Branching processes in biology
Kimmel, Marek
2015-01-01
This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...
Koenigs function and branching processes
Tchikilev, O. G.
2001-01-01
An explicit solution of time-homogeneous pure birth branching processes is described. It gives alternative extensions for the negative binomial distribution (branching processes with immigration) and for the Furry-Yule distribution (branching processes without immigration).
Continuous-state branching processes
Li, Zenghu
2012-01-01
These notes were used in a short graduate course on branching processes the author gave in Beijing Normal University. The following main topics are covered: scaling limits of Galton--Watson processes, continuous-state branching processes, extinction probabilities, conditional limit theorems, decompositions of sample paths, martingale problems, stochastic equations, Lamperti's transformations, independent and dependent immigration processes. Some of the results are simplified versions of those in the author's book "Measure-valued branching Markov processes" (Springer, 2011). We hope these simplified results will set out the main ideas in an easy way and lead the reader to a quick access of the subject.
Branching processes in disease epidemics
Singh, Sarabjeet
Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a
Path-valued branching processes and nonlocal branching superprocesses
Li, Zenghu
2012-01-01
A family of continuous-state branching processes with immigration are constructed as the solution flow of a stochastic equation system driven by time-space noises. The family can be regarded as an inhomogeneous increasing path-valued branching process with immigration. Two nonlocal branching immigration superprocesses can be defined from the flow. We identify explicitly the branching and immigration mechanisms of those processes. The results provide new perspectives into the tree-valued Markov processes of Aldous and Pitman [Ann. Inst. H. Poincare Probab. Statist. 34 (1998), 637--686] and Abraham and Delmas [Ann. Probab. To appear].
Branching processes and neutral evolution
Taïb, Ziad
1992-01-01
The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current sta...
Workshop on Branching Processes and Their Applications
Gonzalez Velasco, Miguel; Martinez, Rodrigo; Molina, Manuel
2010-01-01
Contains papers presented at the Workshop on Branching Processes and Their Applications (WBPA09), held in Badajoz, Spain, April 20-23, 2009, which deal with theoretical and practical aspects of branching process theory
Branching process models of cancer
Durrett, Richard
2015-01-01
This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.
Branching processes with immigration and related topics
Li, Zenghu
2006-01-01
This is a survey on recent progresses in the study of branching processes with immigration, generalized Ornstein-Uhlenbeck processes and affine Markov processes. We mainly focus on the applications of skew convolution semigroups and the connections in those processes.
Residence times of branching diffusion processes
Dumonteil, E.; Mazzolo, A.
2016-07-01
The residence time of a branching Brownian process is the amount of time that the mother particle and all its descendants spend inside a domain. Using the Feynman-Kac formalism, we derive the residence-time equation as well as the equations for its moments for a branching diffusion process with an arbitrary number of descendants. This general approach is illustrated with simple examples in free space and in confined geometries where explicit formulas for the moments are obtained within the long time limit. In particular, we study in detail the influence of the branching mechanism on those moments. The present approach can also be applied to investigate other additive functionals of branching Brownian process.
Minimum disparity estimation in controlled branching processes
Gonzalez, Miguel; Minuesa, Carmen; del Puerto, Ines
2015-01-01
Minimum disparity estimation in controlled branching processes is dealt with by assuming that the offspring law belongs to a general parametric family. Under some regularity conditions it is proved that the minimum disparity estimators proposed -based on the nonparametric maximum likelihood estimator of the offspring law when the entire family tree is observed- are consistent and asymptotic normally distributed. Moreover, it is discussed the robustness of the estimators proposed. Through a si...
Branch Processes of Regular Magnetic Monopole
MO Shu-Fan; REN Ji-Rong; ZHU Tao
2009-01-01
In this paper, by making use of Duan's topological current theory, the branch process of regular magnetic monopoles is discussed in detail Regular magnetic monopoles are found generating or annihilating at the limit point and encountering, splitting, or merging at the bifurcation point and the degenerate point systematically of the vector order parameter field φ(x).Furthermore, it is also shown that when regular magnetic monopoles split or merge at the degenerate point of field function φ, the total topological charges of the regular magnetic monopoles axe still unchanged.
Branching process in a stochastic extremal model
Manna, S. S.
2009-08-01
We considered a stochastic version of the Bak-Sneppen model (SBSM) of ecological evolution where the number M of sites mutated in a mutation event is restricted to only two. Here the mutation zone consists of only one site and this site is randomly selected from the neighboring sites at every mutation event in an annealed fashion. The critical behavior of the SBSM is found to be the same as the BS model in dimensions d=1 and 2. However on the scale-free graphs the critical fitness value is nonzero even in the thermodynamic limit but the critical behavior is mean-field like. Finally ⟨M⟩ has been made even smaller than two by probabilistically updating the mutation zone, which also shows the original BS model behavior. We conjecture that a SBSM on any arbitrary graph with any small branching factor greater than unity will lead to a self-organized critical state.
A computable branching process for the Wigner quantum dynamics
Shao, Sihong
2016-01-01
A branching process treatment for the nonlocal Wigner pseudo-differential operator and its numerical applications in quantum dynamics is proposed and analyzed. We start from the discussion on two typical truncations of the nonlocal term, i.e., the $k$-truncated and $y$-truncated models. After introducing an auxiliary function $\\gamma(\\bm{x})$, the (truncated) Wigner equation is reformulated into the integral formulation as well as its adjoint correspondence, both of which can be regarded as the renewal-type equations and have transparent stochastic interpretation. We prove that the moment of a branching process happens to be the solution for the adjoint equation, which connects rigorously the Wigner quantum dynamics to the stochastic branching process, and thus a sound mathematical framework for the Wigner Monte Carlo methods is established. Within the framework, the branching process for the $y$-truncated model recovers the popular signed particle Monte Carlo method which needs a discretization of the moment...
Finite-size scaling of survival probability in branching processes
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
Near Critical Catalyst Reactant Branching Processes with Controlled Immigration
Budhiraja, Amarjit
2012-01-01
Near critical catalyst-reactant branching processes with controlled immigration are studied. The reactant population evolves according to a branching process whose branching rate is proportional to the total mass of the catalyst. The bulk catalyst evolution is that of a classical continuous time branching process; in addition there is a specific form of immigration. Immigration takes place exactly when the catalyst population falls below a certain threshold, in which case the population is instantaneously replenished to the threshold. Such models are motivated by problems in chemical kinetics where one wants to keep the level of a catalyst above a certain threshold in order to maintain a desired level of reaction activity. A diffusion limit theorem for the scaled processes is presented, in which the catalyst limit is described through a reflected diffusion, while the reactant limit is a diffusion with coefficients that are functions of both the reactant and the catalyst. Stochastic averaging principles under ...
Backbone decomposition for continuous-state branching processes with immigration
Ren, A E Kyprianou Y-X
2011-01-01
In the spirit of Duqesne and Winkel (2007) and Berestycki et al. (2011) we show that supercritical continuous-state branching process with a general branching mechanism and general immigration mechanism is equal in law to a continuous-time Galton Watson process with immigration with Poissonian dressing. The result also characterises the limiting backbone decomposition which is predictable from the work on consistent growth of Galton-Watson trees with immigration in Cao and Winkel (2010).
Statistical distributions of earthquake numbers: consequence of branching process
Kagan, Yan Y.
2010-01-01
We discuss various statistical distributions of earthquake numbers. Previously we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic, and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along t...
Branching ratio approximation for the self-exciting Hawkes process
Hardiman, Stephen J.; Jean-Philippe Bouchaud
2014-01-01
We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximisation. We employ ...
On connection between the q-processes and the branching processes allowing immigration
Imomov, A. A.
2010-01-01
In this work we consider the Branching Processes with non-generating tra- jectories in remote future. Such processes are called as Q-processes. We discover a deeper connection between the Q-processes and the Galton-Watson Branching Processes allowing Immigration. The asymptotical properties of trajectories of Q-processes are investigated. The total progeny of Q-processes is studied.
Decay parameter and related properties of 2-type branching processes
LI JunPing
2009-01-01
We consider the decay parameter, invariant measures/vectors and quasi-stationary dis-tributions for 2-type Markov branching processes. Investigating such properties is crucial in realizing life period of branching models. In this paper, some important properties of the generating functions for 2-type Markov branching q-matrix are firstly investigated in detail. The exact value of the decay parameter λC of such model is given for the communicating class C = Z+2\\ 0. It is shown that this λC can be directly obtained from the generating functions of the corresponding q-matrix. Moreover, the λC-invariant measures/vectors and quasi-distributions of such processes are deeply considered. A λC-invariant vector for the q-matrix (or for the process) on C is given and the generating functions of λC-invariant measures and quasi-stationary distributions for the process on C are presented.
Decay parameter and related properties of 2-type branching processes
2009-01-01
We consider the decay parameter, invariant measures/vectors and quasi-stationary dis- tributions for 2-type Markov branching processes. Investigating such properties is crucial in realizing life period of branching models. In this paper, some important properties of the generating functions for 2-type Markov branching q-matrix are firstly investigated in detail. The exact value of the decay parameter λC of such model is given for the communicating class C = Z+2 \\ 0. It is shown that this λC can be directly obtained from the generating functions of the corresponding q-matrix. Moreover, the λC-invariant measures/vectors and quasi-distributions of such processes are deeply considered. A λC-invariant vector for the q-matrix (or for the process) on C is given and the generating functions of λC-invariant measures and quasi-stationary distributions for the process on C are presented.
The sector constants of continuous state branching processes with immigration
Handa, Kenji
2011-01-01
Continuous state branching processes with immigration are studied. We are particularly concerned with the associated (non-symmetric) Dirichlet form. After observing that gamma distributions are only reversible distributions for this class of models, we prove that every generalized gamma convolution is a stationary distribution of the process with suitably chosen branching mechanism and with continuous immigration. For such non-reversible processes, the strong sector condition is discussed in terms of a characteristic called the Thorin measure. In addition, some connections with notion from noncommutative probability theory will be pointed out through calculations involving the Stieltjes transform.
The effect of polyglycerol sulfate branching on inflammatory processes.
Paulus, Florian; Schulze, Ronny; Steinhilber, Dirk; Zieringer, Maximilian; Steinke, Ingo; Welker, Pia; Licha, Kai; Wedepohl, Stefanie; Dernedde, Jens; Haag, Rainer
2014-05-01
In this study, the extent to which the scaffold architecture of polyglycerol sulfates affects inflammatory processes and hemocompatibility is investigated. Competitive L-selectin binding assays, cellular uptake studies, and blood compatibility readouts are done to evaluate distinct biological properties. Fully glycerol based hyperbranched polyglycerol architectures are obtained by either homopolymerization of glycidol (60% branching) or a new copolymerization strategy of glycidol with ethoxyethyl glycidyl ether. Two polyglycerols with 24 and 42% degree of branching (DB) are synthesized by using different monomer feed ratios. A perfectly branched polyglycerol dendrimer is synthesized according to an iterative two-step protocol based on allylation of the alcohol and subsequent catalytic dihydroxylation. All the polyglycerol sulfates are synthesized with a comparable molecular weight and degree of sulfation. The DB make the different polymer conjugates perform different ways. The optimal DB is 60% in all biological assays. PMID:24446246
An investigation of cognitive 'branching' processes in major depression
Williams Steven CR
2009-11-01
Full Text Available Abstract Background Patients with depression demonstrate cognitive impairment on a wide range of cognitive tasks, particularly putative tasks of frontal lobe function. Recent models of frontal lobe function have argued that the frontal pole region is involved in cognitive branching, a process requiring holding in mind one goal while performing sub-goal processes. Evidence for this model comes from functional neuroimaging and frontal-pole lesion patients. We have utilised these new concepts to investigate the possibility that patients with depression are impaired at cognitive 'branching'. Methods 11 non-medicated patients with major depression were compared to 11 matched controls in a behavioural study on a task of cognitive 'branching'. In the version employed here, we recorded participant's performance as they learnt to perform the task. This involved participants completing a control condition, followed by a working memory condition, a dual-task condition and finally the branching condition, which integrates processes in the working memory and dual-task conditions. We also measured participants on a number of other cognitive tasks as well as mood-state before and after the branching experiment. Results Patients took longer to learn the first condition, but performed comparably to controls after six runs of the task. Overall, reaction times decreased with repeated exposure on the task conditions in controls, with this effect attenuated in patients. Importantly, no differences were found between patients and controls on the branching condition. There was, however, a significant change in mood-state with patients increasing in positive affect and decreasing in negative affect after the experiment. Conclusion We found no clear evidence of a fundamental impairment in anterior prefrontal 'branching processes' in patients with depression. Rather our data argue for a contextual learning impairment underlying cognitive dysfunction in this disorder. Our
Weak Convergence Results for Multiple Generations of a Branching Process
Kuelbs, James
2009-01-01
We establish limit theorems involving weak convergence of multiple generations of critical and supercritical branching processes. These results arise naturally when dealing with the joint asymptotic behavior of functionals defined in terms of several generations of such processes. Applications of our main result include a functional central limit theorem (CLT), a Darling-Erd\\"os result, and an extremal process result. The limiting process for our functional CLT is an infinite dimensional Brownian motion with sample paths in the infinite product space $(C_0[0,1])^{\\infty}$, with the product topology, or in Banach subspaces of $(C_0[0,1])^{\\infty}$ determined by norms related to the distribution of the population size of the branching process. As an application of this CLT we obtain a central limit theorem for ratios of weighted sums of generations of a branching processes, and also to various maximums of these generations. The Darling-Erd\\"os result and the application to extremal distributions also include in...
Agriculture and Food Processes Branch program summary document
None
1980-06-01
The work of the Agriculture and Food Processes Branch within the US DOE's Office of Industrial Programs is discussed and reviewed. The Branch is responsible for assisting the food and agricultural sectors of the economy in increasing their energy efficiency by cost sharing with industry the development and demonstration of technologies industry by itself would not develop because of a greater than normal risk factor, but have significant energy conservation benefits. This task is made more difficult by the diversity of agriculture and the food industry. The focus of the program is now on the development and demonstration of energy conservation technology in high energy use industry sectors and agricultural functions (e.g., sugar processing, meat processing, irrigation, and crop drying, high energy use functions common to many sectors of the food industry (e.g., refrigeration, drying, and evaporation), and innovative concepts (e.g., energy integrated farm systems. Specific projects within the program are summarized. (LCL)
Some distance bounds of branching processes and their diffusion limits
Kammerer, Niels B
2010-01-01
We compute exact values respectively bounds of "distances" - in the sense of (transforms of) power divergences and relative entropy - between two discrete-time Galton-Watson branching processes with immigration GWI for which the offspring as well as the immigration is arbitrarily Poisson-distributed (leading to arbitrary type of criticality). Implications for asymptotic distinguishability behaviour in terms of contiguity and entire separation of the involved GWI are given, too. Furthermore, we determine the corresponding limit quantities for the context in which the two GWI converge to Feller-type branching diffusion processes, as the time-lags between observations tend to zero. Some applications to (static random environment like) Bayesian decision making and Neyman-Pearson testing are presented as well.
Dimension of branching processes and self-organized criticality
Branching processes and their application as a model of self-organized criticality are briefly reviewed. The critical dimension for this model is calculated. The differences between our result and similar ones on polymers and percolation are explained. We discuss semiquantitatively why the critical dimension of a model of self-organized criticality that includes the oscillation of the sandpile around its critical value would be different, perhaps even infinite. Finally, we conjecture that our mathematical results are more general than they seem
On the Maximum Sequence in a Critical Branching Process
Athreya, K. B.
1988-01-01
If $\\{Z_n\\}^\\infty_0$ is a critical branching process such that $E_1Z^2_1 < \\infty$, then $(\\log n)^{-1}E_iM_n \\rightarrow i$, where $E_i$ refers to starting with $Z_0 = i$ and $M_n = \\max_{0\\leq j \\leq n}Z_j$. This improves the earlier results of Weiner [9] and Pakes [7].
