Differential synchronization in default and task-specific networks of the human brain
Aaron Kirschner
2012-05-01
Full Text Available On a regional scale the brain is organized into dynamic functional networks. The activity within one of these, the default network, can be dissociated from that in other task-specific networks. All brain networks are connected structurally, but evidently are only transiently connected functionally. One hypothesis as to how such transient functional coupling occurs is that network formation and dissolution is mediated, or at least accompanied, by increases and decreases in oscillatory synchronization between constituent brain regions. If so, then we should be able to find transient differences in intra-network synchronization between the default network and a task-specific network. In order to investigate this hypothesis we conducted two experiments in which subjects engaged in a Sustained Attention to Response Task (SART while having brain activity recorded via high-density electroencephalography (EEG. We found that during periods when attention was focused internally (mind-wandering there was significantly more neural phase synchronization between brain regions associated with the default network, whereas during periods when subjects were focused on performing the visual task there was significantly more neural phase synchrony within a task-specific brain network that shared some of the same brain regions. These differences in network synchrony occurred in each of theta, alpha, and gamma frequency bands. A similar pattern of differential oscillatory power changes, indicating modulation of local synchronization by attention state, was also found. These results provide further evidence that the human brain is intrinsically organized into default and task-specific brain networks, and confirm that oscillatory synchronization is a potential mechanism for functional coupling within these networks.
Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG
Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.
2015-12-01
The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).
Synchronization in active networks
Pereira da Silva, Tiago
2007-01-01
In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both...
R E Amritkar
2008-08-01
We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster synchronization. For networks with time-varying topology we compare the synchronization properties of these networks with the corresponding time-average network. We find that if the different coupling matrices corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand, for non-commuting coupling matrices the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.
Fast sparsely synchronized brain rhythms in a scale-free neural network.
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For Dtopology (e.g., average path length and betweenness centralization) and sparse synchronization and contributions of individual dynamics to the sparse synchronization are discussed. PMID:26382442
Synchronization in complex networks
Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.
2007-12-12
Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
Synchronization in complex networks
Arenas, Alex; Díaz-Guilera, Albert; Kurths, Jurgen; Moreno, Yamir; Zhou, Changsong
2008-12-01
Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
Development of Network Synchronization Predicts Language Abilities.
Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W
2016-01-01
Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities. PMID:26401810
Remote Synchronization in Complex Networks
Gambuzza, Lucia Valentina; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesús; Frasca, Mattia
2013-01-01
We show the existence of a novel dynamical state called remote synchronization in general networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon cannot be observed in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
Simulating synchronization in neuronal networks
Fink, Christian G.
2016-06-01
We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.
Pinning Synchronization of Switched Complex Dynamical Networks
Liming Du; Feng Qiao; Fengying Wang
2015-01-01
Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synch...
Remote synchronization in star networks
Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E. J.; Fortuna, L.; Kurths, J.
2012-02-01
We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.
Breathing synchronization in interconnected networks
Louzada, V H P; Andrade, J S; Herrmann, H J
2013-01-01
The harmony of an orchestra emerges from the individual effort of musicians towards mutual synchronization of their tempi. When the orchestra is split between two concert halls communicating via Internet, a time delay is imposed which might hinder synchronization. We describe this type of system as two interconnected networks of oscillators with a time delay and analyze its dynamics as a function of the couplings and communication lag. We discover a breathing synchronization regime, namely, for a wide range of parameters, two groups emerge in the orchestra within the same concert hall playing at different tempi. Each group has a mirror in the other hall, one group is in phase and the other in anti-phase with their mirrors. For strong couplings, a phase shift between halls might occur. The implications of our findings on several socio-technical and biological systems are discussed.
Pinning Synchronization of Switched Complex Dynamical Networks
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Synchronization in oscillatory networks
Osipov, Grigory V; Zhou, Changsong
2007-01-01
The formation of collective behavior in large ensembles or networks of coupled oscillatory elements is one of the oldest and most fundamental aspects of dynamical systems theory. Potential and present applications span a vast spectrum of fields ranging from physics, chemistry, geoscience, through life- and neurosciences to engineering, the economic and the social sciences. This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or the heart muscle - to name but a few. This book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.
Neural network plasticity in the human brain
Rizk, Sviatlana
2013-01-01
The human brain is highly organized within networks. Functionally related neural-assemblies communicate by oscillating synchronously. Intrinsic brain activity contains information on healthy and damaged brain functioning. This thesis investigated the relationship between functional networks and behavior. Furthermore, we assessed functional network plasticity after brain damage and as a result of brain stimulation. In different groups of patients we observed reduced functional connectivity bet...
Spontaneous synchronization driven by energy transport in interconnected networks
Nicosia, Vincenzo; Latora, Vito; Arenas, Alex
2014-01-01
The existence of intertwined dynamical processes in interconnected networks is a distinctive aspect of complex systems. For example, cerebral circulation delivers oxygenated blood to the brain through blood vessels, and in turn the neural system in the brain is responsible, through neural network connections, for mediating changes in cerebral blood flow. To understand the effects of the coupling between different processes we study the case of two interconnected networks, one accounting for energy transport and the other for a synchronization dynamics. We observe the emergence of switch-like spontaneous synchronization, similar to that seen in the transition between resting-state and cognitive activity in the human brain, for a wide range of control parameters and for different network topologies. We suggest that similarly interconnected dynamical processes could be responsible for spontaneous synchronization transitions observed in natural systems.
Disturbed temporal dynamics of brain synchronization in vision loss.
Bola, Michał; Gall, Carolin; Sabel, Bernhard A
2015-06-01
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. PMID:25956453
Inhomogeneity induces relay synchronization in complex networks
Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano
2016-04-01
Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.
[Synchronized, oscillatory brain activity in visual perception].
Braunitzer, Gábor
2008-09-30
The present study investigates one of the most promising developments of the brain-mind question, namely the possible links between synchronized oscillatory brain activity and certain (visual) perceptual processes. Through a review of the relevant literature, the author introduces the reader to the most important theories of coherent perception ('binding'), and makes an attempt to show how synchronization of EEG-registrable oscillatory activities from various frequency bands might explain binding. Finally, a number of clinical problems are also mentioned, regarding which the presented theoretical framework might deserve further consideration. PMID:18841649
Synchronization of oscillators in complex networks
Louis M Pecora
2008-06-01
Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore and compare three types of semirandom networks for their efficacy in synchronizing oscillators. It is shown that the simplest -cycle augmented by a few random edges or links are the most efficient network that will guarantee good synchronization.
Global Synchronization of General Delayed Dynamical Networks
LI Zhi
2007-01-01
Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.
Synchronization performance of complex oscillator networks
Yan, Gang; Chen, Guanrong; Lü, Jinhu; Fu, Zhong-Qian
2009-11-01
Recently, synchronization of complex networks has attracted increasing attention from various research fields. However, most previous works focused on the stability of synchronization manifold. In this paper, we analyze the time-delay tolerance and converging speed of synchronization. Our theoretical analysis and extensive simulations show that the critical value of time delay for network synchronization is inversely proportional to the largest Laplacian eigenvalue, the converging speed without time delay is proportional to the second least Laplacian eigenvalue, and the time delay could increase the converging speed linearly for heterogeneous networks and significantly for homogeneous networks.
Synchronization in complex networks with switching topology
This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.
Wireless Networks Effective Time Power Synchronization
Kamalakannan
2012-06-01
Full Text Available Time synchronization is a critical piece of infrastructure for any distributed system. Distributed, wireless sensor net-works make extensive use of synchronized time, but often have unique requirements in the scope, lifetime and precision of the synchronization achieved, as well as the time and energy required to achieve it. Existing time synchronization methods need to be extended to meet these new needs. We outline the synchronization requirements of future sensor networks and present an implementation of our own low-power synchronization scheme, post-facto synchronization. We also describe an experiment that characterizes its performance for creating short-lived and localized but high-precision synchronization using very little energy.
Analysis of remote synchronization in complex networks
Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia
2013-12-01
A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
Controlling synchronous patterns in complex networks
Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang
2016-04-01
Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.
Adaptive cluster synchronization in complex dynamical networks
Cluster synchronization is investigated in different complex dynamical networks. In this Letter, a novel adaptive strategy is proposed to make a complex dynamical network achieve cluster synchronization, where the adaptive strategy of one edge is adjusted only according to its local information. A sufficient condition about the global stability arbitrarily grouped of cluster synchronization is derived. Several numerical simulations show the effectiveness of the adaptive strategy.
Detecting synchronization in coupled stochastic ecosystem networks
Kouvaris, N. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Provata, A. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Kugiumtzis, D., E-mail: dkugiu@gen.auth.g [Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)
2010-01-11
Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.
Synchronization of impulsively coupled complex networks
We investigate the synchronization of complex networks, which are impulsively coupled only at discrete instants. Based on the comparison theory of impulsive differential systems, a distributed impulsive control scheme is proposed for complex dynamical networks to achieve synchronization. The proposed scheme not only takes into account the influence of all nodes to network synchronization, which depends on the weight of each node in the network, but also provides us with a flexible method to select the synchronized state of the network. In addition, it is unnecessary for the impulsive coupling matrix to be symmetrical. Finally, the proposed control scheme is applied to a chaotic Lorenz network and Chua's circuit network. Numerical simulations are used to illustrate the validity of this control scheme. (general)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
2015-03-15
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes
Fitness for synchronization of network motifs
Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.; Vazquez-Prada Baillet, Miguel
We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed. © 2004 Elsevier B.V. All rights reserved....
Brain activities during synchronized tapping task.
Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake
2015-08-01
This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670
Chaos synchronization in networks of semiconductor superlattices
Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido
2015-11-01
Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.
Collapse of Synchronization in a Memristive Network
Lü, Mi; Wang, Chun-Ni; Tang, Jun; Ma, Jun
2015-12-01
For an oscillating circuit or coupled circuits, damage in electric devices such as inductor, resistance, memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices, and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper, a two-dimensional network composed of the resonators coupled with memristors under nearest-neighbor connection is designed, and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period, then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators (oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed, the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity. Supported by the National Natural Science of China under Grant Nos. 11265008 and 11365014
Synchronized Data Aggregation for Wireless Sensor Network
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2014-01-01
Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...
Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture.
Plotnikov, S A; Lehnert, J; Fradkov, A L; Schöll, E
2016-07-01
We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain. PMID:27575119
Driven synchronization in random networks of oscillators
Hindes, Jason
2015-01-01
Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and resolve how the structure and emergence of such states depends on the underlying network topology for simple random networks with a given degree distribution. We provide a partial bifurcation analysis, centering on the appearance of a Takens-Bogdanov-Cusp singularity, which broadly separates homogeneous and heterogeneous network behavior in a weak coupling limit, and from which the number, stability and appearance of dr...
Impulsive synchronization of networked nonlinear dynamical systems
Jiang Haibo, E-mail: yctcjhb@gmail.co [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China); School of Mathematics, Yancheng Teachers University, Yancheng 224051 (China); Bi Qinsheng [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)
2010-06-14
In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.
Impulsive synchronization of networked nonlinear dynamical systems
Jiang, Haibo; Bi, Qinsheng
2010-06-01
In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.
Carrying Synchronous Voice Data On Asynchronous Networks
Bergman, Larry A.
1990-01-01
Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.
The synchronization of FitzHugh-Nagumo neuron network coupled by gap junction
Zhan Yong; Zhang Su-Hua; Zhao Tong-Jun; An Hai-Long; Zhang Zhen-Dong; Han Ying-Rong; Liu Hui; Zhang Yu-Hong
2008-01-01
It is well known that the strong coupling can synchronize a network of nonlinear oscillators. Synchronization provides the basis of the remarkable computational performance of the brain. In this paper the FitzHugh-Nagumo neuron network is constructed. The dependence of the synchronization on the coupling strength, the noise intensity and the size of the neuron network has been discussed. The results indicate that the coupling among neurons works to improve the synchronization, and noise increases the neuron random dynamics and the local fluctuations; the larger the size of network, the worse the synchronization. The dependence of the synchronization on the strength of the electric synapse coupling and chemical synapse coupling has also been discussed, which proves that electric synapse coupling can enhance the synchronization of the neuron network largely.
Forced synchronization of autonomous dynamical Boolean networks
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics
Forced synchronization of autonomous dynamical Boolean networks
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)
2015-08-15
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Stability of Synchronized Motion in Complex Networks
Pereira, Tiago
2011-01-01
We give a succinct and self-contained description of the synchronized motion on networks of mutually coupled oscillators. Usually, the stability criterion for the stability of synchronized motion is obtained in terms of Lyapunov exponents. We consider the fully diffusive case which is amenable to treatment in terms of uniform contractions. This approach provides a rigorous, yet clear and concise, way to the important results.
