasi bahan organik, sertamempelajari proses fotosintesis tanaman,baik dengan metoda langsung maupun tidak langsung.Waktu pemupukanyang lebih tepat dapat ditentukan dengan teknik perunut tersebut, sehingga optimalisasi pemupukan dapat dicapai,tanpa pemborosan yang tidak berguna.Dari penelitian dengan menggunakan radioisotop P, ternyata waktupemupukan pada tanaman sawi hijau (Brassica rapa var. parachinensis yang paling signifikan adalah padapukul 9.00 pagi. Waktu siang hari mulai pukul 11.00 sampai pukul 15.00 adalah waktu pemupukan yang sangatburuk. Sedangkan waktu sore hari yaitu pukul 15.00 sampai 17.00 menunjukkan waktu pemupukan yang semakinbaik namun tidak signifikan.32

  7. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea.

    Science.gov (United States)

    Gao, Qiguo; Shi, Songmei; Liu, Yudong; Pu, Quanming; Liu, Xiaohuan; Zhang, Ying; Zhu, Liquan

    2016-09-01

    M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of Bo

  8. Quantitative Trait Locus Analysis of seed germination and seedling vigour in Brassica rapa reveals QTL hotspots and epistatic interactions

    NARCIS (Netherlands)

    Basnet, R.K.; Duwal, A.; Tiwari, D.N.; Xiao, D.; Monakhos, S.; Bucher, J.; Visser, R.G.F.; Groot, S.P.C.; Bonnema, A.B.; Maliepaard, C.A.

    2015-01-01

    The genetic basis of seed germination and seedling vigour is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded

  9. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-04

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops.

  10. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips.

    Science.gov (United States)

    Klopsch, Rebecca; Witzel, Katja; Börner, Andreas; Schreiner, Monika; Hanschen, Franziska S

    2017-10-01

    About 10% of the world's vegetable production is generated from Brassicaceae, wherein Brassica rapa is a dominating species. There is growing evidence that glucosinolates (GLSs), main plant secondary metabolites in Brassicales, play an important role in promoting human health. Natural genetic diversity of B. rapa can be explored for vegetable improvement. We analyzed leaves and tubers of 16 B. rapa turnips for their GLS composition by UHPLC-DAD and the corresponding hydrolysis products by GC-MS. Thirteen GLSs were identified, 8 aliphatic, 4 indolic and one aromatic. 3-Butenyl GLS was prevailing in both plant organs while in tubers 2-hydroxy-3-butenyl GLS and 2-phenylethyl GLS occurred in high amounts. A total of 24 GLS breakdown products were detected in tubers and 16 in leaves. Epithionitriles were the main hydrolysis products in both plant organs with 4,5-epithiopentanenitrile and 3-hydroxy-4,5-epithiopentanenitrile being the main compounds. When comparing leaves and tubers, an accumulation of GLSs and their breakdown products was observed in tubers compared to leaves. Our analysis achieved the comprehensive profiling of all GLS metabolites in a collection of B. rapa turnips, underlining the natural variation not only of intact GLS, but also of their breakdown products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aphrodisiac pheromones from the wings of the Small Cabbage White and Large Cabbage White butterflies, Pieris rapae and Pieris brassicae

    NARCIS (Netherlands)

    Yildizhan, S.; Loon, van J.J.A.; Sramkova, A.; Ayasse, M.; Arsene, C.; Broeke, ten C.J.M.; Schulz, S.

    2009-01-01

    The small and large cabbage butterflies, Pieris rapae and P. brassicae, are found worldwide and are of considerable economic importance. The composition of the male scent-producing organs present on the wings was investigated. More than 120 components were identified, but only a small portion proved

  12. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach

    Science.gov (United States)

    Zhao, Qin; Zou, Jun; Meng, Jinling; Mei, Shiyong; Wang, Jianbo

    2013-01-01

    Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassica rapa , Brassica carinata , and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B . rapa , were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B . carinata , several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  14. NEW INCOMING ACCESSIONS OF BRASSICA RAPA L. INTO THE VIR PLANT COLLECTION

    Directory of Open Access Journals (Sweden)

    A. M. Artemieva

    2017-01-01

    Full Text Available The crops of Brassica rapa L. species are varieties such as pak-choi, tatsoi, wutacai, tsoisum, mizuna, mibuna, brokkoletto and Japanese leafy turnips Komatsuna, Kurona, Hiroshimana, Shirona, Mana, which are all characterized by  early-ripening,  high  productivity,  presence of valuable biochemical compounds and relatively simple growing requirements. The nappa cabbage is widespread and cultivated everywhere in the world as open field and greenhouse crop. Other varieties are grown locally, namely brokkoletto is grown in Italy, whereas other mentioned varieties are mostly cultivated in the Southeast Asian countries, where population uses them for different processing technologies. There is the nappa cabbage that is mostly cultivated, particularly for industrial production  in Russia. The Chinese cabbage (pak choi, Japanese cabbage, Japanese mustard  spinach  or  Komatsuna  are  not  very widespread and practically unknown crop. However, vegetable growers are interested in using new cole crops, and gardeners know about values of related varieties of nappa cabbage in the group of Asian cole crops. The analysis of incoming genetic accessions of Brassica rapa L. crops that have been included into the VIR plant collection is given. All  botanical  subspecies  and  varieties of  leafy varieties have been taken for the study. The detailed description of new for Russia varieties, such as purple, brokkoletto, rosette pakchoi as well as well as types of cultivars that haven’t still included into State Register of Breeding Achievements of Russian Federation are given. According to  research results obtained at Pushkin VIR laboratories (Saint-Petersburg the  initial  breeding  accessions  have been selected to  be  sources of  such characteristics as productivity,  early-ripening, disease resistance and valuable biochemical compounds.

  15. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    Science.gov (United States)

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  16. Bioinformatics analysis of the ς-carotene desaturase gene in cabbage (Brassica oleracea var. capitata)

    Science.gov (United States)

    Sun, Bo; Zheng, Aihong; Jiang, Min; Xue, Shengling; Zhang, Fen; Tang, Haoru

    2018-04-01

    ς-carotene desaturase (ZDS) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata ZDS (BocZDS) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocZDS gene mapped to Scaffold000363, and contains an open reading frame of 1,686 bp that encodes a 561-amino acid protein with a calculated molecular mass of 62.00 kD and an isoelectric point (pI) of 8.2. Subcellular localization predicted the BocZDS gene was in the chloroplast. The conserved domain of the BocZDS protein is PLN02487, indicating that it belongs the member of zeta-carotene desaturase. Homology analysis indicates that the ZDS protein is apparently conserved during plant evolution and is most closely related to B. oleracea var. oleracea, B. napus, and B. rapa. The findings of the present study provide a molecular basis for the elucidation of ZDS gene function in cabbage.

  17. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  18. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L.

    Science.gov (United States)

    Huang, Zhen; Zhang, Xuexian; Jiang, Shouhua; Qin, Mengfan; Zhao, Na; Lang, Lina; Liu, Yaping; Tian, Zhengshu; Liu, Xia; Wang, Yang; Zhang, Binbin; Xu, Aixia

    2017-06-01

    Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F 2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F 2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.

  20. Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choice and seed selection

    Czech Academy of Sciences Publication Activity Database

    Šamec, D.; Piljac-Žegarac, J.; Bogovic, M.; Habjanic, K.; Grúz, Jiří

    2011-01-01

    Roč. 128, č. 2 (2011), s. 78-83 ISSN 0304-4238 R&D Projects: GA AV ČR KAN200380801; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Antimicrobial activity * Antioxidant capacity * Brassica oleracea L. var. capitata * rapa L. var. pekinensis Lour * Cabbage Subject RIV: EF - Botanics Impact factor: 1.527, year: 2011

  1. Characterization and classification of one new cytoplasmic male sterility (CMS) line based on morphological, cytological and molecular markers in non-heading Chinese cabbage (Brassica rapa L.).

    Science.gov (United States)

    Heng, Shuangping; Shi, Dianyi; Hu, Zhenhua; Huang, Tao; Li, Jinping; Liu, Liyan; Xia, Chunxiu; Yuan, Zhenzhen; Xu, Yuejin; Fu, Tingdong; Wan, Zhengjie

    2015-09-01

    A new non-heading Chinese cabbage CMS line M119A was characterized and specific molecular markers were developed to classify different CMS types. One new non-heading Chinese cabbage (Brassica rapa L.) cytoplasmic male sterile (CMS) line M119A was obtained by interspecific crosses between the recently discovered hau CMS line of Brassica juncea and B. rapa. Furthermore, the line was characterized and compared with other five isonuclear-alloplasmic CMS lines. The M119A line produced six stamens without pollen and only two stamen fused together in fewer flowers. Tissue section indicated that anther abortion in M119A may have occurred during differentiation of the archesporial cells without pollen sac. All the six CMS lines were grouped into three types based on the presence of three PCR fragments of 825, 465 and 772 bp amplified with different mitochondrial genes specific primers. The 825-bp fragment was amplified both in 09-10A and H201A using the specific primer pair P-orf224-atp6, and showed 100 % identity with the mitochondrial gene of pol CMS. The 465-bp fragment was amplified in 30A and 105A using the primer pair P-orf138 and shared 100 % identity with the mitochondrial gene of ogu CMS. The 772-bp fragment was amplified in M119A and H203A using the primer pair P-orf288 and showed 100 % identity with the mitochondrial gene of hau CMS. Therefore, these markers could efficiently distinguish different types of isonuclear-alloplasmic CMS lines of non-heading Chinese cabbage, which were useful for improving the efficiency of cross-breeding and heterosis utilization in cruciferous vegetables.

  2. Effect of the parasitoid Diaeretiella rapae on the feeding rate of its host Brevicoryne brassicae

    International Nuclear Information System (INIS)

    Couchman, J.R.; King, P.E.

    1979-01-01

    The food uptake by Brevicoryne brassicae, as measured by accumulation of radiophosphorus, is influenced by the presence of developing larvae of the parasitoid Diaeretiella rapae. Though the egg and embryonic stages of the parasitoid have no effect on host feeding the presence of a first-instar larva lowers the food uptake. Feeding returns to a level similar to that of non-parasitised aphids when a second-instar parasitoid is present within a host, but drops again when the third instar is reached. Host death occurs during the fourth-larval instar. (Auth.)

  3. User Guidelines for the Brassica Database: BRAD.

    Science.gov (United States)

    Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.

  4. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  5. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  6. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  7. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L.

    Science.gov (United States)

    Wang, Wei; Wang, Xiaoqing; Ye, Hong; Hu, Bing; Zhou, Li; Jabbar, Saqib; Zeng, Xiaoxiong; Shen, Wenbiao

    2016-01-01

    The root of Brassica rapa L. has been traditionally used as a Uyghur folk medicine to cure cough and asthma by Uyghur nationality in Xinjiang Uygur Autonomous Region of China. In the present study, therefore, extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from the root of B. rapa L. (BRP) were investigated. The optimal extraction conditions with an extraction yield of 21.48 ± 0.41% for crude BRP were obtained as follows: extraction temperature 93°C, extraction time 4.3h and ratio of extraction solvent (water) to raw material 75 mL/g. The crude BRP was purified by chromatographic columns of DEAE-52 cellulose and Sephadex G-100, affording three purified fractions of BRP-1-1, BRP-2-1 and BRP-2-2 with average molecular weight of 1510, 1110 and 838 kDa, respectively. Monosaccharide composition analysis indicated that BRP-1-1 was composed of mannose, rhamnose, glucose, galactose and arabinose, BRP-2-1 was composed of rhamnose, galacturonic acid, galactose and arabinose, and BRP-2-2 was composed of rhamnose and galacturonic acid in a molar ratio of 1.27: 54.92. Furthermore, the crude BRP exhibited relatively higher antioxidant activity in vitro than purified fractions; hence, it could be used as a natural antioxidant in functional foods or medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Uranium accumulation in Brassica rapa L. and effect of citric acid and humic acids as chelating agents; Acumulacion de uranio en Brassica rapa L. y efecto del acido citrico y acidos humicos como agentes quelantes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del R, H.; Perez C, G. A.; Davila R, J. I.; Mireles G, F. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Rodriguez H, G., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Agronomia, Carretera Zacatecas-Guadalajara Km 15.5, Cieneguillas, Zacatecas (Mexico)

    2016-09-15

    Phyto extraction is a technique that makes use of plants for the remediation of soils contaminated with heavy metals. In this study the uranium incorporation in the Brassica rapa L. species was evaluated, in artificially contaminated inert soils with 40 mg U/kg, and the effect of adding of the natural chelating agents citric acid and humic acids in the accumulation of uranium was analyzed. Soil free of organic matter and biologically inert was obtained by controlled calcination s of natural soil. Cultures in the prepared soil consisted of five growth treatments: 1) cultivation without uranium or additives; 2) cultivation in the uranium presence; 3) cultivation with uranium and citric acid (2 g/kg); 4) cultivation with uranium and humic acids (10 g/kg); 5) uranium cultivation and combination of citric and humic acids at the same concentrations. There was no adverse effect on plant growth with the presence of uranium at the given concentration. Regarding the controls, the total biomass in the presence of uranium was slightly higher, while the addition of humic acids significantly stimulated the production of biomass with respect to the citric acid. The combined action of organic acids produced the highest amount of biomass. The efficiency of phyto extraction followed the order Humic acids (301 μg U/g) > Non-assisted (224 μg U/g) >> Citric acid + Humic acids (68 μg U/g) > Citric acid (59 μg U/g). The values of uranium concentration in the total biomass show that the species Brassica rapa L. has the capacity of phyto extraction of uranium in contaminated soils. The addition of humic acids increases the uranium extraction while the addition of citric acid disadvantages it. (Author)

  9. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  10. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  11. Diversity of Pollinator Insects in Relation to Seed Set of Mustard (Brassica rapa L.: Cruciferae

    Directory of Open Access Journals (Sweden)

    TRI ATMOWIDI

    2007-12-01

    Full Text Available Pollinators provide key services to both natural and agricultural ecosystems. Agricultural productivity depends, in part, on pollinator populations from adjacent seminatural habitats. Here we analysed the diversity of pollinator insects and its effect to seed set of mustard (Brassica rapa planted in agricultural ecosystem near the Gunung Halimun-Salak National Park, West Java. At least 19 species of insects pollinated the mustard, and three species, i.e. Apis cerana, Ceratina sp., and Apis dorsata showed a high abundance. The higher abundance and species richness of pollinators occurred at 08.30-10.30 am and the diversity was related to the number of flowering plants. Insect pollinations increased the number of pods, seeds per pod, seed weights per plant, and seed germination.

  12. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  13. Flowering times in genetically modified Brassica hybrids in the absence of selection

    Science.gov (United States)

    Changes in days to flowering (DTF) were observed among reciprocal F1 progeny of Brassica napus ‘RaideRR’ with other B. napus and also with weedy B. rapa. Changes in DTF are presented as factors to consider in evaluating the potential of crop to weed gene flow in different geograp...

  14. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  15. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available To identify genes associated with genic male sterility (GMS that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis, floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K. Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.

  16. Uranium accumulation in Brassica rapa L. and effect of citric acid and humic acids as chelating agents

    International Nuclear Information System (INIS)

    Lopez del R, H.; Perez C, G. A.; Davila R, J. I.; Mireles G, F.; Rodriguez H, G.

    2016-09-01

    Phyto extraction is a technique that makes use of plants for the remediation of soils contaminated with heavy metals. In this study the uranium incorporation in the Brassica rapa L. species was evaluated, in artificially contaminated inert soils with 40 mg U/kg, and the effect of adding of the natural chelating agents citric acid and humic acids in the accumulation of uranium was analyzed. Soil free of organic matter and biologically inert was obtained by controlled calcination s of natural soil. Cultures in the prepared soil consisted of five growth treatments: 1) cultivation without uranium or additives; 2) cultivation in the uranium presence; 3) cultivation with uranium and citric acid (2 g/kg); 4) cultivation with uranium and humic acids (10 g/kg); 5) uranium cultivation and combination of citric and humic acids at the same concentrations. There was no adverse effect on plant growth with the presence of uranium at the given concentration. Regarding the controls, the total biomass in the presence of uranium was slightly higher, while the addition of humic acids significantly stimulated the production of biomass with respect to the citric acid. The combined action of organic acids produced the highest amount of biomass. The efficiency of phyto extraction followed the order Humic acids (301 μg U/g) > Non-assisted (224 μg U/g) >> Citric acid + Humic acids (68 μg U/g) > Citric acid (59 μg U/g). The values of uranium concentration in the total biomass show that the species Brassica rapa L. has the capacity of phyto extraction of uranium in contaminated soils. The addition of humic acids increases the uranium extraction while the addition of citric acid disadvantages it. (Author)

  17. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  18. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.

    Science.gov (United States)

    Baskar, Venkidasamy; Park, Se Won

    2015-07-01

    Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis. Copyright © 2015. Published by Elsevier SAS.

  19. Mineral, vitamin C and crude protein contents in kale (Brassica ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-27

    Oct 27, 2011 ... Key words: Kale (Brassica oleracea var. acephala), harvesting stage, vitamin C, crude protein, mineral content. .... L-ascorbic acid (or vitamin C) in plant tissues. .... Cooking methods of Brassica rapa affect the preservation of.

  20. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.A.; Robinson, G.E. [Univ. of Illinois, Urbana, IL (United States); Conner, J.K. [Univ. of Illinois, Champaign, IL (United States)

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.

  1. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth's surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab

  2. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome

    Science.gov (United States)

    2013-01-01

    Background Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. Results We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. Conclusion A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in

  3. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Science.gov (United States)

    Zhang, Yanfeng; Huang, Shuhua; Wang, Xuefang; Liu, Jianwei; Guo, Xupeng; Mu, Jianxin; Tian, Jianhua; Wang, Xiaofeng

    2018-01-01

    Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm). DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops. PMID:29616073

  4. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    2018-03-01

    Full Text Available Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm. DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2 that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops.

  5. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea

    Science.gov (United States)

    2013-01-01

    Background The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. Results Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. Conclusions Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage. PMID:23586706

  6. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Estimation of heritability of the nectar guide of flowers in Brassica rapa L

    International Nuclear Information System (INIS)

    Syafaruddin; Kobayashi, K.; Yoshioka, Y.; Horisaki, A.; Niikura, S.

    2006-01-01

    Flowers of Brassica rapa L, produce a nectar guide, which consists of a coloured pattern (the dark, UV-absorbing centre of the flower) invisible to humans but visible to insect pollinators. As a result, the colour of the flowers typically appears as uniform light yellow to human eyes. The objective of the present study was to investigate the mode of inheritance of this character by using two inbred lines and their Fsub(1), Fsub(2) and Fsub(3) progenies with a view to improving this character. After digitizing UV-photographs of each flower, we measured the UV-absorbing area (UVA) and the total flower area (FA), based on image analysis. The ratio of UVA to FA represented the UV colour proportion (UVP). We estimated the broad-sense and narrow-sense heritabilities from within-generation variances in the UVP scores and environmental variance from the average value of the variances in the parental lines. The value of broad-sense heritability of UVP was high (0.75) in the Fsub(2) generation (hBsup2[Fsub(2)]) and higher (0.84) in the Fsub(3) generation (hBsup2[Fsub(3)]), indicating that UVP is a heritable character. Moreover, the high value of broad-sense heritability of UVP indicates that breeders have not focused their selection intentionally on this character in B. rapa. In contrast, the value of narrow-sense heritability was much lower: 0.12 (hBsup2[Fsub(2)]) and 0.24 (hBsup2[Fsub(3)]), respectively, suggesting that the genetic variation in UVP was mainly due to dominance effects. If we attempt to breed new lines with larger or smaller UVP values, we need to select this trait in advanced generations, in which additive effects become larger

  8. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices.

    Science.gov (United States)

    Choi, Man-Soo; Kim, Yul-Ho; Park, Hyang-Mi; Seo, Bo-Yoon; Jung, Jin-Kyo; Kim, Sun-Tae; Kim, Min-Chul; Shin, Dong-Bum; Yun, Hong-Tai; Choi, Im-Soo; Kim, Chung-Kon; Lee, Jang-Yong

    2009-08-31

    Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

  9. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    Science.gov (United States)

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Standardized gene nomenclature for the Brassica genus

    Directory of Open Access Journals (Sweden)

    King Graham J

    2008-05-01

    Full Text Available Abstract The genus Brassica (Brassicaceae, Brassiceae is closely related to the model plant Arabidopsis, and includes several important crop plants. Against the background of ongoing genome sequencing, and in line with efforts to standardize and simplify description of genetic entities, we propose a standard systematic gene nomenclature system for the Brassica genus. This is based upon concatenating abbreviated categories, where these are listed in descending order of significance from left to right (i.e. genus – species – genome – gene name – locus – allele. Indicative examples are provided, and the considerations and recommendations for use are discussed, including outlining the relationship with functionally well-characterized Arabidopsis orthologues. A Brassica Gene Registry has been established under the auspices of the Multinational Brassica Genome Project that will enable management of gene names within the research community, and includes provisional allocation of standard names to genes previously described in the literature or in sequence repositories. The proposed standardization of Brassica gene nomenclature has been distributed to editors of plant and genetics journals and curators of sequence repositories, so that it can be adopted universally.

  11. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    NARCIS (Netherlands)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J.A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus,

  12. Combining ability for maturity and plant height in brassica rapa (l.) ssp. dichotoma (roxb.) hanelt

    International Nuclear Information System (INIS)

    Nasim, A.; Farhatullah, A.; Khan, N.U.; Azam, S.M.; Nasim, Z.

    2014-01-01

    A 5 * 5 F1 diallel cross hybrids of Brassica rapa (L.) ssp. dichotoma (Roxb.) Hanelt along with parents were evaluated through combining ability for days to flowering (initiation and completion), days to maturity and plant height. Highly significant differences were recorded for all the traits. Mean squares due to general, specific and reciprocal combining ability were significant for all the traits except plant height for which the latter two components were non-significant. Prevalence of additive (plant height), non-additive (days to flowering completion; days to maturity) and reciprocal effects (days to flowering initiation) were detected. Parental line G-403 was best general combiner for all the traits. The F1 hybrids G-902 * G-265 (days to flowering initiation), G-902 * G-403 (days to flowering completion), G-265 * G-1500 (days to maturity) and G-909 * G-265 (plant height) were superior and may be exploited for future breeding programs. (author)

  13. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas.

    Science.gov (United States)

    Nayidu, Naghabushana K; Tan, Yifang; Taheri, Ali; Li, Xiang; Bjorndahl, Trent C; Nowak, Jacek; Wishart, David S; Hegedus, Dwayne; Gruber, Margaret Y

    2014-07-01

    Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

  14. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach.

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    Full Text Available Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  15. Parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) Adjusts Reproductive Strategy When Competing for Hosts.

    Science.gov (United States)

    Kant, Rashmi; Minor, Maria A

    2017-06-01

    Parasitoid fitness depends on its ability to manipulate reproductive strategies when in competition. This study investigated the parasitism and sex allocation strategies of the parasitic wasp Diaeretiella rapae McIntosh at a range of host (Brevicoryne brassicae L.) and conspecific densities. The results suggest that D. rapae females adjust their progeny production and progeny sex ratio with changing competition. When foraging alone, female D. rapae parasitize larger number of B. brassicae nymphs when the number of available hosts is increased, but the overall proportion of parasitized hosts decreases with increase in host density. The proportion of female offspring also decreases with elevated host density. Increase in the number of female D. rapae foraging together increased total parasitism, but reduced relative contribution of each individual female. The number of female progeny decreased when multiple females competed for the same host. However, foraging experience in the presence of one or more conspecifics increased the parasitism rate and proportion of female progeny. Competing females were more active during oviposition and had shorter lives. The study suggests that both host and foundress (female parasitoid) densities have significant effect on progeny production, sex allocation, and longevity of foraging females. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Accumulation of Phenylpropanoids by White, Blue, and Red Light Irradiation and Their Organ-Specific Distribution in Chinese Cabbage (Brassica rapa ssp. pekinensis).

    Science.gov (United States)

    Kim, Yeon Jeong; Kim, Yeon Bok; Li, Xiaohua; Choi, Su Ryun; Park, Suhyoung; Park, Jong Seok; Lim, Yong Pyo; Park, Sang Un

    2015-08-05

    This study investigated optimum light conditions for enhancing phenylpropanoid biosynthesis and the distribution of phenylpropanoids in organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Blue light caused a high accumulation of most phenolic compounds, including p-hydroxybenzoic acid, ferulic acid, quercetin, and kaempferol, at 12 days after irradiation (DAI). This increase was coincident with a noticeable increase in expression levels of BrF3H, BrF3'H, BrFLS, and BrDFR. Red light led to the highest ferulic acid content at 12 DAI and to elevated expression of the corresponding genes during the early stages of irradiation. White light induced the highest accumulation of kaempferol and increased expression of BrPAL and BrDFR at 9 DAI. The phenylpropanoid content analysis in different organs revealed organ-specific accumulation of p-hydroxybenzoic acid, quercetin, and kaempferol. These results demonstrate that blue light is effective at increasing phenylpropanoid biosynthesis in Chinese cabbage, with leaves and flowers representing the most suitable organs for the production of specific phenylpropanoids.

  17. The responses of crop - wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression.

    Science.gov (United States)

    Sutherland, Jamie P; Justinova, Lenka; Poppy, Guy M

    2006-01-01

    Brassica rapa grows as a wild and weedy species throughout the world and is the most likely recipient of transgenes from GM oilseed rape. For transgene introgression to occur, the critical step which must be realized, is the formation of an F1 hybrid. Concerns exist that hybrid populations could be more vigorous and competitive compared to the parental species. This study examines the effect of simulated herbivory and interspecific competition on the vegetative and reproductive performance of non-transgenic F1 hybrids and their parental lines. Several vegetative and reproductive performance measures were used to determine the effect of simulated herbivory and competition on the Brassica lines, including leaf length and biomass for herbivory and seedling height and biomass for competition. For defoliation experiments, B. rapa showed little response in terms of leaf length but B. napus and the F1 hybrid responded negatively. Brassica rapa showed elevated biomass responses, but B. napus and the hybrid demonstrated negative responses to defoliation. Defoliation at the cotyledon stage had a slight effect upon final biomass with the F1 hybrid performing significantly worse than B. napus, although seed counts were not significantly different. For the series of competition experiments, hybrids seemed to be more similar to B. rapa in terms of early seedling growth and reproductive measures. The underperformance of hybrid plants when challenged by herbivory and competition, could potentially decrease survivorship and explain the rarity of hybrids in field surveys. However, should transgene introgression occur, the dynamics of hybrids could change radically thus increasing the risk of gene flow from a transgenic oilseed rape crop to the wild recipient.