Statistical Distributions of Earthquake Numbers: Consequence of Branching Process
Kagan, Yan Y
2009-01-01
We discuss various statistical distributions of earthquake numbers. Previously we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic, and the negative binomial (NBD). In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold. We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogs. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogs. We also consider ap...
Limit Theorems for some Branching Measure-Valued Processes
Cloez, Bertrand
2011-01-01
We consider a particles system, where, the particles move independently according to a Markov process and branching event occurs at an inhomogeneous time. The offspring locations and their number may depend on the position of the mother. Our setting capture, for instance, the processes indexed by Galton-Watson tree. We first determine the asymptotic behaviour of the empirical measure. The proof is based on an expression of the empirical measure using an auxiliary process. This latter is not distributed as a one cell lineage, there is a biased phenomenon. Our model is a microscopic description of a random (discrete) population of individuals. We then obtain a large population approximation as weak solution of a growth- fragmentation equation. We illustrate our result with two examples. The first one is a size-structured population model which describes the mitosis and the second one can model a parasite infection.
Infinite-Scale Percolation in a New Type of Branching Diffusion Processes
Mezhlumian, A.; Molchanov, S. A.
1992-01-01
We give an account of matter and (basically) a solution of a new class of problems synthesizing percolation theory and branching diffusion processes. They led us to realizing a novel type of stochastic processes, namely branching processes with diffusion on the space of parameters distinguishing the branching `particles' each other.
Statistical distributions of earthquake numbers: consequence of branching process
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
Random self-similar trees and a hierarchical branching process
Kovchegov, Yevgeniy
2016-01-01
We study self-similarity in random binary rooted trees. In a well-understood case of Galton-Watson trees, a distribution is called self-similar if it is invariant with respect to the operation of pruning, which cuts the tree leaves. This only happens in the critical case (a constant process progeny), which also exhibits other special symmetries. We extend the prune-invariance set-up to a non-Markov situation and trees with edge lengths. In this general case the class of self-similar processes becomes much richer and covers a variety of practically important situations. The main result is construction of the hierarchical branching processes that satisfy various self-similarity constraints (distributional, mean, in edge-lengths) depending on the process parameters. Taking the limit of averaged stochastic dynamics, as the number of trajectories increases, we obtain a deterministic system of differential equations that describes the process evolution. This system is used to establish a phase transition that separ...
Age-dependent branching processes in random environments
2008-01-01
We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξn) on R+, and reproduce independently new particles according to a probability law p(ξn) on N. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
Foucart, Clément
2012-01-01
Branching processes and Fleming-Viot processes are two main models in stochastic population theory. Incorporating an immigration in both models, we generalize the results of Shiga (1990) and Birkner et al. (2005) which respectively connect the Feller diffusion with the classical Fleming-Viot process and the alpha-stable continuous state branching process with the Beta(2-alpha, alpha)-generalized Fleming-Viot process. In a recent work, a new class of probability-measure valued processes, called M-generalized Fleming-Viot processes with immigration, has been set up in duality with the so-called M-coalescents. The purpose of this article is to investigate the links between this new class of processes and the continuous-state branching processes with immigration. In the specific case of the $\\alpha$-stable branching process conditioned to be never extinct, we get that its genealogy is given, up to a random time change, by a Beta(2-alpha, alpha-1)-coalescent.
sl(2) Operators and Markov Processes on Branching Graphs
Petrov, Leonid
2011-01-01
We present a unified approach to various examples of Markov dynamics on partitions studied by Borodin, Olshanski, Fulman, and the author. Our technique generalizes the Kerov's operators first appeared in [Okounkov, arXiv:math/0002135], and also stems from the study of duality of graded graphs in [Fomin, 1994]. Our main object is a countable branching graph carrying an sl(2,C)-module of a special kind. Using this structure, we introduce distinguished probability measures on the floors of the graph, and define two related types of Markov dynamics associated with these measures. We study spectral properties of the dynamics, and our main result is the explicit description of eigenfunctions of the Markov generator of one of the processes. For the Young graph our approach reconstructs the z-measures on partitions and the associated dynamics studied by Borodin and Olshanski [arXiv:math-ph/0409075, arXiv:0706.1034]. The generator of the dynamics of [arXiv:math-ph/0409075] is diagonal in the basis of the Meixner symme...
Critical Age-Dependent Branching Markov Processes and their Scaling Limits
Krishna B Athreya; Siva R Athreya; Srikanth K Iyer
2010-06-01
This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.
Asymptotic behavior of critical primitive multi-type branching processes with immigration
Ispány, Márton
2012-01-01
Under natural assumptions a Feller type diffusion approximation is derived for critical multi-type branching processes with immigration when the offspring mean matrix is primitive (in other words, positively regular). Namely, it is proved that a sequence of appropriately scaled random step functions formed from a sequence of critical primitive multi-type branching processes with immigration converges weakly towards a squared Bessel process supported by a ray determined by the Perron vector of the offspring mean matrix.
Branching Processes and Evolution at the Ends of a Food Chain
Caldarelli, G.; Tebaldi, C.; A. L. Stella(GNSM, Univ. and INFN, Padova)
1996-01-01
In a critically self--organized model of punctuated equilibrium, boundaries determine peculiar scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous generalization of standard branching processes, extending previous mean field descriptions and yielding $\
On Branching Processes and the Early Stages of the Spread of an Epidemic
Ahmed E; Yassen M T
1998-01-01
Branching process (BP) is used to model the early stages of the spread of a sexually transmitted disease. The early stages of AIDS spread which is transmitted both homosexually and heterosexually are studied as a BP.
Multitype branching processes with immigration in random environment and polling systems
Vatutin, Vladimir
2010-01-01
For multitype branching processes with immigration evolving in a random environment and producing a final product we find the tail distribution of the size of the final product accumulated in the system for a life period. Using this result we investigate the tail distribution of the busy periods of the branching type polling systems with random service disciplines and random positive switch-over times
Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids
Todorov K.
2009-12-01
Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.
A Fluctuation Limit Theorem of Branching Processes with Immigration and Statistical Applications
Ma, Chunhua
2009-01-01
We prove a general fluctuation limit theorem for Galton-Watson branching processes with immigration. The limit is a time-inhomogeneous OU type process driven by a spectrally positive Levy process. As applications of this result, we obtain some asymptotic estimates for the conditional least-squares estimator of the offspring mean.
Estimate of Extinction Probability of Bisexual Galton-Watson Branching Process
Z. Zarabi Zadeh; R. Farnoosh
2010-01-01
In this paper a bisexual Galton-Watson branching process is studied. Monte Carlo method is purposed to calculate the extinction probability. For certain class of processes ${{Z_{n}}}$ extinction probability is calculated and simulated, when initially population size ${(Z_{0})}$ has a different value, then results of two methods are compared.
Böinghoff, Christian; Kersting, Götz
2012-01-01
Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit a particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.
Lyapunov Exponents for Branching Processes in a Random Environment: The Effect of Information
Hautphenne, Sophie; Latouche, Guy
2016-04-01
We consider multitype branching processes evolving in a Markovian random environment. To determine whether or not the branching process becomes extinct almost surely is akin to computing the maximal Lyapunov exponent of a sequence of random matrices, which is a notoriously difficult problem. We define Markov chains associated to the branching process, and we construct bounds for the Lyapunov exponent. The bounds are obtained by adding or by removing information: to add information results in a lower bound, to remove information results in an upper bound, and we show that adding less information improves the lower bound. We give a few illustrative examples and we observe that the upper bound is generally more accurate than the lower bounds.
The s-Process in Rotating Asymptotic Giant Branch Stars
Herwig, F; Lugaro, M
2003-01-01
(abridged) We model the nucleosynthesis during the thermal pulse phase of a rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core where large amounts of protons and C12 co-exist. We follow the abundance evolution in this layer, in particular that of the neutron source C13 and of the neutron poison N14. In our AGB model mixing persists during the entire interpulse phase due to the steep angular velocity gradient at the core-envelope interface. We follow the neutron production during the interpulse phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1, which is too small to produce any significant s-process. In parametric models, we then investigate the combined effects of diffusive overshooting from the convective envelope and rotationally induced mixing. Models with overshoot and weaker interpulse mixing - as perhaps expected from more slowly rotating stars - yield larger neutron exposu...
Experimental characterization of nonlinear processes of whistler branch waves
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Younes Kholousi
2013-06-01
Full Text Available Performance evaluation is the evaluation and assessment process of the existing situation. It determines how to achieve good status with the specified criteria in a specific period of time with the goal of continuous improvement of the organization performance. Data Envelopment Analysis (DEA is one of the most effective and popular ways to evaluate performance. The basic DEA model does not rank overall and only classifies the options into two groups: efficient and inefficient. However, over the past 10 years, many efforts have been made to classify the options completely with the DEA. This research is another effort to use the concept of DEA in a complete ranking of options by one of the most common methods of multi-criteria decision making, Analytical Hierarchy Process (AHP. AHP/DEA model which is investigated in this research is comprised of two stages. In this study, first the criteria are measured in comparison to each other and the paired comparisons matrix is obtained, using data envelopment analysis. Then, the most efficient branch is determined, using the Analytical Hierarchy Process. Performance evaluation of branches is carried out based on the input and output values. In this study, four input criteria (cost of movable property, labor costs, administrative costs and the number of branch personnel and three output criteria (deposits, granted facilities and branch profits are used to evaluate the efficiency of bank branches in the period of Aban 1384 until Day 1385 for sixteen bank branches in Iran's Sistan and Baluchistan province, using WinQSB and Expert Choice software and the AHP/DEA model. Results showed that the three branches Alavi, Central and Joushkaran have the ranks highest weight respectively. In addition, the results indicated that the method of AHP/DEA is an efficient method for evaluating the performance and can improve the weaknesses of traditional DEA method.
Matsumoto, T.; Aizawa, Y.
1999-11-01
A stochastic branching process model of phylogeny with niche space and interactions among species is considered. For an intermediate interaction range, the time series of diversity has long periods of stasis divided by periods of rapid increase. The concept of monophyletic size is introduced, and it is shown that the size distribution obeys Zipf's law.
Stochastic Equations for Two-type Continuous-state Branching Processes with Immigration
Ru Gang MA
2013-01-01
A two-dimensional stochastic integral equation system with jumps is studied.We first prove its unique weak solution is a two-type continuous-state branching process with immigration.Then the comparison property of the solution is established.These results imply the existence and uniqueness of the strong solution of the stochastic equation system.
Variance estimators in critical branching processes with non-homogeneous immigration
Rahimov, Ibrahim
2012-01-01
The asymptotic normality of conditional least squares estimators for the offspring variance in critical branching processes with non-homogeneous immigration is established, under moment assumptions on both reproduction and immigration. The proofs use martingale techniques and weak convergence results in Skorokhod spaces.
Some Properties of Markov Dual Branching Process with von Neumann Algebras
ZHANG Yi-jin
2014-05-01
Full Text Available In this paper，with introduction of the theory of operator semigroup，some properties of Q-Matrix and minimal Q-function of Markov dual branching process are studied by the method of analysis and algebras. Some important results are obtained,such as Dual Branching Q-Matrix is honest,substochastic monotone,regular,zero-exit and dual；minimal Q-function of Markov dual branching matrix is unique and honest，not stochastic monotone，dual；M is von Neumann algebra，M*sa is predual M* of M，T is a Markov integrated semigroup on M*，g∈M*+,η∈R,such that # ,then the cone M*+ of positive normal linear forms on M is strongly normal in M*sa .(# represents formula
A Lamperti type representation of Continuous-State Branching Processes with Immigration
Caballero, Ma Emilia; Bravo, Gerónimo Uribe
2010-01-01
Guided by the relationship between the breadth-first walk of a rooted tree and its sequence of generation sizes, we extend the Lamperti representation of continuous-state branching processes to allow immigration. The representation is obtained by solving a random ordinary differential equation defined by a pair of independent L\\'evy processes. Stability of the solutions is studied and gives, in particular, limit theorems (of a type previously studied by Grimvall, Kawazu and Watanabe, and Li) and a simulation scheme for continuous-state branching processes with immigration. We further apply our stability analysis to extend Pitman's limit theorem concerning Galton-Watson processes conditioned on total population size to more general offspring laws.
The Effectiveness Analysis of Waiting Processes in the Different Branches of a Bank by Queue Model
Abdullah ÖZÇİL
2015-06-01
Full Text Available Despite the appreciable increase in the number of bank branches every year, nowadays queues for services don’t decrease and even become parts of our daily lives. By minimizing waiting processes the least, increasing customer satisfaction should be one of branch managers’ main goals. A quick and also customer oriented service with high quality is the most important factor for customer loyalty. In this study, Queueing theory, one of Operation Research techniques, is handled and in application, the data are obtained related to waiting in queue of customer in six different branches of two banks operating in Denizli and then they are analyzed by Queueing theory and also calculated the average effectiveness of the system. The study’s data are obtained by six branches of two banks called as A1, A2, A3, B1, B2 and B3. At the end of study it is presented to the company some advices that can bring benefits to the staff and customers. In this study, Queueing theory, one of Operation Research techniques, is handled and in application, the data are obtained related to waiting in queue of customer in three different branches of a bank operating in Denizli and then they are analyzed by Queueing theory and also calculated the average effectiveness of the system. The study’s data are obtained by three branches of the bank called A1, A2 and A3. At last it is presented to the company some advices that can bring more benefits to the staff and clients.
Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.
2014-03-01
Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.
Sensitivity analysis of a branching process evolving on a network with application in epidemiology
Hautphenne, Sophie; Delvenne, Jean-Charles; Blondel, Vincent D
2015-01-01
We perform an analytical sensitivity analysis for a model of a continuous-time branching process evolving on a fixed network. This allows us to determine the relative importance of the model parameters to the growth of the population on the network. We then apply our results to the early stages of an influenza-like epidemic spreading among a set of cities connected by air routes in the United States. We also consider vaccination and analyze the sensitivity of the total size of the epidemic with respect to the fraction of vaccinated people. Our analysis shows that the epidemic growth is more sensitive with respect to transmission rates within cities than travel rates between cities. More generally, we highlight the fact that branching processes offer a powerful stochastic modeling tool with analytical formulas for sensitivity which are easy to use in practice.
Xu, Jason; Minin, Vladimir N.
2015-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible...
On SDE associated with continuous-state branching processes conditioned to never be extinct
Fittipaldi, M C
2012-01-01
We study the pathwise description of a (sub-)critical continuous-state branching process (CSBP) conditioned to be never extinct, as the solution to a stochastic differential equation driven by Brownian motion and Poisson point measures. The interest of our approach, which relies on applying Girsanov theorem on the SDE that describes the unconditioned CSBP, is that it points out an explicit mechanism to build the immigration term appearing in the conditioned process, by randomly selecting jumps of the original one. These techniques should also be useful to represent more general h-transforms of diffusion-jump processes.
2008-01-01
We consider a modified Markov branching process incorporating with both state-independent immigration and instantaneous resurrection.The existence criterion of the process is firstly considered.We prove that if the sum of the resurrection rates is finite,then there does not exist any process.An existence criterion is then established when the sum of the resurrection rates is infinite.Some equivalent criteria,possessing the advantage of being easily checked,are obtained for the latter case.The uniqueness criterion for such process is also investigated.We prove that although there exist infinitely many of them,there always exists a unique honest process for a given q-matrix.This unique honest process is then constructed.The ergodicity property of this honest process is analysed in detail.We prove that this honest process is always ergodic and the explicit expression for the equilibrium distribution is established.
LI JunPing; CHEN AnYue
2008-01-01
We consider a modified Markov branching process incorporating with both stateindependent immigration and instantaneous resurrection. The existence criterion of the process is firstly considered. We prove that if the sum of the resurrection rates is finite, then there does not exist any process. An existence criterion is then established when the sum of the resurrection rates is infinite.Some equivalent criteria, possessing the advantage of being easily checked, are obtained for the latter case. The uniqueness criterion for such process is also investigated. We prove that although there exist infinitely many of them, there always exists a unique honest process for a given q-matrix. This unique honest process is then constructed. The ergodicity property of this honest process is analysed in detail.We prove that this honest process is always ergodic and the explicit expression for the equilibrium distribution is established.