Synchronization of coupled chaotic dynamics on networks
R E Amritkar; Sarika Jalan
2005-03-01
We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters and evolving independently. Secondly, two different ways of cluster formation can be identified, namely self-organized clusters which have mostly intra-cluster couplings and driven clusters which have mostly inter-cluster couplings.
Synchronization in interacting Scale Free Networks
Torres, M F; La Rocca, C E; Braunstein, L A
2015-01-01
We study the fluctuations of the interface, in the steady state, of the Surface Relaxation Model (SRM) in two Scale Free interacting Networks where a fraction $q$ of nodes in both networks interact one to one through external connections. We find that as $q$ increases the fluctuations on both networks decrease and thus the synchronization is better than in isolated networks. As a consequence the system is optimal synchronized for $q=1$. The decrease of the fluctuations in both networks is due mainly to the diffusion through external connections which allows to reducing the load in nodes by sending the excess of load mostly to low degree nodes. This effect enhances the matching of the heights of low and high degree nodes as $q$ increases reducing the fluctuations.
Clock Synchronization for Multihop Wireless Sensor Networks
Solis Robles, Roberto
2009-01-01
In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…
Distributed Probabilistic Synchronization Algorithms for Communication Networks
AKAR, MEHMET; Shorten, Robert
2008-01-01
In this paper, we present a probabilistic synchronization algorithm whose convergence properties are examined using tools of rowstochastic matrices. The proposed algorithm is particularly well suited for wireless sensor network applications, where connectivity is not guaranteed at all times, and energy efficiency is an important design consideration. The tradeoff between the convergence speed and the energy use is studied.
Impulsive generalized function synchronization of complex dynamical networks
This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results
Anti-synchronization Between Coupled Networks with Two Active Forms
This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks, adaptive controllers are designed to anti-synchronize them. Different node dynamics and nonidentical topological structures are considered and useful criteria for anti-synchronization between two networks are given. Numerical examples are presented to show the efficiency of our derived results. (general)
Computer network time synchronization the network time protocol
Mills, David L
2006-01-01
What started with the sundial has, thus far, been refined to a level of precision based on atomic resonance: Time. Our obsession with time is evident in this continued scaling down to nanosecond resolution and beyond. But this obsession is not without warrant. Precision and time synchronization are critical in many applications, such as air traffic control and stock trading, and pose complex and important challenges in modern information networks.Penned by David L. Mills, the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol
Frustrated hierarchical synchronization and emergent complexity in the human connectome network
Villegas, Pablo; Moretti, Paolo; Mu??oz Mart??nez, Miguel ??ngel
2014-01-01
The spontaneous emergence of coherent behavior through synchronization plays a key role in neural function, and its anomalies often lie at the basis of pathologies. Here we employ a parsimonious (mesoscopic) approach to study analytically and computationally the synchronization (Kuramoto) dynamics on the actual human-brain connectome network. We elucidate the existence of a so-far-uncovered intermediate phase, placed between the standard synchronous and asynchronous phases, i.e. between order...
The Synchronous Network of distant Telescopes
Zhilyaev, B; Verlyuk, I; Andreev, M; Sergeev, A; Lovkaya, M; Antov, S; Konstantinova-Antova, R; Bogdanovski, R; Avgoloupis, S; Seiradakis, J; Contadakis, M
2011-01-01
The Synchronous Network of distant Telescopes (SNT) represents an innovative approach in observational astrophysics. Authors present the unique existing realization of the SNT-conception. It was founded within the international collaboration between astronomical observatories of Ukraine, Russia, Bulgaria and Greece. All the telescopes of the Network are equipped with standardized photometric systems (based on photomultipliers). The unified timing systems (based on GPS-receivers) synchronize all the apertures to UTC with an accuracy of 1 microsecond and better. The essential parts of the SNT are the original software for operating and data processing. Described international Network successfully works for more then 10 years. The obtained unique observational data made it possible to discover new fine-scale features and flare-triggered phenomena in flaring red dwarfs, as well as the recently found high-frequency variability in some chromospherically active stars.
Emergent synchronous bursting of oxytocin neuronal network.
Enrico Rossoni
Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.
Adaptive-impulsive synchronization of uncertain complex dynamical networks
This Letter studies adaptive-impulsive synchronization of uncertain complex dynamical networks. Based on the stability analysis of impulsive system, several network synchronization criteria for local and global adaptive-impulsive synchronization are established. Numerical example is also given to illustrate the results
Generalized Synchronization of Lorenz Chaotic System with Star Network
Mohammad Ali Khan
2012-01-01
In this paper, we propose the theory for generalized synchronization (GS) of a chaotic star network. We derive sufficient conditions for generalized synchronization of any chaotic system on a star network. The relationship among the state variables at GS are completely known in our method. The effectiveness and feasibility of the synchronization strategy is confirmed and demonstrated by numerical simulation.
Intermittent synchronization in a network of bursting neurons
Park, Choongseok; Rubchinsky, Leonid L.
2011-09-01
Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network. Here, we explore one potential mechanism to explain the intermittent phase-locking in a network. We simplify the network to obtain a model of two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singular perturbation methods for dynamical systems to reduce the full model to a simpler set of equations. Mathematical analysis was completed using three slow variables with two different time scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially depends on the geometry of the slow phase plane and the interplay between slow variables as well as the strength of synapses. Two slow variables are responsible for the generation of activity patterns with overlapped spiking, and the other slower variable enhances the robustness of an irregular and intermittent activity pattern. While the analyzed network and the explored mechanism of intermittent synchrony appear to be quite generic, the results of this analysis can be used to trace particular values of biophysical parameters (synaptic strength and parameters of calcium dynamics), which are known to be impacted in Parkinson's disease.
Synchronization in random networks with given expected degree sequences
Biey, Mario
2008-01-01
Synchronization in random networks with given expected degree sequences is studied. We also investigate in details the synchronization in networks whose topology is described by classical random graphs, power-law random graphs and hybrid graphs when N goes to infinity. In particular, we show that random graphs almost surely synchronize. We also show that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchronize
Andersen, Kasper Winther
Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...
Brains swinging in concert: cortical phase synchronization while playing guitar
Gruber Walter
2009-03-01
Full Text Available Abstract Background Brains interact with the world through actions that are implemented by sensory and motor processes. A substantial part of these interactions consists in synchronized goal-directed actions involving two or more individuals. Hyperscanning techniques for assessing fMRI simultaneously from two individuals have been developed. However, EEG recordings that permit the assessment of synchronized neuronal activities at much higher levels of temporal resolution have not yet been simultaneously assessed in multiple individuals and analyzed in the time-frequency domain. In this study, we simultaneously recorded EEG from the brains of each of eight pairs of guitarists playing a short melody together to explore the extent and the functional significance of synchronized cortical activity in the course of interpersonally coordinated actions. Results By applying synchronization algorithms to intra- and interbrain analyses, we found that phase synchronization both within and between brains increased significantly during the periods of (i preparatory metronome tempo setting and (ii coordinated play onset. Phase alignment extracted from within-brain dynamics was related to behavioral play onset asynchrony between guitarists. Conclusion Our findings show that interpersonally coordinated actions are preceded and accompanied by between-brain oscillatory couplings. Presumably, these couplings reflect similarities in the temporal properties of the individuals' percepts and actions. Whether between-brain oscillatory couplings play a causal role in initiating and maintaining interpersonal action coordination needs to be clarified by further research.
Phase Synchronization in Small World Chaotic Neural Networks
WANG Qing-Yun; LU Qi-Shao
2005-01-01
@@ To understand collective motion of realneural networks very well, we investigate collective phase synchronization of small world chaotic Hindmarsh-Rose (HR) neural networks. By numerical simulations, we conclude that small world chaotic HR neural networks can achieve collective phase synchronization. Furthermore, it is shown that phase synchronization of small world chaotic HR neural networks is dependent on the coupling strength,the connection topology (which is determined by the probability p), as well as the coupling number. These phenomena are important to guide us to understand the synchronization of real neural networks.
Ideal synchronizer for marked pairs in fork-join network
Vyshenski, S V; Dubenskaya, Yu Yu
2008-01-01
We introduce a new functional element (synchronizer for marked pairs) meant to join results of parallel processing in two-branch fork-join queueing network. Approximations for distribution of sojourn time at the synchronizer are derived along with a validity domain. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (which contains the synchronizer) and does not depend upon performance and particular properties of the synchronizer.
Global exponential synchronization criterion for switched linear coupled dynamic networks
We in this paper develop a global exponential synchronization stability criterion for switched linear coupled network. By introducing a switching symmetric matrix, we prove that the stability of global exponential synchronization is governed by the largest eigenvalue of this switching symmetric matrix and the largest switching coupling strength. Meanwhile, we give the threshold of switching coupling strength which can make the switched linear network reach global exponential synchronization. Because the proposed criterion is on the basis of the original synchronization definition and the largest eigenvalue of the switching symmetric matrix, therefore, it is convenient to use in verifying global exponential synchronization of dynamic network with switching linear couplings.
Synchronization in the network of chaotic microwave oscillators
Moskalenko, O.; Phrolov, N.; Koronovskii, A.; Hramov, A.
2013-10-01
Time scale synchronization in networks of chaotic microwave oscillators with the different topologies of the links between nodes has been studied. As a node element of the network the one-dimensional distributed model of the low-voltage vircator has been used. To characterize the degree of synchronization in the whole network the synchronization index has been introduced. The transition to the synchronous regime is shown to take place via cluster time scale synchronization. Meanwhile, the spectral structure of the output signals is complicated sufficiently which allows using such devices in a number of practical applications.
Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks
2013-01-01
This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...
Global Synchronization of Directed Networks with Fast Switching Topologies
Global synchronization of a class of directed dynamical networks with switching topologies is investigated. It is found that if there is a directed spanning tree in the fixed time-average of network topology and the time-average is achieved sufficiently fast, then the network will reach global synchronization for sufficiently large coupling strength. (general)
Adaptive Synchronization of Complex Dynamical Networks with State Predictor
Yuntao Shi; Bo Liu; Xiao Han
2013-01-01
This paper addresses the adaptive synchronization of complex dynamical networks with nonlinear dynamics. Based on the Lyapunov method, it is shown that the network can synchronize to the synchronous state by introducing local adaptive strategy to the coupling strengths. Moreover, it is also proved that the convergence speed of complex dynamical networks can be increased via designing a state predictor. Finally, some numerical simulations are worked out to illustrate the analytical results.
Controlling synchronization in large laser networks using number theory
Nixon, Micha; Ronen, Eitan; Friesem, Asher A; Davidson, Nir; Kanter, Ido
2011-01-01
Synchronization in networks with delayed coupling are ubiquitous in nature and play a key role in almost all fields of science including physics, biology, ecology, climatology and sociology. In general, the published works on network synchronization are based on data analysis and simulations, with little experimental verification. Here we develop and experimentally demonstrate various multi-cluster phase synchronization scenarios within coupled laser networks. Synchronization is controlled by the network connectivity in accordance to number theory, whereby the number of synchronized clusters equals the greatest common divisor of network loops. This dependence enables remote switching mechanisms to control the optical phase coherence among distant lasers by local network connectivity adjustments. Our results serve as a benchmark for a broad range of coupled oscillators in science and technology, and offer feasible routes to achieve multi-user secure protocols in communication networks and parallel distribution...
Hybrid synchronization of two independent chaotic systems on complex network
NIAN FUZHONG; LIU WEILONG
2016-06-01
The real network nodes are always interfered by other messages. So, how to realize the hybrid synchronization of two independent chaotic systems based on the complex network is very important. To solve this problem, two other problems should be considered. One is how the same network node of the complex network was affected by different information sources. Another is how to achieve hybrid synchronization on the network. In this paper, the theoretical analysis andnumerical simulation on various complex networks are implemented. The results indicate that the hybrid synchronization of two independent chaotic systems is feasible.
FROM BRAIN DRAIN TO BRAIN NETWORKING
Irina BONCEA
2015-01-01
Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The co...
Stimulus-dependent synchronization in delayed-coupled neuronal networks.
Esfahani, Zahra G; Gollo, Leonardo L; Valizadeh, Alireza
2016-01-01
Time delay is a general feature of all interactions. Although the effects of delayed interaction are often neglected when the intrinsic dynamics is much slower than the coupling delay, they can be crucial otherwise. We show that delayed coupled neuronal networks support transitions between synchronous and asynchronous states when the level of input to the network changes. The level of input determines the oscillation period of neurons and hence whether time-delayed connections are synchronizing or desynchronizing. We find that synchronizing connections lead to synchronous dynamics, whereas desynchronizing connections lead to out-of-phase oscillations in network motifs and to frustrated states with asynchronous dynamics in large networks. Since the impact of a neuronal network to downstream neurons increases when spikes are synchronous, networks with delayed connections can serve as gatekeeper layers mediating the firing transfer to other regions. This mechanism can regulate the opening and closing of communicating channels between cortical layers on demand. PMID:27001428
Role of Network Topology in the Synchronization of Power Systems
Lozano, Sergi; Díaz-Guilera, Albert; 10.1140/epjb/e2012-30209-9
2012-01-01
We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also b...