  18. Molecular evolution, characterization and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Zhinan eHuang

    2015-10-01

    Full Text Available Abstract: The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family members are plant-specific serine/threonine kinases that are involved in the plant response to abiotic stress and abscisic acid (ABA-dependent plant development. Further understanding of the evolutionary history and expression characteristics of these genes will help to elucidate the mechanisms of the stress tolerance in Pak-choi, an important green leafy vegetable in China. Thus, we investigated the evolutionary patterns, footprints and conservation of SnRK2 genes in selected plants and later cloned and analyzed SnRK2 genes in Pak-choi. We found that this gene family was preferentially retained in Brassicas after the Brassica-Arabidopsis thaliana split. Next, we cloned and sequenced 13 SnRK2 from both cDNA and DNA libraries of stress-induced Pak-choi, which were under conditions of ABA, salinity, cold, heat, and osmotic treatments. Most of the BcSnRK2s have eight exons and could be divided into three groups. The subcellular localization predictions suggested that the putative BcSnRK2 proteins were enriched in the nucleus. The results of an analysis of the expression patterns of the BcSnRK2 genes showed that BcSnRK2 group III genes were robustly induced by ABA treatments. Most of the BcSnRK2 genes were activated by low temperature, and the BcSnRK2.6 genes responded to both ABA and low temperature. In fact, most of the BcSnRK2 genes showed positive or negative regulation under ABA and low temperature treatments, suggesting that they may be global regulators that function at the intersection of multiple signaling pathways to play important roles in Pak-choi stress responses.

  19. Isolation and Functional Characterization of a Floral Repressor, BcMAF1, From Pak-choi (Brassica rapa ssp. Chinensis).

    Science.gov (United States)

    Huang, Feiyi; Liu, Tongkun; Hou, Xilin

    2018-01-01

    MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1 , a Pak-choi ( Brassica rapa ssp. Chinensis ) MADS AFFECTING FLOWERING ( MAF ), as a floral repressor and functionally characterized BcMAF1 in Arabidopsis and Pak-choi. Subcellular localization and sequence analysis indicated that BcMAF1 was a nuclear protein and contained a conserved MADS-box domain. Expression analysis revealed that BcMAF1 had higher expression levels in leaves, stems, and petals, and could be induced by short-term cold conditions in Pak-choi. Overexpressing BcMAF1 in Arabidopsis showed that BcMAF1 had a negative function in regulating flowering, which was further confirmed by silencing endogenous BcMAF1 in Pak-choi. In addition, qPCR results showed that AtAP3 expression was reduced and AtMAF2 expression was induced in BcMAF1 -overexpressing Arabidopsis . Meanwhile, BcAP3 transcript was up-regulated and BcMAF2 transcript was down-regulated in BcMAF1 -silencing Pak-choi. Yeast one-hybrid and dual luciferase transient assays showed that BcMAF1 could bind to the promoters of BcAP3 and BcMAF2 . These results indicated that BcAP3 and BcMAF2 might be the targets of BcMAF1. Taken together, our results suggested that BcMAF1 could negatively regulate flowering by directly activating BcMAF2 and repressing BcAP3 .

  20. Chemical Variability and Biological Activities of Brassica rapa var. rapifera Parts Essential Oils Depending on Geographic Variation and Extraction Technique.

    Science.gov (United States)

    Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda

    2017-06-01

    In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  2. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  3. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.)

    International Nuclear Information System (INIS)

    Dunagan, Sarah C.; Gilmore, Martha S.; Varekamp, Johan C.

    2007-01-01

    Mustard spinach plants were grown in mercury-spiked and contaminated soils collected in the field under controlled laboratory conditions over a full growth cycle to test if vegetation grown in these soils has discernible characteristics in visible/near-infrared (VNIR) spectra. Foliar Hg concentrations (0.174-3.993 ppm) of the Mustard spinach plants were positively correlated with Hg concentration of soils and varied throughout the growing season. Equations relating foliar Hg concentration to spectral reflectance, its first derivative, and selected vegetation indices were generated using stepwise multiple linear regression. Significant correlations are found for limited wavelengths for specific treatments and dates. Ratio Vegetation Index (RVI) and Red Edge Position (REP) values of plants in Hg-spiked and field-contaminated soils are significantly lower relative to control plants during the early and middle portions of the growth cycle which may be related to lower chlorophyll abundance or functioning in Hg-contaminated plants. - Some spectral characteristics of leaves of Brassica rapa P. may be associated with foliar mercury content

  4. Induced Production of 1-Methoxy-indol-3-ylmethyl Glucosinolate by Jasmonic Acid and Methyl Jasmonate in Sprouts and Leaves of Pak Choi (Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Hansruedi Glatt

    2013-07-01

    Full Text Available Pak choi plants (Brassica rapa ssp. chinensis were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future.

  5. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  6. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea.

    Science.gov (United States)

    Lyu, Meiling; Liang, Ying; Yu, Youjian; Ma, Zhiming; Song, Limin; Yue, Xiaoyan; Cao, Jiashu

    2015-06-01

    BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea. BoMF25 is the homologous gene of At4g35670, a PG gene in Arabidopsis thaliana with a high expression level at the tricellular pollen stage. Collinear analysis revealed that the orthologous gene of BoMF25 in Brassica campestris (syn. B. rapa) genome was probably lost because of genome deletion and reshuffling. Sequence analysis indicated that BoMF25 contained four classical conserved domains (I, II, III, and IV) of PG protein. Homology and phylogenetic analyses showed that BoMF25 was clustered in Clade F. The putative promoter sequence, containing classical cis-acting elements and pollen-specific motifs, could drive green fluorescence protein expression in onion epidermal cells. Quantitative RT-PCR analysis suggested that BoMF25 was mainly expressed in the anther at the late stage of pollen development. In situ hybridization analysis also indicated that the strong and specific expression signal of BoMF25 existed in pollen grains at the mature pollen stage. Subcellular localization showed that the fluorescence signal was observed in the cell wall of onion epidermal cells, which suggested that BoMF25 may be a secreted protein localized in the pollen wall.

  7. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    Science.gov (United States)

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hedayat eBagheri

    2012-08-01

    Full Text Available A recombinant inbred line (RIL population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 SNP, 130 AFLP®, 27 InDel and 13 publicly available SSR markers. The map covers a total length of 1150 cM with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to QTL analysis. A total of 47 QTLs were detected, each explaining between 6 to 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.

  9. Origin of new Brassica types from a single intergeneric hybrid ...

    Indian Academy of Sciences (India)

    Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus ... The morphological and genetic divergence of these novel types derived from a single hybrid is probably due ... Journal of Genetics | News.

  10. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Kusiluka, Lughano J. M.

    2016-01-01

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106...... samples including Chinese cabbage (69) and water (37) were collected. The E. coli were cultured in petri film selective E. coli plates at 44°C. The Chinese cabbage irrigated with river water at Fungafunga area indicated significantly (P... than those irrigated with treated wastewater at Mazimbu 10% (n=48, 0.00-1.36 log cfu/g). The mean counts of E. coli in untreated wastewater ranged from 4.59 to 5.56 log cfu/mL, while in treated wastewater was from 0.54 to 1.05 log cfu/mL and in river water it was 2.40 log cfu/mL. Treated wastewater...

  11. Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. perviridis)

    International Nuclear Information System (INIS)

    Ambe, S.; Shinonaga, T.; Ozaki, T.; Enomoto, S.; Yasuda, H.; Uchida, S.

    1999-01-01

    The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides by a multitracer technique. Komatsuna, Brassica rapa var. perviridis, was hydroponically cultivated in a nutrient solution containing a multitracer for 1 day. Nutrient concentration dependence of the selective absorption coefficient of various elements from Be to Re was obtained separately for leaves and roots. The selective absorption coefficients of these elements were, in general, found to decrease with an increase in the concentration of nutrient solutions. Regression equations of the power function for the selective absorption coefficients and the concentration of nutrient solutions were obtained for the leaves and roots. The effects of photon flux and growth stage of plants on the selective absorption coefficients were also studied. It was found that the photon flux influenced the accumulation of radionuclides in the roots but had no significant effect on the selective absorption coefficients for the leaves in 1-day cultivation with the multitracer. The selective absorption coefficients of Mn and Zn in the leaves of the plants at the development stage were higher than those at the maturation stage. For the other elements, no significant effects of the growth stage on the selective absorption coefficients were observed. (author)

  12. Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Moayeri, Hamid R. S.; Madadi, Hossein; Pouraskari, Hossein

    2013-01-01

    Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) is one of the most common and successful parasitoids of the cabbage aphid. The functional response of D. rapae towards cabbage aphids was examined in laboratory studies at three constant temperatures, 17°C, 25°C and 30°C. D. rapae exhibited a...

  13. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    Science.gov (United States)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  14. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  15. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    International Nuclear Information System (INIS)

    Demchik, S.M.; Day, T.A.

    1996-01-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% (open-quotes low enhancedclose quotes), or 32% (open-quotes high enhancedclose quotes) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by ∼50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ∼43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs

  16. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  17. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates

    Directory of Open Access Journals (Sweden)

    Rawnak Laila

    2017-01-01

    Full Text Available Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae. It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates, collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY. The nuclear ribosomal DNA (rDNA sequence of P. brassicae, comprising 6932 base pairs (bp, was cloned and sequenced and found to include the small subunits (SSUs and a large subunit (LSU, internal transcribed spacers (ITS1 and ITS2, and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs, oligonucleotide polymorphisms, and insertions/deletions (InDels. A combination of three markers was able to distinguish the geographical isolates into two groups.

  18. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus

    Directory of Open Access Journals (Sweden)

    Yan Xiaohong

    2013-01-01

    Full Text Available Abstract Background The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. Results In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste and 253,507 (Fer distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs. In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE data. Conclusions A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in

  19. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus.

    Science.gov (United States)

    Yan, Xiaohong; Dong, Caihua; Yu, Jingyin; Liu, Wanghui; Jiang, Chenghong; Liu, Jia; Hu, Qiong; Fang, Xiaoping; Wei, Wenhui

    2013-01-16

    The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste) and 253,507 (Fer) distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs). In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE) data. A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in Nsa line, fertility restoration and improved agronomic

  20. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication.

    Science.gov (United States)

    Zhao, Meixia; Du, Jianchang; Lin, Feng; Tong, Chaobo; Yu, Jingyin; Huang, Shunmou; Wang, Xiaowu; Liu, Shengyi; Ma, Jianxin

    2013-10-01

    Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution. © 2013 Purdue University The Plant Journal © 2013 John Wiley & Sons Ltd.

  1. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  2. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  3. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC.

    Science.gov (United States)

    Li, Xiaorong; Zhang, Shaofeng; Bai, Jinjuan; He, Yuke

    2016-03-01

    Several oilseed and vegetable crops of Brassica are biennials that require a prolonged winter cold for flowering, a process called vernalization. FLOWERING LOCUS C (FLC) is a central repressor of flowering. Here, we report that the overexpression of natural antisense transcripts (NATs) of Brassica rapa FLC (BrFLC) greatly shortens plant growth cycles. In rapid-, medium- and slow-cycling crop types, there are four copies of the BrFLC genes, which show extensive variation in sequences and expression levels. In Bre, a biennial crop type that requires vernalization, five NATs derived from the BrFLC2 locus are rapidly induced under cold conditions, while all four BrFLC genes are gradually down-regulated. The transgenic Bre lines overexpressing a long NAT of BrFLC2 do not require vernalization, resulting in a gradient of shortened growth cycles. Among them, a subset of lines both flower and set seeds as early as Yellow sarson, an annual crop type in which all four BrFLC genes have non-sense mutations and are nonfunctional in flowering repression. Our results demonstrate that the growth cycles of biennial crops of Brassica can be altered by changing the expression levels of BrFLC2 NATs. Thus, BrFLC2 NATs and their transgenic lines are useful for the genetic manipulation of crop growth cycles. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Combining ability and heterosis for yield and yield contributing traits in brassica rapa (l.) ssp. dichotoma (roxb.) hanelt

    International Nuclear Information System (INIS)

    Nasim, A.; Farhatullah, A.; Khan, N.U.; Afzal, M.; Azam, S.M.

    2014-01-01

    Combining ability was studied for yield and yield contributing traits in 5 * 5 diallel cross in Brassica rapa (L.) ssp. dichotoma (Roxb.) Hanelt. Primary branches plant-1, pods main raceme-1, pod length, 100-seed weight and seed yield plant-1 were significantly different. Heritability and genetic advance estimates were moderate for primary branches plant-1, pods main raceme-1, 100 seed weight whereas were high for seed yield plant-1. Parental line G-909 for primary branches plant-1, pods main raceme-1 and seed yield plant-1, genotype G-902 for pod length and genotype G-403 for 100-seed weight were the best general combiners. Based on combing ability and heterosis, the F1 hybrids G-909 * G-265 (for primary branches plant-1), G-265 * G- 403, G-1500 * G-909 (for pods main raceme-1), G-403 * G-909 (for pod length), G-265 * G-1500 (for 100-seed weight) and G-1500 * G-902, G-909 * G-902 (for seed yield plant-1) can be utilized in future breeding endeavors. Non-additive genetic control, as predominant mechanism, for all the traits necessitates the use of schemes like bi-parental mating design, diallel selective mating followed by recurrent or reciprocal recurrent selection. (author)

  5. Genetic differentiation among sexually compatible relatives of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Pipan Barbara

    2013-01-01

    Full Text Available Analysis of gene flow between Brassica napus L. and its sexually compatible relatives that could be found in the wild in Slovenia was performed by microsatellite analysis using fifteen selected primer pairs. Genotypes included in the study were obtained from the field survey of sexually compatible relatives of B. napus in natural habitats around Slovenia and from reference collections. Two different wild species of all the presented sexually compatible relatives of B. napus were found in Slovenia, B. rapa and Sinapis arvensis. The reference genotypes included varieties and wild forms from internal collections as marketable seeds or from gene banks. Reference genotypes were represented by the following species and subspecies: B. napus ssp. napobrassica, B. napus ssp. napus, B. nigra, B. oleracea, B. rapa ssp. oleifera, Diplotaxis muralis; D. tenuifolia, Raphanus raphanistrum, R. sativus, R. sativus var. oleiformis, Rapistrum rugosum, S. alba and S. arvensis. Estimation of gene flow described by average number of migrants was 0.72 followed by 0.20 migrants. Due to the observed gene migrations, genetic drift and selection, Hardy-Weinberg equilibrium was not met. The mean number of alleles over all loci was 16.9, the average polymorphic information content was 0.43. We found four highly divergent and polymorphic loci (Na12-C08, Na10-A08, Ni3-G04b and BRMS-050 at statistically significant level (p<0.05 of gene flow detected. Over all gene diversity intra-individual among populations (0.55 was lower than inter-individual among population (0.77. The results of genetic linkages based standard genetic distance and unweighted pair group method with arithmetic mean clustering method, generally divided the genotypes in three divergent groups. Similar results were obtained by principal coordinate analysis where three main groups were constructed according to three factors. A real number of genetic clusters demonstrated a clear separation between populations

  6. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  7. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  8. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Directory of Open Access Journals (Sweden)

    Gupta Vibha

    2008-03-01

    Full Text Available Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome and A. thaliana and analyzed the arrangement of 24 (previously described genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study with the A and B genomes of B. napus and B. nigra respectively (described earlier, revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements

  9. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture

    Science.gov (United States)

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  10. Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis

    Directory of Open Access Journals (Sweden)

    Zili Wei

    2016-11-01

    Full Text Available Brassica juncea (AjAjBjBj, is an allotetraploid that arose from two diploid species, B. rapa (ArAr and B. nigra (BnBn. It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc were combined in a synthesized allohexaploid (ArArBcBcCcCc, which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc, with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j. After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding.

  11. Forecasting Brassica rapa: Merging climate models with genotype specific process models for evaluation whole species response to climate change.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Guadagno, C. L.

    2016-12-01

    Human society has modified agriculture management practices and utilized a variety of breeding approaches to adapt to changing environments. Presently a dual pronged challenge has emerged as environmental change is occurring more rapidly while the demand of population growth on food supply is rising. Knowledge of how current agricultural practices will respond to these challenges can be informed through crafted prognostic modeling approaches. Amongst the uncertainties associated with forecasting agricultural production in a changing environment is evaluation of the responses across the existing genotypic diversity of crop species. Mechanistic models of plant productivity provide a means of genotype level parameterization allowing for a prognostic evaluation of varietal performance under changing climate. Brassica rapa represents an excellent species for this type of investigation because of its wide cultivation as well as large morphological and physiological diversity. We incorporated genotypic parameterization of B. rapa genotypes based on unique CO2 assimilation strategies, vulnerabilities to cavitation, and root to leaf area relationships into the TREES model. Three climate drivers, following the "business-as-usual" greenhouse gas emissions scenario (RCP 8.5) from Coupled Model Intercomparison Project, Phase 5 (CMIP5) were considered: temperature (T) along with associated changes in vapor pressure deficit (VPD), increasing CO2, as well as alternatives in irrigation regime across a temporal scale of present day to 2100. Genotypic responses to these drivers were evaluated using net primary productivity (NPP) and percent loss hydraulic conductance (PLC) as a measure of tolerance for a particular watering regime. Genotypic responses to T were witnessed as water demand driven by increases in VPD at 2050 and 2100 drove some genotypes to greater PLC and in a subset of these saw periodic decreases in NPP during a growing season. Genotypes able to withstand the greater

  12. Effect of aqueous extracts of black alder (Alnus glutinosa (LINNAEUS, 1753 GAERTNER, 1791 and elder (Sambucus nigra LINNAEUS, 1753 on the occurrence of Brevicoryne brassicae LINNAEUS, 1758 (Hemiptera, Aphidoidea, its parasitoid Diaeretiella rapae (M’INTOSH, 1855 (Hymenoptera, Ichneumonoidea and predatory Syrphidae on white cabbage

    Directory of Open Access Journals (Sweden)

    Jankowska Beata

    2016-06-01

    Full Text Available The insecticidal and antifeedant effects of aqueous extracts from two common plants (black alder Alnus glutinosa and elder Sambucus nigra on the occurrence of Brevicoryne brassicae, its parasitoid Diaeretiella rapae and predatory Syrphidae on white cabbage were investigated in 2008-2009. Both extracts reduced the number of cabbage aphids, although the Sambucus nigra extract proved to have a better effect. Differences were seen both in the numbers of winged aphids settling on plants and in the overall numbers of aphids on plants during the entire season. There were no significant differences in the degree of parasitization by Diaeretiella rapae in the three experimental combinations. Eight species of Syrphidae were found in the Brevicoryne brassicae colonies: Episyrphus balteatus, Sphaerophoria scripta, S. rueppelli, S. menthastri, Eupeodes corollae, Scaeva pyrastri, Scaeva selenitica and Syrphus vitripennis. The dominant species was Episyrphus balteatus. The largest numbers of syrphid larvae and pupae were collected from cabbage aphid colonies on the control plants. Smaller numbers were recorded on the plot where the cabbages were sprayed with the Sambucus nigra extract. The results of this study indicate that botanical insecticides based on S. nigra have the potential to be incorporated into control programmes for the cabbage aphid.

  13. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Jonathan P Green

    Full Text Available Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates and abundance of specialist lepidopteran (Pieris rapae and hemipteran (Brevicoryne brassicae herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  14. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input.

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-09-17

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.

  15. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  16. Do competitive conditions affect introgression of transgenes from oilseed rape (Brassica napus) to weedy Brassica rapa? AS case study with special reference to transplastomic oilseed rape

    DEFF Research Database (Denmark)

    Johannessen, Marina

    In species where chloroplast inheritance is exclusively or predominantly maternal, pollen-mediated flow of transgenes is reduced if transgenes are inserted in chloroplast DNA instead of nuclear DNA. However, transmission of chloroplast-encoded transgeneswill still occur if transgenic individuals ...... affected the thousand-kernel weight significantly. It was concluded that further introgression of transgenes from transplastomic oilseed rape to B. rapa is mostlikely at current field densities of B. napus and when B. rapa is an abundant weed....

  17. Genotypes of Brassica rapa respond differently to plant-induced variation in air CO2 concentration in growth chambers with standard and enhanced venting.

    Science.gov (United States)

    Edwards, Christine E; Haselhorst, Monia S H; McKnite, Autumn M; Ewers, Brent E; Williams, David G; Weinig, Cynthia

    2009-10-01

    Growth chambers allow measurement of phenotypic differences among genotypes under controlled environment conditions. However, unintended variation in growth chamber air CO2 concentration ([CO2]) may affect the expression of diverse phenotypic traits, and genotypes may differ in their response to variation in [CO2]. We monitored [CO2] and quantified phenotypic responses of 22 Brassica rapa genotypes in growth chambers with either standard or enhanced venting. [CO2] in chambers with standard venting dropped to 280 micromol mol(-1) during the period of maximum canopy development, approximately 80 micromol mol(-1) lower than in chambers with enhanced venting. The stable carbon isotope ratio of CO2 in chamber air (delta13C(air)) was negatively correlated with [CO2], suggesting that photosynthesis caused observed [CO2] decreases. Significant genotype x chamber-venting interactions were detected for 12 of 20 traits, likely due to differences in the extent to which [CO2] changed in relation to genotypes' phenology or differential sensitivity of genotypes to low [CO2]. One trait, 13C discrimination (delta13C), was particularly influenced by unaccounted-for fluctuations in delta13C(air) and [CO2]. Observed responses to [CO2] suggest that genetic variance components estimated in poorly vented growth chambers may be influenced by the expression of genes involved in CO2 stress responses; genotypic values estimated in these chambers may likewise be misleading such that some mapped quantitative trait loci may regulate responses to CO2 stress rather than a response to the environmental factor of interest. These results underscore the importance of monitoring, and where possible, controlling [CO2].

  18. Production and genetic analysis of resynthesized Brassica napus from a B. rapa landrace from the Qinghai-Tibet Plateau and B. alboglabra.

    Science.gov (United States)

    Liu, H D; Zhao, Z G; Du, D Z; Deng, C R; Fu, G

    2016-01-08

    This study aimed to reveal the genetic and epigenetic variations involved in a resynthesized Brassica napus (AACC) generated from a hybridization between a B. rapa (AA) landrace and B. alboglabra (CC). Amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism, and the cDNA-AFLP technique were performed to detect changes between different generations at the genome, methylation, and transcription levels. We obtained 30 lines of resynthesized B. napus with a mean 1000-seed weight of over 7.50 g. All of the lines were self-compatible, probably because both parents were self-compatible. At the genome level, the S0 generation had the lowest frequency of variations (0.18%) and the S3 generation had the highest (6.07%). The main variation pattern was the elimination of amplified restriction fragments on the CC genome from the S0 to the S4 generations. At the methylation level, we found three loci that exhibited altered methylation patterns on the parental A genome; the variance rate was 1.35%. At the transcription level, we detected 43.77% reverse mutations and 37.56% deletion mutations that mainly occurred on the A and C genomes, respectively, in the S3 generation. Our results highlight the genetic variations that occur during the diploidization of resynthesized B. napus.

  19. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to

  20. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  1. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  2. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  3. Comparative transcriptomic analysis of two Brassica napus near-isogenic lines reveals a network of genes that influences seed oil accumulation

    Directory of Open Access Journals (Sweden)

    Jingxue Wang

    2016-09-01

    Full Text Available Rapeseed (Brassica napus is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl lipid metabolism (ALM genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs. The high oil NIL, YC13-559, accumulates more than 10% of seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1, LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3, ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  4. Production of transgenic brassica juncea with the synthetic chitinase gene (nic) conferring resistance to alternaria brassicicola

    International Nuclear Information System (INIS)

    Munir, I.; Hussan, W.; Kazi, M.; Mian, A.

    2016-01-01

    Brassica juncea is an important oil seed crop throughout the world. The demand and cultivation of oil seed crops has gained importance due to rapid increase in world population and industrialization. Fungal diseases pose a great threat to Brassica productivity worldwide. Absence of resistance genes against fungal infection within crossable germplasms of this crop necessitates deployment of genetic engineering approaches to produce transgenic plants with resistance against fungal infections. In the current study, hypocotyls and cotyledons of Brassica juncea, used as explants, were transformed with Agrobacterium tumefacien strain EHA101 harboring binary vector pEKB/NIC containing synthetic chitinase gene (NIC), an antifungal gene under the control of cauliflower mosaic virus promoter (CaMV35S). Bar genes and nptII gene were used as selectable markers. Presence of chitinase gene in trangenic lines was confirmed by PCR and southern blotting analysis. Effect of the extracted proteins from non-transgenic and transgenic lines was observed on the growth of Alternaria brassicicola, a common disease causing pathogen in brassica crop. In comparison to non-transgenic control lines, the leaf tissue extracts of the transgenic lines showed considerable resistance and antifungal activity against A. brassicicola. The antifungal activity in transgenic lines was observed as corresponding to the transgene copy number. (author)

  5. Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus

    Directory of Open Access Journals (Sweden)

    Niklas eKörber

    2016-03-01

    Full Text Available In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. % as well as require high experimental effort due to their quantitative inheritance and the importance of genotype*environment interaction. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i genome regions associated with the examined agronomic and seed quality traits, (ii the interrelationship of population structure and the detected associations, and (iii candidate genes for the revealed associations. The diversity set used in this study consisted of 405 Brassica napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P-value 100 and a sequence identity of > 70 % to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.

  6. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  7. Transgenic tobacco plants expressing BoRS1 gene from Brassica ...

    Indian Academy of Sciences (India)

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through ...

  8. The effect of Ni on concentration of the most abundant essential cations in several Brassica species

    Directory of Open Access Journals (Sweden)

    Putnik-Delić Marina I.

    2014-01-01

    Full Text Available Some plants from the genus Brassica have the ability to tolerate excessive concentrations of heavy metals, including Ni. Considering the fact that Ni is a very toxic element for living beings we wanted to examine its influence on some species from genus Brassicaceae. The aim of this study was to investigate the effect of Ni on distribution and accumulation of essential macronutrients from the standpoint of food quality and phytoremediation potential. Experiments were performed using winter (W and spring (S varieties of rapeseed (Brassica napus, L., white mustard (Brassica alba, L., black mustard (Brassica nigra, L. and turnip (Brassica rapa, L.. The seeds were exposed to 10 μM Ni from the beginning of germination. Plants were grown in water cultures, in semi-controlled conditions of a greenhouse, on ½ strength Hoagland solution to which was added Ni in the same concentration as during germination. Concentrations and distribution of Ca, Mg, K in leaf and stem were altered in the presence of increased concentration of Ni. Significant differences were found between the control and Ni-treated plants as well as among the genotypes. [Projekat Ministarstva nauke Republike Srbije, br. TR 31036 i br. TR 31016

  9. Effect of salinity on Brassica rapa var. toria (BRSRT under selenium defence: A trial to assess the protective role of selenium

    Directory of Open Access Journals (Sweden)

    Akanksha SAO

    2017-12-01

    Full Text Available The present study assesses the role of selenium, an antioxidant in salt-stressed plants. A hydroponic trial of sodium selenate (Na2SeO4 on the growth, oxidative stress and antioxidant protection system of Brassica rapa var. toria (BRSRT plant was studied. 40 µmol and 100 µmol of Na2SeO4 were hydroponically applied to BRSRT roots with 50 mmol and 100 mmol sodium chloride (NaCl for 12 days. Plant growth, biomass production and photosynthetic pigments at 100 mmol salt stress was inhibited while oxidative stress indicators, for example, hydrogen peroxide and lipid peroxidation were stimulated. Supplementation of 40 µmol Na2SeO4 with 50 mmol and 100 mmol NaCl improved growth, photosynthetic pigments and acted as an antioxidant by inhibiting lipid peroxidation and increasing superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase, glutathione reductase activities. The in-gel assays also showed enhanced activities of these enzymes. At 100 µmol concentration, selenium under salt stress, repressed growth and expression of antioxidant enzymes and stimulated oxidative stress with enhanced glutathione peroxidase activity. Under consolidated stress treatment, an addition of 40 µmol Na2SeO4 was the most effective for both NaCl concentrations. The finding reveals that the optimal selenium supplementation presents a promising potential for use in conditions of relatively high levels of NaCl stress for BRSRT seedlings.