Life spans of a Bellman-Harris branching process with immigration
One considers two schemes of the Bellman-Harris process with immigration when a) the lifetime of the particles is an integral-valued random variable and the immigration is defined by a sequence of independent random variables; b) the distribution of the lifetime of the particles is nonlattice and the immigration is a process with continuous time. One investigates the properties of the life spans of such processes. The results obtained here are a generalization to the case of Bellman-Harris processes of the results of A.M. Zubkov, obtained for Markov branching processes. For the proof one makes use in an essential manner of the known inequalities of Goldstein, estimating the generating function of the Bellman-Harris process in terms of the generating functions of the imbedded Galton-Watson process
Asymptotic regimes for the partition into colonies of a branching process with emigration
Bertoin, Jean
2009-01-01
We consider a spatial branching process with emigration in which children either remain at the same site as their parents or migrate to new locations and then found their own colonies. We are interested in asymptotics of the partition of the total population into colonies for large populations with rare migrations. Under appropriate regimes, we establish weak convergence of the rescaled partition to some random measure that is constructed from the restriction of a Poisson point measure to a certain random region, and whose cumulant solves a simple integral equation.
The Branch Process of Skyrmions in the Fractional Quantum Hall Effect
DUAN Yi-Shi; ZHANG Xiu-Ming; TIAN Miao
2005-01-01
@@ The branch process of the skyrmions in the fractional quantum Hall effect is studied from the φ-mapping topo logical current. It is shown that there exists a field ζ whose Hopf indices and Brouwer degrees characterize thetopological structure of the skyrmions. Based on the bifurcation theory of the φ-mapping theory, it is found that the skyrmions can be generated or annihilated at the limit points and they encounter, split or merge at the bifurcation points of the new field ζ.
A Note on Multitype Branching Process with Bounded Immigration in Random Environment
Hua Ming WANG
2013-01-01
In this paper,we study the total number of progeny,W,before regenerating of multitype branching process with immigration in random environment.We show that the tail probability of |W| is of order t-κ as t → ∞,with κ some constant.As an application,we prove a stable law for (L-1) random walk in random environment,generalizing the stable law for the nearest random walk in random environment (see "Kesten,Kozlov,Spitzer:A limit law for random walk in a random environment.Compositio Math.,30,145-168 (1975)").
The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni
Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...
Neutron capture at the s-process branching points $^{171}$Tm and $^{204}$Tl
Branching points in the s-process are very special isotopes for which there is a competition between the neutron capture and the subsequent b-decay chain producing the heavy elements beyond Fe. Typically, the knowledge on the associated capture cross sections is very poor due to the difficulty in obtaining enough material of these radioactive isotopes and to measure the cross section of a sample with an intrinsic activity; indeed only 2 out o the 21 ${s}$-process branching points have ever been measured by using the time-of-flight method. In this experiment we aim at measuring for the first time the capture cross sections of $^{171}$Tm and $^{204}$Tl, both of crucial importance for understanding the nucleosynthesis of heavy elements in AGB stars. The combination of both (n,$\\gamma$) measurements on $^{171}$Tm and $^{204}$Tl will allow one to accurately constrain neutron density and the strength of the 13C(α,n) source in low mass AGB stars. Additionally, the cross section of $^{204}$Tl is also of cosmo-chrono...
On the Limit Distributions of Continuous-State Branching Processes with Immigration
Keller-Ressel, Martin
2011-01-01
We consider the class of continuous-state branching processes with immigration (CBI-processes), introduced by Kawazu and Watanabe [1971], and give a deterministic characterisation for the convergence of a CBI-process to a limit distribution L, which also turns out to be the stationary distribution of the CBI-process, as time tends to infinity. We give an explicit description of the Levy-Khintchine triplet of L in terms of the characteristic triplets of the Levy subordinator and the spectrally positive Levy process, which arise in the definition of the CBI-process and determine it uniquely. We show that the Levy density of L is given by the generator of the Levy subordinator applied to the scale function of the spectrally positive Levy process. This formula allows us to describe the support of L and characterise the absolute continuity and the asymptotic behavior of the density of L at the boundary of the support. Finally we show that the class of limit distributions of CBI-processes is strictly larger (resp. ...
The (n, α) Reaction in the s-process Branching Point 59Ni
Weiß, C; Griesmayer, E.; Andrzejewski, J.; Badurek, G.; Chiaveri, E.; Dressler, R.; Ganesan, S.; Jericha, E.; Käppeler, F.; Koehler, P.; Lederer, C.; Leeb, H.; Marganiec, J.; Pavlik, A.; Perkowski, J.; Rauscher, T.; Reifarth, R.; Schumann, D.; Tagliente, G.; Vlachoudis, V.; Altstadt, S.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D.G.; Kadi, Y.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Leong, L.S.; Losito, R.; Mallick, A.; Manousos, A.; Martínez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Plompen, A.; Praena, J.; Quesada, J.M.; Riego, A.; Robles, M.S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Wright, T.; Žugec, P.
The (n, α) reaction in the radioactive 59Ni is of relevance in nuclear astrophysics as 59Ni can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the n_TOF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the 59Ni(n, α)56Fe cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here.
The (n, α) Reaction in the s-process Branching Point 59Ni
The (n, α) reaction in the radioactive 59Ni is of relevance in nuclear astrophysics as 59Ni can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the nTOF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the 59Ni(n, α)56Fe cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here
The (n, $\\gamma$) reaction in the s-process branching point $^{59}$Ni
We propose to measure the $^{59}$Ni(n,$\\gamma$)$^{56}$Fe cross section at the neutron time of flight (n TOF) facility with a dedicated chemical vapor deposition (CVD) diamond detector. The (n, ) reaction in the radioactive $^{59}$Ni is of relevance in nuclear astrophysics as it can be seen as a rst branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. There is a strong discrepancy between available experimental data and the evaluated nuclear data les for this isotope. The aim of the measurement is to clarify this disagreement. The clear energy separation of the reaction products of neutron induced reactions in $^{59}$Ni makes it a very suitable candidate for a rst cross section measurement with the CVD diamond detector, which should serve in the future for similar measurements at n_TOF.
Conditional limit theorems for intermediately subcritical branching processes in random environment
Afanasyev, Valeriy; Kersting, Götz; Vatutin, Vladimir
2011-01-01
For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of 'bottleneck' behavior appears under the annealed approach only in the intermediately subcritical case.
Upper large deviations for Branching Processes in Random Environment with heavy tails
Bansaye, Vincent
2010-01-01
Branching Processes in a Random Environment (BPREs) $(Z_n:n\\geq0)$ are a generalization of Galton Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. We determine here the upper large deviation of the process when the reproduction law may have heavy tails. The behavior of BPREs is related to the associated random walk of the environment, whose increments are distributed like the logarithmic mean of the offspring distributions. We obtain an expression of the upper rate function of $(Z_n:n\\geq0)$, that is the limit of $-\\log \\mathbb{P}(Z_n\\geq e^{\\theta n})/n$ when $n\\to \\infty$. It depends on the rate function of the associated random walk of the environment, the logarithmic cost of survival $\\gamma:=-\\lim_{n\\to\\infty} \\log \\mathbb{P}(Z_n>0)/n$ and the polynomial decay $\\beta$ of the tail distribution of $Z_1$. We give interpretations of this rate function in terms of the least costly ways for the process $(Z_n: n \\geq 0)$ of attaining extraordinarily large va...
Cannon, Brian; Kachroo, Aashiq H; Jarmoskaite, Inga; Jayaram, Makkuni; Russell, Rick
2015-09-11
Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation. PMID:26209636
Nuclear correlations and neutrino emissivity from the neutron branch of the modified Urca process
Dehghan Niri, A.; Moshfegh, H. R.; Haensel, P.
2016-04-01
The neutrino emissivity from the neutron branch of the modified Urca process is calculated. The nuclear correlation effects are taken into account by employing the correlation functions extracted from the lowest-order constrained variational (LOCV) method applied to asymmetric nuclear matter. Two-body nucleon interaction is modeled by a realistic Argonne AV18 potential. In order to get consistency with semiempirical saturation parameters of nuclear matter and the existence of 2 M⊙ pulsars, we add a phenomenological Urbana UIX three-body potential to the nucleon Hamiltonian and apply a newly formulated version of the LOCV method that allows for three-body nucleon interactions. We find that at fixed temperature neutrino emissivity is a (weakly) decreasing function of density, due to quenching of the contribution from tensor correlations with increasing density. This is in variance with all previous works. We also find that three-body forces allow for the opening of the direct Urca process at nucleon density 0.3 fm-3 .
The usual mathematical formulation of s-process branching due to competition between neutron capture and beta decay is generalized to include brief periodic neutron-exposure episodes separated by much longer neutron-free interpulse periods. Such neutron exposures seem to be a natural result of the stellar evolution of the helium shell-flashing stage of a wide range of intermediate-mass stars. The complete solutions to the coupled s-process branching networks are developed, and it is shown that the decay of the unstable branch nuclei between neutron irradiations allows the mean s-process neutron flux in such a pulsed environment to be considerably larger than that for a single continuous-exposure event. In addition to these considerations, the question of isomeric branching due to direct population of long-lived metastable states by neutron capture is also discussed. Many such isomeric states of importance to the s-process are located and the changes in the traditional branching arguments brought about by such nonthermal branching are quantitatively examined. So important is the question of whether or not these isomeric states can survive the stellar interior without being quickly brought into thermal equilibrium with their respective ground states, that an extensive calculation of the enhancement of spontaneous radiative transition rates due to Coulomb collisions is undertaken. The complete general theory of thermonuclear Coulomb de-excitation by the surrounding stellar ions is developed for arbitrary multipolarity transitions among the nuclear excited states. These calculations are then specialized to examine the de-excitation of the important long-lived s-process isomeric states
H.L. Yang; D.C. Kang; Z.L. Zhang; X.H. Piao; Z.D. Shi
2001-01-01
Shear-extrusion process and its forming parameters are proposed, whilst its laborsae ing characteristic is utilized to forge large-size shutoff valve body on middle-due pre ss.This new process is intended for the manufacture of large-size forged tubular components with branches on middle-due press. Experiments are carried out and proeessing parameters are obtained regarding the shear-extrusion process of a large-size shutoff valve body. Deformation and metal flow in the shear-extrnsion process are investigated. In order to verify the laborsaving characteristic of this new procss some contrastive experiments of extrusion foree are performed between shear-extrusion and upsetting-extrusion for forming tubular components with branches. Based on rigidplastic FEM a plane-strain model is established to analyze shear-extrusion process of tubular components with branches. The analysis results by 2-dimensions FEM are comparatively quite well consistent with those of experiments. Both simulated anl etperimental results show that this new forming process is feasible for forging large-size tubular components with branches on middle-due press.
Measurements of conversion electrons in the s-process branching point nucleus 176Lu
Battaglia, A.; Tan, W.; Avetisyan, R.; Casarella, C.; Gyurijinyan, A.; Manukyan, K. V.; Marley, S. T.; Nystrom, A.; Paul, N.; Siegl, K.; Smith, K.; Smith, M. K.; Strauss, S. Y.; Aprahamian, A.
2016-05-01
Conversion coefficients, gamma-gamma and gamma-electron coincidences were measured in the s-process branching point nucleus 176Lu . Our goal was to determine the multipolarities of the γ -ray transitions that connect the high and low K states of 176Lu . This 176Lu nucleus has a long-lived ground state ( K=7- of 37.6Gy, a short-lived isomeric state ( K=0- at 122.8keV with half-life of 3.6h, as well as a 58μs isomer at 1588keV ( K=14+ . The excitation structure of this nucleus contains bands of intermediate spins of both positive and negative parities. The intermediate states can under certain stellar temperatures completely change the equilibrium between the isomer and ground state of 176Lu and change the abundance of this nucleus. We populated 37 previously known levels in this nucleus via the 176Yb ( p, n reaction and measured 42 conversion coefficients for γ -ray transitions including 17 of them for the first time.
Growth of Preferential Attachment Random Graphs Via Continuous-Time Branching Processes
Krishna B Athreya; Arka P Ghosh; Sunder Sethuraman
2008-08-01
Some growth asymptotics of a version of `preferential attachment’ random graphs are studied through an embedding into a continuous-time branching scheme. These results complement and extend previous work in the literature.
THE EFFECTS OF ROTATION ON s-PROCESS NUCLEOSYNTHESIS IN ASYMPTOTIC GIANT BRANCH STARS
In this paper, we analyze the effects induced by rotation on low-mass asymptotic giant branch stars. We compute two sets of models, M = 2.0 M☉ at [Fe/H] = 0 and M = 1.5 M☉ at [Fe/H] = –1.7, by adopting main-sequence rotation velocities in the range 0-120 km s–1. At high metallicity, we find that the Goldreich-Schubert-Fricke instability, active at the interface between the convective envelope and the rapid rotating core, contaminates the 13C-pocket (the major neutron source) with 14N (the major neutron poison), thus reducing the neutron flux available for the synthesis of heavy elements. As a consequence, the yields of heavy-s elements (Ba, La, Nd, Sm) and, to a lesser extent, those of light-s elements (Sr, Y, Zr) decrease with increasing rotation velocities up to 60 km s–1. However, for larger initial rotation velocities, the production of light-s and, to a lesser extent, that of heavy-s, begins again to increase, due to mixing induced by meridional circulations. At low metallicity, the effects of meridional circulations are important even at rather low rotation velocity. The combined effect of the Goldreich-Schubert-Fricke instability and meridional circulations determines an increase of light-s and, to a lesser extent, heavy-s elements, while lead is strongly reduced. For both metallicities, the rotation-induced instabilities active during the interpulse phase reduce the neutron-to-seed ratio, so that the spectroscopic indexes [hs/ls] and [Pb/hs] decrease by increasing the initial rotation velocity. Our analysis suggests that rotation could explain the spread in the s-process indexes, as observed in s-process enriched stars at different metallicities
Neutron capture cross sections of the krypton isotopes and the s-process branching at 79Se
The input data for an analysis of the s-process branching at 79Se have been significantly improved. The neutron capture cross sections for the stable krypton isotopes (except 86Kr) were measured between 3 and 240 keV neutron energy. In addition, statistical model calculations of the (n,γ)-cross sections for all isotopes involved in this branching were performed. With these data and with other experimental results from literature a recommended set of Maxwellian average cross sections was established in the mass region 77< A<85. The relevant decay parameters of the involved unstable nuclei and the parameters for the s-process model are discussed as well. On this basis the following aspects are investigated: the temperature during s-process, the decomposition into s- and r-process contributions and the solar krypton abundance. (orig.)
Adamec, Lubomír
2011-01-01
Roč. 51, č. 1 (2011), 133-148. ISSN 0079-2047 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plant * branching characteristics * mathematical model Subject RIV: EF - Botanics Impact factor: 0.833, year: 2011
Macredie, RD; Patel, N.
2011-01-01
This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here (////BURA web address here). Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited. Purpose – The twin aims of this paper are to explore the differences in the consumption process between the traditional in-branch and web-based (e-mortgage) service channels and how ...
Revisiting the upper bounding process in a safe Branch and Bound algorithm
Goldsztejn, Alexandre; Lebbah, Yahia; Michel, Claude; Rueher, Michel
2008-01-01
Finding feasible points for which the proof succeeds is a critical issue in safe Branch and Bound algorithms which handle continuous problems. In this paper, we introduce a new strategy to compute very accurate approximations of feasible points. This strategy takes advantage of the Newton method for under-constrained systems of equations and inequalities. More precisely, it exploits the optimal solution of a linear relaxation of the problem to compute efficiently a promising upper bound. Firs...