Zou Yan-Li; Chen Guan-Rong
2009-01-01
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchro nized regions.To study a state-feedback pinning-controlled network with N nodes,it first converts the controlled network to an extended network of N+1 nodes without controls.It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded.Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded,but it has a critical value when the synchronized region is bounded.In the former case,therefore,it is possible to control the network to achieve synchronization by pinning only one node.In the latter ease,the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
Synchronization of networks of oscillators with distributed delay coupling
Kyrychko, Y. N.; Blyuss, K B; Schoell, E.
2014-01-01
This paper studies the stability of synchronized states in networks where couplings between nodes are characterized by some distributed time delay, and develops a generalized master stability function approach. Using a generic example of Stuart-Landau oscillators, it is shown how the stability of synchronized solutions in networks with distributed delay coupling can be determined through a semi-analytic computation of Floquet exponents. The analysis of stability of fully synchronized and of c...
Synchronization of Neural Networks of Neutral Type with Stochastic Perturbation
Park, Ju H.; Kwon, O. M.
In this letter, the problem of feedback controller design to achieve synchronization for neural network of neutral type with stochastic perturbation is considered. Based on Lyapunov method and LMI (linear matrix inequality) framework, the goal of this letter is to derive an existence criterion of the controller for the synchronization between master and response networks.
End-to-end synchronization in packet switched networks
Almeida, Nuno; Cabral, José; Alves, Artur
1991-01-01
The provision of real time services through a Packet Switched Network, requires the adoption of end-to-end synchronization methods. Several of these methods, are compared and a specific hardware solution is discussed. Results obtained through a specially designed Simulation Programme are included, for several network time delay jitter distributions and synchronization methods. These results are used to evaluate systems and design parameters.
Signal processing techniques for synchronization of wireless sensor networks
Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin
2010-11-01
Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.
Synchronous brain activity across individuals inderlies shared psychological perspectives.
Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri
2014-01-01
For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brai...
Consensus and Synchronization in Complex Networks
2013-01-01
Synchronization in complex networks is one of the most captivating cooperative phenomena in nature and has been shown to be of fundamental importance in such varied circumstances as the continued existence of species, the functioning of heart pacemaker cells, epileptic seizures, neuronal firing in the feline visual cortex and cognitive tasks in humans. E.g. coupled visual and acoustic interactions make fireflies flash, crickets chirp, and an audience clap in unison. On the other hand, in distributed systems and networks, it is often necessary for some or all of the nodes to calculate some function of certain parameters, e.g. sink nodes in sensor networks being tasked with calculating the average measurement value of all the sensors or multi-agent systems in which all agents are required to coordinate their speed and direction. When all nodes calculate the same function of the initial values in the system, they are said to reach consensus. Such concepts - sometimes also called state agreement, rendezvous, and ...
Synchronous brain activity across individuals underlies shared psychological perspectives.
Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri
2014-10-15
For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a 'social' (detective) and once a 'non-social' (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions--most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex--when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687
Computation emerges from adaptive synchronization of networking neurons.
Zanin, Massimiliano; Del Pozo, Francisco; Boccaletti, Stefano
2011-01-01
The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress) of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain. PMID:22073167
Computation emerges from adaptive synchronization of networking neurons.
Massimiliano Zanin
Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.
Synchronization of general complex networks via adaptive control schemes
Ping He; Chun-Guo Jing; Chang-Zhong Chen; Tao Fan; Hassan Saberi Nik
2014-03-01
In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.
Intra- and inter-brain synchronization during musical improvisation on the guitar.
Viktor Müller
Full Text Available Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta, whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta. The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action.
Intra- and inter-brain synchronization during musical improvisation on the guitar.
Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman
2013-01-01
Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action. PMID:24040094
Effective centrality and explosive synchronization in complex networks.
Navas, A; Villacorta-Atienza, J A; Leyva, I; Almendral, J A; Sendiña-Nadal, I; Boccaletti, S
2015-12-01
Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes. PMID:26764757
Scale-free brain ensemble modulated by phase synchronization
Dan WU; Chao-yi LI; Jie LIU; Jing LU; De-zhong YAO
2014-01-01
To listen to brain activity as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which could translate the scalp electroencephalogram (EEG) into music notes according to the power law of both EEG and music. In the current study, this methodology was further extended to a musical ensemble of two channels. First, EEG data from two selected channels are translated into musical instrument digital interface (MIDI) sequences, where the EEG parameters modulate the pitch, duration, and volume of each musical note. The phase synchronization index of the two channels is computed by a Hilbert transform. Then the two MIDI sequences are integrated into a chorus according to the phase synchronization index. The EEG with a high synchronization index is represented by more consonant musical intervals, while the low index is expressed by inconsonant musical intervals. The brain ensemble derived from real EEG segments illustrates differences in harmony and pitch distribution during the eyes-closed and eyes-open states. Furthermore, the scale-free phenomena exist in the brainwave ensemble. Therefore, the scale-free brain ensemble modulated by phase synchronization is a new attempt to express the EEG through an auditory and musical way, and it can be used for EEG monitoring and bio-feedback.
Understanding brain networks and brain organization
Pessoa, Luiz
2014-09-01
What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal "true" subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different "slices" of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.
Holder continuity of generalized chaos synchronization in complex networks
A complex network consisting of chaotic systems is considered and the existence of the Holder continuous generalized synchronization in the network is studied. First, we divide nodes of the network into two parts according to their dynamical behaviour. Then, based on the Schauder fixed point theorem, sufficient conditions for the existence of the generalized synchronization between them are derived. Moreover, the results are theoretically proved. Numerical simulations validate the theory. (general)
Coevolution of synchronization and cooperation in networks of coupled oscillators
Antonioni, Alberto
2016-01-01
Despite the large number of studies on the framework of synchronization, none of the previous research made the hypothesis that synchronization occurs at a given cost for involved individuals. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring in any cost, waiting that others get synchronized to her state. The emergence of synchronization may thus be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit/cost ratio they receive in the past. We study the onset of cooperation/synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We display also how different classes of topology foster differently synchronization both at a...
Detection of silent cells, synchronization and modulatory activity in developing cellular networks.
Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M
2016-04-01
Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169
Phase synchronization on small-world networks with community structure
In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)
Synchronization of complex networks coupled by periodically intermittent noise
Li, Shuang; Yan, Huiyun; Li, Jiaorui
2016-04-01
Noise is ubiquitous in real systems, so it is important to investigate the effects of noise on the network system. In this paper, the synchronization of complex network coupled by periodically intermittent noise is investigated and a sufficient condition of noise-induced synchronization is obtained analytically via stability theory of stochastic differential equation. The sufficient condition provides a theoretical reference for the analysis of the impact of coupling noise intensity, duration, coupled oscillator number and other parameters on the synchronization behavior. As examples, Rossler-like and Lorenz network systems are presented to verify the theoretical result.
Time Synchronization in Wireless Sensor Networks: A Survey
Prakash Ranganathan
2010-04-01
Full Text Available Time synchronization is a critical piece of infrastructure for any distributed system. Wirelesssensor networks have emerged as an important and promising research area in the recent years. Timesynchronization is important for many sensor network applications that require very precise mapping of gatheredsensor data with the time of the events, for example, in tracking and vehicular surveillance. It also plays animportant role in energy conservation in MAC layer protocols. The paper studies different existing methods,protocols, significant time parameters (clock drift, clock speed, synchronization errors, and topologies to achieveaccurate synchronization in a sensor network. The studied Synchronization protocols include conventional time syncprotocols (RBS, Timing-sync Protocol for Sensor Networks -TPSN, FTSP, and other application specificapproaches such as all node-based approach, a diffusion-based method and group sync approaches aiming atproviding network-wide time. The goal for writing this paper is to study most common existing time synchronizationapproaches and stress the need of a new class of secure-time synchronization protocol that is scalable, topologyindependent, fast convergent, energy efficient, less latent and less application dependent in a heterogeneous hostileenvironment. Our survey provides a valuable framework by which protocol designers can compare new andexisting synchronization protocols from various metric discussed in the paper. So, we are hopeful that this paperwill serve a complete one-stop investigation to study the characteristics of existing time synchronization protocolsand its implementation mechanism in a Sensor network environment.
FROM BRAIN DRAIN TO BRAIN NETWORKING
Irina BONCEA
2015-06-01
Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.
Synchronization in complex oscillator networks and smart grids.
Dörfler, Florian; Chertkov, Michael; Bullo, Francesco
2013-02-01
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications. PMID:23319658
Synchronization in Complex Oscillator Networks and Smart Grids
Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA
2012-07-24
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.
Intra- and interbrain synchronization and network properties when playing guitar in duets
Johanna eSänger
2012-11-01
Full Text Available To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C. G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1-4 Hz and theta (4-8 Hz frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules. We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC.
Intra- and interbrain synchronization and network properties when playing guitar in duets.
Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman
2012-01-01
To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1-4 Hz) and theta (4-8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120
Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2016-01-01
The energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network is the...... sources of delay and energy consumption. To minimize the energy consumptions and delay, NHES synchronizes the time slots using TDMA based MAC protocol. The results show that level by level synchronization used in NHES is energy efficient and has less delay as compared to the state-of-the-art solutions...
Analytic treatment of the network synchronization problem with time delays
Hod, Shahar
2010-01-01
Motivated by novel results in the theory of network synchronization, we analyze the effects of nonzero time delays in stochastic synchronization problems with linear couplings in an arbitrary network. We determine {\\it analytically} the fundamental limit of synchronization efficiency in a noisy environment with uniform time delays. We show that the optimal efficiency of the network is achieved for $\\lambda\\tau={{\\pi^{3/2}}\\over{2\\sqrt{\\pi}+4}}\\approx0.738$, where $\\lambda$ is the coupling strength (relaxation coefficient) and $\\tau$ is the characteristic time delay in the communication between pairs of nodes. Our analysis reveals the underlying mechanism responsible for the trade-off phenomena observed in recent numerical simulations of network synchronization problems.
Synchronizing distant nodes: a universal classification of networks
Flunkert, V.; Yanchuk, S.; T. Dahms; Schoell, E.
2010-01-01
Stability of synchronization in delay-coupled networks of identical units generally depends in a complicated way on the coupling topology. We show that for large coupling delays synchronizability relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the rad...
Finite-time synchronization for memristor-based neural networks with time-varying delays.
Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong
2015-09-01
Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. PMID:26024807
Statistical analysis of brain network
Sala
2013-01-01
Recent developments in the complex networks analysis, based largely on graph theory, have been used to study the brain network organization. The brain is a complex system that can be represented by a graph. A graph is a mathematical representation which can be useful to study the connectivity of the brain. Nodes in the brain can be identified dividing its volume in regions of interest and links can be identified calculating a measure of dependence between pairs of regions whose ac...
Robustness to noise in synchronization of network motifs: Experimental results
Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Iachello, Marco; Pham, Viet-Thanh
2012-12-01
In this work, we experimentally investigate the robustness to noise of synchronization in all the four-nodes network motifs. The experimental setup consists of four Chua's circuits diffusively coupled in order to implement the six different undirected network motifs that can be obtained with four nodes. In this experimental setup, synchronization in the presence of noise injected in one of the network nodes is investigated and network motifs are compared in terms of the synchronization error obtained. The analysis has been then extended to some selected case studies of networks with five and six nodes. Numerical simulations have been also performed and results in agreement with experiments have been obtained. A correlation between node degree and robustness to noise has been found also in these networks.
Ideal synchronizer for marked pairs in fork-join network
Vyshenski, S. V.; Grigoriev, P. V.; Dubenskaya, Yu. Yu.
2008-01-01
We introduce a new functional element (synchronizer for marked pairs) meant to join results of parallel processing in two-branch fork-join queueing network. Approximations for distribution of sojourn time at the synchronizer are derived along with a validity domain. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that mean sojourn time at a real synchronizer node is bounded below by the v...
New synchronization analysis for complex networks with variable delays
This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results. (general)
Adaptive cluster synchronization of directed complex networks with time delays.
Heng Liu
Full Text Available This paper studied the cluster synchronization of directed complex networks with time delays. It is different from undirected networks, the coupling configuration matrix of directed networks cannot be assumed as symmetric or irreducible. In order to achieve cluster synchronization, this paper uses an adaptive controller on each node and an adaptive feedback strategy on the nodes which in-degree is zero. Numerical example is provided to show the effectiveness of main theory. This method is also effective when the number of clusters is unknown. Thus, it can be used in the community recognizing of directed complex networks.