  10. Bioinformatics analysis of the phytoene synthase gene in cabbage (Brassica oleracea var. capitata)

    Science.gov (United States)

    Sun, Bo; Jiang, Min; Xue, Shengling; Zheng, Aihong; Zhang, Fen; Tang, Haoru

    2018-04-01

    Phytoene Synthase (PSY) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata PSY (BocPSY) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocPSY1, BocPSY2 and BocPSY3 genes mapped to chromosomes 2,3 and 9, and contains an open reading frame of 1,248 bp, 1,266 bp and 1,275 bp that encodes a 415, 421, 424 amino acid protein, respectively. Subcellular localization predicted all BocPSY genes were in the chloroplast. The conserved domain of the BocPSY protein is PLN02632. Homology analysis indicates that the levels of identity among BocPSYs were all more than 85%, and the PSY protein is apparently conserved during plant evolution. The findings of the present study provide a molecular basis for the elucidation of PSY gene function in cabbage.

  11. Brassica ASTRA: an integrated database for Brassica genomic research.

    Science.gov (United States)

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  12. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens.

    Science.gov (United States)

    Di Gioia, Francesco; De Bellis, Palmira; Mininni, Carlo; Santamaria, Pietro; Serio, Francesco

    2017-03-01

    Peat-based mixes and synthetic mats are the main substrates used for microgreens production. However, both are expensive and non-renewable. Recycled fibrous materials may represent low-cost and renewable alternative substrates. Recycled textile-fiber (TF; polyester, cotton and polyurethane traces) and jute-kenaf-fiber (JKF; 85% jute, 15% kenaf-fibers) mats were characterized and compared with peat and Sure to Grow® (Sure to Grow, Beachwood, OH, USA; http://suretogrow.com) (STG; 100% polyethylene-terephthalate) for the production of rapini (Brassica rapa L.; Broccoletto group) microgreens. All substrates had suitable physicochemical properties for the production of microgreens. On average, microgreens fresh yield was 1502 g m -2 in peat, TF and JKF, and was 13.1% lower with STG. Peat-grown microgreen shoots had a higher concentration of K + and SO 4 2 - and a two-fold higher NO 3 - concentration [1959 versus 940 mg kg -1 fresh weight (FW)] than those grown on STG, TF and JKF. At harvest, substrates did not influence microgreens aerobic bacterial populations (log 6.48 CFU g -1 FW). Peat- and JKF-grown microgreens had higher yeast-mould counts than TF- and STG microgreens (log 2.64 versus 1.80 CFU g -1 FW). Peat-grown microgreens had the highest population of Enterobacteriaceae (log 5.46 ± 0.82 CFU g -1 ) and Escherichia coli (log 1.46 ± 0.15 CFU g -1 ). Escherichia coli was not detected in microgreens grown on other media. TF and JKF may be valid alternatives to peat and STG because both ensured a competitive yield, low nitrate content and a similar or higher microbiological quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Physiological and Growth Characteristics of Brassica rapa 'Tokyo Bekana' Grown within the International Space Station Crop Production System

    Science.gov (United States)

    Burgner, Samuel Edward

    The National Aeronautics and Space Administration (NASA) as well as many other space research organizations across the globe have advanced the idea of using plants as a method of bioregenerative life support for decades. Currently, the International Space Station (ISS) houses a small vegetable-production system named "Veggie." Veggie is equipped with a light-emitting diode (LED) cap, a reservoir that provides water to the root zone through capillary action, and adjustable bellows that enclose the growing environment allowing for controlled air circulation. However, Veggie draws air from the cabin space and ISS environmental conditions are controlled for human comfort and function as opposed to optimal plant growth conditions. During the first experiment within Veggie aboard the ISS, temperature averaged 22 ºC (+/- 0.25), relative humidity was 43.9% (+/- 3.7), and CO2 fluctuated around 2,800 ppm (+/- 678). Preliminary trials selected Chinese cabbage (Brassica rapa 'Tokyo Bekana') as the most suitable cultivar for production within Veggie based on its horticultural, organoleptic, and nutritional characteristics. Introducing this cultivar into ISS conditions (mimicked in a growth chamber) led to extensive chlorosis, necrosis, and growth inhibition. Attempts to ameliorate this observed stress by changing light spectrum, slow-release fertilizer composition, and growth substrate were unsuccessful suggesting that this issue could be attributed to environmental conditions. Analyzing effects of CO2 at 450, 900 and 1350 ppm on growth, photosynthesis, and stomatal conductance in this cultivar revealed a poor ability to acclimate to this environmental variable. In order to develop an efficient system of plant production aboard the ISS or other potential spacecraft, a more efficient CO2 regulation system must be implemented within the cabin space or within a defined plant production area and species should be screened based on their ability to thrive in such an environment.

  14. Effects of submicron ammonium sulfate particles on the growth and yield of komatsuna (Brassica rapa L. var. perviridis)

    Science.gov (United States)

    Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi

    2017-11-01

    The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.

  15. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  16. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  17. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  18. Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species.

    Directory of Open Access Journals (Sweden)

    Payal Bansal

    Full Text Available Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA and B. nigra (2n = 16; BB. Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11 and the corresponding progenitor genotypes of B. rapa (10×10 and B. nigra (9×9 were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47 of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis.

  19. The Prevention of Tipburn on Chinese Cabbage (Brassica rapa L. var. pekinensis (Lour. Olson with Foliar Fertilizers and Biostimulators

    Directory of Open Access Journals (Sweden)

    Borkowski Jan

    2016-06-01

    Full Text Available Investigations were carried out in 2008-2010 on Chinese cabbage (Brassica rapa L. var. pekinensis (Lour. Olson. The main problem in cultivation of this vegetable is physiological disorder – tipburn. It is connected with low level of calcium in young leaves and with water deficiency. In 2008, seeds of Chinese cabbage were sown twice, in April and July. In July, the day temperature was high (25-30 °C and relative air humidity was low (35-50%. In these conditions, the young leaves were injured heavily. Rotting was caused by the activity of bacteria Pectobacterium carotovorum subsp. carotovorum (Jones Hauben et al. However, three times foliar application of 1.5% calcium nitrate or 1.5% Wapnovit significantly reduced the tipburn. Also spraying with 0.03% of Tytanit (containing ions of titanium or with 2.5% of Biochikol 020 PC (containing chitosan gave similar effect. In these conditions, application of 1.5% K-300 (containing potassium oxide and ammonium nitrate exacerbated symptoms of tipburn. Application of Wapnovit or Tytanit reduced instantly rotting of heads contrary to the application of their mixture. In autumn cultivation, when the relative air humidity was 80-100%, spraying with 1.5% solution of K-300 significantly decreased injuries in comparison to control. Application of Wapnovit, K-300, Biochikol, Tytanit or the mixture of Biochikol and calcium nitrate eliminated rotting. In experiments done in the springs of 2009 and 2010, when weather conditions were less favorable for tipburn appearance, a severity of it was lower but application of K-300 increased it appearance. In these experiments, Biochikol and Wapnovit eliminated rotting of heads. The results of three years of study have shown that calcium nitrate, Wapnovit, Tytanit and Biochikol limited occurrence of tipburn and bacterial rotting of Chinese cabbage, but the weather conditions during cultivation had the greatest impact on the severity of tipburn.

  20. Molecular characterization and diversity of a novel non-autonomous mutator-like transposon family in brassica

    International Nuclear Information System (INIS)

    Nouroz, F.

    2015-01-01

    Transposable elements (TEs) are capable of mobilizing from one genomic location to other, with changes in their copy numbers. Mutator-like elements (MULEs) are DNA transposons characterized by 9 bp target site duplications (TSDs), with high variability in sequence and length, and include non-conserved terminal inverted repeats (TIRs). We identified and characterized a family of Mutator-like elements designated as Shahroz. The structural and molecular analyses revealed that family had a small number of mostly defective non-autonomous MULEs and has shown limited activity in the evolutionary history of the Brassica A-genome. The Shahroz elements range in size from 2734 to 3160 bp including 76 bp imperfect TIRs and 9 bp variable TSDs. The individual copies have shown high homology (52-99%) in their entire lengths. The study revealed that the elements are less in numbers but active in Brassica rapa genomes and PCR amplification revealed their specificity and amplification in A-genome containing diploid and polyploids Brassica. The phylogenetic analysis of Brassica MULEs with other plant Mutator elements revealed that no correlation exists between Brassica MULEs and other elements suggesting a separate line of evolution. Analyzing the regions flanking the insertions revealed that the insertions have showed a preference for AT rich regions. The detailed study of these insertions revealed that although less in number and small sizes, they have played a role in Brassica genome evolution by their mobilization. (author)

  1. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea

    NARCIS (Netherlands)

    Wang, X.; Lou, P.; Bonnema, A.B.; Yang, Boujun; He, H.; Zhang, Y.; Fang, Z.

    2005-01-01

    The dominant male sterility gene Ms-cd1 (c, cabbage; d, dominant) was identified as a spontaneous mutation in the spring cabbage line 79-399-3. The Ms-cd1 gene is successfully applied in hybrid seed production of several Brassica oleracea cultivars in China. Amplified fragment length polymorphism

  2. Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Perumal, Sampath; Lee, Jonghoon; Waminal, Nomar Espinosa; Jayakodi, Murukarthick; Lee, Sang-Choon; Jin, Seungwoo; Choi, Beom-Soon; Yu, Yeisoo; Ko, Ho-Cheol; Choi, Ji-Weon; Ryu, Kyoung-Yul; Sohn, Seong-Han; Parkin, Isobel; Yang, Tae-Jin

    2018-05-09

    The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.

  3. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2012-01-01

    Full Text Available Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%, 0.15% gave the highest success (86% of chromosome doubling in the hybrids (AC; 2=19. Synthetic B. napus (AACC, 2=38 was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield.

  4. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  5. VISIBE AND INFRARED SPECTRAL CHARACTERISATION OF CHINESE CABBAGE (BRASSICA RAPA L. SUBSPECIES CHINENSIS, GROWN UNDER DIFFERENT NITROGEN, POTASSIUM AND PHOSPHORUS CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    B. B. Mokoatsi

    2017-11-01

    Full Text Available There is a need to intensify research efforts on improving productivity of indigenous vegetables in South Africa. One research avenue is operationalizing remote sensing techniques to monitor crop health status. This study aimed at characterising the spectral properties of Chinese cabbage (Brassica Rapa L. subspecies Chinensis grown under varying fertilizer treatments: nitrogen (0 kg/ha, 75 kg/ha, 125 kg/ha, 175 kg/ha and 225 kg/ha, phosphorus (0 kg/ha, 9.4 kg/ha, 15.6, 21.9 kg/ha and 28.1 kg/ha and potassium (0 kg/ha, 9.4  kg/ha, 15.6 kg/ha, 21.9 kg/ha and 28.1 kg/ha. Visible and infrared spectral measurements were taken from a total of 60 samples inside the laboratory. Contiguous spectral regions were plotted to show spectral profiles of the different fertilizer treatments and then classified using gradient boosting and random forest classifiers. ANOVA revealed the potential of spectral reflectance data in discriminating different fertiliser treatments from crops. There was also a significant difference between the capabilities of the two classifiers. Gradient boost model (GBM yielded higher classification accuracies than random forest (RF. The important variables identified by each model improved the classification accuracy. Overall, the results indicate a potential for the use of spectroscopy in monitoring food quality parameters, thereby reducing the cost of traditional methods. Further research into advanced statistical analysis techniques is needed to improve the accuracy with which fertiliser concentrations in crops could be quantified. The random forest model particularly requires improvements.

  6. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii.

    Science.gov (United States)

    Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong

    2018-05-01

    Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.

  7. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    Science.gov (United States)

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  9. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  10. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  11. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  12. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  13. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    Science.gov (United States)

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  14. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  15. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  16. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    Science.gov (United States)

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  17. Identification of Yellow Pigmentation Genes in Brassica rapa ssp. pekinensis Using Br300 Microarray

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Jung

    2014-01-01

    Full Text Available The yellow color of inner leaves in Chinese cabbage depends on its lutein and carotene content. To identify responsible genes for yellow pigmentation in leaves, the transcriptome profiles of white (Kenshin and yellow leaves (Wheessen were examined using the Br300K oligomeric chip in Chinese cabbage. In yellow leaves, genes involved in carotene synthesis (BrPSY, BrPDS, BrCRTISO, and BrLCYE, lutein, and zeaxanthin synthesis (BrCYP97A3 and BrHYDB were upregulated, while those associated with carotene degradation (BrNCED3, BrNCED4, and BrNCED6 were downregulated. These expression patterns might support that the content of both lutein and total carotenoid was much higher in the yellow leaves than that in the white leaves. These results indicate that the yellow leaves accumulate high levels of both lutein and β-carotene due to stimulation of synthesis and that the degradation rate is inhibited. A large number of responsible genes as novel genes were specifically expressed in yellow inner leaves, suggesting the possible involvement in pigment synthesis. Finally, we identified three transcription factors (BrA20/AN1-like, BrBIM1, and BrZFP8 that are specifically expressed and confirmed their relatedness in carotenoid synthesis from Arabidopsis plants.

  18. A Hypomethylated population of Brassica rapa for forward and reverse Epi-genetics

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2012-10-01

    Full Text Available Abstract Background Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC provides selective targeting of 5mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. Results We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose–response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose–response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and

  19. Identification and insertion polymorphisms of short interspersed nuclear elements (SINEs) in Brassica genomes

    International Nuclear Information System (INIS)

    Nouroz, F.; Naveed, M.

    2018-01-01

    The non-LTR retrotransposons (retroposons) are abundant in plant genomes including members of Brassicaceae. Of the retroposons, long interspersed nuclear elements (LINEs) are more copious followed by short interspersed nuclear elements (SINEs) in sequenced eukaryotic genomes. The SINEs are short elements and ranged from 100-500 bps flanked by variable sized target site duplications, 5' tRNA region with polymerase III promoter, internal tRNA unrelated region, 3' LINEs derived region and a poly adenosine tail. Different computational approaches were used for the identification and characterization of SINEs, while PCR was used to detect the SINEs insertion polymorphisms in various Brassica genotypes. Ten previously unidentified families of SINEs were identified and characterized from Brassica genomes. The structural features of these SINEs were studied in detail, which showed typical SINE features displaying small sizes, target site duplications, head regions, internal regions (body) of variable sizes and a poly (A) tail at the 3' terminus. The elements from various families ranged from 206-558 bp, where BoSINE2 family displayed smallest SINE element (206 bp), while larger members belonged to BoSINE9 family (524-558 bp). The distribution and abundance of SINEs in various Brassica species and genotypes (40) at a particular site/locus were investigated by SINEs based PCR markers. Various SINE insertion polymorphisms were detected from different genotypes, where higher PCR bands amplified the SINE insertions, while lower bands amplified the pre-insertion sites (flanking regions). The analysis of Brassica SINEs copy numbers from 10 identified families revealed that around 860 and 1712 copies of SINEs were calculated from B. rapa and B. oleracea Whole-genome shotgun contigs (WGS) respectively. Analysis of insertion sites of Brassica SINEs revealed that the members from all 10 SINE families had shown an insertion preference in AT rich regions. The present

  20. Analysis of genetic diversity of Brassica rapa var. chinensis using ISSR markers and development of SCAR marker specific for Fragrant Bok Choy, a product of geographic indication.

    Science.gov (United States)

    Shen, X L; Zhang, Y M; Xue, J Y; Li, M M; Lin, Y B; Sun, X Q; Hang, Y Y

    2016-04-25

    Non-heading Chinese cabbage [Brassica rapa var. chinensis (Linnaeus) Kitamura] is a popular vegetable and is also used as a medicinal plant in traditional Chinese medicine. Fragrant Bok Choy is a unique accession of non-heading Chinese cabbage and a product of geographic indication certified by the Ministry of Agriculture of China, which is noted for its rich aromatic flavor. However, transitional and overlapping morphological traits can make it difficult to distinguish this accession from other non-heading Chinese cabbages. This study aimed to develop a molecular method for efficient identification of Fragrant Bok Choy. Genetic diversity analysis, based on inter-simple sequence repeat molecular markers, was conducted for 11 non-heading Chinese cabbage accessions grown in the Yangtze River Delta region. Genetic similarity coefficients between the 11 accessions ranged from 0.5455 to 0.8961, and the genetic distance ranged from 0.0755 to 0.4475. Cluster analysis divided the 11 accessions into two major groups. The primer ISSR-840 amplified a fragment specific for Fragrant Bok Choy. A pair of specific sequence-characterized amplified region (SCAR) primers based on this fragment amplified a target band in Fragrant Bok Choy individuals, but no band was detected in individuals of other accessions. In conclusion, this study has developed an efficient strategy for authentication of Fragrant Bok Choy. The SCAR marker described here will facilitate the conservation and utilization of this unique non-heading Chinese cabbage germplasm resource.

  1. The response of transgenic Brassica species to salt stress: a review.

    Science.gov (United States)

    Shah, Nadil; Anwar, Sumera; Xu, Jingjing; Hou, Zhaoke; Salah, Akram; Khan, Shahbaz; Gong, Jianfang; Shang, Zhengwei; Qian, Li; Zhang, Chunyu

    2018-06-01

    Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.

  2. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    Science.gov (United States)

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  3. Amplification of the active site of BnLIP3 gene of Brassica napus L ...

    African Journals Online (AJOL)

    Lipases are useful enzymes that are responsible for the hydrolysis of triacylglycerides and play an important role in plant growth. In this study, we report a rapid molecular method to amplify a partial sequence of the lipase class 3 family designated BnLIP3 gene of Brassica napus L. in order to follow its expression and ...

  4. Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination process and the stress tolerance level

    NARCIS (Netherlands)

    Soeda, Y.; Konings, M.C.J.M.; Vorst, O.F.J.; Houwelingen, van A.M.M.L.; Stoopen, G.M.; Maliepaard, C.A.; Kodde, J.; Bino, R.J.; Groot, S.P.C.; Geest, van der A.H.M.

    2005-01-01

    During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were

  5. Study of selective metals accumulation in green mustard (Brassica rapa var. parachinesis L.) from Cameron Highlands farmlands, Pahang

    International Nuclear Information System (INIS)

    Zaini Hamzah; Marlinda Musa; Ahmad Saat; Ahmad Saat

    2011-01-01

    There are many essential and non-essential elements including metals and radionuclides present in vegetables. However, the accumulation of the several metals and radionuclides might cause the contamination to vegetables itself. Green mustard (Brasissca rapa var. Parachinesis L.) was selected to represent the vegetable in this study. Objectives of this study are to determine the concentration of metals and radionuclides in the samples and to calculate the enrichment factor (EF) and also to estimate the uptake, base on biological accumulation coefficient (BAC), for the various parts of selected vegetables. Three farmlands in the Cameron Highlands were studied namely Bharat, Kg Raja and Bertam area. The green mustard and soil samples were collected during the harvest season. Samples were dried, ground and sieved prior to analysis. Analyses for both samples were done by using X-rays Fluorescence Spectroscopy (XRF) to measure the concentration of Fe, Zn, Hg, U and Th. The concentration of all elements in the soils is lower than their concentration in the control soil, except for Zn, U and Th. The concentration of all elements in Green Mustard is lower than their concentration in the soil where it was grown. The EF values in the Brasissca rapa var. Parachinesis L are lower than 2 except for U and Th, indicating some degree of contamination due to anthropogenic activities or naturally origin. The BAC values show that Zn and Hg were accumulated in the green mustard, depending on where the plant grows. (Author)

  6. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling

    2012-12-15

    Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in

  7. LMI1-like genes involved in leaf margin development of Brassica napus.

    Science.gov (United States)

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  8. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  9. Infestation of Polish Agricultural Soils by Plasmodiophora Brassicae Along The Polish-Ukrainian Border

    Directory of Open Access Journals (Sweden)

    Jędryczka Małgorzata

    2014-07-01

    Full Text Available There has been a rapid, worldwide increase in oilseed rape production that has resulted in enormous intensification of oilseed rape cultivation, leading to tight rotations. This in turn, has caused an accumulation of pests as well as foliar and soil-borne diseases. Recently, clubroot has become one of the biggest concerns of oilseed rape growers. Clubroot is caused by the soil-borne protist Plasmodiophora brassicae Woronin. The pathogen may be present in groundwater, lakes, and irrigation water used in sprinkling systems. It can be easily transmitted from one field to another not only by water, but also by soil particles and dust transmitted by wind and on machinery. The aim of our overall study was to check for P. brassicae infestation of Polish agricultural soils. This paper presents the 2012 results of a study performed along the Polish-Ukrainian border in two provinces: Lublin (Lubelskie Voivodeship and the Carpathian Foothills (Podkarpackie Voivodeship, in south-east Poland. Monitoring was done in 11 counties, including nine rural and two municipal ones. In total, 40 samples were collected, out of which 36 were collected from fields located in rural areas and four from municipal areas, with two per municipal region. Each sample was collected at 8-10 sites per field, using a soil auger. The biotest to detect the presence of P. brassicae was done under greenhouse conditions using seedlings of the susceptible Brassicas: B. rapa ssp. pekinensis and the Polish variety of oilseed rape B. napus cv. Monolit. Susceptible plants grown in heavily infested soils produced galls on their roots. A county was regarded as free from the pathogen, if none of the bait plants became infected. The pathogen was found in three out of 40 fields monitored (7.5% in the Carpathian Foothill region. The fields were located in two rural counties. The pathogen was not found in Lublin province, and was also not detected in any of the municipal counties. The detection with

  10. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages.

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-11-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    Science.gov (United States)

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.

  12. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity.

    Science.gov (United States)

    Yasmin Khan, Kiran; Ali, Barkat; Cui, Xiaoqiang; Feng, Ying; Yang, Xiaoe; Joseph Stoffella, Peter

    2017-07-01

    Biochar has become eco-friendly amendment used for phytoavoidation with low cadmium (Cd) accumulating cultivars of crops to ensure food safety in Cd contaminated soils. In this study, biochar with different waste feedstock material were evaluated for their effectiveness on essential trace metals mobility, Cd bioavailability and its accumulation in two contrasting Cd accumulating cultivars of pak choi (Brassica rapa ssp. chinensis L.) grown in Cd contaminated Mollisol soil. A greenhouse experiment was conducted with plants grown in Cd contaminated soil that had been amended with biochar derived from barley straw, tomato green waste, chicken manure, duck manure and swine manure at application rate of 0%, 2.5% and 5.0% (w/w). The results showed that soil pH was significantly increased by all treatments. Biochar increased plant dry biomass, micronutrients bioavailability with significant differences in the Cd sorption capacity, with the effectiveness higher with increasing biochar application rate. However, tomato green waste (TGW) and chicken manure (CM) derived biochar were more effective than the other biochar in reducing Cd mobilization in soil by 35-54% and 26-43% and reduced its accumulation in shoots of pak choi cultivars by 34-76% and 33-72% in low Cd accumulator cultivar and 64-85% and 55-80% in high Cd accumulator cultivar than the control. Overall, results indicate that TGW and CM biochar can efficiently immobilize Cd, thereby reducing bioavailability in Cd contaminated Mollisol soil to ensure food safety. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    Science.gov (United States)

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  14. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  15. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    Science.gov (United States)

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. © 2014 J. M. Batzli et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Synthesis and characterization of interspecific trigenomic hybrids ...

    African Journals Online (AJOL)

    Jane

    2011-09-28

    Sep 28, 2011 ... Interspecific reciprocal crosses between three cultivated Brassica ... environmental conditions, which impacts the qualitative and quantitative crop and oil production to a greater extent. ... Brassica rapa L. (2n= 20, AA) (Nanda Kumar et al., 1991; ... breeding potential for the crop brassicas as a trigenomic.

  17. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  18. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Hou Jinna

    2012-12-01

    Full Text Available Abstract Background Rapeseed (Brassica napus L. has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL for flowering time, qFT10-4,in a doubled haploid (DH mapping population of rapeseed derived from a cross between Tapidor (winter-type and Ningyou7 (semi-winter and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50. This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i BnFLC.A10 is the gene underlying qFT10

  19. Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2018-05-01

    Full Text Available Pectin methylesterase inhibitor genes (PMEIs are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassica campestris, an important leaf vegetable, was performed. We identified 100 Brassica campestris PMEI genes (BcPMEIs, among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT and tandem duplication (TD were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.

  20. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    Science.gov (United States)

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  1. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  2. Generation and characterization of Brassica rapa ssp. pekinensis ...

    Indian Academy of Sciences (India)

    2015-09-11

    Sep 11, 2015 ... researchers have been able to map the genes on B. oleracea ... pests, food flavourings, and benefits to human health, such as being an ...... 231 breast cancer cell motility and induces stress fibers and focal adhesion ...

  3. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  4. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  5. The fate of retrotransposed processed genes in Arabidopsis thaliana.

    Science.gov (United States)

    Abdelkarim, Basma T M; Maranda, Vincent; Drouin, Guy

    2017-04-20

    Processed genes are functional genes that have arisen as a result of the retrotransposition of mRNA molecules. We found 6 genes that generated processed genes in the common ancestor of five Brassicaceae species (Arabidopsis thaliana, Arabidopsis lyrata, Capsella rubella, Brassica rapa and Thellungiella parvula). These processed genes have therefore been kept for at least 30millionyears. Analyses of the Ka/Ks ratio of these genes, and of those having given rise to them, show that they evolve relatively slowly and suggest that the processed genes maintained the same function as that of their parental gene. There is a significant negative correlation between the number of ESTs and transcripts produced and the Ka/Ks ratios of the parental genes but not of the processed genes. This suggests that selection has not yet adapted the selective pressure the processed genes experience to their expression level. However, the A. thaliana processed genes tend to be expressed in the same tissues as that of their parental genes. Furthermore, most have a CAATT-box, a TATA-box and are located about 1kb from another protein-coding gene. Altogether, our results suggest that the processed genes found in the A. thaliana genome have been kept to produce more of the same product, and in the same tissues, as that encoded by their parental gene. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Sensory and nutritional effects of amino acids and phenolic plant compounds on the caterpillars of two Pieris species

    NARCIS (Netherlands)

    Loon, van J.J.A.

    1988-01-01

    The relationships between caterpillars of Pierisbrassicae L. and Pierisrapae L. (Lepidoptera: Pieridae) and a common host plant Brassicaoleracea L. were studied using

  7. The physical growth of Oreochromis niloticus and three plant species on the aquaponic technology

    Science.gov (United States)

    Mustikasari, A.; Marwoto, P.; Iswari, R. S.