Revisiting the upper bounding process in a safe Branch and Bound algorithm
Goldsztejn, Alexandre; Michel, Claude; Rueher, Michel
2008-01-01
Finding feasible points for which the proof succeeds is a critical issue in safe Branch and Bound algorithms which handle continuous problems. In this paper, we introduce a new strategy to compute very accurate approximations of feasible points. This strategy takes advantage of the Newton method for under-constrained systems of equations and inequalities. More precisely, it exploits the optimal solution of a linear relaxation of the problem to compute efficiently a promising upper bound. First experiments on the Coconuts benchmarks demonstrate that this approach is very effective.
A dynamical-system picture of a simple branching-process phase transition
Williams, David
2010-01-01
This paper develops ideas from a previous paper described as `an appetizer for non-linear Wiener--Hopf theory', but is completely independent of that paper. It again considers only the simplest possible case in which the underlying motion of the branching particles is described by a two-state Markov chain. Key generating functions provide solutions of a simple two-dimensional dynamical system, and the main interest is in the way in which Probability Theory and ODE theory complement each other. ODE pictures convey rather strikingly a simple phase transition. No knowledge of either ODE theory or Wiener--Hopf theory is assumed.
Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.
2015-01-01
Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of
By the use of the Poisson transformation or the method of difference, we obtain a differential-difference equation from the Fokker-Planck equation for the Glauber-Lachs and Perina-McGill formula. It is found that a resulting equation is a same type equation of the QCD branching processes. From solutions in these equations, we can infer possible mechanisms for hadronization: The randomization in stochastic theory seems to be a plausible procedure. Some data( diffractive KNO scaling distribution and that of a single jet in e+e- annihilations) are analysed in our scheme. (author)
Dillmann, I; Käppeler, F; Fästermann, T; Knie, K; Korschinek, G; Poutivtsev, M; Rugel, G; Wallner, A; Rauscher, T
2008-01-01
Although $^{79}$Se represents an important branching in the weak s process, the stellar neutron capture cross sections to this isotope have not yet been measured experimentally. In this case, experimental data is essential for evaluating the important branching in the s-process reaction path at $^{79}$Se. The total cross section of $^{78}$Se at a stellar energy of kT = 25 keV has been investigated with a combination of the activation technique and accelerator mass spectrometry (AMS), since offline decay counting is prohibitive due to the long terrestrial half life of $^{79}$Se (2.80$\\pm$0.36 $\\times10^5$ y) as well as the absence of suitable $\\gamma$-ray transitions. The preliminary result for the total Maxwellian averaged cross section is $_{30 keV}$= 60.1$\\pm$9.6 mbarn, significantly lower than the previous recommended value. In a second measurement, also the partial cross section to the 3.92 min-isomer was determined via $\\gamma$-spectroscopy and yielded $_{30 keV}$(part.)= 42.0$\\pm$2.0 mbarn.
PROCESS PERFORMANCE LASER CUTTING THROUGH PRACTICE DRY BRANCH IN METAL-MECHANIC
Deivis Zismann
2015-12-01
Full Text Available The quest for optimization and quality of products has caused many organizations to eliminate the inefficiencies of their production processes, to reduce costs and increase profitability so that they can ensure their survival in the current economic scenario. Thus, it is necessary to use methods and techniques that help in getting better results. Minimize waste and promote overall product quality has become one of the main goals of the organizations. This study is Bibliographically the concept of Lean Manufacturing (Lean Manufacturing, which focused on eliminating waste, served as the basis for this study, which through an action - research aimed to applying lean practices for performance improvement the laser cutting process for an industry of the metalmechanic sector. The results show that the identification of the main sources of waste and the constant search for its elimination brought productivity advantages for the company, by reducing the processes of machines and minimize production costs time. With this, the company started to produce more, and improve their processes in the proper use of available resources.
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Jovanović Miomir Lj.
2012-01-01
Full Text Available The paper presents the results of the analysis of pipe branch A6 to feed the Hydropower Plant ”Perućica” with integrated action Pelton turbines. The analysis was conducted experimentally (tensometric and numerically. The basis of the experimental research is the numerical finite element analysis of pipe branch A6 in pipeline C3. Pipe branch research was conducted in order to set the experiment and to determine extreme stress states. The analysis was used to perform the determination of the stress state of a geometrically complex assembly. This was done in detail as it had never been done before, even in the design phase. The actual states of the body pipe branch were established, along with the possible occurrence of water hammer accompanied by the appearance of hydraulic oscillation. This provides better energetic efficiency of the turbine devices. [Projekat Ministarstva nauke Republike Srbije, br. TR35049 and br. TR 33040
Biggins, J D
2010-01-01
Results on the behaviour of the rightmost particle in the $n$th generation in the branching random walk are reviewed and the phenomenon of anomalous spreading speeds, noticed recently in related deterministic models, is considered. The relationship between such results and certain coupled reaction-diffusion equations is indicated.
Kirstein, Lynn M.; Mellors, John W.; Rinaldo, Charles R.; Margolick, Joseph B.; Giorgi, Janis V.; Phair, John P.; Dietz, Edith; Gupta, Phalguni; Sherlock, Christopher H.; Hogg, Robert; J. S. G. Montaner; Muñoz, Alvaro
1999-01-01
We conducted two studies to determine the potential influence of delays in blood processing, type of anticoagulant, and assay method on human immunodeficiency virus type 1 (HIV-1) RNA levels in plasma. The first was an experimental study in which heparin- and EDTA-anticoagulated blood samples were collected from 101 HIV-positive individuals and processed to plasma after delays of 2, 6, and 18 h. HIV-1 RNA levels in each sample were then measured by both branched-DNA (bDNA) and reverse transcr...
The Limit Properties of the Bisexual Branching Process with Two Kinds of Immigration%双移民两性分支过程的极限性质
刘宣
2015-01-01
考虑同时带个体移民和配对单元移民的两性分支过程，称为双移民两性分支过程。本文首先介绍这种两性分支过程模型，然后讨论过程的状态性质，在一定的条件下得到过程的正常返性，最后研究第n代每个配对单元平均增长率的极限行为并利用马氏链的相关结论给出过程的极限性质。%In this paper,we consider a bisexual branching process with individual immigration and unit immigration called two types of immigration.First we introduce this bisexual Galton-Watson branching processes, then discuss the properties of its state space and ob-tained positive recurrent in some conditions.Finally thelimit behaviour of the mean growth rate per mating unit is studied and the limit properties for the process is investigated by using relevant conclusions of Markovchain.
Schindler, Christoph; Tamke, Martin; Tabatabai, Ali; Bereuter, Martin
Within a 8-day workshop 19 students of KADK explored the performative potential of naturally angled and forked wood – a desired material until 19th century, but swept away by industrialization and its standardization of processes and materials. The workshop questioned whether contemporary informa...
Mechanical properties of branched actin filaments
Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette
2015-01-01
Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...
The objective of the project is to develop computer optimization and simulation methodologies for the design of economical chemical manufacturing processes with a minimum of impact on the environment. The computer simulation and optimization tools developed in this project can be...
Soudackov, Alexander V; Hazra, Anirban; Hammes-Schiffer, Sharon
2011-10-14
A theoretical approach for the multidimensional treatment of photoinduced proton-coupled electron transfer (PCET) processes in solution is presented. This methodology is based on the multistate continuum theory with an arbitrary number of diabatic electronic states representing the relevant charge distributions in a general PCET system. The active electrons and transferring proton(s) are treated quantum mechanically, and the electron-proton vibronic free energy surfaces are represented as functions of multiple scalar solvent coordinates corresponding to the single electron and proton transfer reactions involved in the PCET process. A dynamical formulation of the dielectric continuum theory is used to derive a set of coupled generalized Langevin equations of motion describing the time evolution of these collective solvent coordinates. The parameters in the Langevin equations depend on the solvent properties, such as the dielectric constants, relaxation time, and molecular moment of inertia, as well as the solute properties. The dynamics of selected intramolecular nuclear coordinates, such as the proton donor-acceptor distance or a torsional angle within the PCET complex, may also be included in this formulation. A surface hopping method in conjunction with the Langevin equations of motion is used to simulate the nonadiabatic dynamics on the multidimensional electron-proton vibronic free energy surfaces following photoexcitation. This theoretical treatment enables the description of both sequential and concerted mechanisms, as well as more complex processes involving a combination of these mechanisms. The application of this methodology to a series of model systems corresponding to collinear and orthogonal PCET illustrates fundamental aspects of these different mechanisms and elucidates the significance of proton vibrational relaxation and nonequilibrium solvent dynamics. PMID:22010706
Chang, We-Fu; Wong, Chi-Fong; Xu, Fanrong
2016-01-01
We considered a neutrino mass generating model which employs a scalar leptoquark, $\\Delta$, and a scalar diquark, $S$. The new scalars $\\Delta$ and $S$ carry the standard model $SU(3)_c\\times SU(2)_L\\times U(1)_Y$ quantum numbers $(3,1,-1/3)$ and $(6,1,-2/3)$ respectively. The neutrino masses are generated at the two-loop level similar to that in the Zee-Babu model\\cite{Zee-Babu}. And $\\Delta/S$ plays the role of the doubly/singly charged scalar in the Zee-Babu model. With a moderate working assumption that the magnitudes of the six Yukawa couplings between $S$ and the down-type quarks are of the same order, strong connections were found between the neutrino masses and the charged lepton flavor violating(cLFV) processes. In particular, $Z\\rightarrow \\overline{l} l'$, and $l\\rightarrow l' \\gamma$ were studied and it was found that some portions of the parameter space of this model are within the reach of the planned cLFV experiments. Interesting lower bounds on the cLFV processes were predicted that $B(Z\\right...
This work is dedicated to the determination of a limit on the branching ratio of the rare process b -> Sγ, from Z -> bb-bar events collected at LEP with the L3 detector during collisions at √S ∼ MZ, MZ ± 2 GeV. The rare decay of the b quark, b -> sγ, is forbidden at tree level and occurs, in the Standard Model, through one loop diagram (called penguin diagram) which makes it sensitive to contributions of new particles such as charged Higgs bosons or supersymmetric particles. The theoretical branching ratio is given in Standard Model by Br(b->Sγ) (2.55 ± 0.58) x 10-4. The aim of this study was to observe, in the inclusive mode, a possible excess of the rate of the b -> sγ transition, compare to the expected value. The selection of b hadrons from Z hadronic decays is achieved by the use of both an algorithm based on a multidimensional analysis of the event shape and an algorithm based on the impact parameter of the tracks. The energetic photon is selected by using a π0/γ discriminator based on the transverse shape of its electromagnetic shower. The s-jet reconstruction is achieved by the use of an iterative method with search of the minimum invariant mass. It allows the determination of the b hadron rest frame, which picks near 2.5 GeV, is used in a new method of signal events simulation. No excess of event is observed in the data after the analysis of 1.5 million of Z decays. The limit obtained, when the systematic errors are included, is: Br(b -> sγ) ≤9.2 x 104 at 90% confidence level. This result is consistent with the Standard Model expectation. (author)
Hosmer, P; Aprahamian, A; Arndt, O; Clement, R R C; Estrade, A; Farouqi, K; Kratz, K -L; Liddick, S N; Lisetskiy, A F; Mantica, P F; Möller, P; Mueller, W F; Montes, F; Morton, A C; Ouellette, M; Pellegrini, E; Pereira, J; Pfeiffer, B; Reeder, P; Santi, P; Steiner, M; Stolz, A; Tomlin, B E; Walters, W B; Wöhr, A; 10.1103/PhysRevC.82.025806
2010-01-01
The {\\beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {\\beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {\\beta}-delayed neutron emission (Pn values) for 74Co (18 +/- 15%) and 75-77Ni (10 +/- 2.8%, 14 +/- 3.6%, and 30 +/- 24%, respectively) for the first time, and remeasured the Pn values of 77-79Cu, 79,81Zn, and 82Ga. For 77-79Cu and for 81Zn we obtain significantly larger Pn values compared to previous work. While the new half-lives for the Ni isotopes from this experiment had been reported before, we present here in addition the first half-life measurements of 75Co (30 +/- 11 ms) and 80Cu (170+110 -50 ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is bet...
Branched polynomial covering maps
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Branched polynomial covering maps
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....
Jiang Zhang; Fang Zhao; Yanping Chen; Wenyuan Cui; Bo Zhang
2013-12-01
CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10-9⊙ ∼ 5 × 10-9⊙. Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter , standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the
LI Zhanhai; LI Michael Z; DAI Zhijun; ZHAO Fangfang; LI Jiufa
2015-01-01
Profiles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon-sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.
Lawrence J. Radecki; John Wenninger; Daniel Orlow
1996-01-01
The largest U.S. commercial banks are restructuring their retail operations to reduce the cost disadvantage resulting from a stagnant deposit base and stiffer competition. As part of this effort, some banks are opening "supermarket," or "in-store," branches: a new type of banking office within a large retail outlet. An alternative to the traditional bank office, the supermarket branch enables banks to improve the efficiency of the branch network and offer greater convenience to customers.
Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.
2011-11-01
High-resolution spectroscopic observations of 100 metal-poor carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of the asymptotic giant branch (AGB) presented in Paper I (MAGBini= 1.3, 1.4, 1.5, 2 M⊙, - 3.6 ≲ [ Fe/H ] ≲- 1.5). The s-process enhancement detected in these objects is associated with binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesizing s-elements in the inner He intershell, which are partly dredged up to the surface during the third dredge-up (TDU) episode. The secondary observed low-mass companion became CEMP-s by the mass transfer of C- and s-rich material from the primary AGB. We analyse the light elements C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls =Zr> is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82) and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] >rsim 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] rsim1 dex (dil is defined as the mass of the convective envelope of the observed star, Mobs★, over the material transferred from the AGB to the companion, MtransAGB). Then AGB models with higher AGB initial masses (MAGBini= 1.5-2 M⊙) are adopted to interpret CEMP-sII giants. In general, solutions with AGB models in the mass range MAGBini= 1.3-2 M⊙ and different dilution factors are found for CEMP-sI stars. About half of the CEMP-s stars with europium measurements show a high r-process enhancement (CEMP-s/r). The scenario for the origin of CEMP-s/r stars is a debated issue. We propose that the molecular cloud from which the binary system formed was previously enriched in r-process elements, most likely by local SN II pollution. This initial r-enrichment does not affect the s-process nucleosynthesis. However, for a high r-process enrichment ([r/Fe]ini= 2) the r-process contributions to solar La, Nd and Sm
Cash efficiency for bank branches.
Cabello, Julia García
2013-01-01
Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50. PMID:24010026
Mechanisms of side branching and tip splitting in a model of branching morphogenesis.
Yina Guo
Full Text Available Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE, due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1 a classic activator/inhibitor system along the growing stalk, and 2 the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1 side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2 tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3 when both instabilities are satisfied, tip bifurcation occurs
Mechanisms of Side Branching and Tip Splitting in a Model of Branching Morphogenesis
Guo, Yina; Sun, Mingzhu; Garfinkel, Alan; Zhao, Xin
2014-01-01
Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE), due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth) direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1) a classic activator/inhibitor system along the growing stalk, and 2) the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1) side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2) tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3) when both instabilities are satisfied, tip bifurcation occurs together with side
Branch mode selection during early lung development.
Denis Menshykau
Full Text Available Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation. While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10 and sonic hedgehog (SHH as well as the SHH receptor patched (Ptc. We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes.
Branch mode selection during early lung development.
Menshykau, Denis; Kraemer, Conradin; Iber, Dagmar
2012-01-01
Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes. PMID:22359491
Harnack, William
1984-01-01
The first annual Olive Branch Awards, sponsored by the Writers' and Publishers Alliance and the Editors' Organizing Committee, were given to ten magazines, out of 60 that submitted entries. Winning entries are described briefly. (IM)
Synthesis of branched polysaccharides with tunable degree of branching
Ciric, Jelena; Loos, Katja
2013-01-01
An in vitro enzyme-catalyzed tandem reaction using the enzymes phosphorylase b from rabbit muscle and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) to obtain branched polyglucans with tunable degree of branching (2% divided by 13%) is presented. The tunable degree of branching is obtai
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included in...... men vs. 0.5%/2.3% in women, P <0.001). Significant predictors of newly acquired RBBB were male gender, increasing age, high systolic blood pressure, and presence of IRBBB, whereas predictors of newly acquired IRBBB were male gender, increasing age, and low BMI. Right bundle branch block was associated...... with significantly increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch...