Average contraction and synchronization of complex switched networks
This paper introduces an average contraction analysis for nonlinear switched systems and applies it to investigating the synchronization of complex networks of coupled systems with switching topology. For a general nonlinear system with a time-dependent switching law, a basic convergence result is presented according to average contraction analysis, and a special case where trajectories of a distributed switched system converge to a linear subspace is then investigated. Synchronization is viewed as the special case with all trajectories approaching the synchronization manifold, and is thus studied for complex networks of coupled oscillators with switching topology. It is shown that the synchronization of a complex switched network can be evaluated by the dynamics of an isolated node, the coupling strength and the time average of the smallest eigenvalue associated with the Laplacians of switching topology and the coupling fashion. Finally, numerical simulations illustrate the effectiveness of the proposed methods. (paper)
Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay
Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) The coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay
Time concurrency/phase-time synchronization in digital communications networks
Kihara, Masami; Imaoka, Atsushi
1990-01-01
Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.
Kagawa, Yuki; Takamatsu, Atsuko
2009-04-01
To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.
Synchronization of Lienard-Type Oscillators in Uniform Electrical Networks
Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.; Dhople, Sairaj V.
2016-08-01
This paper presents a condition for global asymptotic synchronization of Lienard-type nonlinear oscillators in uniform LTI electrical networks with series R-L circuits modeling interconnections. By uniform electrical networks, we mean that the per-unit-length impedances are identical for the interconnecting lines. We derive conditions for global asymptotic synchronization for a particular feedback architecture where the derivative of the oscillator output current supplements the innate current feedback induced by simply interconnecting the oscillator to the network. Our proof leverages a coordinate transformation to a set of differential coordinates that emphasizes signal differences and the particular form of feedback permits the formulation of a quadratic Lyapunov function for this class of networks. This approach is particularly interesting since synchronization conditions are difficult to obtain by means of quadratic Lyapunov functions when only current feedback is used and for networks composed of series R-L circuits. Our synchronization condition depends on the algebraic connectivity of the underlying network, and reiterates the conventional wisdom from Lyapunov- and passivity-based arguments that strong coupling is required to ensure synchronization.
Synchronized stability in a reaction–diffusion neural network model
Wang, Ling; Zhao, Hongyong, E-mail: hongyongz@126.com
2014-11-14
The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability.
Partial synchronization in stochastic dynamical networks with switching communication channels
Huang, Chi; Ho, Daniel W. C.; Lu, Jianquan; Kurths, Jürgen
2012-06-01
In this paper, the partial synchronization problem of stochastic dynamical networks (SDNs) is investigated. Unlike the existing models, the SDN considered in this paper suffers from a class of communication constraint—only part of nodes' states can be transmitted. Thus, less nodes' states can be used to synchronize the SDN, which makes the analysis of the synchronization problem much harder. A set of channel matrices are introduced to reflect such kind of constraint. Furthermore, due to unpredictable environmental changes, the channel matrices can switch among some communication modes. The switching considered here is governed by a Markov process. To overcome the difficulty, a regrouping method is employed to derive our main results. The obtained conditions guarantee that partial synchronization can be achieved for SDNs under switching communication constraint. Finally, numerical examples are given to illustrate the effectiveness of the theoretical results and how the communication constraint influences synchronization result.
Independent Noise Can Synchronize Interacting Networks of Pulse-Coupled Oscillators
Riecke, Hermann; Meng, John
Structured networks comprised of subnetwork modules are ubiquitous. Motivated by the observation of rhythms and their interaction in different brain areas, we study a network consisting of two subnetworks of pulse-coupled integrate-fire neurons. Through mutual inhibition the neurons in the individual subnetworks can become synchronized and each subnetwork can exhibit coherent oscillatory dynamics, e.g. an ING-rhythm. In the absence of coupling between the networks the rhythms will in general have different frequencies. We investigate the interaction between these different rhythms. Strikingly, we find that increasing the noise level in the input to the individual neurons can synchronize the rhythms of the two networks, even though the inputs to different neurons are uncorrelated, sharing no common component. A heuristic phase model for the coupled networks shows that this synchronization hinges on the fact that only a fraction of the neurons may spike in a given cycle. Thus, the synchronization of the network rhythms differs qualitatively from that of individual oscillators. Supported by NSF-CMMI 1435358.
Pinning impulsive synchronization of stochastic delayed coupled networks
In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method. (general)
Robustness to noise in synchronization of complex networks
Buscarino, Arturo; Gambuzza, Lucia Valentina; Porfiri, Maurizio; Fortuna, Luigi; Frasca, Mattia
2013-06-01
In this report, we investigate dynamical robustness of a complex network to noise injected through one of its nodes. We focus on synchronization of coupled nonlinear systems and, as a special instance, we address the classical consensus protocol for linear integrators. We establish an exact closed-form expression of the synchronization error for the consensus protocol and an approximate result for chaotic units. While structural robustness is known to be significantly affected by attacks targeted to network hubs, our results posit that dynamical robustness is controlled by both the topology of the network and the dynamics of the units. We provide examples where hubs perform better or worse than isolated nodes.
Adaptive synchronization in an array of asymmetric coupled neural networks
Gao Ming; Cui Bao-Tong
2009-01-01
This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
Delayed feedback control of synchronization in weakly coupled oscillator networks.
Novičenko, Viktor
2015-08-01
We study control of synchronization in weakly coupled oscillator networks by using a phase-reduction approach. Starting from a general class of limit-cycle oscillators we derive a phase model, which shows that delayed feedback control changes effective coupling strengths and effective frequencies. We derive the analytical condition for critical control gain, where the phase dynamics of the oscillator becomes extremely sensitive to any perturbations. As a result the network can attain phase synchronization even if the natural interoscillatory couplings are small. In addition, we demonstrate that delayed feedback control can disrupt the coherent phase dynamic in synchronized networks. The validity of our results is illustrated on networks of diffusively coupled Stuart-Landau and FitzHugh-Nagumo models. PMID:26382488
Synchronizing computer clocks using a local area network
Levine, Judah
1990-01-01
Researchers completed the first tests of a method to synchronize the clocks of networked computers to the National Institute of Standards and Technology (NIST) time scale. The method uses a server computer to disseminate the time to other clients on the same local-area network. The server is synchronized to NIST using the ACTS protocol over a dial-up telephone line. The software in both the server and the parameters of this model are used to adjust the time of the local clock and the interval between calibration requests in a statistically optimum way. The algorithm maximizes the time between calibrations while at the same time keeping the time of the local clock correct within a specific tolerance. The method can be extended to synchronize computers linked over wide-area networks, and an experiment to test the performance of the algorithms over such networks is being planned.
Mobility-aware Hybrid Synchronization for Wireless Sensor Network
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2015-01-01
Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...
Synchronized Rhythmic Oscillation in a Noisy Neural Network
Yu, Yuguo; Liu, Feng; Wang, Wei
2003-12-01
The occurrence of synchronized oscillation and its critical behavior in a globally coupled stochastic Hodgkin-Huxley (HH) neuronal network are studied in this paper. It is found that there is a critical curve for the coupling strength versus noise intensity, which shows a V-shaped structure and divides the network behavior into an asynchronous firing state and a synchronous one. Analysis of the scaling behavior near the bifurcation point reveals that this transition is analogous to a second-order phase transition. The frequency of synchronized oscillations is within the range of 40-80 Hz, and its physical origin is explored by studying single HH neuron’s impedance. The intrinsic property of single neuron may account for the generation and the frequency characteristics of synchronized rhythmic oscillations.
Synchronization of networks with time-varying couplings
LU Wen-lian; CHEN Tian-ping
2013-01-01
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.
Projective Synchronization in Drive-Response Networks via Impulsive Control
GUO Liu-Xiao; XU Zhen-Yuan; HU Man-Feng
2008-01-01
@@ Impulsive projective synchronization in 1 + N coupled chaotic systems are investigated with the drive-response dynamical network (DRDN) model. Based on impulsive stability theory, some simple but less conservative criteria are achieved for projective synchronization in DRDNs. Furthermore, impulsive pinning scheme is also adopted to direct the scaling factor onto the desired value. Numerical simulations on generalized chaotic unified system are illustrated to verify the theoretical results.
Adaptation to synchronization in phase-oscillator networks
Arizmendi, Fernando; Zanette, Damian H.
2008-01-01
We introduce an adaptation algorithm by which an ensemble of coupled oscillators with attractive and repulsive interactions is induced to adopt a prescribed synchronized state. While the performance of adaptation is controlled by measuring a macroscopic quantity, which characterizes the achieved degree of synchronization, adaptive changes are introduced at the microscopic level of the interaction network, by modifying the configuration of repulsive interactions. This scheme emulates the disti...
Pinning synchronization of discrete dynamical networks with delay coupling
Cheng, Ranran; Peng, Mingshu; Zuo, Jun
2016-05-01
The purpose of this paper is to investigate the pinning synchronization analysis for nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical topological structure. Based on the Lyapunov stability theory, pinning control method and linear matrix inequalities, several adaptive synchronization criteria via two kinds of pinning control method are obtained. Two examples based on Rulkov chaotic system are included to illustrate the effectiveness and verification of theoretical analysis.
Energy Efficient Global Clock Synchronization for Wireless Sensor Networks
Vinod Namboodiri
2010-05-01
Full Text Available Clock synchronization is critical to many sensor networks for the success of the application as well as energyefficiency. Achieving a global time frame through localized averaging of clock values for multiple rounds till convergenceis a promising approach to clock synchronization due to the decentralized nature of computation coupled withscalability. However, it is not clear what power levels for all nodes would make the synchronization process energyefficient.Large power levels lead to faster convergence but consume a lot of energy per round of synchronization.On the other hand, smaller powers consume little energy per round, but convergence is very slow requiring a lotof rounds to achieve synchronization. In this paper we look at the problem of finding a power assignment thatachieves global clock synchronization in the most energy-efficient manner possible. We look at the problem throughtwo dimensions; rate of convergence and energy consumed per round of synchronization. A centralized algorithm ispresented that uses the path congestion of the induced communication graph to estimate which power assignmentshave good convergence properties and find one that minimizes the total energy to achieve clock synchronization.Our evaluation demonstrates that the power assignment derived from this algorithm is very energy-efficient and isapplicable for wireless communication environments with various distance-power gradients. Further, we present asimple distributed algorithm which nodes can execute locally to derive energy-efficient power levels for global clocksynchronization, and is especially useful in large-scale deployments.
Limbic Network Synchronization and Temporal Lobe Epilepsy
Jefferys, J. G. R.; Jiruška, Přemysl; de Curtis, M.; Avoli, M.
4. New York : Oxford University Press, 2012 - (Noebels, J.; Avoli, M.; Rogawski, M.; Olsen, R.; Delgado-Escueta, A.), s. 176-189. ISBN 978-0-19-974654-5 Institutional research plan: CEZ:AV0Z50110509 Keywords : synchronization * temporal lobe epilepsy * seizures Subject RIV: FH - Neurology
Synchronous networks for bio-environmental surveillance based on cellular automata
Bao Hoai Lam; Hiep Xuan Huynh; Bernard Pottier
2016-01-01
The paper proposes a new approach to model a bio-environmental surveillance network as synchronous network systems, systems consist of components running simultaneously. In the network, bio-environmental factors compose a physical system of which executions proceed concurrently in synchronous rounds. This system is synchronized with a synchronous wireless sensor network, the observation network. Topology of the surveillance network is based on cellular automata to depict its concurrent charac...
HIGH-ACCURACY SYNCHRONIZATION CONTROL WITH HYBRID NEURAL NETWORKS
Li Jingyuan; Yi Menglin; Wang Yun; Duan Hao
2005-01-01
A novel nonlinear control algorithm based on hybrid neural networks is presented to cope with the high-accuracy synchronization control problem for a dual-actuator electrohydraulic drive system which plays an important role for the development of elastomeric launchers. A new objective function for better synchronization performance is introduced and a learning algorithm to adjust the weights of the neural network, based on the gradient descent algorithm, is also derived. The hybrid neural network control algorithm guarantees high-accuracy synchronization performance of two motion cylinders and fast dynamic response as well as good stability of the control system. Prototype test results on the dual-actuator electrohydraulic drive system verifys the effectiveness of the proposed approach.
R. Hassan
2008-01-01
Full Text Available This study presented a new data link layer design for the virtual bus architecture. The virtual bus is a hierarchical access network offered a broadcast capability for data and signaling. The proposed of the study is to support Quality of Service (QoS in network. During study, the most promising technology capable of delivering full service access at high data rates is Synchronous Digital Hierarchy (SDH/Synchronous Optical Networking (SONET. For that reason, we develop SDH/SONET as a physical layer for the virtual bus network. The main goal of this investigation was to study the performance of transmission medium and the overall performance of the network. We exemplify a Multiple Access Protocol (MAP with Generic Frame Procedure (GFP for transmitting IP network protocol datagram over SDH/SONET. This is a novel method for transmitting MAP with GFP. The protocol adds multi-terminal access capability to an inherently point-to-point link. It enabled the design of seamless networking environments using SDH/SONET as the transmission medium for Metropolitan Area Network (MAN. The new frame mapping protocol is known as Virtual Bus Transport (VBT. The performance of multiple traffic generators in a virtual bus network is of major interest for mobile network provider. We used OMNeT simulation tool to evaluate the result. Through the simulation it proved that the VBT scheduling technique offers better treatment mainly to the higher Qos requirement traffic.