    2018-03-01

    The physical growth of Oreochromis niloticus fish and three types of plants consist of Ipomoea Aquatica, Brassica rapa, and Capsicum annuum on the aquaponic technology have been studied. The aquaponic technology system has been done with 200 fishes m-3, water pump with 15 watts solar energy panel, physical and biological filter, and deep flow technique (DFT). In this study, we have reported that the specific growth rate (SGR), survival (SR), Feed conversion ratio (FCR), and Wet weight (W) are used as the physical growth indicator of Oreochromis niloticus fish, while the length and the number of leaves of plants are used as the physical growth indicator of plants. The physical growth of Oreochromis niloticus fish showed that SGR is 5,56% day-1, SR is 97,67%, FCR is 0,92g and the wet weight is 1220g. The physical growth of the plant in aquaponic technology systems has been compared with the hydroponic treatment systems as controls. Analysis with t-test shows that physical growth of Ipomoea Aquatica and Brassica rapa has no significant difference respectively, whereas Capsicum annuum has significant differences compared with controls. Also, Brassica rapa in the aquaponic technology system shows a more yellow leaf color than the control. Based on these results, we conclude that aquaponic technology system provides effective results for the physical growth of Oreochromis niloticus with Ipomoea Aquatica, while additional nutrients for the both Brassica rapa and Capsicum annuum are required.

  8. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes.

    Directory of Open Access Journals (Sweden)

    Sachin Kajla

    Full Text Available Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes-SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study.

  9. Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Orbovic, Vladimir; Moradpour, Mahdi; Abdul Aziz, Maheran; Karan, Ratna; Wallace, Simon; Parajuli, Saroj

    2017-04-01

    Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.

  10. Neofunctionalization of Duplicated Tic40 Genes Caused a Gain-of-Function Variation Related to Male Fertility in Brassica oleracea Lineages1[W][OPEN

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-01-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. PMID:25185122

  11. Genome-wide survey of flavonoid biosynthesis genes and gene expression analysis between black- and yellow-seeded Brassica napus

    Directory of Open Access Journals (Sweden)

    Cunmin Qu

    2016-12-01

    Full Text Available Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in A. thaliana, 53 were identified in B. rapa, 50 in B. oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of eighteen flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, fourteen of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1 had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18 and BnBAN, regulatory genes (BnTTG2 and BnTT16 and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10 might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.

  12. ANALYSIS OF SEQUENCE POLYMORPHISM OF SCR CLASS I AND II ALLELES AND STUDY REGULATION OF THEIR EXPRESSION

    Directory of Open Access Journals (Sweden)

    Jana ŽALUDOVÁ

    2012-06-01

    Full Text Available Self-incompatibility (AI is a widespread mechanism used by flowering plants to prevent inbreeding depression and helps create and maintain genetic diversity within a species. Oilseed rape (Brassica napus L. and especially its modern varieties are characterized by high level of self-fertility. In an effort to increase the production current breeding is focused on the production of inbred lines for making the F1 hybrids and the self-incompatibility can be an interesting tool for production self- sterile lines. In Brassica napus, we found two recessive alleles of a gene SCR II. Different expression of both alleles does not correspond to phenotypic manifestation of self-incompatibility and we can assume that it is prevailed by repressor gene that does not lie on the S-locus. This is also reason, why the SCR gene cannot serve as a molecular marker of self-incompatibility in Brassica napus, although many authors believe that this gene is essential in AI reaction. Brassica napus belong to plants with complex genetic constitution, is composed by two genomes, A and C, which give the possibility of different interactions and makes it difficult to study compared with diploid B. rapa and B. oleracea. In further study it is therefore important to focus on the interactions between genes SCR, SRK and SLG, and their influence on others, such as supressor gene systems.

  13. B. oleracea var. capitata monosomic and disomic alien

    Indian Academy of Sciences (India)

    Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis – B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage ...

  14. Cloning and expression study of BnaLCR78 in Brassica napus

    International Nuclear Information System (INIS)

    Zhuang, L.; Ze, L. Y.; Cheng, W. Y.

    2016-01-01

    BnaLCR78 genes of three types of rape were cloned in rape (Brassica napus), and encoded protein structure was analyzed, the Results showed that the protein had a conserved coding domain which was analogues among LCR family of Arabidopsis. The expression patterns of genes of three types of rape in varying tissues and in specific same tissues were analyzed using quantitative method. The Results showed that their expression patterns differ from that of former research in Brassica napus, which may result from the difference of sampling time. We speculated that the gene might be involved in transpiration and transportation and distribution of nutrient, oil content in seed. (author)

  15. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae.

    Science.gov (United States)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter; Rämert, Birgitta; Meyling, Nicolai V

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungus laid significantly more eggs than non-mycosed females, indicating that resources were allocated to increased oviposition due to perceived decreased life expectancy. When presented with a choice between healthy and fungal infected hosts, T. rapae females laid more eggs in healthy larvae than in M. brunneum infected larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against D. radicum with a limited risk to T. rapae populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  17. The terrestrial Isopoda (Crustacea, Oniscidea) of Rapa Nui (Easter Island), with descriptions of two new species.

    Science.gov (United States)

    Taiti, Stefano; Wynne, J Judson

    2015-01-01

    Nine species of terrestrial isopods are reported for the Polynesian island of Rapa Nui (Easter Island) based upon museum materials and recent collections from field sampling. Most of these animals are non-native species, but two are new to science: Styloniscusmanuvaka sp. n. and Hawaiiosciarapui sp. n. Of these, the former is believed to be a Polynesian endemic as it has been recorded from Rapa Iti, Austral Islands, while the latter is identified as a Rapa Nui island endemic. Both of these new species are considered 'disturbance relicts' and appear restricted to the cave environment on Rapa Nui. A short key to all the oniscidean species presently recorded from Rapa Nui is provided. We also offered conservation and management recommendations for the two new isopod species.

  18. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  19. Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination.

    Science.gov (United States)

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María Del Carmen; Iglesias-Fernández, Raquel

    2018-03-01

    Mannans but not endo-β-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out. The contribution of endo-β-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.

  20. Leaf vegetables for use in integrated hydroponics and aquaculture systems: Effects of root flooding on growth, mineral composition and nutrient uptake

    DEFF Research Database (Denmark)

    Trang, Ngo Thuy Diem; Schierup, Hans-Henrik; Brix, Hans

    2010-01-01

    In recirculating aquaculture and hydroponics systems, the waste products from fish production are used to produce vegetables or other crops of economic value, and the water is recirculated to the fish tanks. We studied growth, productivity and nutrient uptake of four leaf vegetable species (Lactuca...... sativa, Ipomoea aquatica, Brassica rapa var. chinensis and Brassica rapa var. parachinensis) in a controlled growth experiment with three root flooding treatments (drained, half-flooded and flooded) to assess their preferred hydroponic growth requirements, biomass production and nutrient removal......, respectively. The two Brassica varieties produced much less aerial biomass (50-54 g DW/m2 during a 60-day period). Both I. aquatica and L. sativa are promising species to be included in integrated hydroponic and aquaculture facilities, with I. aquatica showing the most promise because of its higher growth...

  1. Collembola of Rapa Nui (Easter Island) with descriptions of five endemic cave-restricted species.

    Science.gov (United States)

    Bernard, Ernest C; Soto-Adames, Felipe N; Wynne, J Judson

    2015-04-24

    Eight species of Collembola are reported from recent collections made in caves on the Polynesian island of Rapa Nui (Easter Island). Five of these species are new to science and apparently endemic to the island: Coecobrya aitorererere n. sp., Cyphoderus manuneru n. sp., Entomobrya manuhoko n. sp., Pseudosinella hahoteana n. sp. and Seira manukio n. sp. The Hawaiian species Lepidocyrtus olena Christiansen & Bellinger and the cosmopolitan species Folsomia candida Willem also were collected from one or more caves. Coecobrya kennethi Jordana & Baquero, recently described from Rapa Nui and identified as endemic, was collected in sympatric association with C. aitorererere n.sp. With the exception of F. candida, all species are endemic to Rapa Nui or greater Polynesia and appear to be restricted to the cave environment on Rapa Nui. A key is provided to separate Collembola species reported from Rapa Nui. We provide recommendations to aid in the conservation and management of these new Collembola, as well as the other presumed cave-restricted arthropods.

  2. BIOACTIVITIES AND MECHANISM OF SPIRO ENOL ETHER ANALOGUES AGAINST PIERIS RAPAE

    Institute of Scientific and Technical Information of China (English)

    Zhi-xiangZhang; Dong-meiCheng; Han-hongXu; Yu-linWu; andJun-faFan

    2004-01-01

    Nineteen kinds of spiro enol ether analogues were screened with larvae of Pieris rapae for antifeedant activity. The results showed that the antifeedant activity of compounds No.20 and No.12 was higher than others. In non-choice test, AFC50 values within 24 h of compounds No.20 and No.12 against 3rd instar larvae of P. rapae were 226.93ug/mL and 370.00ug/mL, and that in choice test against 4th larvae were 280.54 ug/mL and 398.88 ug/mL, respectively. Compd. No.20 could prolong the eggs hatch time and reduce the haemolymph content and the protein content in haemolymph of 4th instar larvae obviously. Compd. No.20 could protect tested leaves and control larvae of P. rapae effectively.

  3. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    Science.gov (United States)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  4. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas

    Science.gov (United States)

    Falque, Matthieu; Trotoux, Gwenn; Eber, Frédérique; Nègre, Sylvie; Gilet, Marie; Huteau, Virginie; Lodé, Maryse; Jousseaume, Thibaut; Dechaumet, Sylvain; Morice, Jérôme; Coriton, Olivier; Rousseau-Gueutin, Mathieu

    2017-01-01

    Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs. PMID:28493942

  5. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color.

    Science.gov (United States)

    Ren, Yanjing; He, Qiong; Ma, Xiaomin; Zhang, Lugang

    2017-01-01

    The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage ( Brassica rapa L. ssp. Pekinensis ). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 ( TTG1 ), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1 . Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1 , and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.

  6. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  7. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  8. Survey and prevalence of species causing Alternaria leaf spots on brassica species in Pernambuco Levantamento e prevalência de espécies causadoras da alternariose em brássicas em Pernambuco

    Directory of Open Access Journals (Sweden)

    Sami J Michereff

    2012-06-01

    Full Text Available Brassicaceae family comprises plant species that are very important as vegetable crops, such as the species complex Brassica oleracea and Brassica rapa. Alternaria brassicicola and A. brassicae are among the most important pathogens of Brassicaceae causing Alternaria leaf spot disease. The occurrence and prevalence of Alternaria species causing leaf spots in brassica crops in Pernambuco was acessed, as well as the existence of a possible preference by vegetable host for these pathogens. Twenty-eight fields were surveyed in the Agreste region of Pernambuco state, in the 2005 and 2006 growing seasons. In each year, 10 Chinese cabbage, six cabbage, six cauliflower and six broccoli fields were visited. In each field, 50 leaves showing at least five lesions were randomly collected. Species identification was performed taking into account morphology of the conidia that was compared with literature data. Among the two Alternaria species found, A. brassicae was found in all Chinese cabbage fields while A. brassicicola was found in all fields of cabbage, cauliflower and broccoli. Overall, A. brassicicola was more prevalent than A. brassicae. In Chinese cabbage there was predominance of A. brassicae, with mean prevalence of 91.0% and 96.5% in 2005 and 2006. On the other hand, in broccoli and cabbage there was high predominance of A. brassicicola, with mean prevalence between 95.1% and 99.8%. In cauliflower, although the prevalence has been of A. brassicicola, high frequency of A. brassicae was noted. The frequency of co-occurrence of both Alternaria species was very low. The results of this study reinforce the hypothesis of existence of host preference within species of Alternaria that cause leaf spots in brassica crops, especially when Chinese cabbage, broccoli and cabbage are considered. This information is critical to developing strategies for managing Alternaria leaf spots in Brassicaceae species.A família Brassicaceae possui espécies importantes

  9. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  10. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species.

    Science.gov (United States)

    Zhang, Bao; Liu, Chao; Wang, Yaqin; Yao, Xuan; Wang, Fang; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-06-01

    In Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B. napus lines. Insertion of a CACTA-like transposable element 1 (TE1) into the coding region of BnaC3.CCD4 had disrupted its expression in yellow-flowered rapeseed lines. α-Ionone was identified as the major volatile apocarotenoid released from white petals but not from yellow petals. We speculate that BnaC3.CCD4 may use δ- and/or α-carotene as substrates. Four variations, including two CACTA-like TEs (alleles M1 and M4) and two insertion/deletions (INDELs, alleles M2 and M3), were identified in yellow-flowered Brassica oleracea lines. The two CACTA-like TEs were also identified in the coding region of BcaC3.CCD4 in Brassica carinata. However, the two INDELs were not detected in B. napus and B. carinata. We demonstrate that the insertions of TEs in BolC3.CCD4 predated the formation of the two allotetraploids. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  11. IDENTIFICATION OF LEAD AND CADMIUM LEVELS IN WHITE CABBAGE (Brassica rapa L., SOIL, AND IRRIGATION WATER OF URBAN AGRICULTURAL SITES IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Hardiyanto Hardiyanto

    2016-10-01

    Full Text Available Urban agriculture comprises a variety of farming systems, ranging from subsistence to fully commercialized agriculture. Pollution from automobile exhaust, industrial and commercialactivities may affect humans, crops, soil, and water in and around urban agriculture areas. The research aimed to investigate the level and distribution of lead (Pb and cadmium (Cd in white cabbage (Brassica rapa L., soil, and irrigation water taken from urban sites. The research was conducted in Las Piñas and Parañaque, Metro Manila, Philippines. The field area was divided into three sections based on its distance from the main road (0, 25, and 50 m. Irrigation water was taken from canal (Las Piñas and river (Parañaque. Pb and Cd contents of the extract were measured by Atomic Absorption Spectrophotometry. Combined analysis over locations was used. The relationship between distance from the main road and metal contents was measured by Pearson’s correlation. Based on combined analyses, highly significant difference over locations was only showed on Cd content in white cabbage. Cd content in white cabbage grown in Parañaque was higher than that cultivated in Las Piñas, while Cd content in the soil between both sites was comparable.The average Pb content (1.09 µg g-1 dry weight was highest in the white cabbage grown right beside the main road. A similar trend was also observed in the soil, with the highest concentration being recorded at 26 µg g-1 dry weight. There was a negative relationship between distance from the main road and Pb and Cd contents in white cabbage and the soil. Level of Pb in water taken from the canal and river was similar (0.12 mg l-1, whereaslevels of Cd were 0.0084 and 0.0095 mg l-1, respectively. In general, the concentrations of Pb and Cd in white cabbage and soil as well as irrigation water were still in the acceptable limits. In terms of environmental hazards and polluted city environment, it seems that

  12. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.

    Science.gov (United States)

    Hurgobin, Bhavna; Golicz, Agnieszka A; Bayer, Philipp E; Chan, Chon-Kit Kenneth; Tirnaz, Soodeh; Dolatabadian, Aria; Schiessl, Sarah V; Samans, Birgit; Montenegro, Juan D; Parkin, Isobel A P; Pires, J Chris; Chalhoub, Boulos; King, Graham J; Snowdon, Rod; Batley, Jacqueline; Edwards, David

    2018-07-01

    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  14. In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species

    Directory of Open Access Journals (Sweden)

    Dinesh Pandey

    2017-04-01

    Full Text Available Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials.

  15. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  16. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Flowering Without Vernalization in Winter Canola (Brassica napus: use of Virus-Induced Gene Silencing (VIGS to accelerate genetic gain

    Directory of Open Access Journals (Sweden)

    Raúl Álvarez-Venegas

    2010-01-01

    Full Text Available Ciclos de reproducción cortos y la oportunidad de incrementar la ganancia genética, junto con el estudio de las bases moleculares de la vernalización, son áreas esenciales de investigación dentro de la biología de plantas. Varios métodos se han empleado para lograr el silenciamiento génico en plantas, pero ninguno reportado a la fecha para canola (Brassica napus, y en particular para inducir la floración sin vernalización en líneas de invierno a través del uso de secuencias sentido de DNA en vectores diseñados para el silenciamiento génico inducido por virus (VIGS. La presente investigación provee los métodos para transitoriamente regular a la baja, por medio de VIGS, genes de la vernalización en plantas anuales de invierno, específicamente la familia de genes de Flowering Locus C (FLC en canola de invierno (BnFLC1 a BnFLC5. La regulación a la baja de estos genes permite a las plantas anuales de invierno florecer sin vernalización y, consecuentemente, provee los medios para acelerar la ganancia genética. El sistema de silenciamiento propuesto puede ser utilizado para regular a la baja familias de genes, para determinar la función génica, y para inducir la floración sin la vernalización en líneas de invierno tanto del género Brassica como de muchos cultivos importantes de invierno.

  18. Expression analysis of four flower-specific promoters of Brassica spp ...

    African Journals Online (AJOL)

    The 5'-flanking region of ca. 1200 bp upstream of the translation start site (TSS) of a putative cell wall protein gene was cloned from Brassica campestris, B. chinensis, B. napus and B. oleracea, and transferred to tobacco via Agrobacterium-mediation after fused to promoter-less beta-glucuronidase (GUS) reporter gene.

  19. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  20. Seasonal phenology of interactions involving short-lived annual plants, a multivoltine herbivore and its endoparasitoid wasp.

    Science.gov (United States)

    Fei, Minghui; Gols, Rieta; Harvey, Jeffrey A

    2014-01-01

    Spatial-temporal realism is often missing in many studies of multitrophic interactions, which are conducted at a single time frame and/or involving interactions between insects with a single species of plant. In this scenario, an underlying assumption is that the host-plant species is ubiquitous throughout the season and that the insects always interact with it. We studied interactions involving three naturally occurring wild species of cruciferous plants, Brassica rapa, Sinapis arvensis and Brassica nigra, that exhibit different seasonal phenologies, and a multivoltine herbivore, the large cabbage white butterfly, Pieris brassicae, and its gregarious endoparasitoid wasp, Cotesia glomerata. The three plants have very short life cycles. In central Europe, B. rapa grows in early spring, S. arvensis in late spring and early summer, and B. nigra in mid to late summer. P. brassicae generally has three generations per year, and C. glomerata at least two. This means that different generations of the insects must find and exploit different plant species that may differ in quality and which may be found some distance from one another. Insects were either reared on each of the three plant species for three successive generations or shifted between generations from B. rapa to S. arvensis to B. nigra. Development time from neonate to pupation and pupal fresh mass were determined in P. brassicae and egg-to-adult development time and body mass in C. glomerata. Overall, herbivores performed marginally better on S. arvensis and B. nigra plants than on B. rapa plants. Parasitoids performance was closely tailored with that of the host. Irrespective as to whether the insects were shifted to a new plant in successive generations or not, development time of P. brassicae and C. glomerata decreased dramatically over time. Our results show that there were some differences in insect development on different plant species and when transferred from one species to another. However, all three

  1. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa Peroxidase

    Directory of Open Access Journals (Sweden)

    Afaf Ahmedi

    2015-01-01

    Full Text Available Enzymatic discoloration of the diazo dye, Congo red (CR, by immobilized plant peroxidase from turnip “Brassica rapa” is investigated. Partially purified turnip peroxidase (TP was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (De of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate.

  2. Neural tissue engineering scaffold with sustained RAPA release relieves neuropathic pain in rats.

    Science.gov (United States)

    Ding, Tan; Zhu, Chao; Kou, Zhen-Zhen; Yin, Jun-Bin; Zhang, Ting; Lu, Ya-Cheng; Wang, Li-Ying; Luo, Zhuo-Jing; Li, Yun-Qing

    2014-09-01

    To investigate the effect of locally slow-released rapamycin (RAPA) from bionic peripheral nerve stent to reduce the incidence of neuropathic pain or mitigate the degree of pain after nerve injury. We constructed a neural tissue engineering scaffold with sustained release of RAPA to repair 20mm defects in rat sciatic nerves. Four presurgical and postsurgical time windows were selected to monitor the changes in the expression of pain-related dorsal root ganglion (DRG) voltage-gated sodium channels 1.3 (Nav1.3), 1.7 (Nav1.7), and 1.8 (Nav1.8) through immunohistochemistry (IHC) and Western Blot, along with the observation of postsurgical pathological pain in rats by pain-related behavior approaches. Relatively small upregulation of DRG sodium channels was observed in the experimental group (RAPA+poly(lactic-co-glycolic acid) (PLGA)+stent) after surgery, along with low degrees of neuropathic pain and anxiety, which were similar to those in the Autologous nerve graft group. Autoimmune inflammatory response plays a leading role in the occurrence of post-traumatic neuropathic pain, and that RAPA significantly inhibits the abnormal upregulation of sodium channels to reduce pain by alleviating inflammatory response. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mineral elements of some green vegetables

    International Nuclear Information System (INIS)

    Khan, A.S.; Tabassum, R.; Yousaf, M.

    1998-01-01

    Some of the mineral components of Allium porrum Linn, Brassica rapa and Medicago denticulata were studied. Extraction of minerals was carried out in three different ways (I) Ash solution was prepared and used for the determination of Na, K, Ca, P, Fe and Mg. (II) Perchloric acid extraction was employed for Na, K, Fe, Mg, Cu and Zinc. (III) Solvent extraction was used for Na and K. Determination of calcium was done titrimetrically, Na and K. Flame photometrically, P, Fe and Mg Spectrophotometrically, Cu and Zinc Atomic Absorption Spectrophotometrically. Allium porrum Linn was rich in Ca, K and Zinc, in Brassica rapa Fe, Mg and Na in Medicago denticalata P contents were greater. (author)

  4. Mineral elements of some green vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A S; Tabassum, R; Yousaf, M [University of Peshawar (Pakistan). Dept. of Chemistry

    1998-07-01

    Some of the mineral components of Allium porrum Linn, Brassica rapa and Medicago denticulata were studied. Extraction of minerals was carried out in three different ways (I) Ash solution was prepared and used for the determination of Na, K, Ca, P, Fe and Mg. (II) Perchloric acid extraction was employed for Na, K, Fe, Mg, Cu and Zinc. (III) Solvent extraction was used for Na and K. Determination of calcium was done titrimetrically, Na and K. Flame photometrically, P, Fe and Mg Spectrophotometrically, Cu and Zinc Atomic Absorption Spectrophotometrically. Allium porrum Linn was rich in Ca, K and Zinc, in Brassica rapa Fe, Mg and Na in Medicago denticalata P contents were greater. (author)

  5. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling.

    Science.gov (United States)

    Sharma, Pooja; Chatterjee, Mithu; Burman, Naini; Khurana, Jitendra P

    2014-04-01

    The blue light photoreceptors cryptochromes are ubiquitous in higher plants and are vital for regulating plant growth and development. In spite of being involved in controlling agronomically important traits like plant height and flowering time, cryptochromes have not been extensively characterized from agriculturally important crops. Here we show that overexpression of CRY1 from Brassica napus (BnCRY1), an oilseed crop, results in short-statured Brassica transgenics, likely to be less prone to wind and water lodging. The overexpression of BnCRY1 accentuates the inhibition of cell elongation in hypocotyls of transgenic seedlings. The analysis of hypocotyl growth inhibition and anthocyanin accumulation responses in BnCRY1 overexpressors substantiates that regulation of seedling photomorphogenesis by cry1 is dependent on light intensity. This study highlights that the photoactivated cry1 acts through coordinated induction and suppression of specific downstream genes involved in phytohormone synthesis or signalling, and those involved in cell wall modification, during de-etiolation of Brassica seedlings. The microarray-based transcriptome profiling also suggests that the overexpression of BnCRY1 alters abiotic/biotic stress signalling pathways; the transgenic seedlings were apparently oversensitive to abscisic acid (ABA) and mannitol. © 2013 John Wiley & Sons Ltd.

  6. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    Science.gov (United States)

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  7. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  8. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae

    DEFF Research Database (Denmark)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter

    2015-01-01

    brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae...... adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungusi laid...... larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against...

  9. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    Science.gov (United States)

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  10. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee).

    Science.gov (United States)

    Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P

    2012-11-01

    We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis.

    Science.gov (United States)

    Ma, Zhiming; Jiang, Jianxia; Hu, Ziwei; Lyu, Tianqi; Yang, Yang; Jiang, Jingjing; Cao, Jiashu

    2017-02-01

    We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.

  12. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  13. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  14. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake

    DEFF Research Database (Denmark)

    Gorovic, Nela; Afzal, Shoaib; Tjonneland, Anne

    2011-01-01

    The human TAS2R38 receptor is believed to be partly responsible for the ability to taste phenylthiocarbamide (PTC), a bitter compound very similar to the bitter glucosinolates found in brassica vegetables. These vegetables and their active compounds have chemo-protective properties. This study...... investigated the relationship between genetic variation in the hTAS2R38 receptor and the actual consumption of brassica vegetables with the hypothesis that taster status was associated with intake of these vegetables. Furthermore, secondary intake information on alcohol, chocolate, coffee, smoking, BMI...... on their brassica vegetables intake from the upper quartile (>= a parts per thousand yen23 g/day) and the lower quartile (brassicas from a randomly selected sub-cohort of DCH. DNA was analysed for three functional SNPs in the hTAS2R38 gene. The hTAS2R38...

  15. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    Science.gov (United States)

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  17. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  18. Dicty_cDB: Contig-U04201-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ( CN212621 ) 26120 Suspension culture Solanum tuberosum cDNA, ... 58 6e-04 1 ( BU880962 ) UM57TA10 Populus flower cDNA library...m cD... 58 6e-08 2 ( EX067768 ) BR052412 pollen cDNA library KBPL Brassica rapa s... 48 8e-08 3 ( EX122995 ) BR106825 mature gre...2 ( EX137140 ) BR120970 root cDNA library KHRT Brassica rapa sub... 48 1e-07 3 ( EX124319 ) BR108149 matur...5', mRNA ... 48 2e-07 2 ( BU822514 ) UB38BPG02 Populus tremula cambium cDNA library Po... 58 4e-07 2 ( EX032...U359299_1( EU359299 |pid:none) Rickettsia helvetica isolate 73-3-... 171 3e-41 EU543436_1( EU543436 |pid:none) Uncultured Ric

  19. Overexpression of BrSAC1 encoding a phosphoinositide ...

    African Journals Online (AJOL)

    2013-04-10

    Apr 10, 2013 ... Chinese cabbage (Brassica rapa L) improved tolerance to cold ... 2Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Korea. .... First-strand cDNA was generated using SuperscriptTM III reverse.

  20. Browse Title Index

    African Journals Online (AJOL)

    , No 3 (2015), Effect of heat stress on seed yield components and ... media on root growth and morphology of Brassica rapa seedlings, Abstract ... the fertiliser solution on growth and flowering of a Cymbidium hybrid, Abstract.

  1. Agrobacterium mediated transformation of brassica juncea (l.) czern with chitinase gene conferring resistance against fungal infections

    International Nuclear Information System (INIS)

    Ahmad, B.; Ambreen, S.; Khan, I.