AGB (asymptotic giant branch): Star evolution
Becker, S.A.
1987-01-01
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs.
AGB [asymptotic giant branch]: Star evolution
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Lugaro, Maria; Karakas, Amanda I; Milazzo, Paolo M; Kaeppeler, Franz; Davis, Andrew M; Savina, Michael R
2013-01-01
We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25 to 4 Msun and metallicities Z=0.01 to 0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross section from Bao et al. (2000) and from n_TOF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope 95Zr, the branching point leading to the production of 96Zr. The new cross sections generally presents an improved match with the observational data, except for the 92Zr/94Zr ratios, which are on average still substantially higher than predicted. The 96Zr/94Zr ratios can be explained using our range of initial stellar masses, with the most 96Zr-depleted grains originating from AGB stars of masses 1.8 - 3 Msun, and the others from either lowe...
Branching diffusions in random environment
Böinghoff, Christian
2011-01-01
We consider the diffusion approximation of branching processes in random environment (BPREs). This diffusion approximation is similar to and mathematically more tractable than BPREs. We obtain the exact asymptotic behavior of the survival probability. As in the case of BPREs, there is a phase transition in the subcritical regime due to different survival opportunities. In addition, we characterize the process conditioned to never go extinct and establish a backbone construction. In the strongly subcritical regime, mean offspring numbers are increased but still subcritical in the process conditioned to never go extinct. Here survival is solely due to an immortal individual, whose offspring are the ancestors of additional families. In the weakly subcritical regime, the mean offspring number is supercritical in the process conditioned to never go extinct. Thus this process survives with positive probability even if there was no immortal individual.
Tracheobronchial Branching Anomalies
Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)
2010-04-15
There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex
Absorption Probability of Quadratic-weighted Branching Process of Zonal Immigrants%带移民的二次加权分枝过程的吸收概率
张红霞; 李俊平
2011-01-01
The quadratic-weighted Markov branching process of zonal immigrants was studied and the relative result of absorption probability was obtained. This results possessed broad application propesct in many domains of queueing network and biology.%研究了带移民的二次加权马尔可夫分枝过程,得到了吸收概率的相关结果,该结果在排队网络、生物学等诸多领域具有广泛的应用前景.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.
Holographic Coulomb branch vevs
Skenderis, K; Skenderis, Kostas; Taylor, Marika
2006-01-01
We compute holographically the vevs of all chiral primary operators for supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find exact agreement with the corresponding field theory computation. Using the dictionary between 10d geometries and field theory developed to extract these vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM by certain irrelevant operators.
Jochem B. Evers; Vos, Jan
2013-01-01
Cereals and grasses adapt their structural development to environmental conditions and the resources available. The primary adaptive response is a variable degree of branching, called tillering in cereals. Especially for heterogeneous plant configurations the degree of tillering varies per plant. Functional–structural plant modeling (FSPM) is a modeling approach allowing simulation of the architectural development of individual plants, culminating in the emergent behavior at the canopy level....
Bisterzo, Sara; Kaeppeler, Franz; Wiescher, Michael; Imbriani, Gianluca; Straniero, Oscar; Cristallo, Sergio; Goerres, Joachim; deBoer, Richard
2015-01-01
This paper provides a detailed analysis of the main component of the slow neutron capture process (the s-process), which accounts for the solar abundances of half of the nuclei with 90 <~ A <~ 208. We examine the impact of the uncertainties of the two neutron sources operating in low-mass asymptotic giant branch (AGB) stars: the 13C(alpha, n)16O reaction, which releases neutrons radiatively during interpulse periods (kT ~ 8 keV), and the 22Ne(alpha, n)25Mg reaction, partially activated during the convective thermal pulses (TPs). We focus our attention on the branching points that mainly influence the abundance of s-only isotopes. In our AGB models, the 13C is fully consumed radiatively during interpulse. In this case, we find that the present uncertainty associated to the 13C(alpha, n)16O reaction has marginal effects on s-only nuclei. On the other hand, a reduction of this rate may increase the amount of residual (or unburned) 13C at the end of the interpulse: in this condition, the residual 13C is bur...
韦威; 廖艳芬; 陈拓; 马晓茜; 杨云金; 余勇强
2014-01-01
For knowing alkali metal migration law in eucalyptus branches burned in some biomass power plant,this paper studies it by combustion experiment.The experimental sample is eucalyptus branch particle with grain size of 1 80μm which is used for repeat combustion experiment in pipe burner in order to get residual samples under different temperatures and with different combustion time.By proximate analysis on residual samples,it is able to get combustion laws of volatiles and fixed carbon.The experimental result shows that volatility of alkali metal in eucalyptus branches is very strong and there is 87%potassium released into gas phase in process of high temperature burning.Meanwhile,precipitation of alkali metal is speeding up with increase of temperature and precipitation volume dose is increasing with temperature and stop time.In addition,tak-ing kaolin as additive,it conducts quantitative analysis on its impact on retention rate of alkali metal in ash.The analysis re-sult indicates that kaolin has very good retention role for alkali metal in eucalyptus branches and retention effect of 5% kao-lin is the best.%为了解某生物质电厂燃用的桉树枝的碱金属迁移规律,对其进行了燃烧实验研究。实验样品为粒径180μm的桉树枝颗粒,在管式燃烧器中进行燃烧重复实验,获得不同温度和燃烧时间下的残留物样品,然后对残留物进行工业分析,获得挥发分、固定碳的燃烧规律；实验结果表明桉树枝碱金属挥发性很强,高温燃尽时有87%的钾释放进入气相,碱金属的析出随温度的增高而加快,析出总量也随温度和停留时间而增加。另外,以高岭土作为添加剂,定量分析了其对桉树枝碱金属在灰渣中的固留率的影响,分析结果表明高岭土对桉树枝的碱金属有很好固留作用,5%的高岭土添加量固留效果最佳。
Thermal Energy Conversion Branch
Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.
2004-01-01
The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.
Combustion Branch Website Development
Bishop, Eric
2004-01-01
The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.
PERSONALISED DENTURES WITH BRANCHING TECHNIQUE
Puneet
2012-12-01
Full Text Available ABSTRACT: While the basic process of making dentures has chang ed little over the past several decades, new materials and techniques can help labor atories and clinicians provide functional, esthetic restorations that offer exceptional value t o patients. Unlike the conventional “linear” methods which foll ow specific steps in a cookbook fashion, the Branching Technique is a dynamic conce pt which can be adjusted to meet the clinical needs of each patient. This customized tec hnique allows for a “trial” denture to be worn by each patient that is used to pinpoint and solve th e patient’s denture problems before the final denture is made. This individualized approach helps t o eliminate disappointments or surprises. From the preliminary impressions and the “training” d enture (it’s actually a provisional denture to the functional impressions and porcelain teeth to hold the patient’s vertical dimension, the Branching Technique produces the most esthetically pleasing and functionally stable dentures possible.
Cravity modulation of the moss Tortula modica branching
Khorkavtsiv, Yaroslava; Kit, Nadja
45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.
Mougaard, Krestine; Neugebauer, Line Maria; Garcia i Mateu, Adrià;
after-sales service and have therefore embarked on business development activities that tightly combine product and service offerings in their portfolios. Closer customer contact, commoditisation of goods, total cost of ownership, and product liability are just some of the reasons for this transition......The vast majority of countries in the developed world are now dependent on their service sectors for between 70-80% of their gross domestic product. Even companies with decades of expertise in producing manufactured products are experiencing an increased need to understand before-, during- and...... and influencing a move towards intensified service integration into business- and product development activities. The workbook has been created by condensing the transcripts and the insights we have gained from a wealth of studies across the maritime branch, and it serves to provide a unique insight...
Quiver Varieties and Branching
Hiraku Nakajima
2009-01-01
Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.
Distribution Network Planning and Design Using Branch and Bound Methods
Jalal Abdallah
2005-01-01
Full Text Available This study presents implementation of the bound and branch methods as an optimization mathematical device for distribution network planning. A development technology concentrates on minimizing the total costs and provides extended opportunities for improvement of network operation, from the initial planning stage. The study illustrate the mathematical and the algorithm of the branch and bound method with an example to indicate the efficiency of the branch and bound in planning and design processes. It also shows that the optimal configuration strongly depends on the branching rule and on the bound calculation bases.
Airway branching morphogenesis in three dimensional culture
Gudjonsson Thorarinn
2010-11-01
Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to
Methods and Technologies Branch (MTB)
The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.
A random walk with a branching system in random environments
Ying-qiu LI; Xu LI; Quan-sheng LIU
2007-01-01
We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.
Can the branching exponent reliably relate the branching indexes?
Netopilík, Miloš
2015-01-01
Roč. 24, č. 2 (2015), s. 80-84. ISSN 1022-1344 R&D Projects: GA ČR(CZ) GA13-02938S Institutional support: RVO:61389013 Keywords : branching exponent * branching indexes * intrinsic viscosity Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.667, year: 2014
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
AVM branch vibration test equipment
An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends
Branching Stochastic Processes: History, Theory, Applications
Mitov, Kosto
2011-01-01
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията ...
Aplikasi Galton Watson Branching Process dalam Parasitologi
Sunusi, Nurtiti
2005-01-01
Penyakit malaria merupakan masalah kesehatan masyarakat yang masih perlu diperhitungkan dalam pengelolaan kesehatan di Negara-negara tropik termasuk Indonesia. Di Indonesia, ditemukan 4 spesies parasit pada manusia, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, dan Plasmodium ovale. Di antara ke empat plasmodium tersebut, Plasmodium falciparum mempunyai siklus hidup terpendek di dalam sel hati dan menyerang semua bentuk eritrosit, sehingga perkembangbiakan di dalam darah cepat...
Discrete self-oscillation period branches observed in semiconductor superlattices
Wang, Jun; Hu, Bambi; Zheng, Zhigang; Li, Zhigang
2011-04-01
We investigate the self-sustained current oscillation of a weakly coupled semiconductor superlattice in the dynamical voltage band using a microscopic sequential tunneling model. With the voltage as a control parameter, two types of branches of current oscillation period versus voltage have been observed, which correspond to various oscillation scenarios. The first branch type consists of a series of period branches in accordance with how many charge dipoles need to be created at the emitter side to trigger a dipole-tripole oscillation scenario. For the second branch type, charge dipoles are generated periodically at the emitter, but all of them fail to develop completely and die out, thereby leading to a low-period oscillation scenario without the dipole-tripole process. The bistability between different branches is also observed by voltage up-sweeping and down-sweeping.
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Branch management into micropipeline joint dot
Dimitar Tyanev
2011-11-01
Full Text Available This paper considers problems related to hardware implementation of computational process with conditional jumps. Hardware refers to asynchronous pipeline organization at microoperational level. Exploration is dedicated to one of the tasks presented in (Tyanev, D., 2009 concerning to micropipeline controller design to control micropipeline stage into joint dot of branch algorithm. Joint dot is the point at which few preceding branches are combined. It appears inevitably into conditional jump structures and this is the reason for the actuality of its problem. Analysis of this new task is presented and request arbitration functioning principles are formulated for the incoming to joint dot requests. The arbiter is responsible for the fair choice on which depends steady peformance of separate pipeline brances. Paper also describes pipeline controller synthesis and analysis of its operation in two variants: about 2-phase and 4-phase data transfer protocol. The synthesized asynchronous arbiter scheme is invariant to the type of pipeline protocol.
Branching Dynamics of Viral Information Spreading
Iribarren, José Luis
2011-01-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking or Marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real Viral Marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris Branching Process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping-point" and can...
Multiple pathways regulate shoot branching
Catherine eRameau
2015-01-01
Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.
Improved branch and bound method for control structure screening
Cao, Yi; Saha, Prabirkumar
2005-01-01
The main aim of this paper is to present an improved algorithm of “Branch and Bound” method for control structure screening. The new algorithm uses a best- first search approach, which is more efficient than other algorithms based on depth-first search approaches. Detailed explanation of the algorithms is provided in this paper along with a case study on Tennessee–Eastman process to justify the theory of branch and bound method. The case study uses the Hankel singular value ...
Computer simulation of long-chain branching and branching indexes
Netopilík, Miloš
Vienna : University of Vienna, 2014. s. 22. [International Conference on Polymer Behaviour /6./. 22.09.2014-26.09.2014, Vienna] R&D Projects: GA ČR(CZ) GA13-02938S Institutional support: RVO:61389013 Keywords : branching indexes * intrinsic viscosity * radius of gyration Subject RIV: CD - Macromolecular Chemistry
Rosenwald, A G; Stanley, P; Krag, S S
1989-01-01
A correlation between increased beta-1,6 branching of N-linked carbohydrates and the ability of a cell to metastasize or to form a tumor has been observed in several experimental models. Lec9 Chinese hamster ovary (CHO) mutants exhibit a drastic reduction in tumorigenicity in nude mice, and this phenotype directly correlates with their ability to attach an increased proportion of beta-1,6-branched carbohydrates to the G glycoprotein of vesicular stomatitis virus (J. Ripka, S. Shin, and P. Sta...
NCI: DCTD: Biometric Research Branch
The Biometric Research Branch (BRB) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.
Branching of keratin intermediate filaments.
Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward
2016-06-01
Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023
Tesař, Václav
Praha: UTAM AV ČR, 2006 - (Náprstek, J.; Fischer, C.), s. 380-381 ISBN 80-86246-27-2. [Engineering mechanics 2006 : national conference with international participation. Svratka (CZ), 15.05.2006-18.05.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : branching * respiratory system * aortic system * microfluidics Subject RIV: BK - Fluid Dynamics
Fluid Flow at Branching Junctions
Sochi, Taha
2013-01-01
The flow of fluids at branching junctions plays important kinematic and dynamic roles in most biological and industrial flow systems. The present paper highlights some key issues related to the flow of fluids at these junctions with special emphasis on the biological flow networks particularly blood transportation vasculature.
Risk Factor Assessment Branch (RFAB)
The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.
CLT for Ornstein-Uhlenbeck branching particle system
Adamczak, Radosław
2011-01-01
In this paper we consider a branching particle system consisting of particles moving according to the Ornstein-Uhlenbeck process in $\\Rd$ and undergoing a binary, supercritical branching with a constant rate $\\lambda>0$. This system is known to fulfil a law of large numbers (under exponential scaling). In the paper we prove the corresponding central limit theorem. The limit and the CLT normalisation fall into three qualitatively different classes. In, what we call, the small branching rate case the situation resembles the classical one. The weak limit is Gaussian and normalisation is the square root of the size of the system. In the critical case the limit is still Gaussian, however the normalisation requires an additional term. Finally, when branching has large rate the situation is completely different. The limit is no longer Gaussian, the normalisation is substantially larger than the classical one and the convergence holds in probability. We prove also that the spatial fluctuations are asymptotically inde...
Lee Shaish
astogeny in S. pistillata is a regulated process expressed through programmed events and not directly related to simple energy trade-off principles or to environmental conditions, and that branch polarity and apical dominance do not dictate colony astogeny. Therefore, plasticity and astogenic disparities encompass a diversity of genetic (fixed and flexible induced responses.
Introduction to Asymptotic Giant Branch Stars
El Eid, Mounib F.