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration
Explosive Synchronization and Emergence of Assortativity on Adaptive Networks
JIANG Hui-Jun; WU Hao; HOU Zhong-Huai
2011-01-01
@@ We report an explosive transition from incoherence to synchronization of coupled phase oscillators on adaptive networks,following an Achlioptas process based on dynamic clustering information.During each adaptive step of the network topology,a portion of the links is randomly removed and the same amount of new links is generated following the so-called product rules(PRs) applied to the dynamic clusters.Particularly,two types of PRs are considered,namely,the min-PR and max-PR.We demonstrate that the synchronization transition becomes explosive in both cases.Interestingly,we find that the min-PR rule can lead to disassortativity of the network topology,while the max-PR rule leads to assortativity.%We report an explosive transition from incoherence to synchronization of coupled phase oscillators on adaptive networks, following an Achlioptas process based on dynamic clustering information. During each adaptive step of the network topology, a portion of the links is randomly removed and the same amount of new links is generated following the so-called product rules (PRs) applied to the dynamic clusters. Particularly, two types of PRs are considered, namely, the min-PR and max-PR. We demonstrate that the synchronization transition becomes explosive in both cases. Interestingly, we find that the min-PR rule can lead to disassortativity of the network topology, while the max-PR rule leads to assortativity.
Synchronized oscillation in a modular neural network composed of columns
LI Su; QI Xianglin; HU Hong; WANG Yunjiu
2005-01-01
The columnar organization is a ubiquitous feature in the cerebral cortex. In this study, a neural network model simulating the cortical columns has been constructed. When fed with random pulse input with constant rate, a column generates synchronized oscillations, with a frequency varying from 3 to 43 Hz depending on parameter values. The behavior of the model under periodic stimulation was studied and the input-output relationship was non-linear. When identical columns were sparsely interconnected, the column oscillator could be locked in synchrony. In a network composed of heterogeneous columns, the columns were organized by intrinsic properties and formed partially synchronized assemblies.
From incoherence to synchronicity in the network Kuramoto model
Kalloniatis, Alexander C.
2010-12-01
We study the synchronization properties of the Kuramoto model of coupled phase oscillators on a general network. Here we distinguish the ability of such a system to self-synchronize from the stability of this behavior. While self-synchronization is a consequence of genuine nonperturbative dynamics, the stability in dynamical systems is usually accessible by fluctuations about a fixed point, here taken to be the phase synchronized solution. We examine this problem in terms of modes of the graph Laplacian, by which the absolute Lyapunov stability of the phase synchronized fixed point is readily demonstrated. Departures from stability are seen to arise at the next order in fluctuations where, depending on a truncation in the number of time-dependent Laplacian modes, the dynamical equations can be reduced to forms resembling those for species population models, the logistic and the Lotka-Volterra equations. Methods from these systems are exploited to analytically derive new critical couplings signaling deviation from classical stability. We thereby analytically explain the existence of an intermediate regime of behavior between incoherence and synchronization, where system wide periodic behaviors are exhibited and stable, unstable, and hyperbolic fixed points can be identified. We discuss these results in light of numerical solutions of the equations of motion for various networks.
Pattern Synchronization in a Two-Layer Neuronal Network
SUN Xiao-Juan; LU Qi-Shao
2009-01-01
Pattern synchronization in a two-layer neuronal network is studied.For a single-layer network of Rulkov map neurons,there are three kinds of patterns induced by noise.Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way;however,for small and large noise intensities there exist excitable patterns and disordered patterns,respectively.For a neuronal network coupled by two single-layer networks with noise intensity differences between layers,we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases.The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T; Billeh, Yazan N; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2016-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators.When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned grap...
Parameter identification and synchronization for uncertain network group with different structures
Li, Chengren; Lü, Ling; Sun, Ying; Wang, Ying; Wang, Wenjun; Sun, Ao
2016-09-01
We design a novel synchronization technique to research the synchronization of network group constituted of uncertain networks with different structures. Based on Lyapunov theorem, the selection principles of the control inputs and the parameter identification laws of the networks are determined, and synchronization conditions of the network group are obtained. Some numerical simulations are provided to verify the correctness and effectiveness of the synchronization technique. We find that the network number, the number of network nodes and network connections indeed will not affect the stability of synchronization of network group.
Concurrent enhancement of percolation and synchronization in adaptive networks
Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido
2016-06-01
Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems’ collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems.
Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network
TANG Jun; QU Li-Cheng; LUO Jin-Ming
2011-01-01
In a diverse and delayed small-world neuronal network, we have identified the oscillatory-like synchronization transition between anti-phase and complete synchronization [Phys. Rev. E 83(2011)046207]. Here we study the influence of the network topology and noise on the synchronization transition. The robustness of this transition is investigated. The results show that: (I) the synchronization transition is robust to the neuron number N in the network; (ii) only when the coupled neighbor number k is in the region [4,10], does the synchronization transition exist; (iii) to some extent, the synchronization is destroyed by noise and the oscillatory-like synchronization transition exists for relatively weak noise (D <0.003).%In a diverse and delayed small-world neuronal network,we have identified the oscillatory-like synchronization transition between anti-phase and complete synchronization [Phys.Rev.E 83 (2011) 046207].Here we study the influence of the network topology and noise on the synchronization transition.The robustness of this transition is investigated.The results show that:(i) the synchronization transition is robust to the neuron number N in the network;(ii) only when the coupled neighbor number k is in the region [4,10],does the synchronization transition exist;(iii) to some extent,the synchronization is destroyed by noise and the oscillatory-like synchronization transition exists for relatively weak noise (D ＜0.003).In the theoretical study of neuron systems,the synchronized behavior of a population of interacting neurons,namely,a neuronal network,is a hot issue due to its importance to the processing and transmission of information.[1] Many types of synchronization are identified in neuronal networks,such as complete synchronization,phase synchronization,anti-phase synchronization,phase-lock synchronization,cluster synchronization and lag synchronization.[2
Erosion of synchronization: Coupling heterogeneity and network structure
Skardal, Per Sebastian; Taylor, Dane; Sun, Jie; Arenas, Alex
2016-06-01
We study the dynamics of network-coupled phase oscillators in the presence of coupling frustration. It was recently demonstrated that in heterogeneous network topologies, the presence of coupling frustration causes perfect phase synchronization to become unattainable even in the limit of infinite coupling strength. Here, we consider the important case of heterogeneous coupling functions and extend previous results by deriving analytical predictions for the total erosion of synchronization. Our analytical results are given in terms of basic quantities related to the network structure and coupling frustration. In addition to fully heterogeneous coupling, where each individual interaction is allowed to be distinct, we also consider partially heterogeneous coupling and homogeneous coupling in which the coupling functions are either unique to each oscillator or identical for all network interactions, respectively. We demonstrate the validity of our theory with numerical simulations of multiple network models, and highlight the interesting effects that various coupling choices and network models have on the total erosion of synchronization. Finally, we consider some special network structures with well-known spectral properties, which allows us to derive further analytical results.
Generalized Mutual Synchronization between Two Controlled Interdependent Networks
Quan Xu
2014-01-01
Full Text Available This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networks A and B with time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networks A and B can asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.
Chaos synchronization of two stochastically coupled random Boolean networks
Hung, Y.-C. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China) and Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: d9123801@student.nsysu.edu.tw; Ho, M.-C. [Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: t1603@nknucc.nknu.edu.tw; Lih, J.-S. [Department of Physics and Geoscience, National Pingtung University of Education, Pingtung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Jiang, I-M. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)
2006-07-24
In this Letter, we study the chaos synchronization of two stochastically coupled random Boolean networks (RBNs). Instead of using the 'site-by-site and all-to-all' coupling, the coupling mechanism we consider here is that: the nth cell in a network is linked by an arbitrarily chosen cell in the other network with probability {rho}, and it possesses no links with probability 1-{rho}. The mechanism is useful to investigate the coevolution of biological species via horizontal genetic exchange. We show that the density evolution of networks can be described by two deterministic coupled polynomial maps. The complete synchronization occurs when the coupling parameter exceeds a critical value. Moreover, the reverse bifurcations in inhomogeneous condition are observed and under our discussion.
Synergistic effect of repulsive inhibition in synchronization of excitatory networks.
Belykh, Igor; Reimbayev, Reimbay; Zhao, Kun
2015-06-01
We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting neurons induces synchrony, in contrast to one's expectations. Through stability analysis, we reveal the mechanism underlying this purely synergistic phenomenon and demonstrate that it originates from the transition between different types of bursting, caused by excitatory-inhibitory synaptic coupling. This effect is generic and observed in different models of bursting neurons and fast synaptic interactions. We also find a universal scaling law for the synchronization stability condition for large networks in terms of the number of excitatory and inhibitory inputs each neuron receives, regardless of the network size and topology. This general law is in sharp contrast with linearly coupled networks with positive (attractive) and negative (repulsive) coupling where the placement and structure of negative connections heavily affect synchronization. PMID:26172784
Synchronization Stability in Weighted Complex Networks with Coupling Delays
WANG Qing-Yun; DUAN Zhi-Sheng; CHEN Guan-Rong; LU Qi-Shao
2009-01-01
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths.In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance.Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly ga/ns increasing attention in various fields of science and engineering.Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states.The obtained criteria in this paper encompass the established results in the literature as special cases.Some examples are given to illustrate the theoretical results.
GENERAL: Synchronization Stability in Weighted Complex Networks with Coupling Delays
Wang, Qing-Yun; Duan, Zhi-Sheng; Chen, Guan-Rong; Lu, Qi-Shao
2009-04-01
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
Explosive synchronization of complex networks with different chaotic oscillators
Recent studies have shown that explosive synchronization transitions can be observed in networks of phase oscillators [Gómez-Gardeñes J, Gómez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett. 106 128701] and chaotic oscillators [Leyva I, Sevilla-Escoboza R, Buldú J M, Sendiña-Nadal I, Gómez-Gardeñes J, Arenas A, Moreno Y, Gómez S, Jaimes-Reátegui R and Boccaletti S 2012 Phys. Rev. Lett. 108 168702]. Here, we study the effect of different chaotic dynamics on the synchronization transitions in small world networks and scale free networks. The continuous transition is discovered for Rössler systems in both of the above complex networks. However, explosive transitions take place for the coupled Lorenz systems, and the main reason is the abrupt change of dynamics before achieving complete synchronization. Our results show that the explosive synchronization transitions are accompanied by the change of system dynamics
Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2015-01-01
Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...
Adaptive projective synchronization with different scaling factors in networks
Guo Liu-Xiao; Xu Zhen-Yuan; Hu Man-Feng
2008-01-01
We study projective synchronization with different scaling factors (PSDF) in N coupled chaotic systems networks.By using the adaptive linear control,some sufficient criteria for the PSDF in symmetrical and asymmetrical coupled networks are separately given based on the Lyapunov function method and the left eigenvalue theory.Numerical simulations for a generalized chaotic unified system are illustrated to verify the theoretical results.
Zhou, Lili; Wang, Chunhua; He, Haizhen; Lin, Yuan
2015-05-01
In this paper, a time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks, each of which consists of four-wing hyper-chaotic system as node dynamics, is investigated. Based on the adaptive technique and the stability of Lyapunov function, some sufficient conditions, which can ensure the realization of not only combinatorial inner synchronization within an anti-star network with unknown parameters and external perturbations in the computable time, but also combinatorial outer synchronization between different sub-networks with external perturbations in the computable time, are obtained. Moreover, a simple secure communication scheme, which is based on the adaptive combinatorial outer synchronization between different sub-networks under the influence of stochastic noise and time-delay, is presented. Numerical simulation results show the feasibility and validity of the proposed method.
Synchronization in Small-World-Connected Computer Networks
Guclu, H
2006-01-01
In this thesis we study synchronization phenomena in natural and artificial coupled multi-component systems, applicable to the scalability of parallel discrete-event simulation for systems with asynchronous dynamics. We analyze the properties of the virtual time horizon or synchronization landscape (corresponding to the progress of the processing elements) of these networks by using the framework of non-equilibrium surface growth. When the communication topology mimics that of the short-range interacting underlying system, the virtual time horizon exhibits Kardar-Parisi-Zhang-like kinetic roughening. Although the virtual times, on average, progress at a nonzero rate, their statistical spread diverges with the number of processing elements, hindering efficient data collection. We show that when the synchronization topology is extended to include quenched random communication links (small-world links) between the processing elements, they make a close-to-uniform progress with a nonzero rate, without global sync...
