WorldWideScience

Sample records for brain magnetic resonance

  1. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  2. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  3. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  4. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  5. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  6. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  7. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  8. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  9. Advanced magnetic resonance imaging of the brain : MRI of the brain

    African Journals Online (AJOL)

    Since the development of magnetic resonance imaging by Paul. Lauterbur and ... Functional brain imaging refers to the family of techniques that aim to measure the .... left thumb, the fingers of their right hand against their right thumb, or rest.

  10. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  11. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  12. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Pastura, Giuseppe; Mattos, Paulo; Gasparetto, Emerson Leandro; Araujo, Alexandra Prufer de Queiroz Campos

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  13. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  14. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  16. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    Science.gov (United States)

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance

  17. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  18. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  19. Numerical studies of radiofrequency of the electromagnetic radiation power absorption in paediatrics undergoing brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    C. Subaar

    2017-07-01

    Full Text Available Magnetic resonance imaging current operating frequencies are above 100 kHz which is converted to heat through resistive tissue losses during imaging. The imaging is coupled with a concurring increase in temperature in patients. Magnetic resonance imaging of the brain has seen a rising clinical request during diagnosis and therefore become imperative that its safety issues be assessed. This study modelled Pennes' classical bio-heat equation using Finite Difference Method (FDM approach and with the help of MATLAB programming language, predicted three dimensional steady state temperature distributions in patients during magnetic resonance imaging. Sixty-four paediatric patients' referred for (head brain magnetic resonance imaging scan at 37 Military Hospital and the Diagnostic Center Limited, Ghana, pre-scan and post-scan temperatures were measured at the right tympanic. The numerically steady state temperature distribution during magnetic resonance imaging shows that there is excessive temperature elevation at the skin surface of the patients. The resulting skin heating during magnetic resonance imaging can reach dangerous level which suggests that the ohmic heating of tissue is greatest at the surface and minimal at the center of the patient's brain. Though the experimental results show that patients brain temperature increase after imaging, all measured temperatures were within acceptable safe levels.

  20. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  1. Brain aging: Evaluation of pH using phosphorus magnetic resonance spectroscopy.

    Science.gov (United States)

    Cichocka, Monika; Kozub, Justyna; Urbanik, Andrzej

    2018-02-02

    Very important aspects of aging include age-related changes occurring in the brain. The aim of the present study was to identify the standard pH value in the entire brain volume using phosphorus magnetic resonance spectroscopy in healthy individuals of both sexes in different age groups, and then to determine whether there are differences in these values. A total of 65 individuals aged 20-32 years (mean age 24.5 ± 2.1 years, 31 women and 34 men) and 31 individuals aged 60-81 years (mean age 64.9 ± 5.5 years, 17 women and 14 men) were studied. The phosphorus magnetic resonance spectroscopy examination was carried out using a 1.5-T magnetic resonance system. The signal was acquired from the volume of interest that covered the whole brain. A vast majority of the examined individuals had slightly alkaline brain pH regardless of age. In the ≥20 years group, pH was 7.09 ± 0.11, and in the ≥60 years group, the average pH was 7.03 ± 0.05. This comparison of the pH identified in all the tested individuals shows a negative correlation of pH with age. The present findings might provide a valuable basis for further research into "healthy aging" as well as pathology in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  2. Proton magnetic resonance spectroscopy (1H-MRS) for the evaluation of treatment of brain tumours

    International Nuclear Information System (INIS)

    Houkin, K.; Kamada, K.; Sawamura, Y.; Iwasaki, Y.; Abe, H.; Kashiwaba, T.