2016-04-01
A brief introduction on the main characteristics of the asymptotic giant branch stars (briefly: AGB) is presented. We describe a link to observations and outline basic features of theoretical modeling of these important evolutionary phases of stars. The most important aspects of the AGB stars is not only because they are the progenitors of white dwarfs, but also they represent the site of almost half of the heavy element formation beyond iron in the galaxy. These elements and their isotopes are produced by the s-process nucleosynthesis, which is a neutron capture process competing with the β- radioactive decay. The neutron source is mainly due to the reaction 13C(α,n)16O reaction. It is still a challenging problem to obtain the right amount of 13 C that can lead to s-process abundances compatible with observation. Some ideas are presented in this context.
Branching problems of unitary representations
Kobayashi, Toshiyuki
2003-01-01
The irreducible decomposition of a unitary representation often contains continuous spectrum when restricted to a non-compact subgroup. The author singles out a nice class of branching problems where each irreducible summand occurs discretely with finite multiplicity (admissible restrictions). Basic theory and new perspectives of admissible restrictions are presented from both analytic and algebraic view points. We also discuss some applications of admissible restrictions to modular varieties...
Cash efficiency for bank branches
Cabello, Julia García
2013-01-01
Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks’ branches is also a relevant issue as any significant improvement in cash management at the bank ...
Solid State Photovoltaic Research Branch
1990-09-01
This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.
Creep of welded branched pipes
Rayner, Glen
2004-01-01
Creep failure of welds in high-temperature power plant steam piping systems is known to be a potential cause of plant failure. Creep behaviour of plain pipes with circumferential welds and cross-weld specimens have received fairly extensive attention. However, research into the creep behaviour of welded thick-walled branched steam pipes has received less attention. Consequently, this thesis addresses improving the understanding of the creep behaviour for this type of geometry. Numerical and a...
Interactions between Axillary Branches of Arabidopsis
Veronica Ongaro; Katherine Bainbridge; Lisa Williamson; Ottoline Leyser
2008-01-01
Studies of apical dominance have benefited greatly from two-branch assays in pea and bean,in which the shoot system is trimmed back to leave only two active cotyledonary axillary branches.In these two-branch shoots,a large body of evidence shows that one actively growing branch is able to inhibit the growth of the other,prompting studies on the nature of the inhibitory signals,which are still poorly understood.Here,we describe the establishment of two-branch assays in Arabidopsis,using consecutive branches on the bolting stem.As with the classical studies in pea and bean,these consecutive branches are able to inhibit one another's growth.Not only can the upper branch inhibit the lower branch,but also the lower branch can inhibit the upper branch,illustrating the bi-directional action of the inhibitory signals.Using mutants,we show that the inhibition is partially dependent on the MAX pathway and that while the inhibition is clearly transmitted across the stem from the active to the inhibited branch,the vascular connectivity of the two branches is weak,and the MAX pathway is capable of acting unilaterally in the stem.
Soils of Walker Branch Watershed
Lietzke, D.A.
1994-01-01
The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research
Strategy of Irrigation Branch in Russia
Zeyliger, A.; Ermolaeva, O.
2012-04-01
At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges
CLT for U-statistics of Ornstein-Uhlenbeck branching particle system with small branching rate
Adamczak, Radosław
2010-01-01
In this paper we consider a branching particle system consisting of particles moving according to the Ornstein-Uhlenbeck process in R^d and undergoing a binary, supercritical branching with a constant rate \\lambda>0. This system is known to fulfil a law of large numbers (under exponential scaling). In the paper we prove the corresponding central limit theorem. Moreover, in the second part of the paper we consider U-statistics of the system, for which, under mild assumptions, we prove a law of large numbers and a central limit theorem. The limits are expressed in terms of multiple stochastic integrals with respect to a random Gaussian measure. The second order behaviour depends qualitatively on the growth rate of the system. In this paper we concentrate on the case when the growth rate is relatively small comparing to smoothing properties of particles' movement.
The Effects of a Branch Campus
Lien, Donald; Wang, Yaqin
2012-01-01
We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…
U-statistics of Ornstein-Uhlenbeck branching particle system
Adamczak, Radosław
2011-01-01
We consider a branching particle system consisting of particles moving according to the Ornstein-Uhlenbeck process in $\\Rd$ and undergoing a binary, supercritical branching with a constant rate $\\lambda>0$. This system is known to fulfil a law of large numbers (under exponential scaling). Recently the question of the corresponding central limit theorem has been addressed. It turns out that the normalization and form of the limit in the CLT fall into three qualitatively different regimes, depending on the relation between the branching intensity and the parameters of the Orstein-Uhlenbeck process. In the present paper we extend those results to $U$-statistics of the system proving a law of large numbers and a central limit theorem.
THE CONSTRUCTION OF MULTITYPE CANONICAL MARKOV BRANCHING CHAINS IN RANDOM ENVIRONMENTS
无
2006-01-01
The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introduces the concepts of the multitype canonical Markov branching chain in random environment (CMBCRE) and multitype Markov branching chain in random environment (MBCRE) and proved that CMBCRE must be MBCRE, and any MBCRE must be equivalent to another CMBCRE in distribution. The main results of this article are the construction of CMBCRE and some of its probability properties.
Stochastic Transition between Turbulent Branch and Thermodynamic Branch of an Inhomogeneous Plasma
Kawasaki, Mitsuhiro; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka
2002-01-01
Transition phenomena between thermodynamic branch and turbulent branch in submarginal turbulent plasma are analyzed with statistical theory. Time-development of turbulent fluctuation is obtained by numerical simulations of Langevin equation which contains submarginal characteristics. Probability density functions and transition rates between two states are analyzed. Transition from turbulent branch to thermodynamic branch occurs in almost entire region between subcritical bifurcation point an...
Path integral formulation and Feynman rules for phylogenetic branching models
A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second-quantized, or Fock space setting, incorporating discrete counting labels for taxa and character types, to allow for a description in the number basis. Rate operators describing both time evolution without branching, and also phylogenetic branching events, are identified. A detailed development of these ideas is given, using standard transcriptions from the microscopic formulation of non-equilibrium reaction-diffusion or birth-death processes. These give the relations between stochastic rate matrices, the matrix elements of the corresponding evolution operators representing them, and the integral kernels needed to implement these as path integrals. The 'free' theory (without branching) is solved, and the correct trilinear 'interaction' terms (representing branching events) are presented. The full model is developed in perturbation theory via the derivation of explicit Feynman rules which establish that the probabilities (pattern frequencies of leaf colourations) arising as matrix elements of the time evolution operator are identical with those computed via the standard analysis. Simple examples (phylogenetic trees with two or three leaves), are discussed in detail. Further implications for the work are briefly considered including the role of time reparametrization covariance
Evolution of spatially embedded branching trees with interacting nodes
Forgerini, F L; Dorogovtsev, S N; Mendes, J F F
2011-01-01
We study the evolution of branching trees embedded in Euclidean spaces with suppressed branching of spatially close nodes. This cooperative branching process accounts for the effect of overcrowding of nodes in the embedding space and mimics the evolution of life processes (the so-called "tree of life") in which a new level of complexity emerges as a short transition followed by a long period of gradual evolution or even complete extinction. We consider the models of branching trees in which each new node can produce up to two twigs within a unit distance from the node in the Euclidean space, but this branching is suppressed if the newborn node is closer than at distance $a$ from one of the previous generation nodes. This results in an explosive (exponential) growth in the initial period, and, after some crossover time $t_x \\sim \\ln(1/a)$ for small $a$, in a slow (power-law) growth. This special point is also a transition from "small" to "large words" in terms of network science. We show that if the space is r...
CYANOGEN IN NGC 1851 RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS: QUADRIMODAL DISTRIBUTIONS
Campbell, S. W.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D' Orazi, V. [Monash Centre for Astrophysics, P.O. Box 28M, Victoria 3800 (Australia); Yong, D.; Wylie-de Boer, E. C. [Research School of Astronomy and Astrophysics, Australian National University, Weston, ACT 2611 (Australia); Martell, S. L. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Grundahl, F. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Sneden, C., E-mail: simon.campbell@monash.edu, E-mail: david.yong@anu.edu.au [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)
2012-12-10
The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R {approx} 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two 'normal' bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired-the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.
A spatially-averaged mathematical model of kidney branching morphogenesis
Zubkov, V.S.
2015-08-01
© 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.
Multimodal Distributions along the Horizontal Branch
Ferraro, F R; Pecci, F F; Dorman, B; Rood, R T; Ferraro, Francesco R.; Paltrinieri, Barbara; Pecci, Flavio Fusi; Dorman, Ben; Rood, Robert T.
1997-01-01
We report on HST/WFPC2 U,V and far-ultraviolet observations of two Galactic Globular Clusters (GGCs), NGC 6205 = M13 and NGC 6093 = M80. Both of these clusters have horizontal-branch (HB) tails that extend to the helium-burning main sequence, with the hottest stars reaching theoretical effective temperatures above 35,000 K. In both clusters, groups of stars are found to be separated by narrow gaps along the blue HB sequence. These gaps appear at similar locations in the color-magnitude diagrams of the two clusters. While stochastic effects may give rise to variations in the color distribution along the HB, the coincidence of gaps in different clusters effectively rules this out as the primary cause. The comparison among the clusters strongly suggests that there are separate physical processes operating during the earlier red-giant phase of evolution to produce mass loss.
A Model for Locating Branches of Ghavamin Bank
seyed Mohammad Ali Khatami Firouzabadi
2012-06-01
Full Text Available Locating branches of finance and credit institutes and banks is one of the most important and strategic decisions in the field of banking. This task is more significant in private institutes than state banks because of budgetary limitations of private institutes. This kind of banking needs acceptance and usage of modern technologies such as GIS in order to increase customer satisfaction. Therefore in this research, viewpoints of 30 managers, chiefs of branches and experienced employees have been considered the city of Rasht with the aim of determining appropriate sites for establishing branches. Both quantitative and qualitative approaches have been used for data analysis. They include one sample t-test for identifying criteria and Analytic Hierarchical Process (AHP for identifying weights of criteria and for this purpose, SPSS, Expert Choice, GIS and LINGO soft wares have been used. Findings imply that other than four existing branches, with respect to achieved criteria and usage of Maximum Coverage Location Problem (MCLP, coverage of 95% of demands in the research area with establishing four branches in the specified points can be achieved.
A Model for Locating Branches of Ghavamin Bank
Ali Khatami Firooz Abadi
2012-01-01
Full Text Available Locating branches of finance and credit institutes and banks is one of the most important and strategic decisions in the field of banking. This task is more significant in private institutes than state banks because of budgetary limitations of private institutes. This kind of banking needs acceptance and usage of modern technologies such as GIS in order to increase customer satisfaction. Therefore in this research, viewpoints of 30 managers, chiefs of branches and experienced employees have been considered the city of Rasht with the aim of determining appropriate sites for establishing branches. Both quantitative and qualitative approaches have been used for data analysis. They include one sample t-test for identifying criteria and Analytic Hierarchical Process (AHP for identifying weights of criteria and for this purpose, SPSS, Expert Choice, GIS and LINGO soft wares have been used. Findings imply that other than four existing branches, with respect to achieved criteria and usage of Maximum Coverage Location Problem (MCLP, coverage of 95% of demands in the research area with establishing four branches in the specified points can be achieved.
Flow-induced pruning of branched systems and brittle reconfiguration
Lopez, Diego; de Langre, Emmanuel
2011-01-01
Whereas most plants are flexible structures that undergo large deformations under flow, another process can occur when the plant is broken by heavy fluid-loading. We investigate here the mechanism of such possible breakage, focusing on the flow-induced pruning that can be observed in plants or aquatic vegetation when parts of the structure break under flow. By computation on an actual tree geometry, a 20-yr-old walnut tree (Juglans Regia L.) and comparison with simple models, we analyze the influence of geometrical and physical parameters on the occurrence of branch breakage and on the successive breaking events occurring in a tree-like structure when the flow velocity is increased. We show that both the branching pattern and the slenderness exponent, defining the branch taper, play a major role in the breakage scenario. We identify a criterion for branch breakage to occur before breakage of the trunk. In that case, we show that the successive breakage of peripheral branches allows the plant to sustain higher...
Probing the hardest branching of jets in heavy ion collisions
Chien, Yang-Ting
2016-01-01
We present the first calculation of the momentum sharing and angular separation distributions between the leading subjets inside a reconstructed jet in heavy ion collisions. These observables are directly sensitive to the hardest branching in the process of jet formation and are, therefore, ideal for studying the early stage of the in-medium parton shower evolution. The modification of the momentum sharing and angular separation distributions in lead-lead relative to proton-proton collisions is evaluated using the leading-order medium-induced splitting functions obtained in the framework of soft-collinear effective theory with Glauber gluon interactions. Qualitative and in most cases quantitative agreement between theory and preliminary CMS measurements suggests that the parton shower in heavy ion collisions can be dramatically modified early in the branching history. We propose a new measurement which will illuminate the angular distribution of the hardest branching within jets in heavy ion collisions.
Recursive Branching Simulated Annealing Algorithm
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal
Absolute Measurement of Hadronic Branching Fractions of the D_s^+ Meson
Alexander, J; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2008-01-01
The branching fractions of D_s meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 /pb of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D_s decays with a double tag technique. In particular we determine the branching fraction B(D_s -> K- K+ pi+) = (5.50 +- 0.23 +- 0.16)%, where the uncertainties are statistical and systematic respectively. We also provide partial branching fractions for kinematic subsets of the K- K+ pi+ decay mode.
Vegetation survey of PEN Branch wetlands
1991-01-01
A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.
3D modelling of branching in plants
Evers, J.B.
2011-01-01
Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants. Branching is regulated by multiple internal factors which are modulated by different environmental signals. A key environmental signal in the context of a plant population is a low red / far-red intensi...
Milos, Piotr
2009-01-01
In this paper we consider two related stochastic models. The first one is a branching system consisting of particles moving according to a Markov family in R^d and undergoing subcritical branching with a constant rate of V>0. New particles immigrate to the system according to a homogeneous space time Poisson random field. The second model is the superprocess corresponding to the branching particle system. We study rescaled occupation time process and the process of its fluctuations with very mild assumptions on the Markov family. In the general setting a functional central limit theorem as well as large and moderate deviations principles are proved. The subcriticality of the branching law determines the behaviour in large time scales and in "overwhelms" the properties of the particles' motion. For this reason the results are the same for all dimensions and can be obtained for a wide class of Markov processes (both properties are unusual for systems with critical branching).
Hendrickson, Eric B.; Edgerton, Jeremy R.; Jaeger, Dieter
2010-01-01
Conductance-based neuron models are frequently employed to study the dynamics of biological neural networks. For speed and ease of use, these models are often reduced in morphological complexity. Simplified dendritic branching structures may process inputs differently than full branching structures, however, and could thereby fail to reproduce important aspects of biological neural processing. It is not yet well understood which processing capabilities require detailed branching structures. T...
Branched silver nanowires as controllable plasmon routers.
Fang, Yurui; Li, Zhipeng; Huang, Yingzhou; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing
2010-05-12
Using polarization dependent scattering spectroscopy, we investigate plasmon propagation on branched silver nanowires. By controlling the polarization of the incident laser light, the wire plasmons can be routed into different wire branches and result in light emission from the corresponding wire ends. This routing behavior is found to be strongly dependent on the wavelength of light. Thus for certain incident polarizations, light of different wavelength will be routed into different branches. The branched nanowire can thus serve as a controllable router and multiplexer in integrated plasmonic circuits. PMID:20420411
Ventricular fiber optimization utilizing the branching structure.