Bai, Hao; Han, Baohui
2013-01-01
Background and objective Brain metastases are common in non-small cell lung cancer. Usual treatments include radiotherapy and chemotherapy. However, these methods result in poor patient prognosis. The aim of this study is to assess the effectiveness of surgical resection in the multimodality management of non-small cell lung cancer patients with synchronous solitary brain metastasis. Methods The clinical data of 46 non-small cell lung cancer patients with synchronous solitary brain metastasis...
Transient to Zero-Lag Synchronization in Excitable Networks
Brama, H.; Peleg, Y; Kinzel, W.; Kanter, I.
2012-01-01
The scaling of transient times to zero-lag synchronization in networks composed of excitable units is shown to be governed by three features of the graph representing the network: the longest path between pairs of neurons (diameter), the largest loop (circumference) and the loop with the maximal average out degree. The upper bound of transient times can vary between O(1) and O(N2), where N is the size of the network, and its scaling can be predicted in many scenarios from finite time accumula...
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers constructed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria. (general)
An Inter-Networking Mechanism with Stepwise Synchronization for Wireless Sensor Networks
Masayuki Murata
2011-08-01
Full Text Available To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other.
Atzil, Shir; Hendler, Talma; Feldman, Ruth
2011-12-01
The mother-infant bond provides the foundation for the infant's future mental health and adaptation and depends on the provision of species-typical maternal behaviors that are supported by neuroendocrine and motivation-affective neural systems. Animal research has demonstrated that natural variations in patterns of maternal care chart discrete profiles of maternal brain-behavior relationships that uniquely shape the infant's lifetime capacities for stress regulation and social affiliation. Such patterns of maternal care are mediated by the neuropeptide Oxytocin and by stress- and reward-related neural systems. Human studies have similarly shown that maternal synchrony--the coordination of maternal behavior with infant signals--and intrusiveness--the excessive expression of maternal behavior--describe distinct and stable maternal styles that bear long-term consequences for infant well-being. To integrate brain, hormones, and behavior in the study of maternal-infant bonding, we examined the fMRI responses of synchronous vs intrusive mothers to dynamic, ecologically valid infant videos and their correlations with plasma Oxytocin. In all, 23 mothers were videotaped at home interacting with their infants and plasma OT assayed. Sessions were micro-coded for synchrony and intrusiveness. Mothers were scanned while observing several own and standard infant-related vignettes. Synchronous mothers showed greater activations in the left nucleus accumbens (NAcc) and intrusive mothers exhibited higher activations in the right amygdala. Functional connectivity analysis revealed that among synchronous mothers, left NAcc and right amygdala were functionally correlated with emotion modulation, theory-of-mind, and empathy networks. Among intrusive mothers, left NAcc and right amygdala were functionally correlated with pro-action areas. Sorting points into neighborhood (SPIN) analysis demonstrated that in the synchronous group, left NAcc and right amygdala activations showed clearer
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays
Weiyuan Ma
2014-12-01
Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.
Flit Synchronous Aelite Network on Chip
Subburaman, Mahesh Balaji
2008-01-01
The deep sub micron process technology and application convergence increases the design challenges in System-on-Chip (SoC). The traditional bus based on chip communication are not scalable and fails to deliver the performance requirements of the complex SoC. The Network on Chip (NoC) has been emerged as a solution to address these complexities of a efficient, high performance, scalable SoC design. The Aethereal NoC provides the latency and throughput bounds by pipelined timedivision multipl...
Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks
Jinde Cao; Abdulaziz Alofi; Abdullah Al-Mazrooei; Ahmed Elaiw
2013-01-01
This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are der...
SynUTC - high precision time synchronization over ethernet networks
Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K
2002-01-01
This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...
ON REDUCED SCALAR EQUATIONS FOR SYNCHRONOUS BOOLEAN NETWORKS
Ali Muhammad Ali Rushdi; Adnan Ahmad Alsogati
2013-01-01
A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more instances of a single scalar variable and some Boolean operator(s). Further simplification is possible in terms of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean operators and equates the value of a scalar variable a...
Robust synchronization of a class of chaotic networks
Čelikovský, Sergej; Lynnyk, Volodymyr; Chen, G.
2013-01-01
Roč. 350, č. 10 (2013), s. 2936-2948. ISSN 0016-0032 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : generalized Lorenz system * robust synchronization * dynamical complex network Subject RIV: BC - Control Systems Theory Impact factor: 2.260, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/celikovsky-0398127.pdf
Network synchronization: optimal and pessimal scale-free topologies
Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es
2008-06-06
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
Aging and Functional Brain Networks
Tomasi, Dardo; Volkow, Nora D.
2011-01-01
Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the “default-mode” network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis we evaluated resting-state datasets corresponding to 913 hea...
Onset Synchronization in Weighted Complex Networks: the Effect of Weight-Degree Correlation
Li, Menghui; Fan, Ying; Di, Zengru; Lai, Choy-Heng
2011-01-01
By numerical simulations, we compare the onset synchronization of networked phase oscillators under two different weighting schemes. In scheme-I the link weight is proportional to the degrees of the link ending nodes, and is named as the weight-degree correlated (WDC) network; in scheme-II the link weight is distributed randomly regardless of the node degrees, and is named as the weight-degree uncorrelated (WDU) network. We find that by increasing a parameter that governs the weight distribution, the onset synchronization in WDC network is monotonically enhanced, while in WDU network there is a reverse in the synchronization performance. We explain this phenomenon from the viewpoint of gradient network, and obtain the contrary roles of coupling gradient on network synchronization: gradient promotes synchronization in WDC network, while deteriorating synchronization in WDU network. The findings highlight the fact that, besides the link weight, the correlation between the weight and node degree is also importan...
Stability and synchronization control of stochastic neural networks
Zhou, Wuneng; Zhou, Liuwei; Tong, Dongbing
2016-01-01
This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.
Computer network time synchronization the network time protocol on earth and in space
Mills, David L
2010-01-01
Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib
Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.
Li, Ning; Cao, Jinde
2016-03-01
This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results. PMID:26462246
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture
Plotnikov, S. A.; Lehnert, J.; Fradkov, A.L.; Schöll, E.
2016-01-01
We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here, we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchron...
Cui Baotong [School of Communication and Control Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)], E-mail: btcui@vip.sohu.com; Lou Xuyang [School of Communication and Control Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)], E-mail: louxuyang28945@163.com
2009-01-15
In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme.
Synchronization and coherence resonance in chaotic neural networks
Wang Mao-Sheng; Hou Zhong-Huai; Xin Hou-Wen
2006-01-01
Synchronization and coherence of chaotic Morris-Lecar (ML) neural networks have been investigated by numerical methods. The synchronization of the neurons can be enhanced by increasing the number of the shortcuts, even though all neurons are chaotic when uncoupled. Moreover, the coherence of the neurons exhibits a non-monotonic dependence on the density of shortcuts. There is an optimal number of shortcuts at which the neurons' motion is most ordered, i.e. the order parameter (the characteristic correlation time) that is introduced to measure the coherence of the neurons has a maximum. These phenomena imply that stochastic shortcuts can tame spatiotemporal chaos. The effects of the coupling strength have also been studied. The value of the optimal number of shortcuts goes down as the coupling strength increases.
Synchronized states and multistability in a random network of coupled discontinuous maps
Nag, Mayurakshi; Poria, Swarup, E-mail: swarup-p@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)
2015-08-15
The synchronization behavior of coupled chaotic discontinuous maps over a ring network with dynamic random connections is reported in this paper. It is observed that random rewiring stabilizes one of the two strongly unstable fixed points of the local map. Depending on initial conditions, the network synchronizes to different unstable fixed points, which signifies the existence of synchronized multistability in the complex network. Moreover, the length of discontinuity of the local map has an important role in generating windows of different synchronized fixed points. Synchronized fixed point and synchronized periodic orbits are found in the network depending on coupling strength and different parameter values of the local map. We have identified the existence of period subtracting bifurcation with respect to coupling strength in the network. The range of coupling strength for the occurrence of synchronized multistable spatiotemporal fixed points is determined. This range strongly depends upon the dynamic rewiring probability and also on the local map.
Synchronized states and multistability in a random network of coupled discontinuous maps
The synchronization behavior of coupled chaotic discontinuous maps over a ring network with dynamic random connections is reported in this paper. It is observed that random rewiring stabilizes one of the two strongly unstable fixed points of the local map. Depending on initial conditions, the network synchronizes to different unstable fixed points, which signifies the existence of synchronized multistability in the complex network. Moreover, the length of discontinuity of the local map has an important role in generating windows of different synchronized fixed points. Synchronized fixed point and synchronized periodic orbits are found in the network depending on coupling strength and different parameter values of the local map. We have identified the existence of period subtracting bifurcation with respect to coupling strength in the network. The range of coupling strength for the occurrence of synchronized multistable spatiotemporal fixed points is determined. This range strongly depends upon the dynamic rewiring probability and also on the local map
Synchronization versus neighborhood similarity in complex networks of nonidentical oscillators
Freitas, Celso; Macau, Elbert; Viana, Ricardo Luiz
2015-09-01
Does the assignment order of a fixed collection of slightly distinct subsystems into given communication channels influence the overall ensemble behavior? We discuss this question in the context of complex networks of nonidentical interacting oscillators. Three types of connection configurations are considered: Similar, Dissimilar, and Neutral patterns. These different groups correspond, respectively, to oscillators alike, distinct, and indifferent relative to their neighbors. To construct such scenarios we define a vertex-weighted graph measure, the total dissonance, which comprises the sum of the dissonances between all neighbor oscillators in the network. Our numerical simulations show that the more homogeneous a network, the higher tend to be both the coupling strength required for phase locking and the associated final phase configuration spread over the circle. On the other hand, the initial spread of partial synchronization occurs faster for Similar patterns in comparison to Dissimilar ones, while neutral patterns are an intermediate situation between both extremes.
Human intelligence and brain networks.
Colom, Roberto; Karama, Sherif; Jung, Rex E; Haier, Richard J
2010-01-01
Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494
Betzel, Richard F
2016-01-01
The network architecture of the human brain has become a feature of increasing interest to the neuroscientific community, largely because of its potential to illuminate human cognition, its variation over development and aging, and its alteration in disease or injury. Traditional tools and approaches to study this architecture have largely focused on single scales -- of topology, time, and space. Expanding beyond this narrow view, we focus this review on pertinent questions and novel methodological advances for the multi-scale brain. We separate our exposition into content related to multi-scale topological structure, multi-scale temporal structure, and multi-scale spatial structure. In each case, we recount empirical evidence for such structures, survey network-based methodological approaches to reveal these structures, and outline current frontiers and open questions. Although predominantly peppered with examples from human neuroimaging, we hope that this account will offer an accessible guide to any neuros...
Stability of synchronous state in networks of chaotic maps by matrix measure approach
F Aghaei
2015-07-01
Full Text Available Stability of synchronous state is a fundamental problem in synchronization. We study Matrix Measure as an approach for investigating of stability of synchronous states of chaotic maps on complex networks. Matrix Measure is a measure which depends on network structure. Using this measure and comparing with synchronization threshold which depends on the function of the map, show us how the synchronous state can be stabilized. We use these methods for networks with different parameters and topologies. Our numerical calculation shows that synchronous states on more dense networks are more stable. Network’s size is another effective parameter that order of value and extent of stability interval is determined by network’s size. Our results also show that among dense networks, Random and Scale-Free networks have larger stability interval of coupling strength. Finally, we use Error Function to test a prediction of Matrix Measure approach.
Shi, Xia; Xi, Wenqi
2016-05-01
In this paper, burst synchronization and rhythm dynamics of a small-world neuronal network consisting of mixed bursting types of neurons coupled via inhibitory-excitatory chemical synapses are explored. Two quantities, the synchronization parameter and average width factor, are used to characterize the synchronization degree and rhythm dynamics of the neuronal network. Numerical results show that the percentage of the inhibitory synapses in the network is the major factor for we get a similarly bell-shaped dependence of synchronization on it, and the decrease of the average width factor of the network. We also find that not only the value of the coupling strength can promote the synchronization degree, but the probability of random edges adding to the small-world network also can. The ratio of the long bursting neurons has little effect on the burst synchronization and rhythm dynamics of the network.
Aging and functional brain networks
Tomasi D.; Tomasi, D.; Volkow, N.D.
2011-07-11
Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.
Synchronization of cellular neural networks of neutral type via dynamic feedback controller
Park, Ju H. [Robust Control and Nonlinear Dynamics Laboratory, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749 (Korea, Republic of)], E-mail: jessie@ynu.ac.kr
2009-11-15
In this paper, we aim to study global synchronization for neural networks with neutral delay. A dynamic feedback control scheme is proposed to achieve the synchronization between drive network and response network. By utilizing the Lyapunov function and linear matrix inequalities (LMIs), we derive simple and efficient criterion in terms of LMIs for synchronization. The feedback controllers can be easily obtained by solving the derived LMIs.