    2015-01-01

    Brassica juncea (Czern and Coss., L.) is an important oilseed crop. Since it is attacked by several bacterial and fungal diseases, therefore, we developed an easy and simple protocol for the regeneration and transformation of B. juncea variety RAYA ANMOL to give rise to transgenic plants conferring resistance against various fungal diseases. The transformation was carried out using Agrobacterium with Chitinase gene. This gene was isolated from Streptomyces griseus HUT6037. We used two types of explants for transformation i.e. hypocotyls and cotyledons. Only hypocotyls explants showed good results regarding callus initiation. Different hormonal concentrations were applied i.e. BAP 2, 4 and 6 mgL-1 and NAA 0.1, 0.2 and 0.3 mgL-1. However, high transformation efficiency was observed by supplementing the medium with combination of 2 mgL-1 BAP and 0.2 mgL-1 for initiation of callus. Similarly 10 mgL-1 kanamycin and 200 mgL-1 cefotaxime also proved successful for the selection of transformed callus. In order to confirm the presence of transgenic callus Polymerase chain reaction was performed using specific primers for Chitinase gene. (author)

  2. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue.

    Science.gov (United States)

    Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  3. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue

    Science.gov (United States)

    Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959

  4. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group through Embryo Rescue

    Directory of Open Access Journals (Sweden)

    Brij B. Sharma

    2017-07-01

    Full Text Available Black rot caused by Xanthomonas campestris pv. campestris (Xcc is a very important disease of cauliflower (Brassica oleracea botrytis group resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome, therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1 were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC primers. Meiosis in the di-genomic (BCC interspecific hybrid of B. oleracea botrytis group (2n = 18, CC × B. carinata (2n = 4x = 34, BBCC was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  5. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available Members of the plant NUCLEAR FACTOR Y (NF-Y family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola, each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14 were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12 and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14 were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12 and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14 and two NF-YC members (BnNF-YC2 and BnNF-YC3 were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides

  6. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    Science.gov (United States)

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  7. A genome browser database for rice (Oryza sativa) and Chinese ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... sativa) and Chinese cabbage (Brassica rapa) genomes. The genome ... tant staple food for a large part of the world's human population. .... some banding region for selection and the overview panel shows the location of ...

  8. Broadening the genetic base of Abyssinian mustard (Brassica carinata A. Braun through introgression of genes from related allotetraploid species

    Directory of Open Access Journals (Sweden)

    Farooq A. Sheikh

    2014-07-01

    Full Text Available Brassica carinata (BBCC, 2n=34 has still to emerge as a major oilseed crop owing to poor agronomic attributes like long stature, long maturity duration and low seed yield. The restricted amount of genetic variability available in natural B. carinata necessitates utilization of new sources of variability for broadening its genetic base. Interspecific hybridization followed by selection in selfed and back cross progenies was employed to generate useful variability into B. carinata cv ˈPC5ˈ from elite lines of Brassica napus (AACC, 2n=38 and Brassica juncea (AABB, 2n=36. The morphological evaluation of 24 stable introgressed progenies revealed wide range of variability for key economic traits. The progenies with mean maturity duration of 161 ± 2.1 days, short stature of 139.5 ± 6.5 cm and seed yield per plant of 18.6 ± 2.0 g in comparison to the corresponding figures of 168 ± 4.6 days, 230.6 ± 12.7 cm and 12.0 ± 2.4 g in ˈPC5ˈ (recurrent parent were recovered. Diversity analysis at morphological level revealed that 22 out of 24 stable introgressed progenies were grouped with B. carinata ˈPC5ˈ at average taxonomic distance of 1.19. The diversity at molecular level using 25 polymorphic and reproducible RAPD primers revealed that 19 out of 21 introgressed progenies grouped with B. carinata ˈPC5ˈ at a similarity coefficient of 0.68. The clusters in general represent a wide range of genetic diversity in the back cross lines of B. carinata as a result of introgression of genes from elite lines of B. napus and B. juncea parents.

  9. Analysis of DNA Hydroxymethylation Using Colorimetric Assay.

    Science.gov (United States)

    Golubov, Andrey; Kovalchuk, Igor

    2017-01-01

    Hydroxymethylcytosine (hmC or 5-hmC) is a nitrogen base occurring as a result of cytosine methylation followed by replacing a methyl group with a hydroxyl group through active oxidation. 5-hmC is considered to be one of the forms of epigenetic modification and is suggested as an intermediate step in a semi-active loss of DNA methylation mark. 5-hmC plays an important role in the epigenetic regulation of gene expression in animals, although its role in plants remains controversial. Here, we present a colorimetric method of quantification of 5-hmC using Brassica rapa DNA.

  10. Quantitative Trait Locus Mapping of Salt Tolerance and Identification of Salt-Tolerant Genes in Brassica napus L

    Directory of Open Access Journals (Sweden)

    Lina Lang

    2017-06-01

    Full Text Available Salinity stress is one of typical abiotic stresses that seriously limit crop production. In this study, a genetic linkage map based on 532 molecular markers covering 1341.1 cM was constructed to identify the loci associated with salt tolerance in Brassica napus. Up to 45 quantitative trait loci (QTLs for 10 indicators were identified in the F2:3 populations. These QTLs can account for 4.80–51.14% of the phenotypic variation. A major QTL, qSPAD5 on LG5 associated with chlorophyll can be detected in three replicates. Two intron polymorphic (IP markers in this QTL region were developed successfully to narrow down the QTL location to a region of 390 kb. A salt tolerance related gene Bra003640 was primary identified as the candidate gene in this region. The full length of the candidate gene was 1,063 bp containing three exons and two introns in B. napus L. The open reading frame (ORF is 867 bp and encodes 287 amino acids. Three amino acid differences (34, 54, and 83 in the conserved domain (B-box were identified. RT-qPCR analysis showed that the gene expression had significant difference between the two parents. The study laid great foundation for salt tolerance related gene mapping and cloning in B. napus L.

  11. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

    Science.gov (United States)

    Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan

    2016-07-01

    This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.

  13. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings

    International Nuclear Information System (INIS)

    Lai, Jin-long; Tao, Zong-ya; Fu, Qian; Han, Na; Wu, Guo; Zhang, Hong; Lu, Hong; Luo, Xue-gang

    2016-01-01

    To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth. - Highlights: • Analyze the chemical toxicity of cesium in seedlings of Indian mustard. • Distinguish between the radiological and chemical effects of radiocesium. • 2032 DEGs that play significant roles in the response to Cs toxicity were identified. • Excessive Cs is disturbance the auxin signal transduction pathway.

  14. Genetic analysis of drought stress response in Arabidopsis thaliana and Brassica rapa

    NARCIS (Netherlands)

    El-Soda, M.

    2013-01-01

    Drought is the major abiotic stress affecting plant growth and limiting crop productivity worldwide. Plants have evolved three adaptive strategies, drought escape, drought avoidance and drought tolerance, to cope with drought. Knowledge on how Quantitative Trait Loci (QTL), or genes underlying

  15. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-09-01

    Full Text Available Seeds per silique (SS, seed weight (SW, and silique length (SL are important determinant traits of seed yield potential in rapeseed (Brassica napus L., and are controlled by naturally occurring quantitative trait loci (QTLs. Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses (B. rapa ssp. chinesis × O. violaceus × B. napus. In present study, a doubled haploid (DH population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0–34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs (cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09, and cqSL.C09 were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique

  16. Heritability and genetic advance studies for biochemical traits in F2-3 introgressed families of Brassica

    International Nuclear Information System (INIS)

    Farhatullah, N.K.; Khalil, I.H.; Nahed, H.

    2015-01-01

    Higher heritability estimates along with high genetic advance values are effective in envisaging gain under selection in developing genotypes. The objective of the present study was to evaluate variability, heritability and genetic advance in 10 interspecific F2-3 families of Brassica species (B. napus * B. juncea, B. napus * B. rapa). These families were studied for heterospecific introgression of biochemical traits. Low to high heritability estimates were recorded for seed quality traits. Considerable variations within F2-3 families were observed for biochemical traits. Most of the F2-3 families for oil content and erucic showed moderate to high heritability indicating the slightest influence of environment thus modification of trait by selection would be more effective. Among F2-3 introgressed families Bn-510 x Bj-109 produced high oil i.e., 49.5% while Bn-532 x Br-118 (24.4%), Bn-533 x Bj-109 (24.1%) and high protein percentage in terms of mean performance. In the present research, individual segregating progenies of interspecific cross populations i.e., which possessed combination of desirable traits, were identified which could be incorporated in the future Breeding programs and it may facilitate varietal development. (author)

  17. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.

    Science.gov (United States)

    Dai, Shutao; Hou, Jinna; Long, Yan; Wang, Jing; Li, Cong; Xiao, Qinqin; Jiang, Xiaoxue; Zou, Xiaoxiao; Zou, Jun; Meng, Jinling

    2015-06-19

    Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic

  18. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  19. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    International Nuclear Information System (INIS)

    Johnson-Flanagan, A.M.; Singh, J.

    1987-01-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 0 C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [ 35 S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants

  20. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  1. Parasitism rate of Myzus persicae (Sulzer by Diaeretiella rapae (McIntosh in the presence of an alternative, resistant host

    Directory of Open Access Journals (Sweden)

    Samira Evangelista Ferreira

    Full Text Available ABSTRACT The aphids Lipaphis pseudobrassicae (Davis and Myzus persicae (Sulzer (Hemiptera: Aphididae are important Brassicaceae pests, occurring worldwide and causing significant damage to crops. Interspecific variations in the resistance to natural enemies can potentially impact the interaction among aphid populations. Here we evaluated the hypothesis of associational resistance by determining if the presence of resistant aphids (L. pseudobrassicae reduces the rate of parasitism by Diaeretiella rapae (McIntosh on non-resistant aphids (M. persicae. The experiment was conducted using collard green plants infested with M. persicae and L. pseudobrassicae either resistant or susceptible to D. rapae. The percentage of parasitism by D. rapae was greater on L. pseudobrassicae in the susceptible than in the resistant treatment, but parasitism rates on M. persicae did not differ between the treatments. There was no difference in average growth rate between M. persicae and susceptible L. pseudobrassicae populations, but resistant L. pseudobrassicae had greater growth rate than M. persicae. These results suggest that over a short period of time the presence of resistant L. pseudobrassicae does not affect the rate of parasitism by D. rapae on M. persicae.

  2. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-06-18

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.

  3. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  4. Molecular characterization of two genotypes of a new polerovirus infecting brassicas in China.

    Science.gov (United States)

    Xiang, Hai-Ying; Dong, Shu-Wei; Shang, Qiao-Xia; Zhou, Cui-Ji; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2011-12-01

    The genomic RNA sequences of two genotypes of a brassica-infecting polerovirus from China were determined. Sequence analysis revealed that the virus was closely related to but significantly different from turnip yellows virus (TuYV). This virus and other poleroviruses, including TuYV, had less than 90% amino acid sequence identity in all gene products except the coat protein. Based on the molecular criterion (>10% amino acid sequence difference) for species demarcation in the genus Polerovirus, the virus represents a distinct species for which the name Brassica yellows virus (BrYV) is proposed. Interestingly, there were two genotypes of BrYV, which mainly differed in the 5'-terminal half of the genome.

  5. A complex dominance hierarchy is controlled by polymorphism of small RNAs and their targets.

    Science.gov (United States)

    Yasuda, Shinsuke; Wada, Yuko; Kakizaki, Tomohiro; Tarutani, Yoshiaki; Miura-Uno, Eiko; Murase, Kohji; Fujii, Sota; Hioki, Tomoya; Shimoda, Taiki; Takada, Yoshinobu; Shiba, Hiroshi; Takasaki-Yasuda, Takeshi; Suzuki, Go; Watanabe, Masao; Takayama, Seiji

    2016-12-22

    In diploid organisms, phenotypic traits are often biased by effects known as Mendelian dominant-recessive interactions between inherited alleles. Phenotypic expression of SP11 alleles, which encodes the male determinants of self-incompatibility in Brassica rapa, is governed by a complex dominance hierarchy 1-3 . Here, we show that a single polymorphic 24 nucleotide small RNA, named SP11 methylation inducer 2 (Smi2), controls the linear dominance hierarchy of the four SP11 alleles (S 44 > S 60 > S 40 > S 29 ). In all dominant-recessive interactions, small RNA variants derived from the linked region of dominant SP11 alleles exhibited high sequence similarity to the promoter regions of recessive SP11 alleles and acted in trans to epigenetically silence their expression. Together with our previous study 4 , we propose a new model: sequence similarity between polymorphic small RNAs and their target regulates mono-allelic gene expression, which explains the entire five-phased linear dominance hierarchy of the SP11 phenotypic expression in Brassica.

  6. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  7. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    Science.gov (United States)

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  8. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    Science.gov (United States)

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  9. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Plant Metabolites in Brassicaceae

    NARCIS (Netherlands)

    Vos, de C.H.; Schipper, A.; Hall, R.D.

    2012-01-01

    The Brassicaceae family comprises a variety of plant species that are of high economic importance as -vegetables or industrial crops. This includes crops such as Brassica rapa (turnip, Bok Choi), B. oleracea (cabbages, broccoli, cauliflower, etc.), and B. napus (oil seed rape), and also includes the

  10. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    NARCIS (Netherlands)

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  11. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  12. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288.

    Science.gov (United States)

    Heng, Shuangping; Wei, Chao; Jing, Bing; Wan, Zhengjie; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Shen, Jinxiong

    2014-04-30

    Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line "J163-4" are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the

  14. In vitro propagation of Ethiopian mustard ( Brassica carinata A ...

    African Journals Online (AJOL)

    Brassica carinata (A. Braun) is an amphi-diploid species that originated from interspecific hybridization between Brassica nigra and Brassica oleracea in the highlands of Ethiopia. The crop has many desirable agronomic traits but with oil quality constraints like high erucic acid and glucosinolate contents. In this study, two ...

  15. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    Science.gov (United States)

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  16. NEW ACCESSIONS OF BRASSICA OLERACEA L. IN VIR PLANT COLLECTION

    Directory of Open Access Journals (Sweden)

    A. M. Artemieva

    2017-01-01

    Full Text Available Varieties of Brassica oleracea L. are widespread and favorite crops, where among them the head cabbage and cauliflower are the most economically important. Russia takes third place after India and Chine among countries with largest production areas and gross yield for the crop. In Russia, the area sown to cabbage is about 27 thousand hectares. 728 cultivars and hybrids of eight cabbage crops including 528 hybrids have been added in State Register of Breeding Achievements of Russian Federation in 2017. The collection of Brassica oleracea L. totally contains of 2421 accessions and takes first place at number of collected items among the world’s plant genbanks. The phenotyping, genotyping, passportization, development of core collection and trait collection as well as initial breeding accessions, covering all genetic diversity have been carried out at department of genetic resources of vegetables and melons at VIR. Selection of most promising accessions is performed to find genes and sources for economically valuable traits to develop proper lines and hybrids. There are the enrichment of the collection by means of ordering and gathering in expeditions, the improvement of methods of phenotyping and development of database for all biological accessions studied at the department. In 2007-2016, 255 accessions of Brassica oleracea L. have been included into collection to be used in different national breeding programs.

  17. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus

    Directory of Open Access Journals (Sweden)

    Steffi eFritsche

    2012-06-01

    Full Text Available Rapeseed (Brassica napus L. is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q and relative kinship (K as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM+Q and the PK mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c were significantly associated with tocopherol traits. The SNPs explained up to 16.93 % of the genetic variance for tocopherol composition and up to 10.48 % for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the 2nd panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  18. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  19. GENE FLOW STUDIES BETWEEN BRASSICA NAPUS AND B. RAPA IN CONSTRUCTED PLANT COMMUNITIES

    Science.gov (United States)

    The commercial production of genetically modified crops has led to a growing awareness of the difficulties of transgene confinement and of the potential environmental risks associated with the escape of transgenes into naturalized or native plant populations. A potential conseque...

  20. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  1. Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass.

    Science.gov (United States)

    Li, Hui; Liu, Qian; Zhang, Qingli; Qin, Erjun; Jin, Chuan; Wang, Yu; Wu, Mei; Shen, Guangshuang; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The curd is a specialized organ and the most important product organ of cauliflower (Brassica oleracea L. var. botrytis). However, the mechanism underlying the regulation of curd formation and development remains largely unknown. In the present study, a novel homologous gene containing the Organ Size Related (OSR) domain, namely, CDAG1 (Curd Development Associated Gene 1) was identified in cauliflower. Quantitative analysis indicated that CDAG1 showed significantly higher transcript levels in young tissues. Functional analysis demonstrated that the ectopic overexpression of CDAG1 in Arabidopsis and cauliflower could significantly promote organ growth and result in larger organ size and increased biomass. Organ enlargement was predominantly due to increased cell number. In addition, 228 genes involved in the CDAG1-mediated regulatory network were discovered by transcriptome analysis. Among these genes, CDAG1 was confirmed to inhibit the transcriptional expression of the endogenous OSR genes, ARGOS and ARL, while a series of ethylene-responsive transcription factors (ERFs) were found to increased expression in 35S:CDAG1 transgenic Arabidopsis plants. This implies that CDAG1 may function in the ethylene-mediated signal pathway. These findings provide new insight into the function of OSR genes, and suggest potential applications of CDAG1 in breeding high-yielding crops. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver.

    Science.gov (United States)

    Fok, Wilson C; Bokov, Alex; Gelfond, Jonathan; Yu, Zhen; Zhang, Yiqiang; Doderer, Mark; Chen, Yidong; Javors, Martin; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Richardson, Arlan; Pérez, Viviana I

    2014-04-01

    Rapamycin (Rapa) and dietary restriction (DR) have consistently been shown to increase lifespan. To investigate whether Rapa and DR affect similar pathways in mice, we compared the effects of feeding mice ad libitum (AL), Rapa, DR, or a combination of Rapa and DR (Rapa + DR) on the transcriptome and metabolome of the liver. The principal component analysis shows that Rapa and DR are distinct groups. Over 2500 genes are significantly changed with either Rapa or DR when compared with mice fed AL; more than 80% are unique to DR or Rapa. A similar observation was made when genes were grouped into pathways; two-thirds of the pathways were uniquely changed by DR or Rapa. The metabolome shows an even greater difference between Rapa and DR; no metabolites in Rapa-treated mice were changed significantly from AL mice, whereas 173 metabolites were changed in the DR mice. Interestingly, the number of genes significantly changed by Rapa + DR when compared with AL is twice as large as the number of genes significantly altered by either DR or Rapa alone. In summary, the global effects of DR or Rapa on the liver are quite different and a combination of Rapa and DR results in alterations in a large number of genes and metabolites that are not significantly changed by either manipulation alone, suggesting that a combination of DR and Rapa would be more effective in extending longevity than either treatment alone. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    Science.gov (United States)

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  4. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  5. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.

    Science.gov (United States)

    Sun, Fengming; Fan, Guangyi; Hu, Qiong; Zhou, Yongming; Guan, Mei; Tong, Chaobo; Li, Jiana; Du, Dezhi; Qi, Cunkou; Jiang, Liangcai; Liu, Weiqing; Huang, Shunmou; Chen, Wenbin; Yu, Jingyin; Mei, Desheng; Meng, Jinling; Zeng, Peng; Shi, Jiaqin; Liu, Kede; Wang, Xi; Wang, Xinfa; Long, Yan; Liang, Xinming; Hu, Zhiyong; Huang, Guodong; Dong, Caihua; Zhang, He; Li, Jun; Zhang, Yaolei; Li, Liangwei; Shi, Chengcheng; Wang, Jiahao; Lee, Simon Ming-Yuen; Guan, Chunyun; Xu, Xun; Liu, Shengyi; Liu, Xin; Chalhoub, Boulos; Hua, Wei; Wang, Hanzhong

    2017-11-01

    Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (A r ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with A r , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies

    NARCIS (Netherlands)

    Giraldo, M. A.; Stavenga, D. G.

    2007-01-01

    The beads in the wing scales of pierid butterflies play a crucially important role in wing coloration as shown by spectrophotometry and scanning electron microscopy (SEM). The beads contain pterin pigments, which in Pieris rapae absorb predominantly in the ultraviolet (UV). SEM demonstrates that in

  7. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    Science.gov (United States)

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  8. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Directory of Open Access Journals (Sweden)

    Giattina Emily

    2011-09-01

    Full Text Available Abstract Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF of Bacterial Artificial Chromosome (BAC clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account

  9. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Science.gov (United States)

    2011-01-01

    Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123

  10. Yield performance of brassica varieties under rainfed condition

    International Nuclear Information System (INIS)

    Hassan, M.Z.U.; Wahla, A.J.; Waqar, M.Q.

    2014-01-01

    A field study was conducted to evaluate crop growth and seed yield performance of Brassica varieties under Rainfed conditions. The varieties, included in the study, were BSA, Zafar-2000, Pakola, Con.1, Con.2, Abaseen, Rainbow, SPS-5, Bard-1, and KJ-119. KJ-119 (2500.0 KG/HA) among Brassica juncea L. varieties and Abaseen (2425.9 kg/ha) among Brassica napusL. Varieties produced with maximum seed yield as compared to rest of varieties. Significantly, minimum seed yield was observed in check variety BSA. The significant difference in seed yield of Brassica varieties, Abaseen and KJ 119, was attributed to improve yield components over other varieties. Maximum pods per plant and seeds per pod led these varieties to attain maximum yield. Inspite of weather variations existence during years 2007-09,the same varieties produced with maximum seed yield. (author)

  11. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    Science.gov (United States)

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  12. Epidemiological studies on Brassica vegetables and cancer risk

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Goldbohm, R.A.; Poppel, G. van; Verhagen, H.; Brandt, P.A. van den

    1996-01-01

    This paper gives an overview of the epidemiological data concerning the cancer-preventive effect of brassica vegetables, including cabbage, kale, broccoli, Brussels sprouts, and cauliflower. The protective effect of brassicas against cancer may be due to their relatively high content of

  13. Identification and evolutionary dynamics of cacta DNA transposons in brassica

    International Nuclear Information System (INIS)

    Nouroz, F.; Noreen, S.; Harrison, J.S.H.

    2017-01-01

    Transposable elements are the major drivers of genome evolution and plasticity. Due to their transposition mode, they are classified into two major classes as Retrotransposons and DNA transposons. The En/Spm or CACTA elements are diverse group of DNA transposons proliferating in plant genomes. Various bioinformatics and molecular approaches were used for identification and distribution of CACTA transposons in Brassica genome. A combination of dot plot analysis and BLASTN searches yielded 35 autonomous and 7 non-autonomous CACTA elements in Brassica. The elements ranged in sizes from 1.2 kb non-autonomous elements to 11kb autonomous elements, terminated by 3 bp Target Site Duplication (TSD) and ~15 bp conserved Terminal Inverted Repeat (TIR) motifs (5'-CACTACAAGAAAACA-3'), with heterogeneous internal regions. The transposase (TNP) was identified from autonomous CACTA elements, while other protein domains from Brassica and other plants CACTA revealed similar organizations with minor differences. Both transposases (TNPD, TNPA) are present in most CACTA, while a few CACTA harboured an additional ATHILA ORF1-like domain. The PCR analysis amplified the CACTA transposases from 40 Brassica accessions (A, B, and C-genome) suggesting their distribution among various Brassica crops. A detailed characterization and evolutionary analysis of the identified CACTA elements allowed some to be placed in genome-specific groups, while most of them (Brassica-Arabidopsis elements) have followed the same evolutionary line. The distribution of CACTA in Brassica concluded that 3 bp TSDs generating CACTA transposons contributed significantly to genome size and evolution of Brassica genome. (author)

  14. Brassica oleracea: the dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  15. Brassica oleracea; The dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  16. Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris

    DEFF Research Database (Denmark)

    Mikkelsen, T.R.; Jensen, J.; Bagger Jørgensen, Rikke

    1996-01-01

    Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as...... females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape...

  17. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

    Science.gov (United States)

    Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei

    2017-11-28

    The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

  18. Genetic analisys of a cross of gaillon (Brassica oleracea var. alboglabra with cauliflower (B.oleracea var. botrytis

    Directory of Open Access Journals (Sweden)

    Vanessa B.M.G. Spini

    2000-03-01

    Full Text Available The cauliflower (Brassica oleracea var. botrytis is an annual vegetable cultivated in Southern and Southwestern Brazil with limited production in the Northeast and Centralwest. A variety of Chinese kale, "kaai laan" or "gaillon" (Brassica oleracea var. alboglabra, produces seeds at high temperatures and therefore can do so in North and Northeastern Brazil. Gaillon and cauliflower were crossed 55 times using 10 gaillon plants as mothers and 4 cauliflower plants as pollen donors. From these crosses, in the F2 generation, 612 plants with inflorescence like gaillon and 48 plants with inflorescence like cauliflower were obtained, in a proportion similar to 15:1, implying that 2 pairs of genes entered into formation of the cauliflower inflorescence type. In order to study flower color, 339 plants were analyzed: 274 presented white flowers and 65, yellow flowers, denoting that this caracter is determined by 1 pair of genes, white being dominant over yellow; white flowers had a slighly higher adaptive value in our population. The characteristic waxy leaf showed a proportion of 3 waxy plants for 1 not waxy, indicating the action of one pair of genes.A couve-flor (Brassica oleracea var. botrytis é um vegetal anual e tem seu cultivo no Brasil limitado às regiões Sul e Sudeste, com pequena produção no Nordeste e Centro-Oeste. Uma variedade de couve da China, "kaai laan" ou "gaillon" (Brassica oleracea var. alboglabra, produz sementes em altas temperaturas e, portanto, é apta a produzir sementes no Norte e Nordeste do Brasil. Gaillon e couve-flor foram cruzados. Foram feitos 55 cruzamentos usando 10 plantas de gaillon como mãe e 4 plantas de couve-flor como doadores de pólen. Desses cruzamentos, na geração F2, 612 plantas com inflorescência tipo gaillon e 48 plantas com inflorescência tipo couve-flor foram obtidas, em proporção similar a 15:1, demonstrando que 2 pares de genes estão envolvidos na formação da inflorescência em couve

  19. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  20. Potencial alelopático de Cyperus rotundus L. sobre espécies cultivadas Allelopathic potential of Cyperus rotundus L. upon cultivated species

    Directory of Open Access Journals (Sweden)

    Heloísa Monteiro de Andrade

    2009-01-01

    Full Text Available Metabótitos secundários produzidos em algumas plantas podem provocar alterações no desenvolvimento de outras plantas ou até mesmo de outros organismos. Neste trabalho, objetivou-se identificar possíveis efeitos alelopáticos de extratos aquosos de folhas de Cyperus rotundus na germinação e no crescimento de plântulas de Brassica campestris, Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica, Brassica rapa, Lactuca sativa cv. Grand rapids, Lycopersicum esculentum e Raphanus sativus. Foram utilizadas sete concentrações do extrato aquoso (0, 10, 30, 50, 70, 90 e 100%. Os tratamentos foram arranjados em delineamento inteiramente casualizado, com cinco repetições de dez sementes das espécies cultivadas, constituindo a unidade amostral. Os extratos aquosos de C. rotundus evidenciaram potencialidades alelopáticas na germinação das sementes e no crescimento das duas partes vegetais (raiz e parte aérea, de todas as espécies testadas, exceto na germinação de sementes de tomate e de alface, sendo que a redução aumentou com o aumento das concentrações dos extratos aquosos utilizados. A estrutura vegetal mais afetada em presença dos extratos aquosos foi o sistema radicular das plântulas.Secondary metabolites produced in some plant species may promote changes in the development of other plants or even in other organisms. The aim of this work was to identify the possible allelopathic effects of aqueous extracts of Cyperus rotundus leaves on germination and growth of Brassica campestris, Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica, Brassica rapa, Lactuca sativa cv. Grand rapids, Lycopersicum esculentum and Raphanus sativus seedlings. Seven aqueous extract concentrations were used (0, 10, 30, 50, 70, 90, and 100%. The treatments were arranged in a completely randomized desing, with five replications of ten seeds of each cultivated species

  1. Oilseed brassica improvement: through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rehman, K.

    1990-06-01

    The oilseed brassica improvement programme is discussed in this report. Some observations on different plant mutants were made throughout the growth period and results revealed that most of the selected mutants of both the varieties expressed better performance than the parent by showing superior plant traits. A new species named brassica carinata has tremendous untapped potential as an oilseed crop. Efforts for creating maximum variability in rapeseed mustard varieties by means other than gamma radiation continued. (A.B.)