Washio, Takumi; Yoneda, Kazunori; Okada, Jun-Ichi; Kariya, Taro; Sugiura, Seiryo; Hisada, Toshiaki
2016-07-01
In this paper, we propose an algorithm that optimizes the ventricular fiber structure of the human heart. A number of histological studies and diffusion tensor magnetic resonance imaging analyses have revealed that the myocardial fiber forms a right-handed helix at the endocardium. However, the fiber formation changes its orientation as a function of transmural depth, becoming a left-handed helix at the epicardium. To determine how nature can construct such a structure, which obtains surprising pumping performance, we introduce macroscopic modeling of the branching structure of cardiac myocytes in our finite element ventricular model and utilize this in an optimization process. We put a set of multidirectional fibers around a central fiber orientation at each point of the ventricle walls and simulate heartbeats by generating contraction forces along each of these directions. We examine two optimization processes using the workloads or impulses measured in these directions to update the central fiber orientation. Both processes improve the pumping performance towards an optimal value within several tens of heartbeats, starting from an almost-flat fiber orientation. However, compared with the workload optimization, the impulse optimization produces better agreement with experimental studies on transmural changes of fiber helix angle, streamline patterns of characteristic helical structures, and temporal changes in strain. Furthermore, the impulse optimization is robust under geometrical changes of the heart and tends to homogenize various mechanical factors such as the stretch and stretch rate along the fiber orientation, the contraction force, and energy consumption. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26453026
The branch banking boom in Illinois: a byproduct of restrictive branching laws
Erin Davis; Tara Rice
2007-01-01
What’s behind the boom in bank branches across Illinois, particularly in Chicago? The authors explore the history of branch banking within the state and across the nation to help explain this recent trend and discuss its future implications.
Matteo Ghiringhelli
2015-07-01
Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients.During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.
Branching out Has So Much to Offer
Murray, Joe
2012-01-01
In 1989 there were thirty ATM branches nationally. In January 2012 there were just twelve ATM branches with another three "proposed". How can that happen? How did it happen? Maybe the most pertinent question is: Why did it happen? There is no single answer to the last question, but perhaps it was something to do with the changes that were sweeping…
12 CFR 741.11 - Foreign branching.
2010-01-01
...) Contents of Business Plan. The written business plan must address the following: (1) Analysis of market... regarding the branch (shares, lending, capital, charge-offs, collections); (6) The field of membership or... for branch operations (balance sheet and income and expense projections) for the first and second...
Spectral problem for branching chain quantum graph
Branching chain of rings as a quantum graph is considered. We use the transfer matrix method to obtain the spectral equation. The existence of bound states is proved. The discrete spectrum of the Schrödinger operator for the system is described. We find the dependence of the eigenvalues positions on the branching angle.
Command and Data Handling Branch Internship
Billings, Rachel Mae
2016-01-01
Modular Integrated Stackable Layers (MISL) is a computer system designed for simple, fast, and cost effective flexible reconfiguration in space environments such as the ISS and Orion projects for various uses. Existing applications include wireless and wired communications, data acquisition and instrumentation, and camera systems, and potential applications include bus protocol converters and subsystem control. MISL is based on Texas Instruments (TI)' MSP430 16-bit ultra-low-power microcontroller device. The purpose of my project was to integrate the MISL system with a liquid crystal display (LCD) touchscreen. The LCD, manufactured by Crystalfontz and part number CFAF320240F-035T-TS, is a 320 by 240 RGB resistive color screen including an optional carrier board. The vast majority of the project was done with Altium Designer, a tool for printed circuit board (PCB) schematic capture, 3D design, and FPGA (Field Programmable Gate Array) development. The new PCB was to allow the LCD to directly stack to the rest of MISL. Research was done with datasheets for the TI microcontroller and touchscreen display in order to meet desired hardware specifications. Documentation on prior MISL projects was also utilized. The initial step was to create a schematic for the LCD, power bus, and data bus connections between components. A layout was then designed with the required physical dimensions, routed traces and vias, power and ground planes, layer stacks, and other specified design rules such as plane clearance and hole size. Multiple consultation sessions were held with Hester Yim, the technical discipline lead for the Command and Data Handling Branch, and Christy Herring, the lead PCB layout designer in the Electronic Design and Manufacturing Branch in order to ensure proper configuration. At the moment, the PCB is awaiting revision by the latter-mentioned branch. Afterwards, the board will begin to undergo the manufacturing and testing process. Throughout the internship at
Daqiu Zhao
2015-10-01
Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.
Amélie ePinet
2015-02-01
Full Text Available Plant branching is a key process in the yield elaboration of winter oilseed rape (WOSR. It is also involved in plant tolerance to flower damage because it allows the setting of new fertile inflorescences. Here we characterize the changes in the branching and distribution of the number of pods between primary and secondary inflorescences in response to floral bud clippings. Then we investigate the impacts of the modifications in branching on the biomass allocation and its consequence on the crop productivity (harvest index. These issues were addressed on plants with contrasted architecture and branching potential, using three genotypes (Exocet, Pollen, and Gamin grown under two levels of nitrogen fertilization. Clipping treatments of increasing intensities were applied to either inflorescences or flower buds.We were able to show that restoration of the number of pods after clipping is the main lever for the compensation. Genotypes presented different behaviors in branching and biomass allocation as a function of clipping treatments. The number of fertile ramifications increased for the high intensities of clipping. In particular, the growth of secondary ramifications carried by branches developed before clipping has been observed. The proportions of yield and of number of pods carried by these secondary axes increased and became almost equivalent to the proportion carried by primary inflorescences. In terms of biomass allocation, variations have also been evidenced in the relationship between pod dry mass on a given axis and the number of pods set, while the shoot/root ratio was not modified. The harvest index presented different responses: it decreased after flower buds clipping, while it was maintained after the clipping of the whole inflorescences. The results are discussed relative to their implications regarding the identification of interesting traits to be target in breeding programs in order to improve WOSR tolerance.
Analysis of Capillary Rise in Asymmetric Branch-Like Capillary
Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu
2016-05-01
Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.
Anatomy of the portal branches and the hepatic veins in the caudate lobe of the liver.
Ortale, J R; Borges Keiralla, L C
2004-10-01
The objective of this study was to analyze the caudate portal branches and their relationships with the hepatic caudate veins and propose a new nomenclature for the caudate branches based on their territory of distribution. We realized the fine dissection of the veins of the caudate lobe in 40 human livers fixed and preserved in formalin. In 15/40 (37.5%) cases there was a single branch to the caudate lobe. In 25/40 (62.5%) cases there was more than one branch, with a posterior caudate branch in 20/40 (50%) cases, an anterior caudate branch in 15/40 (37.5%) cases, a left caudate branch in 14/40 (35%) cases, and a right caudate branch in 8/40 (20%) cases. The most frequent combination detected (11/40, 27.5% of cases) was that of the posterior and anterior branches. The venous drainage of the caudate lobe and its papillary process was provided by the superior caudate hepatic vein in 23/40 (57.5%) cases, by the middle caudate vein in 35/40 (87.5%) cases (which was the only vein in 12/35 cases), and by the inferior caudate vein in 16/40 (40%) cases. In 11/40 (12.5%) cases there were accessory caudate veins, which emptied into the left and intermediate hepatic veins. The portal branches and the hepatic veins related to the caudate process were studied. In conclusion, the new nomenclature analyzes more precisely the distribution of the caudate portal branches. PMID:15300411
Gupta, Pankaj
The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and
Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;
The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, acetaldehyde ethyl isopropyl acetal [FL-no: 06.137], structurally related to the 58 flavouring substances in the Flavouring Group...... structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded as for the other already evaluated substances that the substance [FL-no: 06.137] do not give rise to safety concern at its level of dietary...
[Croatian Medical Association--Branch Zagreb].
Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko
2014-01-01
The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is
Roles for auxin, cytokinin, and strigolactone in regulating shoot branching.
Ferguson, Brett J; Beveridge, Christine A
2009-04-01
Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. In addition, RAMOSUS (RMS) branching genes in pea (Pisum sativum) control the synthesis and perception of a long-distance inhibitory branching signal produced in the stem and roots, a strigolactone or product. Auxin treatment affects the expression of RMS genes, but it is unclear whether the RMS network can regulate branching independently of auxin. Here, we explore whether apical dominance and correlative inhibition show independent or additive effects in rms mutant plants. Bud outgrowth and branch lengths are enhanced in decapitated and stem-girdled rms mutants compared with intact control plants. This may relate to an RMS-independent induction of axillary bud outgrowth by these treatments. Correlative inhibition was also apparent in rms mutant plants, again indicating an RMS-independent component. Treatments giving reductions in RMS1 and RMS5 gene expression, auxin transport, and auxin level in the main stem were not always sufficient to promote bud outgrowth. We suggest that this may relate to a failure to induce the expression of cytokinin biosynthesis genes, which always correlated with bud outgrowth in our treatments. We present a new model that accounts for apical dominance, correlative inhibition, RMS gene action, and auxin and cytokinin and their interactions in controlling the progression of buds through different control points from dormancy to sustained growth. PMID:19218361
Pen Branch Delta and Savannah River Swamp Hydraulic Model
The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions
Pen Branch Delta and Savannah River Swamp Hydraulic Model
Chen, K.F.
1999-05-13
The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.
Osada, Noriyuki; Takeda, Hiroshi
2003-01-01
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species. PMID:12495920
Agents in branching space-times
Nuel; Belnap
2003-01-01
The aim of this essay Is to make some brief suggestions on the beginnings of a theory of agentsand agency In branching spacetlmes.foe thought Is to combine the ideas of agency as developed agalnst the relatively simple background of branching time with the richer notions of Indetermlnlsm asstructured In the theory of branching space-times.My plan Is to say a little about agency In branchingtime and a little about branchlg spacetlmes,and then ask how the two can be brought together.Atthe end there Is an ...
Measurement of Prominent eta Decay Branching Fractions
López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V
2007-01-01
The decay psi(2S) --> eta J/psi is used to measure, for the first time, all prominent eta-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for eta decays to gamma gamma, pi+pi-pi0, 3 pi0, pi+ pi- gamma, and e+ e- gamma, accounting for 99.9% of all eta decays. The precisions for several of the branching fractions and their ratios are improved. Two channels, pi+ pi- gamma and e+ e- gamma, show results that differ at the level of three standard deviations from those previously determined.
Proton binding by linear, branched, and hyperbranched polyelectrolytes
Koper, G.J.M.; Borkovec, M.
2010-01-01
This article reviews our understanding of ionization processes of weak polyelectrolytes. The emphasis is put on a general introduction to site binding models, which are able to account for many experimental features of linear and branched polyelectrolytes, including dendrimers. These models are fully compatible with the classical description of acid-base equilibria. The review further discusses the nature of the site-site interaction and role of conformational equilibria. Experimental chargin...
A Branch and Bound Method for Stochastic Global Optimization
V.I. Norkin; G.C. Pflug; Ruszczynski, A.
1996-01-01
A stochastic version of the branch and bound method is proposed for solving stochastic global optimization problems. The method, instead of deterministic bounds, uses stochastic upper and lower estimates of the optimal value of subproblems, to guide the partitioning process. Almost sure convergence of the method is proved and random accuracy estimates derived. Methods for constructing random bounds for stochastic global optimization problems are discussed. The theoretical considerations are i...
A Viral Branching Model for Predicting the Spread of Electronic Word of Mouth
van der Lans, Ralf; Bruggen, Gerrit; Eliashberg, Jehoshua; Wierenga, Berend
2010-01-01
textabstractIn a viral marketing campaign an organization develops a marketing message, and stimulates customers to forward this message to their contacts. Despite its increasing popularity, there are no models yet that help marketers to predict how many customers a viral marketing campaign will reach, and how marketers can influence this process through marketing activities. This paper develops such a model using the theory of branching processes. The proposed Viral Branching Model allows cu...
Applied Aeroscience and CFD Branch Overview
LeBeau, Gerald J.; Kirk, Benjamin S.
2014-01-01
The principal mission of NASA Johnson Space Center is Human Spaceflight. In support of the mission the Applied Aeroscience and CFD Branch has several technical competencies that include aerodynamic characterization, aerothermodynamic heating, rarefied gas dynamics, and decelerator (parachute) systems.
FY 1990 Applied Sciences Branch annual report
Keyes, B.M.; Dippo, P.C. [eds.
1991-11-01
The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.
Code 672 observational science branch computer networks
Hancock, D. W.; Shirk, H. G.
1988-01-01
In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.
From configurations to branched configurations and beyond
Magnot, Jean-Pierre
2013-01-01
We propose here a geometric and topological setting for the study of branching effects arising in various fields of research, e.g. in statistical mechanics and turbulence theory. We describe various aspects that appear key points to us, and finish with a limit of such a construction which stand in the dynamics on probability spaces where it seems that branching effects can be fully studied without any adaptation of the framework.
无
2008-01-01
@@ China Academy of Space Technology (CAST) Xi'an Branch was established on April 8,2008.The new branch consists of the headquarters of the former Xi'an Institute of Space Radio Technology (XISRT) of CAST and five former subsidiaries of the XISRT,i.e.the Institute of Space Electronic Technology,the Institute of Microwave Technology,the Institute of Space Antenna Technology,the Manufacturing Center for Space Electronics and Civilian High-tech Company.
Branch retinal artery occlusion in Susac's syndrome
Ricardo Evangelista Marrocos de Aragão
2015-02-01
Full Text Available Susac's syndrome is a rare disease attribuited to a microangiopathy involving the arterioles of the cochlea, retina and brain. Encefalopathy, hearing loss, and visual deficits are the hallmarks of the disease. Visual loss is due to multiple, recurrent branch arterial retinal occlusions. We report a case of a 20-year-old women with Susac syndrome presented with peripheral vestibular syndrome, hearing loss, ataxia, vertigo, and vision loss due occlusion of the retinal branch artery.
Branch and Bound Algorithm for Multiprocessor Scheduling
Rahman, Mostafizur
2009-01-01
The multiprocessor task graph scheduling problem has been extensively studied asacademic optimization problem which occurs in optimizing the execution time of parallelalgorithm with parallel computer. The problem is already being known as one of the NPhardproblems. There are many good approaches made with many optimizing algorithmto find out the optimum solution for this problem with less computational time. One ofthem is branch and bound algorithm.In this paper, we propose a branch and bound...
Comparative efficiency analysis of Portuguese bank branches
Portela, Maria; Thanassoulis, Emmanuel
2006-01-01
The advent of Internet banking and phone banking is changing the role of bank branches from a predominantly transaction- based one to a sales-oriented role. This paper reports on an assessment of the branches of a Portuguese bank in terms of their performance in their new roles in three different areas: Their efficiency in fostering the use of new transaction channels, their efficiency in increasing sales and their customer base, and their efficiency in generating profits. Service qu...
Comparative performance analysis of portuguese bank branches
Portela, Maria; Thanassoulis, Emmanuel
2003-01-01
The advent of Internet banking and phone banking is changing the role of bank branches from a predominantly transaction-based one to a sales-oriented role. This paper reports on an assessment of the branches of a Portuguese bank in terms of their performance in their new roles in three different areas: Their effectiveness in fostering the use of new transaction channels such as the internet and the telephone, their effectiveness in increasing sales and their customer base, and the...
Fiber-Optic Communication Technology Branching Devices
Williams, J. C.
1985-02-01
This tutorial review of fiber-optic branching devices covers example uses of branching devices, device types, device-performance characteristics, examples of current technology, and system-design methodology. The discussion is limited to passive single- and multimode devices fabricated from optical fibers or graded-index components. Integrated-optic, wavelength-division-multiplexing, and polarization-selective devices are not specifically addressed.
All change at the CERN UBS branch
Antonella Del Rosso
2012-01-01
UBS branches across the country are being modernised, and the CERN branch is no exception. The Bulletin brings you a preview of the project, which will get under way in January 2013. Mock-up of the renovated UBS branch. The changes at the UBS branch in CERN's Main Building will be no simple facelift. The entire bank will be renovated, transforming the present relatively confined premises into an open and attractive area. "The renovation of the UBS branches is part of a wider campaign designed to further enhance our customer relations," explains Ezio Mangia, the head of the CERN branch. The UBS bank currently occupies three sets of premises in CERN's Main Building (two on the ground floor and one in the basement). "By the end of the work, which is scheduled to be completed by the middle of next year, CERN customers will benefit from a new area with open-plan counters and "hole-in-the-wall" machines accessible to...
Measure change in multitype branching
Biggins, J.D.; Kyprianou, A.E.