Traffic Signal Synchronization in the Saturated High-Density Grid Road Network
Xiaojian Hu; Jian Lu; Wei Wang,; Ye Zhirui
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essen...
Adaptive approach to global synchronization of directed networks with fast switching topologies
Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.
Su, Housheng
2013-01-01
Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering. Housheng Su is an Associate Professor at the Department of Contro...
Multilayer motif analysis of brain networks
Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito
2016-01-01
In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently ...
Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network. The method is extended from synchronization between two chaotic systems to the synchronization of complex network composed of N spatiotemporal chaotic systems. The sliding surface of the network and the control input are designed. Furthermore, the effectiveness of the method is analysed based on the stability theory. The Burgers equation with spatiotemporal chaos behavior is taken as an example to simulate the experiment. It is found that the synchronization performance of the network is very stable
Model for synchronizer of marked pairs in fork-join network
Vyshenski, S V; Dubenskaya, Yu Yu
2008-01-01
We introduce a model for synchronizer of marked pairs, which is a node for joining results of parallel processing in two-branch fork-join queueing network. A distribution for number of jobs in the synchronizer is obtained. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (which contains the synchronizer) and does not depend upon performance and particular properties of the synchronizer. A domain of network parameters is found, where the flow of jobs departing from the synchronizer does not manifest a statistically significant difference from the Poisson type, despite the correlation between job flows from both branches of the fork-join network.
Switching synchronization in one-dimensional memristive networks
Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.
2015-11-01
We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.
Finite-Time Synchronizing Control for Chaotic Neural Networks
Chao Zhang
2014-01-01
Full Text Available This paper addresses the finite-time synchronizing problem for a class of chaotic neural networks. In a real communication network, parameters of the master system may be time-varying and the system may be perturbed by external disturbances. A simple high-gain observer is designed to track all the nonlinearities, unknown system functions, and disturbances. Then, a dynamic active compensatory controller is proposed and by using the singular perturbation theory, the control method can guarantee the finite-time stability of the error system between the master system and the slave system. Finally, two illustrative examples are provided to show the effectiveness and applicability of the proposed scheme.
Synchronization in dynamical networks with unconstrained structure switching
del Genio, Charo I; Criado, Regino; Boccaletti, Stefano
2015-01-01
We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly, from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows to extend the Master Stability Function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the the dynamics of the units.
Switching synchronization in one-dimensional memristive networks.
Slipko, Valeriy A; Shumovskyi, Mykola; Pershin, Yuriy V
2015-11-01
We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations. PMID:26651772
Successive lag synchronization on dynamical networks with communication delay
Xin-Jian, Zhang; Ai-Ju, Wei; Ke-Zan, Li
2016-03-01
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. Project supported by the National Natural Science Foundation of China (Grant No. 61004101), the Natural Science Foundation Program of Guangxi Province, China (Grant No. 2015GXNSFBB139002), the Graduate Innovation Project of Guilin University of Electronic Technology, China (Grant No. GDYCSZ201472), and the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, China.
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback
无
2008-01-01
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay
Liang, Song; Wu, Ranchao; Chen, Liping
2016-02-01
Based on the stability theory of fractional-order systems, synchronization of general fractional-order uncertain complex networks with delay is investigated in this paper. By the inequality of the fractional derivative and the comparison principle of the linear fractional equation with delay, synchronization of complex networks with delay is realized under adaptive control. Some sufficient criteria ensuring local asymptotical synchronization under adaptive control and global asymptotical synchronization under adaptive pinning control are derived, respectively. Finally, numerical simulations are presented to demonstrate the validity and feasibility of the proposed synchronization criteria.
Complete characterization of the stability of cluster synchronization in complex dynamical networks.
Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi
2016-04-01
Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory. PMID:27152349
Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks
Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio; Michaelsen, Per Henrik; Frederiksen, Frank; Shah, Ejaz; Baumgartner, Al
Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant reduct...... link failure probability as a result of faster handover execution....
Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks
Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio; Michaelsen, Per Henrik; Frederiksen, Frank; Shah, Ejaz; Baumgartner, Al
2015-01-01
Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant reduct...... link failure probability as a result of faster handover execution....
Dynamic transitions among multiple oscillators of synchronized bursts in cultured neural networks
Synchronized neural bursts are a salient dynamic feature of biological neural networks, having important roles in brain functions. This report investigates the deterministic nature behind seemingly random temporal sequences of inter-burst intervals generated by cultured networks of cortical cells. We found that the complex sequences were an intricate patchwork of several noisy ‘burst oscillators’, whose periods covered a wide dynamic range, from a few tens of milliseconds to tens of seconds. The transition from one type of oscillator to another favored a particular passage, while the dwelling time between two neighboring transitions followed an exponential distribution showing no memory. With different amounts of bicuculline or picrotoxin application, we could also terminate the oscillators, generate new ones or tune their periods. (paper)
Contagious Synchronization and Endogenous Network Formation in Financial Networks
Christoph Aymanns and Co-Pierre Georg
2014-01-01
When banks choose similar investment strategies the financial system becomes vulnerable to common shocks. We model a simple financial system in which banks decide about their investment strategy based on a private belief about the state of the world and a social belief formed from observing the actions of peers. Observing a larger group of peers conveys more information and thus leads to a stronger social belief. Extending the standard model of Bayesian updating in social networks, we show th...
Complete and phase synchronization in a heterogeneous small-world neuronal network
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh–Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony. (general)
GENERAL: Complete and phase synchronization in a heterogeneous small-world neuronal network
Han, Fang; Lu, Qi-Shao; Wiercigroch, Marian; Ji, Quan-Bao
2009-02-01
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh-Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.
Synchronization and information transmission in spatio-temporal networks of deformable units
F M Moukam Kakmeni; M S Baptista
2008-06-01
We study the relationship between synchronization and the rate with which information is exchanged between nodes in a spatio-temporal network that describes the dynamics of classical particles under a substrate Remoissenet-Peyrard potential. We also show how phase and complete synchronization can be detected in this network. The difficulty in detecting phase synchronization in such a network appears due to the highly non-coherent character of the particle dynamics which unables a proper definition of the phase dynamics. The di±culty in detecting complete synchronization appears due to the spatio character of the potential which results in an asymptotic state highly dependent on the initial state.
Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms
Sheng Li [School of Communication and Control Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China); Yang Huizhong [School of Communication and Control Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)], E-mail: victory8209@yahoo.com.cn; Lou Xuyang [School of Communication and Control Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)
2009-04-30
This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
CHEN Jian-Rui; JIAO Li-Cheng; WU Jian-She; WANG Xiao-Hua
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented.Then we investigate its synchronization phenomena.The two complex networks of the model differ in dynamic nodes,the number of nodes and the coupling connections.By using adaptive controllers,a synchronization criterion is derived.Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion.This study may widen the application range of synchronization,such as in chaotic secure communication.
Impulsive control for synchronizing delayed discrete complex networks with switching topology
Li, Chaojie; Gao, David Y; Liu, Chao; Chen, Guo
2013-01-01
In this paper, global exponential synchronization of a class of discrete delayed complex networks with switching topology has been investigated by using Lyapunov-Ruzimiki method. The impulsive scheme is designed to work at the time instant of switching occurrence. A time-varying delay-dependent criterion for impulsive synchronization is given to ensure the delayed discrete complex networks switching topology tending to a synchronous state. Furthermore, a numerical simulation is given to illus...
A Practical Solution for Time Synchronization in Wireless Sensor Networks
COCA, E.
2012-11-01
Full Text Available Time synchronization in wireless sensor node networks is a hot topic. Many papers present various software algorithms and hardware solutions to keep accurate time information on mobile nodes. In terms of real life applications wireless sensor nodes are preferred in many domains, starting with simple room monitoring and finishing with pipeline surveillance projects. Positioning applications are far more restrictive on timekeeping accuracy, as for the velocity of nodes calculations precise time or time difference values are needed. The accuracy of time information on nodes has to be always correlated with the application requirements. In this paper, we present some considerations regarding time synchronization linked with specific needs for individual practical applications. A practical low energy method of time keeping at node level is proposed and tested. The performances of the proposed solution in terms of short and long term stability and energy requirements are analyzed and compared with existing solutions. Simulation and experimental results, some advantages and disadvantages of the method are presented at the end of the paper.
Synchronization of the small-world neuronal network with unreliable synapses
As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive
Complete and phase synchronization in a heterogeneous small-world neuronal network
Han Fang; Lu Qi-Shao; Wiercigroch Marian; Ji Quan-Bao
2009-01-01
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh-Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal nctworks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The cffect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an advcrse effect on synchrony.
Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity.
Han, Fang; Wiercigroch, Marian; Fang, Jian-An; Wang, Zhijie
2011-10-01
Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one. PMID:21956933
An adaptive blind watermarking scheme utilizing neural network for synchronization
WU Jian-zhen; XIE Jian-ying; YANG Yu-pu
2007-01-01
An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme utilizing neural network for synchronization is proposed in this paper,which allows to recover watermark even if the image has been subjected to generalized geometrical transforms. Through classification of image's brightness, texture and contrast sensitivity utilizing fuzzy clustering theory and human visual system, more robust watermark is adaptively embedded in DWT domain. In order to register rotation, scaling and translation parameters, feedforward neural network is utilized to learn image geometric pattern represented by six combined low order image moments. The distortion can be inverted after determining the affine distortion applied to the image and watermark can be extracted in a standard way without original image. It only needs a trained neural network. Experimental results demonstrate its advantages over previous method in terms of computational effectiveness and parameter estimation accuracy. It can embed more robust watermark under certain visual distance, and effectively resist JPEG compression, noise and geometric attacks.
Synchronization of switched neural networks with mixed delays via impulsive control
Highlights: → Synchronization of neural networks with delay via impulsive control technique is studied. → Synchronization criterion is developed for switched neural networks model. → The concept 'elasticity number' is introduced. - Abstract: This paper concerns the problem of global exponential synchronization for a class of switched neural networks with time-varying delays and unbounded distributed delays via impulsive control method. By using Lyapunov stability theory, new synchronization criterion is derived. In our synchronization criterion, the switching law can be arbitrary and the concept of average impulsive interval is utilized such that the obtained synchronization criterion is less conservative than those based on maximum of impulsive intervals. Numerical simulations are given to show the effectiveness and less conservativeness of the theoretical results.
Scaling in topological properties of brain networks.
Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T; Lewis, John D; Evans, Alan C; Ishrat, Romana; Sharma, B Indrajit; Singh, R K Brojen
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129
Liu Heng
Full Text Available This paper investigates a method to identify uncertain system parameters and unknown topological structure in general complex networks with or without time delay. A complex network, which has uncertain topology and unknown parameters, is designed as a drive network, and a known response complex network with an input controller is designed to identify the drive network. Under the proposed input controller, the drive network and the response network can achieve anticipatory projective synchronization when the system is steady. Lyapunov theorem and Barbǎlat's lemma guarantee the stability of synchronization manifold between two networks. When the synchronization is achieved, the system parameters and topology in response network can be changed to equal with the parameters and topology in drive network. A numerical example is given to show the effectiveness of the proposed method.
Dong, Hui; Ling, Rongyao; Zhang, Dan
2016-03-01
This paper is concerned with the network-based H∞ synchronization control for a class of discrete time-delay neural networks, and attention is focused on how to reduce the communication rate since the communication resource is limited. Techniques such as the measurement size reduction, signal quantization and stochastic signal transmission are introduced to achieve the above goal. An uncertain switched system model is first proposed to capture the above-networked uncertainties. Based on the switched system theory and Lyapunov stability approach, a sufficient condition is obtained such that the closed-loop synchronization system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. The controller gains are determined by solving a set of linear matrix inequalities (LMIs). A numerical example is finally presented to show the effectiveness of the proposed design method.
Zhang Qing-Ling; Lu Ling; Zhang Yi
2011-01-01
A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory,and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.
A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh—Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh—Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal. (general)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)
2010-04-05
This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.
Support Network Responses to Acquired Brain Injury
Chleboun, Steffany; Hux, Karen
2011-01-01
Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…
Limitations and tradeoffs in synchronization of large-scale networks with uncertain links
Diwadkar, Amit; Vaidya, Umesh
2016-04-01
The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies.
Local extinction synchronizes population dynamics in spatial networks.