  2. Plant Reproduction and the Pollen Tube Journey--How the Females Lure the Males

    Science.gov (United States)

    Lorbiecke, Rene

    2012-01-01

    The growth of pollen tubes is one of the most characteristic events in angiosperm reproduction. This article describes an activity for visualizing the journey and guidance of pollen tubes in the reproductive structures of a flowering plant. The activity uses a semi-in vivo system with rapid-cycling "Brassica rapa," also known as Fast Plants.…

  3. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895) Dowson 1939, on brassicas in Montenegro

    OpenAIRE

    Radunović Dragana; Balaž Jelica

    2012-01-01

    Brassicas form the most important group of vegetable crops in Montenegro. The cabbage (Brassica oleracea var. capitata) is most commonly grown, although other brassicas, particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly produced since recently. One of the specialties of vegetable production in Montenegro is growing of collard (Brassica oleracea var. acephala), which is the simplest variety of the Brassica oleracea species ...

  4. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  5. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    NARCIS (Netherlands)

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range.

  6. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

    Science.gov (United States)

    Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N

    2016-02-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.

  7. Draft Genome Sequence of a Kale (Brassica oleracea L.) Root Endophyte, Pseudomonas sp. Strain C9.

    Science.gov (United States)

    Laugraud, Aurelie; Young, Sandra; Gerard, Emily; O'Callaghan, Maureen; Wakelin, Steven

    2017-04-13

    Pseudomonas sp. strain C9 is a plant growth-promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control. Copyright © 2017 Laugraud et al.

  8. Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Arikawa, Kentaro

    The compound eye of the Small White butterfly, Pieris rapae crucivora, has four classes of visual pigments, with peak absorption in the ultraviolet, violet, blue and green, but electrophysiological recordings yielded eight photoreceptors classes: an ultraviolet, violet, blue, double-peaked blue,

  9. Genomics of biotrophic, plant-infecting plasmodiophorids using in vitro dual cultures.

    Science.gov (United States)

    Bulman, Simon; Candy, Judith M; Fiers, Mark; Lister, Ros; Conner, Anthony J; Eady, Colin C

    2011-07-01

    The plasmodiophorids are a phylogenetically distinct group of parasitic protists that infect plants and stramenopiles, causing several important agricultural diseases. Because of the obligate intracellular part of their lifecycle, none of the plasmodiophorids has been axenically cultured. Further, the molecular biology of the plasmodiophorids is poorly understood because pure cultures are not available from any species. We report on an in-vitro dual culture system of the plasmodiophorids Plasmodiophora brassicae and Spongospora subterranea with their respective plant hosts, Brassica rapa and Solanum tuberosum. We show that these plasmodiophorids are capable of initiating and maintaining stable, long-term plant cell callus cultures in the absence of exogenous plant growth regulators. We show that callus cultures harbouring S. subterranea provide an excellent starting material for gene discovery from this organism by constructing a pilot-scale DNA library. Bioinformatic analysis of the sequences established that almost all of the DNA clones from this library were from S. subterranea rather than the plant host. The Spongospora genome was found to be rich in retrotransposable elements, and Spongospora protein-coding genes were shown to contain introns. The sequence of a near full-length non-LTR retrotransposon was obtained, the first transposable element reported from a cercozoan protist. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. The foraging behavior of Diaeretiella rapae (Hymenoptera: Braconidae on Diuraphis noxia (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Tazerouni Zahra

    2011-01-01

    Full Text Available Host stage preference, functional response and mutual interference of Diaeretiella rapae (McIntosh (Hymenoptera: Braconidae: Aphidiinae on Diuraphis noxia (Mordvilko (Hemiptera: Aphididae were investigated under defined laboratory conditions (20±1°C; 60±5% relative humidity; 16 h light/8 h dark photoperiod. Nicholson’s model and linear regression were used to determine per capita search-efficiency and the interference coefficient, respectively. There was a significant difference between the rates of parasitism on different stages of D. noxia. The highest parasitism percentage was observed on the third instar nymphs of D. noxia in both choice and no-choice preference tests. Results of logistic regression revealed a type II functional response. The estimated values of search-efficiency (a and handling time (Th were 0.072 h-1 and 0.723 h, respectively. The maximum attack rate was calculated to be 33.22. The per capita search-efficiency decreased from 0.011 to 0.004 (h-1 as parasitoid densities increased from 1 to 8. Therefore, different host-parasitoid ratios can affect the efficacy of D. rapae.

  11. ANALYSIS OF SLG GENE – THE MOLECULAR MARKER IN HYBRID BREEDING OF OIL SEED RAPE

    Directory of Open Access Journals (Sweden)

    L DOLANSKÁ

    2004-07-01

    Full Text Available Oil seed rape (Brassica napus L. cultivars, donors of quality (SC and self-incompatible (SI lines have been analysed using identification of S-locus. In several Brassica napus cultivars one S-locus SLG gene was detected as dominant and the second S-locus as recessive. Amplification class II SLG gene screened recessive gene in all analysed samples (SC and SI. The DNA fragment of recessive gene corresponded to SLG gene W found in cv. Westar. S-haplotypes were analysed by PCR-RFLP. Different Brassica napus cultivars had an identical electrophoretic profile conforming with nonfunctional A10 allele in B. campestris. In B. napus A10 allele is localised in genome A. The functional recessive SLG gene is probably localised in genome C. Model of their segregation was suggested. SC and SI plants segregated in F2 generation at the ratio of approximately 3:1. This indicates a recessive monogenic disposition of SI in the experimental population.

  12. Concentration-mortality responses of Myzus persicae and natural enemies to selected insecticides.

    Science.gov (United States)

    Bacci, Leandro; Rosado, Jander F; Picanço, Marcelo C; Pereira, Eliseu J G; Silva, Gerson A; Martins, Júlio C

    2012-01-01

    The toxicity of six insecticides was determined for the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), and some of its natural enemies - the predatory beetles Cycloneda sanguinea (Coccinellidae) and Acanthinus sp. (Anthicidae), and the wasp parasitoid Diaeretiella rapae (Aphidiidae). Natural enemies from these groups are important natural biological control agents in a number of agroecosystems, and insecticides potentially safe to these non-target organisms should be identified using standardized tests. Thus, concentration-mortality bioassays were carried out with both the aphid and its natural enemies to assess the toxicity and selectivity of acephate, deltamethrin, dimethoate, methamidophos, methyl parathion, and pirimicarb. The latter insecticide was highly selective to all natural enemies tested, and its LC(90) for M. persicae was 14-fold lower than the field rate recommended for control of the aphid in brassica crops. Methyl parathion also showed selectivity to C. sanguinea and Acanthinus sp., but not to D. rapae. Acephate was the least potent insecticide against M. persicae and was equally or more toxic to the natural enemies relative to the aphid. Pirimicarb and methyl parathion were efficient against M. persicae and selective in favor of two of the natural enemies tested. Acanthinus sp. and C. sanguinea were more tolerant to the insecticides than was the parasitoid D. rapae. This study shows that there are selective insecticides that may be compatible with conservation of natural enemies in brassica crops, which is important practical information to improve integrated pest management systems in these crops.

  13. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  14. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae.

    Science.gov (United States)

    Obara, Yoshiaki; Ozawa, Gaku; Fukano, Yuya

    2008-11-01

    The British and Japanese subspecies of the cabbage butterfly, Pieris rapae , differ in terms of the UV reflectance of their wings ( Obara and Majerus, 2000 ). We studied the biogeographical distribution of the female cabbage butterfly having wings with UV reflectance around the Eurasian continent, and between Britain and Japan. For the study, we collected specimens from various locations. A gradient in the UV reflectance of the wings appears to exist along the west-east axis; reflectance was higher toward the east and reached a peak in butterflies in Japan. The UV-reflecting Japanese subspecies Pieris rapae crucivora was found exclusively along the east coast of the Eurasian continent. This suggests that the Japanese subspecies has evolved from a continental ancestor, with females having UV-absorbing wings. We discuss the results of our study with regard to the evolution and adaptive significance of UV coloration in the Japanese subspecies.

  15. Overexpression of phyA and appA Genes Improves Soil Organic Phosphorus Utilisation and Seed Phytase Activity in Brassica napus

    Science.gov (United States)

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  16. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  17. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea Roots.

    Directory of Open Access Journals (Sweden)

    Miaomiao Xing

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp. Among them, 49,959 (79.92% genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%, Gene Ontology (GO (33,767, 54.02%, Clusters of Orthologous Groups (KOG (14,721, 23.55% and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG (12,974, 20.76% searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR, ethylene (ET- and jasmonic (JA-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR proteins, UDP-glycosyltransferase (UDPG, pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters, myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  18. Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Liu, Xiao-Ping; Gao, Bao-Zhen; Han, Feng-Qing; Fang, Zhi-Yuan; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Liu, Yu-Mei; Li, Zhan-Sheng; Cai, Cheng-Cheng; Yu, Hai-Long; Li, Zhi-Yuan; Zhang, Yang-Yong

    2017-03-14

    Due to its variegated and colorful leaves, ornamental kale (Brassica oleracea L. var. acephala) has become a popular ornamental plant. In this study, we report the fine mapping and analysis of a candidate purple leaf gene using a backcross population and an F 2 population derived from two parental lines: W1827 (with white leaves) and P1835 (with purple leaves). Genetic analysis indicated that the purple leaf trait is controlled by a single dominant gene, which we named BoPr. Using markers developed based on the reference genome '02-12', the BoPr gene was preliminarily mapped to a 280-kb interval of chromosome C09, with flanking markers M17 and BoID4714 at genetic distances of 4.3 cM and 1.5 cM, respectively. The recombination rate within this interval is almost 12 times higher than the usual level, which could be caused by assembly error for reference genome '02-12' at this interval. Primers were designed based on 'TO1000', another B. oleracea reference genome. Among the newly designed InDel markers, BRID485 and BRID490 were found to be the closest to BoPr, flanking the gene at genetic distances of 0.1 cM and 0.2 cM, respectively; the interval between the two markers is 44.8 kb (reference genome 'TO1000'). Seven annotated genes are located within the 44.8 kb genomic region, of which only Bo9g058630 shows high homology to AT5G42800 (dihydroflavonol reductase), which was identified as a candidate gene for BoPr. Blast analysis revealed that this 44.8 kb interval is located on an unanchored scaffold (Scaffold000035_P2) of '02-12', confirming the existence of assembly error at the interval between M17 and BoID4714 for reference genome '02-12'. This study identified a candidate gene for BoPr and lays a foundation for the cloning and functional analysis of this gene.

  19. Mono(ADP-ribosyl)ation of the N2 amino groups of guanine residues in DNA by pierisin-2, from the cabbage butterfly, Pieris brassicae

    International Nuclear Information System (INIS)

    Takamura-Enya, Takeji; Watanabe, Masahiko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji

    2004-01-01

    Pierisin-2 is a cytotoxic and apoptosis-inducing protein present in Pieris brassicae with a 91% homology in the deduced amino acid sequences to pierisin-1 from Pieris rapae. We earlier showed pierisin-1 to catalyze mono(ADP-ribosyl)ation of 2'-deoxyguanosine (dG) in DNA to form N 2 -(ADP-ribos-1-yl)-2'-deoxyguanosine, this DNA modification appearing linked to its cytotoxicity and ability to induce apoptosis in mammalian cell lines. In this paper, we documented evidence that pierisin-2 also catalyzed ADP-ribosylation of dG in DNA to give the same reaction product as demonstrated for pierisin-1, with similar efficiency. With oligonucleotides as substrates, ADP-ribosylation by pierisin-2 was suggested to occur by one-side attack of the carbon atom at 1 position of the ribose moiety in NAD toward N 2 of dG. The presence of a unique ADP-ribosylation toxin targeting dG in DNA in two distinct species in a Pieris genus could be a quite important finding to better understand biological functions of pierisin-1 and -2 in Pieris butterflies and the generic evolution of these cabbage butterflies

  20. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

    Science.gov (United States)

    Avila, Fabricio William; Yang, Yong; Faquin, Valdemar; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2014-12-15

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents. Published by Elsevier Ltd.

  1. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.

    Science.gov (United States)

    Diaz, Alejandra R; Core, Leighton J; Jiang, Min; Morelli, Michela; Chiang, Christina H; Szurmant, Hendrik; Perego, Marta

    2012-03-01

    Rap proteins in Bacillus subtilis regulate the phosphorylation level or the DNA-binding activity of response regulators such as Spo0F, involved in sporulation initiation, or ComA, regulating competence development. Rap proteins can be inhibited by specific peptides generated by the export-import processing pathway of the Phr proteins. Rap proteins have a modular organization comprising an amino-terminal alpha-helical domain connected to a domain formed by six tetratricopeptide repeats (TPR). In this study, the molecular basis for the specificity of the RapA phosphatase for its substrate, phosphorylated Spo0F (Spo0F∼P), and its inhibitor pentapeptide, PhrA, was analyzed in part by generating chimeric proteins with RapC, which targets the DNA-binding domain of ComA, rather than Spo0F∼P, and is inhibited by the PhrC pentapeptide. In vivo analysis of sporulation efficiency or competence-induced gene expression, as well as in vitro biochemical assays, allowed the identification of the amino-terminal 60 amino acids as sufficient to determine Rap specificity for its substrate and the central TPR3 to TPR5 (TPR3-5) repeats as providing binding specificity toward the Phr peptide inhibitor. The results allowed the prediction and testing of key residues in RapA that are essential for PhrA binding and specificity, thus demonstrating how the widespread structural fold of the TPR is highly versatile, using a common interaction mechanism for a variety of functions in eukaryotic and prokaryotic organisms.

  2. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  3. Isolation of an ascorbate peroxidase in Brassica napus and analysis ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... domain; APX, ascorbate peroxidase; Bn-APX, Brassica napus ascorbate ... Brassica napus, which is widely grown as the oilseed crop of rape or canola, .... grew on the SD-Leu-Trp-His-Ade medium and were verified by PCR.

  4. A spatial assessment of Brassica napus gene flow potential to wild and weedy relatives in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    J. M. Kalwij

    2010-01-01

    Full Text Available Gene flow between related plant species, and between transgenic and non-transgenic crop varieties, may be considered a form of biological invasion. Brassica napus (oilseed rape or canola and its relatives are well known for intra- and inter-specific gene flow, hybridisation and weediness. Gene flow associated with B. napus poses a potential ecological risk in the Fynbos Biome of South Africa, because of the existence of both naturalised (alien, weedy and native relatives in this region. This risk is particularly pertinent given the proposed use of B. napus for biofuel and the potential future introduction of herbicide-tolerant transgenic B. napus. Here we quantify the presence and co-occurrence of B. napus and its wild and weedy relatives in the Fynbos Biome, as a first step in the ecological risk assessment for this crop. Several alien and at least one native relative of B. napus were found to be prevalent in the region, and to be spatially congruent with B. napus fields. The first requirement for potential gene flow to occur has thus been met. In addition, a number of these species have elsewhere been found to be reproductively compatible with B. napus. Further assessment of the potential ecological risks associated with B. napus in South Africa is constrained by uncertainties in the phylogeny of the Brassicaceae, difficulties with morphology-based identification, and poor knowledge of the biology of several of the species involved, particularly under South African conditions.

  5. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea

  6. Development of Brassica oleracea-nigra monosomic alien addition lines: genotypic, cytological and morphological analyses.

    Science.gov (United States)

    Tan, Chen; Cui, Cheng; Xiang, Yi; Ge, Xianhong; Li, Zaiyun

    2017-12-01

    We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome. Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F 1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC 1 to BC 3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B 1-8 ), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38-30.00%) than the other four (B3, B6, B7, B8) (5.04-8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.

  7. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand

    OpenAIRE

    Mahmudur Rahman; Amina Khatun; Lei Liu; Bronwyn J. Barkla

    2018-01-01

    Commonly cultivated Brassicaceae mustards, namely garlic mustard (Alliaria petiolata), white mustard (Brassica alba), Ethiopian mustard (B. carinata), Asian mustard (B. juncea), oilseed rape (B. napus), black mustard (B. nigra), rapeseed (B. rapa), white ball mustard (Calepina irregularis), ball mustard (Neslia paniculata), treacle mustard (Erysimum repandum), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), smooth mustard (S. erysimoides) and canola are the major ec...

  8. Say it with flowers: Flowering acceleration by root communication

    OpenAIRE

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs i...

  9. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  10. A stable isotope (δ13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    Science.gov (United States)

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation. Copyright © 2013 Wiley Periodicals, Inc.

  11. [Isolation and identification of specific sequences correlated to cytoplasmic male sterility and fertile maintenance in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Wang, Chun Guo; Chen, Xiao Qiang; Li, Hui; Zhao, Qian Cheng; Sun, De Ling; Song, Wen Qin

    2008-02-01

    Analysis of ISSR (Inter-Simple Sequence Repeat) and DDRT-PCR (Differential Display Reverse Transcriptase Polymerase Chain Reaction) was performed between cytoplasmic male sterility cauliflower ogura-A and its corresponding maintainer line ogura-B. Totally, 306 detectable bands were obtained by ISSR using thirty oligonucleotide primers. Commonly, six to twelve bands were produced per primer. Among all these primers only the amplification of primer ISSR3 was polymorphic, an 1100 bp specific band was only detected in maintainer line, named ISSR3(1100). Analysis of this sequence indicated that ISSR3(1100) was high homologous with the corresponding sequences of mitochondrial genome in Brassica napus and Arabidopsis thaliana,which suggested that ISSR3(1100) may derive from mitochondrial genome in cauliflower. To carry out DDRT-PCR analysis, three anchor primers and fifteen random primers were selected to combine. Totally, 1122 bands from 1 000 bp to 50 bp were detected. However, only four bands, named ogura-A 205, ogura-A383, ogura-B307 and ogura-B352, were confirmed to be different display in both lines. This result was further identified by reverse Northern dot blotting analysis. Among these four bands, ogura-A205 and ogura-A383 only express in cytoplasmic male sterility line, while ogura-B307 and ogura-B352 were only detected in maintainer line. Analysis of these sequences indicated that it was the first time that these four sequences were reported in cauliflower. Interestingly, ogura-A205 and ogura-B307 did not exhibit any similarities to other reported sequences in other species, more investigations were required to obtain further information. ogura-A383 and ogura-B352 were also two new sequences, they showed high similarities to corresponding chloroplast sequences of Arabidopsis thaliana and Brassica rapa subsp. pekinensis. So we speculated that these two sequences may derive from chloroplast genome. All these results obtained in this study offer new and

  12. The Large Subunit rDNA Sequence of Plasmodiophora brassicae Does not Contain Intra-species Polymorphism.

    Science.gov (United States)

    Schwelm, Arne; Berney, Cédric; Dixelius, Christina; Bass, David; Neuhauser, Sigrid

    2016-12-01

    Clubroot disease caused by Plasmodiophora brassicae is one of the most important diseases of cultivated brassicas. P. brassicae occurs in pathotypes which differ in the aggressiveness towards their Brassica host plants. To date no DNA based method to distinguish these pathotypes has been described. In 2011 polymorphism within the 28S rDNA of P. brassicae was reported which potentially could allow to distinguish pathotypes without the need of time-consuming bioassays. However, isolates of P. brassicae from around the world analysed in this study do not show polymorphism in their LSU rDNA sequences. The previously described polymorphism most likely derived from soil inhabiting Cercozoa more specifically Neoheteromita-like glissomonads. Here we correct the LSU rDNA sequence of P. brassicae. By using FISH we demonstrate that our newly generated sequence belongs to the causal agent of clubroot disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  14. Varietal improvement of Brassica species through introduction, hybridization and mutation breeding techniques

    International Nuclear Information System (INIS)

    Rhaman, A.

    1988-11-01

    Germplasm of Brassica campestris and Brassica juncea was collected from various parts of Bangladesh and evaluated for yield, oil content etc. prior to the breeding programme. Seeds of the B. campestris variety YS-52, possessing good agronomic characteristics, were treated with mutagens (gamma rays and sodium azide) to widen the genetic variation. Mutants were selected for higher yield and resistance against Alternaria brassicae. The two mutant lines BINA 1 and BINA 2 were selected exceeding the parent variety considerably in yield and disease resistance. They are candidates for recommended varieties. Brassica juncea variety RCM 625 was treated with gamma rays and EMS. Four higher yielding and earlier maturing mutants are being evaluated further. 6 tabs

  15. Development of Convenient Screening Method for Resistant Radish to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Su-Jung Jo

    2011-08-01

    Full Text Available To establish simple and reliable screening method for resistant radish to Plasmodiophora brassicae Woron. using soil-drenching inoculation, the development of clubroot on radish seedlings inoculated with P. brassicae GN-1 isolate according to several conditions such as inoculum concentration, plant growth stage and incubation period after inoculation was studied. To select resistant radish against clubroot, 10-day-old seedlings were inoculated with P. brassicae by drenching the roots with the spore suspension of the pathogen to give 1×10(9 spores/pot. The inoculated seedlings were incubated in a growth chamber at 20℃ for 3 days then cultivated in a greenhouse (20±5℃ for 6 weeks. Under the optimum conditions, 46 commercial cultivars of radish were tested for resistance to YC-1 (infecting 15 clubroot-resistant cultivars of Chinese cabbage and GN-1 (wild type isolates of P. brassicae. Among them, thirty-five cultivars showed resistance to both isolates and one cultivar represented susceptible response to the pathogens. On the other hand, the other cultivars showed different responses against the tested P. brassicae pathogens. The results suggest that this method is an efficient system for screening radish with resistance to clubroot.

  16. Salt tolerance potential of brassica juncea Linn

    Energy Technology Data Exchange (ETDEWEB)

    Ibrar, M; Jabeen, M; Tabassum, J [University of Peshawar (Pakistan). Dept. of Botany; Hussain, F; Ilahi, I [University of Peshawar (Pakistan). Dept. of Pharmacy

    2003-07-01

    The present study showed that percent germination, radicle and plumule lengths of Brassica juncea were adversely affected by increasing the level of salinity. As compared to 95 per cent germination of the control, there were 92.50. 90.00. 90.00, 85.00, 87.50 and 80.00 per cent germinations respectively at 2.5, 5.0, 7.5. 10.0. 12.5 and 15.0 dSm/sup -1/ NaCI salinity levels. Similarly. all the parameters tested in the pot experiments showed gradual decline with the corresponding increasing levels of NaCl salinity. At lower levels of salinity (2.5 and 5.0 dSm/sup -l/), Brassica juncea had reasonably good growth and productivity. It showed greatly reduced growth and at 7.5 and 10.0 dSm/sup -1/ while at 12.5 and 15.0 10.0 dSm/sup -1/ salinity levels it was severely production affected. It is concluded from the present work that Brassica juncea can be grown fairly on mild saline soils for a food, fodder and seed production. (author)

  17. Salt tolerance potential of brassica juncea Linn

    International Nuclear Information System (INIS)

    Ibrar, M.; Jabeen, M.; Tabassum, J.; Hussain, F.; Ilahi, I.

    2003-01-01

    The present study showed that percent germination, radicle and plumule lengths of Brassica juncea were adversely affected by increasing the level of salinity. As compared to 95 per cent germination of the control, there were 92.50. 90.00. 90.00, 85.00, 87.50 and 80.00 per cent germinations respectively at 2.5, 5.0, 7.5. 10.0. 12.5 and 15.0 dSm/sup -1/ NaCI salinity levels. Similarly. all the parameters tested in the pot experiments showed gradual decline with the corresponding increasing levels of NaCl salinity. At lower levels of salinity (2.5 and 5.0 dSm/sup -l/), Brassica juncea had reasonably good growth and productivity. It showed greatly reduced growth and at 7.5 and 10.0 dSm/sup -1/ while at 12.5 and 15.0 10.0 dSm/sup -1/ salinity levels it was severely production affected. It is concluded from the present work that Brassica juncea can be grown fairly on mild saline soils for a food, fodder and seed production. (author)

  18. Genome-Wide Expression Analysis of Reactive Oxygen Species Gene Network in Mizuna Plants Grown in Long-Term Spaceflight

    Science.gov (United States)

    Sugimoto, Manabu; Gusev, Oleg; Wheeler, Raymond; Levinskikh, Margarita; Sychev, Vladimir; Bingham, Gail; Hummerick, Mary; Oono, Youko; Matsumoto, Takashi; Yazawa, Takayuki

    We have developed a plant growth system, namely Lada, which was installed in ISS to study and grow plants, including vegetables in a spaceflight environment. We have succeeded in cultivating Mizuna, tomato, pea, radish, wheat, rice, and barley in long-term spaceflight. Transcription levels of superoxide dismutase, glutamyl transferase, catalase, and ascorbate peroxidase were increased in the barley germinated and grown for 26 days in Lada, though the whole-plant growth and development of the barley in spaceflight were the same as in the ground control barley. In this study, we investigated the response of the ROS gene network in Mizuna, Brassica rapa var. nipposinica, cultivated under spaceflight condition. Seeds of Mizuna were sown in the root module of LADA aboard the Zvezda module of ISS and the seedlings were grown under 24h lighting in the leaf chamber. After 27 days of cultivation, the plants were harvested and stored at -80(°) C in MELFI aboard the Destiny module, and were transported to the ground at < -20(°) C in GLACIER aboard Space Shuttle. Ground control cultivation was carried out under the same conditions in LADA. Total RNA isolated from leaves was subjected to mRNA-Seq using next generation sequencing (NGS) technology. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. These results revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna.