2002-01-01
The Kesten-Stigum theorem for the one-type Galton-Watson process gives necessary and sufficient conditions for mean convergence of the martingale formed by the population size normed by its expectation. Here, the approach of Lyons, Peres and Pemantle (1995) to this theorem, which exploits a change o
Northwestern Branch of Mangala Vallis
2002-01-01
(Released 12 June 2002) The Science One of the many branches of the Mangala Vallis channel system is seen in this image. The water that likely carved the channels emerged from a huge graben or fracture almost 1000 km to the south. The THEMIS image shows where one of the channels exits the cratered highlands terrain onto the lowland plains. A bright scarp marks the transition between the two terrain types and demonstrates that in this location the highlands terrain is being eroded back. Note how the floor of the main channel appears to be at the same level as the lowland terrain, suggestive of a base level where erosion is no longer effective. Most of the steep slope faces in the image display darker slope streaks that are thought to be dust avalanche scars and indicate that a relatively thick mantle of dust is present in this region. Wind-sculpted ridges known as yardangs cover many of the surfaces throughout the area as shown by images from the Mars Global Surveyor mission. Most of them are at the limit of resolution in the THEMIS image but some are evident on the floor of the main channel at the point at which a smaller side channel enters. In this location they appear to extend right up to the base of the channel wall, giving the appearance that they are emerging from underneath the thick pile of material into which the channel is eroded. This suggests a geologic history in which a preexisting landscape of eroded yardangs was covered over by a thick pile of younger material that is now eroding back down to the original level. Alternatively, it is possible that the yardangs formed more recently at the abrupt transition between the channel floor and wall. More analysis is necessary to sort out the story. The Story This channel system is named 'Mangala,' the word for Mars in Sanskrit, a language of the Hindus of India that goes back more than 4,000 years, with written literature almost as long. Great epic tales have been written in this language, and Odyssey is
Higher order branching of periodic orbits from polynomial isochrones
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Branching structure for an (L-1) random walk in random environment and its applications
Hong, Wenming
2010-01-01
By decomposing the random walk path, we construct a multitype branching process with immigration in random environment for corresponding random walk with bounded jumps in random environment. Then we give two applications of the branching structure. Firstly, we specify the explicit invariant density by a method different with the one used in Br\\'emont [3] and reprove the law of large numbers of the random walk by a method known as the environment viewed from particles". Secondly, the branching structure enables us to prove a stable limit law, generalizing the result of Kesten-Kozlov-Spitzer [11] for the nearest random walk in random environment. As a byproduct, we also prove that the total population of a multitype branching process in random environment with immigration before the first regeneration belongs to the domain of attraction of some \\kappa -stable law.
Flight Planning Branch Space Shuttle Lessons Learned
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
The Future of Washington's Branch Campuses. HECB Report on Branch Campus Development Plans-HB 2707
Washington Higher Education Coordinating Board, 2005
2005-01-01
Washington's research university branch campuses were created in 1989 to increase opportunities for students in several regions of the state to complete their baccalaureate and graduate-level studies at public universities close to their homes. Currently, the University of Washington operates branch campuses in Bothell and Tacoma. The Bothell…
Hendrickson, Eric B; Edgerton, Jeremy R; Jaeger, Dieter
2011-04-01
Conductance-based neuron models are frequently employed to study the dynamics of biological neural networks. For speed and ease of use, these models are often reduced in morphological complexity. Simplified dendritic branching structures may process inputs differently than full branching structures, however, and could thereby fail to reproduce important aspects of biological neural processing. It is not yet well understood which processing capabilities require detailed branching structures. Therefore, we analyzed the processing capabilities of full or partially branched reduced models. These models were created by collapsing the dendritic tree of a full morphological model of a globus pallidus (GP) neuron while preserving its total surface area and electrotonic length, as well as its passive and active parameters. Dendritic trees were either collapsed into single cables (unbranched models) or the full complement of branch points was preserved (branched models). Both reduction strategies allowed us to compare dynamics between all models using the same channel density settings. Full model responses to somatic inputs were generally preserved by both types of reduced model while dendritic input responses could be more closely preserved by branched than unbranched reduced models. However, features strongly influenced by local dendritic input resistance, such as active dendritic sodium spike generation and propagation, could not be accurately reproduced by any reduced model. Based on our analyses, we suggest that there are intrinsic differences in processing capabilities between unbranched and branched models. We also indicate suitable applications for different levels of reduction, including fast searches of full model parameter space. PMID:20623167
Measurement of tau lepton branching fractions
We present τ- lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample ofτ- → ντK-π+π- events, we examine the resonance structure of the K-π+π- system and obtain the first measurements of branching fractions for τ- → ντK1-(1270) and τ- → ντK1-(1400). We also describe a complete set of branching fraction measurements in which all the decays of the τ- lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, μ, π, and K
Geometry optimization of branchings in vascular networks
Khamassi, Jamel; Bierwisch, Claas; Pelz, Peter
2016-06-01
Progress has been made in developing manufacturing technologies which enable the fabrication of artificial vascular networks for tissue cultivation. However, those networks are rudimentary designed with respect to their geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related fluid mechanical stimuli and the avoidance of vessel occlusion. In the present work, a bioinspired geometry optimization for branchings in artificial vascular networks has been conducted. The analysis could be simplified by exploiting self-similarity properties of the system. Design rules in the form of two geometrical parameters, i.e., the branching angle and the radius ratio of the daughter branches, are derived using the wall shear stress as command variable. The numerical values of these parameters are within the range of experimental observations. Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as indicators for diagnoses of vascular diseases or for the layout of vascular grafts.
Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block
Kora, Padmavathi; Kalva, Sri Ramakrishna
2015-01-01
Abnormal cardiac beat identification is a key process in the detection of heart diseases. Our present study describes a procedure for the detection of left and right bundle branch block (LBBB and RBBB) Electrocardiogram (ECG) patterns. The electrical impulses that control the cardiac beat face difficulty in moving inside the heart. This problem is termed as bundle branch block (BBB). BBB makes it harder for the heart to pump blood effectively through the heart circulatory system. ECG feature ...
Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer
Francesco Trotta; Fabrizio Caldera; Roberta Cavalli; Andrea Mele; Carlo Punta; Lucio Melone; Franca Castiglione; Barbara Rossi (Duke); Monica Ferro; Vincenza Crupi; Domenico Majolino; Valentina Venuti; Dominique Scalarone
2014-01-01
A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-l...
Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation
Gola, Edyta M
2014-01-01
The division of the apical meristem into two independently functioning axes is defined as dichotomous branching. This type of branching typically occurs in non-vascular and non-seed vascular plants, whereas in seed plants it presents a primary growth form only in several taxa. Dichotomy is a complex process, which requires a re-organization of the meristem structure and causes changes in the apex geometry and activity. However, the mechanisms governing the repetitive apex divisions are hardly...
Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories
The branching classical trajectory method for inelastic atomic collision processes is proposed. The approach is based on two features: (i) branching of a classical trajectory in a nonadiabatic region and (ii) the nonadiabatic transition probability formulas particularly adapted for a classical trajectory treatment. In addition to transition probabilities and inelastic cross sections, the proposed approach allows one to calculate incoming and outgoing currents. The method is applied to inelastic Na + H collisions providing the results in reasonable agreement with full quantum calculations.
Spatial Structure of the Branching Streamer Channels in a Corona Discharge
The dendritic structure of streamer channels in a corona discharge is described by using fractal theory. It is found that, for a needle-plane discharge, the fractal dimension of the plasma structure is D = 2.16 ± 0.05. The computed spatial distributions of the branching ratios are compared with the available experimental data. The influence of the branching processes on the distribution of chemically active radicals in streamer corona discharges is studied
Measuring neuronal branching patterns using model-based approach
Artur Luczak
2010-10-01
Full Text Available Neurons have complex branching systems which allow them to communicate with thousands of other neurons. Thus understanding neuronal geometry is clearly important for determining connectivity within the network and how this shapes neuronal function. One of the difficulties in uncovering relationships between neuronal shape and its function is the problem of quantifying complex neuronal geometry. Even by using multiple measures such as: dendritic length, topology, distribution of segments, direction of branches, etc, a description of three dimensional neuronal embedding remains incomplete. To help alleviate this problem, here we propose a new measure, a shape diffusiveness index (SDI, to quantify spatial relations between branches at the local and global scale. It was shown that growth of neuronal trees can be modeled by using Diffusion Limited Aggregation (DLA process. By measuring ‘how easy’ it is to reproduce the analyzed shape by using the DLA algorithm it can be measured how ‘diffusive’ is that shape. Intuitively, ‘diffusiveness’ measures how tree-like is a given shape. For example shapes like an oak tree will have high values of SDI. This measure is capturing an important feature of dendritic tree geometry, which is difficult to assess with other measures. This approach also presents a paradigm shift from well-defined deterministic measures to model-based measures, which estimate how well a model with specific properties can account for features of analyzed shape.
Measuring neuronal branching patterns using model-based approach.
Luczak, Artur
2010-01-01
Neurons have complex branching systems which allow them to communicate with thousands of other neurons. Thus understanding neuronal geometry is clearly important for determining connectivity within the network and how this shapes neuronal function. One of the difficulties in uncovering relationships between neuronal shape and its function is the problem of quantifying complex neuronal geometry. Even by using multiple measures such as: dendritic length, distribution of segments, direction of branches, etc, a description of three dimensional neuronal embedding remains incomplete. To help alleviate this problem, here we propose a new measure, a shape diffusiveness index (SDI), to quantify spatial relations between branches at the local and global scale. It was shown that growth of neuronal trees can be modeled by using diffusion limited aggregation (DLA) process. By measuring "how easy" it is to reproduce the analyzed shape by using the DLA algorithm it can be measured how "diffusive" is that shape. Intuitively, "diffusiveness" measures how tree-like is a given shape. For example shapes like an oak tree will have high values of SDI. This measure is capturing an important feature of dendritic tree geometry, which is difficult to assess with other measures. This approach also presents a paradigm shift from well-defined deterministic measures to model-based measures, which estimate how well a model with specific properties can account for features of analyzed shape. PMID:21079752
Nan Lu
2014-04-01
Full Text Available The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
Ecological effects of contaminants in McCoy Branch, 1991--1993
Ryon, M.G. [ed.
1996-09-01
The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps were implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.
Jonathan, M.C.; Brussel, van M.; Scheffers, M.S.; Kabel, M.A.
2015-01-01
In the conversion of starch to fermentable glucose for bioethanol production, hydrolysis of amylopectin by a-amylases and glucoamylases is the slowest step. In this process, a-1,6-branched gluco-oligosaccharides accumulate and are slowly degraded. Glucoamylases that are able to degrade such branched
Branch and Bound Experiments in Convex Nonlinear Integer Programming
Omprakash K. Gupta; Ravindran, A
1985-01-01
The branch and bound principle has long been established as an effective computational tool for solving mixed integer linear programming problems. This paper investigates the computational feasibility of branch and bound methods in solving convex nonlinear integer programming problems. The efficiency of a branch and bound method often depends on the rules used for selecting the branching variables and branching nodes. Among others, the concepts of pseudo-costs and estimations are implemented ...
Effect of left bundle branch block on TIMI frame count
Hatice Tolunay; Ahmet Kasapkara; İsa Öner Yüksel; Nurcan Başar; Ayşe Saatcı Yaşar; Mehmet Bilge
2010-01-01
Aim: Left bundle branch block is an independent risk factorfor cardiac mortality. In this study we aimed to evaluatecoronary blood flow with TIMI frame count in patients with left bundle branch block and angiographically proven normal coronary arteries.Materials and methods: We retrospectively studied 17 patients with left bundle branch block and as a control group 16 patients without left bundle branch block. All patientshad angiographically proven normal coronary arteries.Left bundle branch...
On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology
Salaris, Maurizio; Pietrinferni, Adriano
2016-01-01
We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modeling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can be reproduced only by accounting for a range of initial He abundances --in agreement with inferences from the analysis of the main sequence-- and a red giant branch mass loss with a small dispersion. We have carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modeling, stemming from uncertainties in both stellar model computations and the cluster properties such as heavy element abundances, reddening and age. We determine a firm lower limit of ~0.17$Mo for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65Mo ...
Medial branch neurotomy in low back pain
This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)
Medial branch neurotomy in low back pain
Masala, Salvatore; Mammucari, Matteo; Simonetti, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); Nano, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); University ' ' Tor Vergata' ' , Department of Radiology, Rome (Italy); Marcia, Stefano [S. Giovanni di Dio Hospital, Department of Diagnostic and Molecular Imaging, Cagliari (Italy)
2012-07-15
This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)
Measurement of the eta decay branching ratio
Bargholtz, C; Bogoslawsky, D; Calén, H; Capellaro, F; Clement, H; Demirörs, L; Ekström, C; Fransson, K; Geren, L; Gustafsson, L; Höistad, Bo; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Keleta, S; Koch, I; Kullander, Sven; Kupsc, A; Kuznetsov, A; Laukhin, I V; Lindberg, K; Marciniewski, P; Meier, R; Morosov, B; Oelert, W; Pauly, C; Pettersson, H; Petukhov, Yu P; Povtorejko, A; Ruber, Roger J M Y; Schönning, K; Scobel, W; Shafigullin, R; Shwartz, B; Skorodko, T Yu; Sopov, V; Stepaniak, J; Chernyshov, V; Tegnér, P E; Engblom, P T; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wolke, M; Yamamoto, A; Zabierowski, J; Zartova, I; Zlomanczuk, Yu; Bargholtz, Chr.
2007-01-01
The reaction pd->3He eta at threshold was used to provide a clean source of eta mesons for decay studies with the WASA detector at CELSIUS. The branching ratio of the decay eta->pi+pi-e+e- is measured to be (4.6+/-1.4+/-0.5)x10^-4.
76 FR 60757 - Executive Branch Qualified Trusts
2011-09-30
... qualified trusts provisions for the executive branch in subparts D and E of 5 CFR part 2634 (see 57 FR 11800.... 12674, 54 FR 15159, 3 CFR, 1989 Comp., p. 215, as modified by E.O. 12731, 55 FR 42547, 3 CFR, 1990 Comp... been in business, its policies and philosophy in managing assets, the types of clients it serves,...
Infrared studies of asymptotic giant branch stars
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
The AFCRL Lunar amd Planetary Research Branch
Price, Stephan D.
2011-07-01
The Lunar and Planetary research program led by Dr John (Jack) Salisbury in the 1960s at the United States Air Force Cambridge Research Laboratories (AFCRL) investigated the surface characteristics of Solar System bodies. The Branch was one of the first groups to measure the infrared spectra of likely surface materials in the laboratory under appropriate vacuum and temperature conditions. The spectral atlases created from the results were then compared to photometric and spectral measurements obtained from ground- and balloon-based telescopes to infer the mineral compositions and physical conditions of the regoliths of the Moon, Mars and asteroids. Starting from scratch, the Branch initially sponsored observations of other groups while its in-house facilities were being constructed. The earliest contracted efforts include the spatially-resolved mapping of the Moon in the first half of the 1960s by Richard W. Shorthill and John W. Saari of the Boeing Scientific Research Laboratories in Seattle. This effort ultimately produced isophotal and isothermal contour maps of the Moon during a lunation and time-resolved thermal images of the eclipsed Moon. The Branch also sponsored probe rocket-based experiments flown by Riccardo Giacconi and his group at American Science and Engineering Inc. that produced the first observations of X-ray stars in 1962 and later the first interferometric measurement of the ozone and C02 emission in the upper atmosphere. The Branch also made early use of balloon-based measurements. This was a singular set of experiments, as these observations are among the very few mid-infrared astronomical measurements obtained from a balloon platform. Notable results of the AFCRL balloon flights were the mid-infrared spectra of the spatially-resolved Moon obtained with the University of Denver mid-infrared spectrometer on the Branch's balloon-borne 61-cm telescope during a 1968 flight. These observations remain among the best available. Salisbury also funded