Matter, Stephen F; Roland, Jens
2010-03-01
Spatial population theory predicts that synchrony in the dynamics of local populations should decrease as dispersal among populations decreases. Thus, it would be expected that the extinction of local populations and the attendant loss of immigrants to surrounding populations would reduce synchrony. We tested this hypothesis through a large-scale experiment, simulation of the experimental system and general models. Experimental removal of two adjacent subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus within a network consisting of 15 other local populations resulted in a decrease in immigration to surrounding populations that was proportional to their connectivity to the removal populations. These populations also showed a significant increase in synchrony during population removal. The spatial extent of the synchrony showed good agreement with the predicted loss of immigrants owing to the removals. Simulation of the Parnassius system showed a similar short-term result and also indicated that permanent loss of populations produces structural changes increasing synchrony. General models indicate that an increase in synchrony following extinction occurs when populations undergoing extinction have different carrying capacities than surrounding populations. The result is not owing to biased migration per se, but rather is because of the number of immigrants relative to the carrying capacity. Synchrony following extinction should be most common for patchy populations, but can occur in any situation where carrying capacities differ. Overall, our results indicate that local extinction can create a positive feedback for extinction risk, increasing the probability of extinction for population networks by synchronizing their dynamics. PMID:19889700
Wen, Guanghui; Yu, Wenwu; Hu, Guoqiang; Cao, Jinde; Yu, Xinghuo
2015-12-01
This paper studies the global pinning synchronization problem for a class of complex networks with switching directed topologies. The common assumption in the existing related literature that each possible network topology contains a directed spanning tree is removed in this paper. Using tools from M -matrix theory and stability analysis of the switched nonlinear systems, a new kind of network topology-dependent multiple Lyapunov functions is proposed for analyzing the synchronization behavior of the whole network. It is theoretically shown that the global pinning synchronization in switched complex networks can be ensured if some nodes are appropriately pinned and the coupling is carefully selected. Interesting issues of how many and which nodes should be pinned for possibly realizing global synchronization are further addressed. Finally, some numerical simulations on coupled neural networks are provided to verify the theoretical results. PMID:26595418
Mutated Genes in Schizophrenia Map to Brain Networks
... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...
Stochastic Synchronization of Neutral-Type Neural Networks with Multidelays Based on M-Matrix
Wuneng Zhou; Xueqing Yang; Jun Yang; Jun Zhou
2015-01-01
The problem of stochastic synchronization of neutral-type neural networks with multidelays based on M-matrix is researched. Firstly, we designed a control law of stochastic synchronization of the neural-type and multiple time-delays neural network. Secondly, by making use of Lyapunov functional and M-matrix method, we obtained a criterion under which the drive and response neutral-type multiple time-delays neural networks with stochastic disturbance and Markovian switc...
Du, Wen-ju; Zhang, Jian-gang; An, Xin-lei; Qin, Shuang; Yu, Jian-ning
2016-01-01
The paper presents a new urban public traffic supernetwork model by using the existing bus network modeling method, consisting of the conventional bus traffic network and the urban rail traffic network. We investigate the synchronization problem of urban public traffic supernetwork model by using the coupled complex network’s outer synchronization theory. Analytical and numerical simulations are given to illustrate the impact of traffic dispatching frequency and traffic lines optimization to ...
Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays
Huaiqin Wu; Luying Zhang; Sanbo Ding; Xueqing Guo; Lingling Wang
2013-01-01
This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays. Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization is considered for memristor-based neural networks. According to the state-dependent switching feature of the memrist...
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Simulation and Analysis of Reciever-Receiver Time Synchronization in Wireless Sensor Networks
Devendrasingh Thakore
2012-07-01
Full Text Available Wireless sensor networks were initially deployed for military applications. Gradually researchers found them to be very useful in applications like weather monitoring, target tracking, agriculture, industrial applications, and recently smart homes and kindergartens. All the WSN applications need partial or full time synchronization. Applications like acoustic ranging, target tracking or monitoring need a common notion of time. Every data is time stamped sensor nodes local clock. Two main approaches to time synchronization are receiver-receiver synchronization and sender-receiver synchronization. In this paper we analyze the receiver-receiver synchronization and discuss the results of simulation in network simulator. This study, design considerations and simulation methodology will help a lot to the designer for designing a time synchronization scheme or system.
A novel approach to synchronization of nonlinearly coupled network systems with delays
Tseng, Jui-Pin
2016-06-01
In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.
Synchronization-based computation through networks of coupled oscillators
Daniel eMalagarriga
2015-08-01
Full Text Available The mesoscopic activity of the brain is strongly dynamical, while at the sametime exhibiting remarkable computational capabilities. In order to examinehow these two features coexist, here we show that the patterns of synchronizedoscillations displayed by networks of neural mass models, representing cortical columns, can be usedas substrates for Boolean computation. Our results reveal that different logicaloperations can be implemented by the same neural mass network at different timesfollowing the dynamics of the input. The results are reproduced experimentallywith electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the oscillators responsible for the functioning of the gates. We also show that theinformation-processing capabilities of coupled oscillations go beyond thesimple juxtaposition of logic gates.
Scaling in topological properties of brain networks
Soibam Shyamchand Singh; Budhachandra Khundrakpam; Andrew T. Reid; Lewis, John D.; Evans, Alan C.; Romana Ishrat; B. Indrajit Sharma; R K Brojen Singh
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networ...
Scaling in topological properties of brain networks
Singh, Soibam Shyamchand; Singh, Khundrakpam Budhachandra; Ishrat, Romana; Sharma, B. Indrajit; Singh, R. K. Brojen
2015-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of netwo...
Balancing the Brain: Resting State Networks and Deep Brain Stimulation
Kringelbach, Morten L.
2011-01-01
Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation, yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious deep brain stimulation works by restoring the balance of the brain’s resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain...
Yang Dai; YunZe Cai; Xiao-Ming Xu
2009-01-01
Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed time-varying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.
Model for synchronizer of marked pairs in fork-join network
Vyshenski, S. V.; Grigoriev, P. V.; Dubenskaya, Yu. Yu.
2008-01-01
We introduce a model for synchronizer of marked pairs, which is a node for joining results of parallel processing in two-branch fork-join queueing network. A distribution for number of jobs in the synchronizer is obtained. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (wh...
Non-fragile H∞ synchronization of memristor-based neural networks using passivity theory.
Mathiyalagan, K; Anbuvithya, R; Sakthivel, R; Park, Ju H; Prakash, P
2016-02-01
In this paper, we formulate and investigate the mixed H∞ and passivity based synchronization criteria for memristor-based recurrent neural networks with time-varying delays. Some sufficient conditions are obtained to guarantee the synchronization of the considered neural network based on the master-slave concept, differential inclusions theory and Lyapunov-Krasovskii stability theory. Also, the memristive neural network is considered with two different types of memductance functions and two types of gain variations. The results for non-fragile observer-based synchronization are derived in terms of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed criterion is demonstrated through numerical examples. PMID:26655373
Robust networked H∞ synchronization of nonidentical chaotic Lur'e systems
We mainly investigate the robust networked H∞ synchronization problem of nonidentical chaotic Lur'e systems. In the design of the synchronization scheme, some network characteristics, such as nonuniform sampling, transmission-induced delays, and data packet dropouts, are considered. The parameters of master—slave chaotic Lur'e systems often allow differences. The sufficient condition in terms of linear matrix inequality (LMI) is obtained to guarantee the dissipative synchronization of nonidentical chaotic Lur'e systems in network environments. A numerical example is given to illustrate the validity of the proposed method. (general)
Synchronization challenges in packet-based Cloud-RAN fronthaul for mobile networks
Checko, Aleksandra; Juul, Anders Christian; Christiansen, Henrik Lehrmann;
2015-01-01
In this paper, we look at reusing existing packet-based network (e.g. Ethernet) to possibly decrease deployment costs of fronthaul Cloud Radio Access Network (C-RAN) network and cost of Baseband Unit (BBU) resources. The challenge of this solution is that it requires mobile traffic (until now...... transmitted over synchronous protocols) to traverse the asynchronous Ethernet without losing synchronization. We analyze synchronization requirements of mobile networks and present an overview of solutions that fulfill them in traditional mobile networks. Then we elaborate on challenges that packet-based...... fronthaul imposes. We analyze possible contributions to frequency and phase error. We verify the feasibility of using the IEEE 1588v2 also know as Precision Time Protocol (PTP) for providing accurate phase and frequency synchronization. The study is based on simulations made in OPNET modeler. Thereby we...
Scaling in topological properties of brain networks
Singh, S.S.; Khundrakpam, B.; Reid, A.T.; Lewis, J.D.; Evans, A.C.; Ishrat, R.; Sharma, B.I.; Singh, R.K.B.
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks.
Tuncay, Caglar
2010-01-01
The electroencephalographic (EEG) data intracerebrally recorded from 20 epileptic humans with different brain origins of focal epilepsies or types of seizures, ages and sexes are investigated (nearly 700 million data). Multi channel univariate amplitude analyses are performed and it is shown that time dependent Shannon entropies can be used to predict focal epileptic seizure onsets in different epileptogenic brain zones of different patients. Formations or time evolutions of the synchronizations in the brain signals from epileptogenic or non epileptogenic areas of the patients in ictal interval or inter-ictal interval are further investigated employing spatial or temporal differences of the entropies.
Synchronization of fractional-order complex-valued neural networks with time delay.
Bao, Haibo; Park, Ju H; Cao, Jinde
2016-09-01
This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results. PMID:27268259
Qiuxiang Bian; Jinde Cao; Jie Wu; Hongxing Yao; Tingfang Zhang; Xiaoxu Ling
2013-01-01
A new model of switched complex bipartite neural network (SCBNN) with infinite distributed delays and derivative coupling is established. Using linear matrix inequality (LMI) approach, some synchronization criteria are proposed to ensure the synchronization between two SCBNNs by constructing effective controllers. Some numerical simulations are provided to illustrate the effectiveness of the theoretical results obtained in this paper.
Cross-Frequency Coupling in Real and Virtual Brain Networks
Viktor Jirsa
2013-07-01
Full Text Available Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC. It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of cross-frequency coupling under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii bispectrum and bicoherence correctly detect the CFCs in simulated data, (iii empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic bispectrum and bicoherence. This coupling was mostly asymmetric (directed and generally higher in the eyes-closed than in the eyes-open condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed.
Small-world brain networks in schizophrenia
Mingli LI; Zhuangfei CHEN; Tao LI
2012-01-01
Over the last decade the combination of brain neuroimaging techniques and graph theoretical analysis of the complex anatomical and functional networks in the brain have provided an exciting new platform for exploring the etiology of mental disorders such as schizophrenia. This review introduces the current status of this work, focusing on these networks in schizophrenia. The evidence supporting the findings of reduced efficiency of information exchange in schizophrenia both within local brain regions and globally throughout the brain is reviewed and the potential relationship of these changes to cognitive and clinical symptoms is discussed. Finally we propose some suggestions for future research.
Bit Level Synchronized MAC Protocol for Multireader RFID Networks
Namboodiri Vinod
2010-01-01
Full Text Available The operation of multiple RFID readers in close proximity results in interference between the readers. This issue is termed the reader collision problem and cannot always be solved by assigning them to different frequency channels due to technical and regulatory limitations. The typical solution is to separate the operation of such readers across time. This sequential operation, however, results in a long delay to identify all tags. We present a bit level synchronized (BLSync MAC protocol for multi-reader RFID networks that allows multiple readers to operate simultaneously on the same frequency channel. The BLSync protocol solves the reader collision problem by allowing all readers to transmit the same query at the same time. We analyze the performance of using the BLSync protocol and demonstrate benefits of 40%–50% in terms of tag reading delay for most settings. The benefits of BLSync, first demonstrated through analysis, are then validated and quantified through simulations on realistic reader-tag layouts.
Neural Network Controllers in DTC of Synchronous Motor Drives
Sudhakar Ambarapu
2013-07-01
Full Text Available In recent times, permanent magnet synchronous motors (PMSM have gained numerous industrial applications, because of simple structure, high efficiency and ease of maintenance. But these motors have a nonlinear mathematical model. To resolve this problem several studies have suggested the application of vector control (VC and direct torque control (DTC with soft-computing (SC techniques. This paper presents neuro direct torque control (NDTC of PMSM. Hence this paper aims to present a technique to control speed and torque with reduced ripple compared to previous techniques. The outputs of Artificial Neural Network(ANN controller mechanism is compared with that of classical DTC and the results demonstrate the influence of ANN is improved compared to classical DTC topology. The system is also verified and proved to be operated stably with reduced torque ripple, very low speed, sudden speed reversals, at low torque and at high torque. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using PI speed controller.
Pain: a distributed brain information network?
Hiroaki Mano
2015-01-01
Full Text Available Understanding how pain is processed in the brain has been an enduring puzzle, because there doesn't appear to be a single "pain cortex" that directly codes the subjective perception of pain. An emerging concept is that, instead, pain might emerge from the coordinated activity of an integrated brain network. In support of this view, Woo and colleagues present evidence that distinct brain networks support the subjective changes in pain that result from nociceptive input and self-directed cognitive modulation. This evidence for the sensitivity of distinct neural subsystems to different aspects of pain opens up the way to more formal computational network theories of pain.