  19. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    Science.gov (United States)

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Dicty_cDB: Contig-U16187-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CI 5 ALP Hydra magnipapill... 62 2e-14 2 ( AW719233 ) LjNEST1e12r Lotus japonicus nodule library, matur... 5... 17ACDHMS_UP_015_C09_27OCT2004_075 Brassica napus ... 50 2e-09 3 ( EX123282 ) BR107112 mature green leaf cDNA library...a rapa sub... 50 2e-09 3 ( EX125217 ) BR109047 mature green leaf cDNA library KHLM Bras... 50 2e-09 3 ( EV161608 ) 0085470 Brassic...ETGS6H_UP_013_E04_15NOV2004_024 Brassica napus 6... 50 3e-08 3 ( CV515629 ) 0048P0010Z_H11_T7 Mimulus guttatus library 1 Mimu...E543256 ) 9RDBNGA_UP_037_C07_03DEC2003_059 Brassica napus -... 50 3e-08 3 ( CV515401 ) 0048P0009Z_D01_T7 Mimulus guttatus library

  1. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact.

    Science.gov (United States)

    Stevenson, Christopher M; Puleston, Cedric O; Vitousek, Peter M; Chadwick, Oliver A; Haoa, Sonia; Ladefoged, Thegn N

    2015-01-27

    Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.

  2. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Science.gov (United States)

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C.

    2008-01-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways. Electronic supplementary material The online version of this article (doi:10.1007/s00122-008-0734-2) contains supplementary material, which is available to authorized users. PMID:18335203

  3. Validación de la Escala Rapid Assessment of Physical Activity (RAPA en población chilena adulta consultante en Atención Primaria

    Directory of Open Access Journals (Sweden)

    J. Carola Pérez

    2015-01-01

    Full Text Available Introducción: la práctica de actividad física es esencial para el cuidado de la salud. Se requiere contar con instrumentos que permitan medirla y monitorear los cambios en las personas que la practican. Objetivos: adaptar culturalmente el cuestionario Rapid Assessment of Physical Activity (RAPA, y estimar sus propiedades psicométricas, su validez y confiabilidad, para medir el nivel de actividad física en personas adultas consultantes en centros de atención primaria en Santiago (Chile. Materiales y métodos: el RAPA adaptado fue aplicado a 180 adultos asistentes a 5 centros de salud. Se determinó su índice de masa corporal (IMC y circunferencia de cintura (CC. Resultados: las puntuaciones en la escala RAPA se relacionaron en forma inversa y significativa con el perímetro de cintura y el IMC. Las personas categorizadas con bajo nivel de actividad física (Poco Activo y Poco Activo Regular Ligero presentan un IMC promedio más elevado y son más frecuentemente categorizados con CC alterada. La confiabilidad del instrumento fue moderada (r = 0,61; K = 0,34. Conclusiones: el RAPA en su versión en español adaptada para Chile, es un instrumento de fácil aplicación, que pese a su moderada confiabilidad, logra ser sensible al desarrollo de actividad física, que presenta una relación coherente con los parámetros antropométricos de IMC y CC sensibles a dicha actividad.

  4. Cyanide detoxification in an insect herbivore: Molecular identification of β-cyanoalanine synthases from Pieris rapae.

    Science.gov (United States)

    van Ohlen, Maike; Herfurth, Anna-Maria; Kerbstadt, Henrike; Wittstock, Ute

    2016-03-01

    Cyanogenic compounds occur widely in the plant kingdom. Therefore, many herbivores are adapted to the presence of these compounds in their diet by either avoiding cyanide release or by efficient cyanide detoxification mechanisms. The mechanisms of adaptation are not fully understood. Larvae of Pieris rapae (Lepidoptera: Pieridae) are specialist herbivores on glucosinolate-containing plants. They are exposed to cyanide during metabolism of phenylacetonitrile, a product of benzylglucosinolate breakdown catalyzed by plant myrosinases and larval nitrile-specifier protein (NSP) in the gut. Cyanide is metabolized to β-cyanoalanine and thiocyanate in the larvae. Here, we demonstrate that larvae of P. rapae possess β-cyanoalanine activity in their gut. We have identified three gut-expressed cDNAs designated PrBSAS1-PrBSAS3 which encode proteins with similarity to β-substituted alanine synthases (BSAS). Characterization of recombinant PrBSAS1-PrBSAS3 shows that they possess β-cyanoalanine activity. In phylogenetic trees, PrBSAS1-PrBSAS3, the first characterized insect BSAS, group together with a characterized mite β-cyanoalanine synthase and bacterial enzymes indicating a similar evolutionary history. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    Science.gov (United States)

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  6. Efficiency of wheat brassica mixtures with different seed rates in rainfed areas of potohar-pakistan

    International Nuclear Information System (INIS)

    Khan, S.; Khan, M.A.; Akmal, M.; Jabeen, A.

    2014-01-01

    Mixed over sole cropping is advantageous under the rainfed conditions in Pakistan. This avoids risk of complete crop failure and may returns higher income. The study aimed to investigate appropriate seed-rates combination for wheat-Brassica as mixed- or intercropped in rainfed conditions. Experiments were conducted at National Agricultural Research Center (NARC), Islamabad Pakistan during winter 2004-05 and 2005-06 using 10 treatments for wheat and Brassica as sole and mixed- or intercropped with 100 and 5 kg ha/sup -1/ for sole crop and 100 kg ha/sup -1/ for wheat with 40, 50, 60, and 70% lower than the recommended for Brassica. Sowing was done in 3rd week of October each year, in lines spaced 30cm. Fertilizer was applied N 48, P/sub 2/O/sub 5/ 34 and K/sub 2/O 18 (kg ha/sup -1/). Brassica was manually removed for fodder at flowering. Seed rate (SR) significantly (p<0.05) affected wheat grain yield. Cropping system (CS) significantly (p<0.05) affected grain yield of Brassica. Interactions of CS and SR were also significant (p<0.05) for both species. Planned mean comparison for grain yield was found significant (p<0.05) for wheat and brassica. Grain yield for sole wheat was 4.28t ha/sup -1/ but reported higher in mixed than intercropped. Grain yield of wheat decreased with increase in seed rate of Brassica as intercropped. Higher grain yield (4.39 t ha/sup -1/) of wheat was recorded for seed rates combinations 100:50 (%) as wheat: Brassica intercropped. The land equivalent ratio (LER) for mixed or intercropped system was higher than the sole crop and it increased with increase in the seed rate of Brassica as mixed crop but decreased as intercropped. The high LER was associated to treatment 100:50 (%) seed rates combination for wheat:Brassica as intercropped. Intercropped resulted the greater LER (1.78) than the mixed crop (1.66) and was found most effective for sustainable production in the rainfed areas for a higher net return. (author)

  7. Dicty_cDB: Contig-U15612-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 2.1 3 ( DJ134199 ) Method for identification of useful proteins deri... 36 2.2 2 ( AL401410 ) T3 end of clone AS0AA027F03 of library...ana tabacum EST, clone nt002084085. 38 0.015 3 ( EX054863 ) BR039507 floral buds cDNA library KBFS Brassic....63 2 ( EX073063 ) BR057707 root cDNA library KBRT Brassica rapa sub... 40 0.67 2...27_A23_F.... 36 3.8 3 ( CV650372 ) GS0040 Chinese cabbage seedling library Brassica ... 40 3.8 2 ( DB662283 ) Saccharomyces cere.... 52 0.083 1 ( CB084704 ) hq20f02.b1 Hedyotis centranthoides flower - Stage... 52 0.083 1 ( CA853976 ) EST357 almond cDNA library

  8. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production.

    Science.gov (United States)

    Wallenhammar, Ann-Charlotte; Gunnarson, Albin; Hansson, Fredrik; Jonsson, Anders

    2016-04-22

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil(-1)) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g(-1) soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g(-1) soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g(-1) soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of

  9. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    Directory of Open Access Journals (Sweden)

    Ann-Charlotte Wallenhammar

    2016-04-01

    Full Text Available Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1 in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20% showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of

  10. Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.).

    Science.gov (United States)

    Liu, Pu; Zhang, Chao; Ma, Jin-Qi; Zhang, Li-Yuan; Yang, Bo; Tang, Xin-Yu; Huang, Ling; Zhou, Xin-Tong; Lu, Kun; Li, Jia-Na

    2018-03-16

    Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus , genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1 , 5-2 , 6-1 , and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

  11. The broccoli (Brassica oleracea) phloem tissue proteome.

    Science.gov (United States)

    Anstead, James A; Hartson, Steven D; Thompson, Gary A

    2013-11-07

    The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.

  12. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea

    DEFF Research Database (Denmark)

    Louarn, Sébastien Jean Yves; Torp, Anna Maria; Holme, I.B.

    2007-01-01

     Fifty-nine Brassica oleracea cultivars, belonging to five botanical varieties, were evaluated for microsatellite (SSR) polymorphisms using 11 database sequence derived primer pairs. The cultivars represented 12 broccoli (Brassica oleracea var. italica), ten Brussels sprouts (B. o. var. gemmifera...

  13. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene.

    Science.gov (United States)

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-08-28

    Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.

  14. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    Directory of Open Access Journals (Sweden)

    Hafiz Sohaib Ahmed Saqib

    2017-10-01

    Full Text Available Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.

  15. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  16. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  17. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L.

    Science.gov (United States)

    Yang, Yong; Liu, Zhiquan; Zhang, Tong; Zhou, Guilong; Duan, Zhiqiang; Li, Bing; Dou, Shengwei; Liang, Xiaomei; Tu, Jinxing; Shen, Jinxiong; Yi, Bin; Fu, Tingdong; Dai, Cheng; Ma, Chaozhi

    2018-06-03

    Self-incompatibility (SI) in plants genetically prevents self-fertilization to promote outcrossing and genetic diversity. Its hybrids in Brassica have been widely cultivated due to the propagation of SI lines by spraying a salt solution. We demonstrated that suppression of Brassica napus SI from edible salt solution treatment was ascribed to sodium chloride and independent of S haplotypes, but it did not obviously change the expression of SI - related genes. Using the isobaric tags for relative and absolute quantitation (iTRAQ) technique, we identified 885 differentially accumulated proteins (DAPs) in Brassica napus stigmas of un-pollinated (UP), pollinated with compatible pollen (PC), pollinated with incompatible pollen (PI), and pollinated with incompatible pollen after edible salt solution treatment (NA). Of the 307 DAPs in NA/UP, 134 were unique and 94 were shared only with PC/UP. In PC and NA, some salt stress protein species, such as glyoxalase I , were induced, and these protein species were likely to participate in the self-compatibility (SC) pathway. Most of the identified protein species were related to metabolic pathways, biosynthesis of secondary metabolites, ribosome, and so on. A systematic analysis implied that salt treatment-overcoming SI in B. napus was likely conferred by at least five different physiological mechanisms: (i) the use of Ca 2+ as signal molecule; (ii) loosening of the cell wall to allow pollen tube penetration; (iii) synthesis of compatibility factor protein species for pollen tube growth; (iv) depolymerization of microtubule networks to facilitate pollen tube movement; and (v) inhibition of protein degradation pathways to restrain the SI response.

  18. Nonstructural carbon dynamics are best predicted by the combination of photosynthesis and plant hydraulics during both bark beetle induced mortality and herbaceous plant response to drought

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Guadagno, C.; Peckham, S. D.; Pendall, E.; Borkhuu, B.; Aston, T.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Yarkhunova, Y.; Weinig, C.

    2012-12-01

    Recent work has shown that nonstructural carbon (NSC) provides both a signal and consequence of water stress in plants. The dynamics of NSC are likely not solely a result of the balance of photosynthesis and respiration (carbon starvation hypothesis) but also the availability of NSC for plant functions due to hydraulic condition. Further, plant hydraulics regulates photosynthesis both directly through stomatal conductance and indirectly through leaf water status control over leaf biochemistry. To test these hypotheses concerning NSC in response to a wide variety of plant perturbations, we used a model that combines leaf biochemical controls over photosynthesis (Farquhar model) with dynamic plant hydraulic conductance (Sperry model). This model (Terrestrial Regional Ecosystem Exchange Simulator; TREES) simulates the dynamics of NSC through a carbon budget approach that responds to plant hydraulic status. We tested TREES on two dramatically different datasets. The first dataset is from lodgepole pine and Engelmann spruce trees dying from bark beetles that carry blue-stain fungi which block xylem and cause hydraulic failure. The second data set is from Brassica rapa, a small herbaceous plant whose accessions are used in a variety of crops. The Brassica rapa plants include two parents whose circadian clock periods are different; NSC is known to provide inputs to the circadian clock likely modified by drought. Thus, drought may interact with clock control to constrain how NSC changes over the day. The Brassica rapa plants were grown in growth chamber conditions where drought was precisely controlled. The connection between these datasets is that both provide rigorous tests of our understanding of plant NSC dynamics and use similar leaf and whole plant gas exchange and NSC laboratory methods. Our results show that NSC decline (water stress. The model is able to capture this relatively small decline in NSC by limiting NSC utilization through loss of plant hydraulic

  19. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Sajad Ali

    2017-10-01

    Full Text Available Brassica juncea (Indian mustard is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1 is a bonafide receptor of salicylic acid (SA which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR. Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1 from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.

  20. Ono Tupuna, the richness of the ancestors. Multiples Landscapes Relationalities in Contemporary Indigenous Rapa Nui

    OpenAIRE

    Rivas, Antonia

    2017-01-01

    Contemporary Rapa Nui is formed by a multiple and complex set of interactions, encounters, and circumstances that comprise the core of their indigenous identity, like many other indigenous people's realities. In this dissertation, I argue that there is not a simple or straightforward way of thinking about indigenous identities without falling into the trap of essentialism and stereotyping. Indigenous people are not what remained of ancestral civilizations, nor are they either invented nor fol...

  1. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.

    Science.gov (United States)

    Sotelo, T; Lema, M; Soengas, P; Cartea, M E; Velasco, P

    2015-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  3. Variation and Distribution of Glucosinolates in 42 Cultivars of Brassica oleracea Vegetable Crops

    NARCIS (Netherlands)

    Verkerk, R.; Tebbenhoff, S.; Dekker, M.

    2010-01-01

    Brassica vegetables are known to contain glucosinolates that are precursors for bioactive compounds like isothiocyanates that have been shown to play an important role in human health. This study reports the results of a screening of 11 Brassica oleracea crops consisting of 42 cultivars (6 white

  4. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Mohammad S. Khan

    2017-07-01

    Full Text Available Transgenic Brassica napus harboring the synthetic chitinase (NiC gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN and Abasyne-95 (AB-95. However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters.

  5. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus.

    Science.gov (United States)

    Huang, Yi; Tao, Zhangsheng; Liu, Qiong; Wang, Xinfa; Yu, Jingyin; Liu, Guihua; Wang, Hanzhong

    2014-07-01

    Inflorescence architecture, pedicel length and stomata patterning in Arabidopsis thaliana are specified by inter-tissue communication mediated by ERECTA and its signaling ligands in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of secreted cysteine-rich peptides. Here, we identified and characterized BnEPFL6 from Brassica napus. Heterologous expression of this gene under the double enhanced CaMV promoter (D35S) in Arabidopsis resulted in shortened stamen filaments, filaments degradation, and reduced filament cell size that displayed down-regulated expression of AHK2, in which phenotypic variation of ahk2-1 mutant presented highly consistent with that of BnEPFL6 transgenic lines. Especially, the expression level of BnEPFL6 in the shortened filaments of four B. napus male sterile lines (98A, 86A, SA, and Z11A) was similar to that of BnEPFL6 in the transgenic Arabidopsis lines. The activity of pBnEPFL6.2::GUS was intensive in the filaments of transgenic lines. These observations reveal that BnEPFL6 plays an important role in filament elongation and may also affect organ morphology and floral organ specification via a BnEPFL6-mediated cascade.

  6. Allelopathic effect of aqueous extracts of Eucalyptus globulus Labill. and of Casearia sylvestris Sw. on cropsEfeito alelopático de extratos aquosos de Eucalyptus globulus Labill. e de Casearia sylvestris Sw. sobre espécies cultivadas

    Directory of Open Access Journals (Sweden)

    Grasielle Soares Gusman

    2011-10-01

    Full Text Available Allelopathy is characterized by the harmful or benefic effects caused by secondary metabolites, that are produced by plants, microorganisms or fungi and are released in the environment, on the development of natural biological systems or implemented ones. This study aimed to evaluate the allelopathic effects of aqueous extracts of eucalypt (Eucalyptus globulus Labill. and wild coffee (Casearia sylvestris Sw. on the germination and initial development of mustard (Brassica campestris L., cabbage (Brassica oleracea L. cv. capitata, broccoli (Brassica oleracea L. cv. italica, kale (Brassica pekinensis L., lettuce (Lactuca sativa L. cv. grand rapids, tomato (Lycopersicum esculentum Miller, turnip (Brassica rapa L., rucola (Eruca sativa L. and radish (Raphanus sativus L.. Six concentrations of each aqueous extract were tested (10, 30, 50, 70, 90 and 100% and compared to control (distilled water, with five replicates of each concentration, being ten seeds of each crop distributed in each replicate. The aqueous extracts of E. globulus and C. sylvestris reduced significantly the percentage of seed germination, the index of germination speed and the initial growth of the above ground part and roots of all cultivated species, being the reduction of these parameters higher with the increment of the aqueous extracts concentration, which led to thicker and atrophied roots with a higher number of absorbent hairs. Therefore, the results indicate an existence of allelopathic potential of E. globulus and C. sylvestris.A alelopatia caracteriza-se pelos efeitos danosos ou benéficos que metabólitos secundários produzidos por plantas, microrganismos ou fungos liberados no ambiente exercem sobre o desenvolvimento de sistemas biológicos naturais ou implantados. O objetivo do trabalho foi avaliar o efeito alelopático de extratos aquosos de eucalipto (Eucalyptus globulus Labill. e guaçatonga (Casearia sylvestris Sw. na germinação e no crescimento inicial de

  7. Light influence in the nutritional composition of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    OpenAIRE

    Ann-Charlotte Wallenhammar; Albin Gunnarson; Fredrik Hansson; Anders Jonsson

    2016-01-01

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to plantin...

  9. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana.

    I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and

  10. Role of Mediterranean diet, tropical vegetables rich in antioxidants, and sunlight exposure in blindness, cataract and glaucoma among African type 2 diabetics

    Science.gov (United States)

    Moïse, Mvitu Muaka; Benjamin, Longo-Mbenza; Doris, Tulomba Mona; Dalida, Kibokela Ndembe; Augustin, Nge Okwe

    2012-01-01

    AIM To assess whether regular Mediterranean diet and regular intake of vegetables may reduce the risk of blindness, cataract, and glaucoma in these type 2 diabetics. METHODS A cross-sectional design was carried out among known black diabetics admitted at the diabetic clinics of Kinshasa, between October 2008 and March 2009. The Mediterranean-style dietary score (MSDPS) was used to characterize a Mediterranean-style dietary pattern in the study population using the Harvard semi quantitative FFQ adapted for Africa. RESULTS Five hundred Type 2 diabetic patients were included in this study (48% of males; 40% aged ≥60 years). There was a significant association between blindness, cataract and aging; between blindness (P<0.05), cataract (P<0.05), glaucoma (P<0.05), and physical inactivity; between blindness (P<0.05), cataract (P<0.0001), glaucoma (P<0.01) and high SES, and a very significant association between blindness (P<0.0001), cataract (P<0.0001), glaucoma (P<0.0001) and exposure to sunlight. There was also a significant association between blindness, glaucoma, and male sex. Regular intake of Mediterranean diet, Brassica Rapa, beans, Abelmoschus, Musa acuminata reduced significantly the risk of blindness, cataract and glaucoma. CONCLUSION Regular intake of Mediterranean diet, Brassica Rapa, beans, Abelmoschus, and Musa acuminata may significantly reduce the risk of blindness or its major causes among type 2 diabetes mellitus in Africa. PMID:22762057

  11. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    Science.gov (United States)

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  12. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  13. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    International Nuclear Information System (INIS)

    Wilen, R.W.; Mandel, R.M.; Pharis, R.P.; Moloney, M.M.; Holbrook, L.A.

    1990-01-01

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using [ 2 H 6 ]ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos

  14. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  15. Characterization of a digestive α-amylase in the larvae of Pieris brassicae L. (Lepidoptera: Pieridae

    Directory of Open Access Journals (Sweden)

    Arash eZibaee

    2016-03-01

    Full Text Available The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM and anterior midgut (AM. A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35 ºC. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid and ethylene glycol-bis (β-aminoethylether N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones.

  16. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  17. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895 Dowson 1939, on Brassicas in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2012-01-01

    Full Text Available Brassicas form the most important group of vegetable crops in Montenegro. The cabbage(Brassica oleracea var. capitata is most commonly grown, although other brassicas,particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly producedsince recently. One of the specialties of vegetable production in Montenegro is growing ofcollard (Brassica oleracea var. acephala, which is the simplest variety of the Brassica oleraceaspecies and in the nearest relation with their wild ancestor – the sylvestris variety.Diseases are the main restrictive factors for successful production of these vegetables.Susceptibility of the cultivars and inadequate control often result in more or less damagedcrops in some plots.Causal agents of brassica diseases, especially bacterial, have not been investigated inMontenegro until 2009. Since the symptoms observed in 2009 were „V” shaped leaf edgenecrosis and black rot of vascular tissue, it was assumed that they were caused by plantpathogenic bacterium Xanthomonas campestris pv. campestris.Samples of the infected plants were collected from different localities in Montenegro.Isolation and identification of the bacterium were performed using laboratory methodsaccording to Schaad (1980, Lelliott and Stead (1987 and Arsenijević (1997. Examinationof chosen bacterial isolates was conducted using both, classical bacteriological methods(examination of their pathogenic, morphological, cultivation and biochemical and physiologicalcharacteristics, and ELISA test.The obtained results confirmed the presence of X.campestris pv. campestris (Pammel,1895 Dowson 1939, on cabbage, kale, broccoli and collard in Montenegro. This is the firstexperimental evidence that collard is the host of X. campestris pv. campestris in Montenegro.

  18. Functional characterization of Brassica napus DNA topoisomerase Iα-1 and its effect on flowering time when expressed in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Li, Dong; Jin, Changyu; Duan, Shaowei; Zhang, Meng; Chen, Mingxun

    2017-01-01

    Previous studies have shown that DNA topoisomerase Iα (AtTOP1α) has specific developmental functions during growth and development in Arabidopsis thaliana. However, little is known about the roles of DNA topoisomerases in the closely related and commercially important plant, rapeseed (Brassica napus). Here, the full-length BnTOP1α-1 coding sequence was cloned from the A2 subgenome of the Brassica napus inbred line L111. We determine that all BnTOP1α paralogs showed differing patterns of expression in different organs of L111, and that when expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnTOP1α-1 localized to the nucleus. We further showed that ectopic expression of BnTOP1α-1 in the A. thaliana top1α-7 mutant fully complemented the early flowering phenotype of the mutant. Moreover, altered expression levels in top1α-7 seedlings of several key genes controlling flowering time were restored to wild type levels by ectopic expression of BnTOP1α-1. These results provide valuable insights into the roles of rapeseed DNA topoisomerases in flowering time, and provide a promising target for genetic manipulation of this commercially significant process in rapeseed. - Highlights: • BnTOP1α-1 was cloned from the A2 subgenome of Brassica napus inbred line L111. • BnTOP1α-1 rescued the early flowering phenotype of the Attop1α-7 mutant. • BnTOP1α-1 rescued the altered expression of flowering time genes in the Attop1α-mutant. • The functions of BnTOP1α-1 and AtTOP1α are likely conserved.

  19. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  20. Microspore culture of winter oilseed rape (Brassica napus L.) in conjunction with other in vitro technologies

    International Nuclear Information System (INIS)

    Cegielska-Taras, T.; Szala, L.; Bartkowiak-Broda, I.

    2001-01-01

    Microspore culture in conjunction with other technologies such as selection, mutagenesis and transformation has been used for the production of novel genotypes of Brassica napus L. for crop improvement. The example of in vitro selection of microspore - derived embryos includes: a) ploidy level, b) seed oil composition (for example: high level of erucic acid), c) genotypes with restorer gene for CMS-ogura system (by means of isozyme marker PGI-2 ), d) herbicide resistant forms. Efficiency of microspore mutagenesis has been tested by the treatment of freshly isolated microspores with UV and MNU. Direct delivery of foreign gene to the microspores (microprojectile bombardment) combined with the use of Agrobacterium tumefaciens to microspore derived embryos seems to be a promising way of oilseed rape transformation. (author)

  1. Chemosensory basis of behavioural plasticity in response to deterrent plant chemicals in the larva of the Small Cabbage White butterfly Pieris rapae

    NARCIS (Netherlands)

    Zhou, D.S.; Wang, C.Z.; Loon, van J.J.A.

    2009-01-01

    Behavioural and electrophysiological responsiveness to three chemically different secondary plant substances was studied in larvae of Pieris rapae L. (Lepidoptera: Pieridae). Three groups of caterpillars were studied that during their larval development were exposed to different rearing diets: an

  2. Genetic diversity and relationships among cabbage ( Brassica ...

    African Journals Online (AJOL)

    The integration of our data with historical documents confirmed that traditional cabbage landraces cultivated in North of China were first introduced from Russia. Key words: Amplified fragment length polymorphism (AFLP), genetic diversity, cabbage (Brassica oleracea var. capitata), landraces, population structure.

  3. Productivity and nutritive quality of three brassica varieties for use in pasture-based systems

    Science.gov (United States)

    Brassicas are gaining popularity among pasture-based livestock producers to extend grazing during the ‘summer slump’ and throughout the fall. A 2-yr study was conducted to compare biomass production and nutrient composition of ‘Barisca’ rapeseed (RAP; Brassica napus L.), ‘Inspiration’ canola (CAN; B...

  4. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Administrator

    2016-12-07

    Dec 7, 2016 ... chinensis irrigated with low quality water in urban areas of Morogoro ... wastewater plays a significant role in food security as it improves crop ... Low quality irrigation water is generally contaminated with humans or animals.

  5. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    Directory of Open Access Journals (Sweden)

    Anika Eva Wagner

    2013-01-01

    Full Text Available A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.

  6. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    Science.gov (United States)

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    Science.gov (United States)

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  8. Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops

    DEFF Research Database (Denmark)

    Díaz-Ramírez, Maryori; Jappe Frandsen, Flemming; Glarborg, Peter

    2014-01-01

    K-, Cl-, S- and P-release from a herbaceous (brassica) and a short rotation coppice (poplar) cultivated in the Mediterranean region, have been investigated under combustion conditions [500-1100 °C]. Contrary to brassica, Cl- and S-release from poplar were substantial for all temperatures tested....... Low-temperature [500-700 °C] Cl-release from the high-Cl brassica appeared to be primarily limited by the fuel chemical composition and secondarily by interactions of the ash-forming elements with the fuel organic matrix. Below 700 °C, Cl-release was nearly 50%, whereas complete dechlorination...... resulted around 800 °C. S-release from brassica was up to 40% at low temperature. Above 1000 °C, additional S-release was observed presumably by sulfate dissociation. K-release was linked to Cl-release around 700 °C and, gradually increased afterwards. At 1100 °C, nearly 60% of K in poplar was retained...

  9. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea.

    Science.gov (United States)

    Zhang, Bin; Qiu, Han-Lin; Qu, Dong-Hai; Ruan, Ying; Chen, Dong-Hong

    2018-04-05

    Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.

  10. Effect of seed-irradiation on morphological characters yield components of brassica campestris var. sarson

    International Nuclear Information System (INIS)

    Bokhari, F.S.; Ahmad, S.

    1996-01-01

    Seed of Brassica campestris (var. Sarson) were used to study the effect of radiation of different morphological and yield parameters. Survival percentage showed drastic decrease at higher doses (75 Kr and 100 Kr). Similarly all characters showed a trend of decrease with increasing dose. LD50 for Brassica was about 50 Kr. (author)

  11. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  12. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  13. Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Manish Pandey

    2017-06-01

    Full Text Available Salinity-imposed limitations on plant growth are manifested through osmotic and ionic imbalances. However, because salinity-induced responses vary considerably among crop plants, monitoring of such responses at an early stage has relevance. In this study, physiological (seed germination, seed vigor index, root length, shoot length, fresh weight, dry weight and biochemical attributes (osmoprotectants, K+/Na+ ratio were analyzed for a time-course assessment of salt responses in Indian mustard (Brassica juncea L. with an emphasis on early monitoring. The results showed strong correlations for total soluble sugars at germination phase (24 h, proline content in the seedling establishment phase (48 h and various physiological parameters including seed vigor index (R2 = 0.901, shoot length (R2 = 0.982, and fresh weight (R2 = 0.980 at 72 h (adaptation under stress. In addition, transcriptional changes were observed under NaCl treatment for key genes belonging to the family of selective ion transporters (NHX, HKT and abscisic acid synthesis (AAO-3. The status of mitochondrial respiration was also examined as a probe for salinity tolerance at an early stage. The results suggested that although all the analyzed parameters showed correlations (negative or positive with salt stress magnitude, their critical response times differed, with most of the studied biochemical, physiological, or molecular markers providing valuable information only after radicle emergence, whereas mitochondrial respiration via alternative oxidase was useful for the early detection of salt responses.

  14. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  15. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  16. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    Directory of Open Access Journals (Sweden)

    Govers Francine

    2009-08-01

    Full Text Available Abstract Background Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores. Results P. brassicae isolates were tested for pathogenicity on Brussels sprout plants (Brassica oleracea var. gemmifera. Microscopic examination of leaves, stems and roots infected with a GFP-tagged transformant of P. brassicae clearly demonstrated the susceptibility of the various tissues. Leaf discs were cut from infected Brussels sprout leaves, transferred to microwell plates and submerged in small amounts of water. In the leaf discs the hyphae proliferated and abundant formation of zoosporangia was observed. Upon maturation the zoosporangia released zoospores in high amounts and zoospore production continued during a period of at least four weeks. The zoospores were shown to be infectious on Brussels sprouts and Arabidopsis. Conclusion The in vitro leaf disc method established from P. brassicae infected Brussels sprout leaves facilitates convenient and high-throughput production of infectious zoospores and is thus suitable to drive small and large scale inoculation experiments. The system has the advantage that zoospores are produced continuously over a period of at least one month.

  17. Glucosinolates during preparation of Brassica vegetables in Indonesia

    NARCIS (Netherlands)

    Nugrahedi, P.Y.

    2015-01-01

    Title:

    Glucosinolates during preparation of Brassica vegetables in Indonesia

    Dutch translation of title:

    Effecten van Indonesische bereidingsmethoden op gezondheidsbevorderende stoffen in groenten

    Title/description

  18. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study.

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S; Saha, Shikha; Doleman, Joanne F; Narbad, Arjan; Mithen, Richard F

    2017-09-01

    We examined whether a Brassica-rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate-reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. A randomised crossover study was performed with ten healthy adults who were fed a high- and a low-Brassica diet for 2-wk periods, with a 2-wk washout phase separating the diets. The high-Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low-Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2-wk Brassica-free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p < 0.01). The increased consumption of Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapa Nui: Tradition, modernity and alterglobalization in intercultural education

    Directory of Open Access Journals (Sweden)

    Fidel Molina

    2013-07-01

    Full Text Available In this research are described, analyze and compare the manifestations of the intercultural education in a difficult situation as it is Rapa Nui Island (Easter Island, traditionally isolated, in the “navel of the world” (Te pito o Te Henua, but “discovered” and assimilated by the western people and recoveredfor the intercultural idea that it surpasses this assimilation and/or global homogenization, in a alterglobalization context. We have analyzed four depth interviews and two biographical stories (lifehistories, dividing of the hypothesis of the necessity of a clear link between interculturality and education, to rethink the identity and the cultural continuity of their citizens. The obtained results suggest them programs of immersion in the school are not sufficient if they do not go accompanied of a holistic institutional work in the diverse scopes: cultural, educative, economic, environmental politician, leisure, etc. The construction of the identity sends again to individual and collective scopes, with the participation of the subject and the community. In this sense, intergenerational solidarity plays a fundamental role.

  20. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    Science.gov (United States)

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176

  2. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.

  3. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida state

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2014-04-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  4. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida State

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2016-03-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  5. Candidate Herbaceous Plants for Phytoremediation of Energetics on Ranges. Strategic Environmental Research and Development Program

    Science.gov (United States)

    2007-09-01

    fescue P medium medium N-W NE, NH G.c. CCREL 10 Hordeum sativum Barley TNT A medium medium N&S AK, HW 4 Lolium multiflorum Ryegrass TNT AP... Allium schoenopra- sum Wild chives TNT P small small N AK 4 Brassica rapa Canola RDX,HMX AB medium medium N&S AK, HW, IL, PR, VI 4, 20 Bupleurum...TNT, HMX A medium medium N&S IL, PR, VI JAAP 4, 12.,13 Pisum sativum Pea TNT A small large N&S 4 Raphanus sativus Radish RDX A tap small N

  6. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    Directory of Open Access Journals (Sweden)

    Hong Long

    Full Text Available The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins.

  7. The Brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro.

    Science.gov (United States)

    Hanschen, Franziska S; Herz, Corinna; Schlotz, Nina; Kupke, Franziska; Bartolomé Rodríguez, María M; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2015-11-01

    Glucosinolates are secondary metabolites present in Brassica vegetables. Alkenyl glucosinolates are enzymatically degraded forming nitriles or isothiocyanates, but in the presence of epithiospecifier protein, epithionitriles are released. However, studies on the occurrence of epithionitriles in Brassica food and knowledge about their biological effects are scarce. Epithionitrile formation from glucosinolates of seven Brassica vegetables was analyzed using GC-MS and HPLC-DAD. Bioactivity of synthetic and plant-derived 1-cyano-2,3-epithiopropane (CETP) - the predominant epithionitrile in Brassica vegetables - in three human hepatocellular carcinoma (HCC) cell lines and primary murine hepatocytes was also evaluated. The majority of the Brassica vegetables were producers of nitriles or epithionitriles as hydrolysis products and not of isothiocyanates. For example, Brussels sprouts and savoy cabbage contained up to 0.8 μmol CETP/g vegetable. Using formazan dye assays, concentrations of 380-1500 nM CETP were observed to inhibit the mitochondrial dehydrogenase activity of human HCC cells without impairment of cell growth. At 100-fold higher CETP concentrations, cell death was observed. Presence of plant matrix increased CETP-based toxicity. These in vitro data provide no indication that epithionitriles will severely affect human health by Brassica consumption. In contrast to isothiocyanates, no evidence of selective toxicity against HCC cells was found. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Ali, I.; Ali, N.; Ali, S.; Hussain, I.; Khan, S. A.; Tahira, R.

    2015-01-01

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  9. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu

    2014-12-01

    Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response.

    Science.gov (United States)

    Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal

    2017-07-03

    In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.

  11. Genome-Wide Association Mapping of Seed Coat Color in Brassica napus.

    Science.gov (United States)

    Wang, Jia; Xian, Xiaohua; Xu, Xinfu; Qu, Cunmin; Lu, Kun; Li, Jiana; Liu, Liezhao

    2017-07-05

    Seed coat color is an extremely important breeding characteristic of Brassica napus. To elucidate the factors affecting the genetic architecture of seed coat color, a genome-wide association study (GWAS) of seed coat color was conducted with a diversity panel comprising 520 B. napus cultivars and inbred lines. In total, 22 single-nucleotide polymorphisms (SNPs) distributed on 7 chromosomes were found to be associated with seed coat color. The most significant SNPs were found in 2014 near Bn-scaff_15763_1-p233999, only 43.42 kb away from BnaC06g17050D, which is orthologous to Arabidopsis thaliana TRANSPARENT TESTA 12 (TT12), an important gene involved in the transportation of proanthocyanidin precursors into the vacuole. Two of eight repeatedly detected SNPs can be identified and digested by restriction enzymes. Candidate gene mining revealed that the relevant regions of significant SNP loci on the A09 and C08 chromosomes are highly homologous. Moreover, a comparison of the GWAS results to those of previous quantitative trait locus (QTL) studies showed that 11 SNPs were located in the confidence intervals of the QTLs identified in previous studies based on linkage analyses or association mapping. Our results provide insights into the genetic basis of seed coat color in B. napus, and the beneficial allele, SNP information, and candidate genes should be useful for selecting yellow seeds in B. napus breeding.

  12. Phenotyping of Brassica napus for high oil content

    Science.gov (United States)

    Multi-trait and multi-growth stage phenotyping may improve our ability to assess the dynamic changes in the B. napus phenome under spatiotemporal field conditions. A minimum set of phenotypic traits that can integrate ontogeny and architecture of Brassica napus L. is required for breeding and select...

  13. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.

    Science.gov (United States)

    Shen, Yanyue; Zhang, Yu; Zou, Jun; Meng, Jinling; Wang, Jianbo

    2015-01-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. Although genomic and transcriptomic changes have been observed in polyploids, the effects of polyploidization on proteomic divergence are poorly understood. In this study, we reported quantitative analysis of proteomic changes in leaves of Brassica hexaploid and its parents using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. A total of 2044 reproducible proteins were quantified by at least two unique peptides. We detected 452 proteins differentially expressed between Brassica hexaploid and its parents, and 100 proteins were non-additively expressed in Brassica hexaploid, which suggested a trend of non-additive protein regulation following genomic merger and doubling. Functional categories of cellular component biogenesis, immune system process, and response to stimulus, were significantly enriched in non-additive proteins, probably providing a driving force for variation and adaptation in allopolyploids. In particular, majority of the total 452 differentially expressed proteins showed expression level dominance of one parental expression, and there was an expression level dominance bias toward the tetraploid progenitor. In addition, the percentage of differentially expressed proteins that matched previously reported differentially genes were relatively low. This study aimed to get new insights into the effects of polyploidization on proteomic divergence. Using iTRAQ LC-MS/MS technology, we identified 452 differentially expressed proteins between allopolyploid and its parents which involved in response to stimulus, multi-organism process, and immune system process, much more than previous studies using 2-DE coupled with mass spectrometry technology. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in allopolyploid and its parents, which will lead to a better understanding of

  14. Genetic diversity analysis of mustard ( Brassica spp.) germplasm ...

    African Journals Online (AJOL)

    Molecular characterization of 16 mustard (Brassica spp.) genotypes by using 12 RAPD markers revealed that three primers GLA-11, OPB-04 and OPD-02 showed good technical resolution and sufficient variations among different genotypes. A total of 40 RAPD bands were scored of which 38 (94.87%) polymorphic ...

  15. Immunopurification and characterization of a rape ( Brassica napus L.)

    African Journals Online (AJOL)

    Lipase or triacylglycerol acylhydrolase (E.C.3.1.1.3) was purified to homogeneity from rapeseed-germinated cotyledons (Brassica napus L.). The purification scheme involved homogenization, centrifugation, ultracentrifugation and affinity chromatography using polyclonal antibodies raised against porcine pancreatic lipase.

  16. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance.

    Science.gov (United States)

    Fei, Minghui; Harvey, Jeffrey A; Yin, Yi; Gols, Rieta

    2017-06-01

    The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.

  17. Effects of thermal stress of protein synthesis and gene expression in Brassica napus

    International Nuclear Information System (INIS)

    Halle, J.R.; Ghosh, S.; Dumbroff, E.B.; Heikkila, J.J.

    1989-01-01

    Leaf segments of Brassica napus were exposed to 22 degrees, 35 degrees, 38 degrees or 40 degrees C for up to 4 h. Analysis of radiolabelled proteins by 2-D SDS-PAGE and fluorography revealed two major groups of heat shock proteins (HSPs). One group comprised HSPs, 70, 76 and 87, with pIs ranging from 5.7 to 6.1, whereas the second group had molecular weights ranging from 23 to 16 kD and pIs from 5.6 to 6.9. Immunoblot analysis using antibodies directed against the large (RLSU) and small (RSSU) subunits of ribulose-1,5-bisphosphate carboxylase (RUBISCO) showed that increasing temperatures from 35 degrees to 38 degrees or 40 degrees C or the duration of thermal stress from 1 to 5 h did not affect levels of the RSSU (15 kd) whereas levels of the RLSU (52 kD) fell sharply. Nevertheless, RUBISCO activity was not adversely affected at 38 degree C for periods of up to 5 h. The increase observed in HSP 70 during heat shock was transcriptionally regulated, but the decrease in the RLSU was not accompanied by any detectable change in levels of its mRNA

  18. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation.

    Science.gov (United States)

    Men, Xiao; Dong, Kang

    2013-11-01

    The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.

  19. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience.

    Science.gov (United States)

    Jarman, Catrine L; Larsen, Thomas; Hunt, Terry; Lipo, Carl; Solsvik, Reidar; Wallsgrove, Natalie; Ka'apu-Lyons, Cassie; Close, Hilary G; Popp, Brian N

    2017-10-01

    The Rapa Nui "ecocide" narrative questions whether the prehistoric population caused an avoidable ecological disaster through rapid deforestation and over-exploitation of natural resources. The objective of this study was to characterize prehistoric human diets to shed light on human adaptability and land use in an island environment with limited resources. Materials for this study included human, faunal, and botanical remains from the archaeological sites Anakena and Ahu Tepeu on Rapa Nui, dating from c. 1400 AD to the historic period, and modern reference material. We used bulk carbon and nitrogen isotope analyses and amino acid compound specific isotope analyses (AA-CSIA) of collagen isolated from prehistoric human and faunal bone, to assess the use of marine versus terrestrial resources and to investigate the underlying baseline values. Similar isotope analyses of archaeological and modern botanical and marine samples were used to characterize the local environment. Results of carbon and nitrogen AA-CSIA independently show that around half the protein in diets from the humans measured came from marine sources; markedly higher than previous estimates. We also observed higher δ 15 N values in human collagen than could be expected from the local environment. Our results suggest highly elevated δ 15 N values could only have come from consumption of crops grown in substantially manipulated soils. These findings strongly suggest that the prehistoric population adapted and exhibited astute environmental awareness in a harsh environment with nutrient poor soils. Our results also have implications for evaluating marine reservoir corrections of radiocarbon dates. © 2017 Wiley Periodicals, Inc.

  20. Development of male sterility by silencing Bcp1 gene of Arabidopsis ...

    African Journals Online (AJOL)

    Transgenic plants were phenotypically indistinguishable from nontransgenic plants and by crossing with non-transgenic fertile pollens successful seed set was observed. The Bcp1 gene was also amplified from chilies, tomato and brassica. The present study resulted in developing male sterile A. thaliana (Eco. Columbia) ...

  1. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko

    Directory of Open Access Journals (Sweden)

    D.P. Thubru

    2018-05-01

    Full Text Available Lethal and sub lethal effects of fresh and old residues of azadirachtin, spinosad, Bacillus thuringiensis var. kurstaki (Bt var. k, and deltamethrin, were evaluated at their recommended field doses against adult and immature stages of Trichogramma brassicae under in vitro conditions. The experiments were carried out at the Entomology section of Division of Crop Protection, ICAR Research Complex for NEH region, Umiam, Meghalaya, in 2012–2013. The effects of different pesticides were determined by bioassays using the residual film method, the diet contamination method, the pupal dip method and the topical application technique. The four pesticides were found harmful to adult T. brassicae after ingestion, however surface contact bioassays revealed that Bt var. k was the least toxic pesticide. Except Bt var. k, other three pesticides were found harmful also to the immature stages of T. brassicae and significantly affected parasitism potential, adult emergence, longevity of adults, and sex ratio of the progeny. Deltamethrin and azadirachtin were the most harmful, even after 15 days of application. Spinosad was found to be relatively safe to T. brassicae after 15 days of application. As Bt appeared to be the least toxic pesticide for T. brassicae, it could be used for the management of severe infestations of lepidopteran pests in cruciferous ecosystems.If essential, spinosad may be used 15 days after parasitoid release, thus minimizing the chances of parasitoid exposure. Keywords: Azadirachtin, Bacillus thuringiensis, Deltamethrin, Spinosad

  2. Epidemiology of dark leaf spot caused by Alternaria brassicicola and Alternaria brassicae in organic seed production of cauliflower

    NARCIS (Netherlands)

    Köhl, J.; Tongeren, van C.A.M.; Groenenboom-de Haas, B.H.; Hoof, van R.A.; Driessen, R.; Heijden, van der L.

    2010-01-01

    In organic seed production of Brassica vegetables, infections by Alternaria brassicicola and A. brassicae can cause severe losses of yield and seed quality. Four field experiments with or without artificial inoculation with A. brassicicola were conducted in organically managed seed-production crops

  3. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus, is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR at the mature plant stage and three QTLs for leaf resistance (LR at the seedling stage in multiple environments were mapped on nine linkage groups (LGs of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790 was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  4. Plant extracts in the control of aphids Brevicoryne brassicae (L. and Myzus persicae (SulzerExtratos vegetais no controle dos afídeos Brevicoryne brassicae (L. e Myzus persicae (Sulzer

    Directory of Open Access Journals (Sweden)

    Rafael Reginato Ávila

    2011-07-01

    Full Text Available Were accomplished the effect of plant extracts of clove basil (Ocimum gratissimum L., horsetail (Equisetum hyemale L., coriander (Coriandrum sativum L. and tobacco (Nicotiana tabacum L. on Brevicoryne brassicae (L., 1758 and Myzus persicae (Sulzer, 1776 aphids in cabbage Brassica oleracea (L.. The treatments consisted of plant extracts prepared fresh and dry (concentrations of 2.5; 5.0; and 10% and the controls insecticide acephate and water. These solutions were sprayed on cabbage discs placed on agar in Petri dishes, containing twenty adult aphids. In sequence, the Petri dishes were sealed with plastic film and this procedure was repeated for the two aphid species studied. The assessment of the number of live nymphs and adults occurred at 1, 12, 24, and 72 hours after installation. The extracts of coriander and tobacco prepared in a concentration of 10% showed toxic effects similar to the organophosphate insecticide acephate, on adults and nymphs of the aphids Brevicoryne brassicae and Myzus persicae. Coriander revealed a promising alternative that deserves detailed studies regarding the performance of its active ingredients and dosage determination in order to provide a safe herbal product to control insects.Avaliou-se o efeito de extratos vegetais de alfavaca-cravo (Ocimum gratissimum L., cavalinha (Equisetum hyemale L., coentro (Coriandrum sativum L. e fumo (Nicotiana tabacum L. sobre os pulgões Brevicoryne brassicae (L., 1758 e Myzus persicae (Sulzer, 1776 em couve Brassica oleracea (L.. Os tratamentos consistiram de extratos vegetais preparados a fresco e seco (nas concentrações de 2,5; 5,0 e 10%, do padrão inseticida acefato e de água. As soluções assim obtidas foram pulverizadas em discos de couve colocados sobre agar em placas de Petri, contendo vinte pulgões adultos. Na sequência, as placas de Petri foram vedadas com filme plástico transparente, sendo este procedimento repetido para as duas espécies de afídeos. A avalia

  5. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  6. Erosion of Brassica incana Genetic Resources: Causes and Effects

    Science.gov (United States)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  7. Selenium Accumulation Characteristics and Biofortification Potentiality in Turnip (Brassica rapa var. rapa Supplied with Selenite or Selenate

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2018-01-01

    Full Text Available Selenium (Se is an essential trace element for humans. About 70% of the regions in China, including most of the Tibetan Plateau, are faced with Se deficiency problems. Turnip is mainly distributed around the Tibetan Plateau and is one of the few local crops. In the present study, we compared the absorption and translocation differences of Se (IV selenite and Se (VI selenate in turnip. The results showed that Se treatment, either by soil addition (0.2–2 mg Se kg−1 dry soil or by foliar spraying (50–200 mg L−1 Se, could significantly increase the Se concentrations in turnips, and 0.5 mg Se (IV or Se (VI kg−1 dry matter in soils could improve the biomasses of turnips. Moreover, turnip absorbed significantly more Se (VI than Se (IV at the same concentration and also transferred much more Se (VI from roots to leaves. Based on the Se concentrations, as well as the bioconcentration factors and translocation coefficients, we considered that turnip might be a potential Se indicator plant. Subsequently, we estimated the daily Se intake for adults based on the Se concentrations in turnip roots. The results indicated that Se (IV should be more suitable as an artificial Se fertilizer for turnips, although the levels found in most samples in this study could cause selenosis to humans. In addition, we also estimated the optimum and maximum Se concentrations for treating turnips based on the linear relations between Se concentrations in turnip roots and Se treatment concentrations. The results provided preliminary and useful information about Se biofortification in turnips.

  8. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate‐reducing bacteria: A randomised crossover study

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S.; Saha, Shikha; Doleman, Joanne F.; Narbad, Arjan

    2017-01-01

    Scope We examined whether a Brassica‐rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate‐reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. Methods and results A randomised crossover study was performed with ten healthy adults who were fed a high‐ and a low‐Brassica diet for 2‐wk periods, with a 2‐wk washout phase separating the diets. The high‐Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low‐Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2‐wk Brassica‐free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. PMID:28296348

  9. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul. Ehsan, Malaysia. Accepted 20 March, 2009. Hypocotyls and shoot tips were used as explants in in vitro plant regeneration of broccoli (Brassica oleracea subsp.italica) cv. Green Marvel.

  11. Molecular characterization of some local and exotic Brassica juncea ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... 1Institute of Biotechnology and Genetic Engineering (IBGE) NWFP Agricultural University, Peshawar, Pakistan. 2Department of Plant Breeding and Genetics, NWFP Agricultural University Peshawar, Pakistan. Accepted 14 June, 2007. The production of Brassica germplasm with a wider genetic base is ...

  12. Preliminary study of Tl and Cd uptake in the heavy metal accumulating Brassica napus using the Debrecen proton microprobe

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Haag-Kerwer, A.; Povh, B.

    2003-01-01

    The high biomass producing crop plants, Brassica juncea L. and Brassica napus are very promising plant species for phytoremediation. The aim of further research is to help a better understanding of the transport mechanism within roots and roots to shoots of heavy metals, and to find out their distribution and translocation among different cell types in the root of these species. The distribution and concentration of major and trace elements was determined along the roots of Cd and Tl treated as well as control plants of Brassica napus on the ATOMKI proton microprobe. (R.P.)

  13. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann.

    Science.gov (United States)

    Li, Da-Hong; Shen, Fu-Jia; Li, Hong-Yan; Li, Wei

    2017-06-01

    The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, a kale (Brassica oleracea var. acephala f.tricolor) RACK1 gene (BoRACK1) was cloned by RT-PCR. The amino acid sequence of BoRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with AtRACK1 from Arabidopsis revealed 87.1% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that BoRACK1 was expressed in all analyzed tissues of kale and that its transcription in leaves was down-regulated by salt, abscisic acid, and H 2 O 2 at a high concentration. Overexpression of BoRACK1 in kale led to a reduction in symptoms caused by Peronospora brassicae Gaumann on kale leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PRB-1, increased 2.5-4-fold in transgenic kale, and reactive oxygen species production was more active than in the wild-type. They also exhibited increased tolerance to salt stress in seed germination. H 2 O 2 may also be involved in the regulation of BoRACK1 during seed germination under salt stress. Quantitative real-time PCR analyses showed that the transcript levels of BoRbohs genes were significantly higher in overexpression of BoRACK1 transgenic lines. Yeast two-hybrid assays showed that BoRACK1 could interact with WNK8, eIF6, RAR1, and SGT1. This study and previous work lead us to believe that BoRACK1 may form a complex with regulators of plant salt and disease resistance to coordinate kale reactions to pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  15. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    Science.gov (United States)

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  18. Evaluation of plant species for use in the control of acid sulfated soils in Paipa, Boyacá

    Directory of Open Access Journals (Sweden)

    Andrea Angélica Bernal Figueroa

    2014-07-01

    Full Text Available Acid sulfated soils are characterized by high amounts of iron and sulfur, which in presence of air are oxidized and form sulfuric horizons extremely acidic, generating environmental changes ranging from water pollution to problems associated with fertility and crop production, among others. This research was conducted in order to identify suitable plant species to control the acidity of these soils in the town of Paipa, Boyacá, Colombia. A completely randomized experimental design with 6 treatments and 3 replications was implemented in potting shed; there, the response of Beta vulgaris L. (forage beet, Brassica rapa L. (forage turnip and Raphanus sativus L. (forage radish on the acidity of sulfated acid soil, contrasted with a non-sulfated soil, was evaluated, after correction with liming. To assess the effects, pH and exchangeable acidity (H+ + Al+3 cmolc/kg were measured in the two types of soil before and after seeding ; the agronomic response of plants in each treatment was determined at the end of the growing season (120 days after seeding . On acid sulfated soils, species B. rapa, R. sativus and B. vulgaris along with the complementary use of liming as corrective induced a reduction in exchangeable acidity; B. rapa and R. sativus showed better growth potential and resistance, while B. vulgaris was affected in height and root diameter.

  19. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN.

    Science.gov (United States)

    Dhawan, Manish; Joshi, Neelam

    Beauveria bassiana, an entomopathogenic fungus, is the alternative biocontrol agent exploited against major economic crop pests. Pieris brassicae L. is an emerging pest of the Brassicaceae family. Therefore, in the present study, fungal isolates of Beauveria bassiana, viz. MTCC 2028, MTCC 4495, MTCC 6291, and NBAII-11, were evaluated for their virulence against third instar larvae of P. brassicae. Among all these fungal isolates, maximum mortality (86.66%) was recorded in B. bassiana MTCC 4495 at higher concentration of spores (10 9 conidia/ml), and the minimum mortality (30.00%) was recorded in B. bassiana MTCC 6291 at a lower concentration (10 7 conidia/ml) after ten days of treatment. The extracellular cuticle-degrading enzyme activities of fungal isolates were measured. Variability was observed both in the pattern of enzyme secretion and the level of enzyme activities among various fungal isolates. B. bassiana MTCC 4495 recorded the maximum mean chitinase (0.51U/ml), protease (1.12U/ml), and lipase activities (1.36U/ml). The minimum mean chitinase and protease activities (0.37 and 0.91U/ml, respectively) were recorded in B. bassiana MTCC 6291. The minimum mean lipase activity (1.04U/ml) was recorded in B. bassiana NBAII-11. Our studies revealed B. bassiana MTCC 4495 as the most pathogenic isolate against P. brassicae, which also recorded maximum extracellular enzyme activities, suggesting the possible roles of extracellular enzymes in the pathogenicity of B. bassiana against P. brassicae. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.