    1995-01-01

    We investigated metabolic changes in brain tumours following treatment, using proton magnetic resonance spectroscopy. In meningiomas, effective therapeutic embolisation led to an acute increase in lactate. In radiosensitive tumours such as malignant lymphoma, a decrease in lactate and in increase in N-acetyl-aspartate occurred after radiotherapy, which preceded changes observed on magnetic resonance imaging. On the other hand, no significant changes in spectral patterns were observed in malignant gliomas resistant to therapy. Tissue characterisation of brain tumours by spectral patterns on proton magnetic resonance spectroscopy remains controversial. However, we have shown it to be sensitive to metabolic changes following treatment, which may reflect the efficacy of the therapy. (orig.)

  3. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  4. Chronological change of brain abscess in {sup 1}H magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, H.; Matsumura, A.; Isobe, T.; Takano, S.; Nose, T. [Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki (Japan); Anno, I.; Itai, Y. [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki (Japan)

    2002-07-01

    We studied chronological magnetic resonance spectral changes in brain abscesses before and after medical and/or surgical treatment. We examined five patients with MRI imaging and {sup 1}H magnetic resonance spectroscopy (MRS) on two or more occasions, using two volume-of-interest patterns, and saw chronological changes related to the evolution of the abscess. A spectrum specific for brain abscess was found in three of the five cases, while two showed a single lactate peak in the first study. In two cases, phenylalanine or alanine appeared in the second study. We observed the disappearance of the specific spectra and a single lactate peak following surgery. Only one patient showed different spectra in different volume of interest. (orig.)

  5. Magnetic Resonance and Brain Function. Approaches from Physics

    International Nuclear Information System (INIS)

    Maraviglia, B.

    1999-01-01

    In the last decade of this millennium, while, on the one hand, the international scientific community has focused with increasing endeavour on the research about the great unknown of the mechanism and the pathologies of the human brain, on the other hand, the NMR community has achieved some important results, which should widely affect, in the future, the possibility of understanding the function and disfunction of the human brain. In the early 1980's, the beginning of the application of Magnetic Resonance Imaging (MRI) to the morphological study of the brain in vivo, has played an extraordinary role, which, since then, placed MRI in a leading position among the methodologies used for investigation and diagnostics of the Central Nervous System. In the 1990s, the objective of finding new means, based on MRI, capable of giving functional and metabolic information, with the highest possible space resolution, drove the scientists towards different approaches. Among these, the first one to generate a breakthrough in the localization of specific cerebral functions was the Blood Oxygen Level Development (BOLD) MRI. A very wide range of applications followed the discovery of BOLD imaging. Still, this method gives an indirect information of the localization of functions, via the variation of oxygen release and deoxyhemoglobin formation. Of course, a high-resolution spatial distribution of the metabolites, crucial to brain function, would give a deeper insight into the occurring processes. This finality is aimed at by the Double Magnetic Resonance methods, which are developing new procedures able to detect some metabolites with increasing sensitivity and resolution. A third new promising approach to functional MRI should derive from the use of hyperpolarized, opens a series of potential applications to the study of brain function

  6. Brain Imaging Using Hyperpolarized 129Xe Magnetic Resonance Imaging.

    Science.gov (United States)

    Chahal, Simrun; Prete, Braedan R J; Wade, Alanna; Hane, Francis T; Albert, Mitchell S

    2018-01-01

    Hyperpolarized (HP) 129 Xe magnetic resonance imaging (MRI) is a novel iteration of traditional MRI that relies on detecting the spins of 1 H. Since 129 Xe is a gaseous signal source, it can be used for lung imaging. Additionally, 129 Xe dissolves in the blood stream and can therefore be detectable in the brain parenchyma and vasculature. In this work, we provide detailed information on the protocols that we have developed to image 129 Xe within the brains of both rodents and human subjects. © 2018 Elsevier Inc. All rights reserved.

  7. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    Science.gov (United States)

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  9. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  10. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  11. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  13. A Novel Magnetic Resonance Imaging (MRI) Approach for Measuring Weak Electric Currents Inside the Human Brain

    DEFF Research Database (Denmark)

    Göksu, Cihan

    of individual ohmic conductivity values may open up the possibility of creating more realistic and accurate head models, which may ameliorate the simulations and practical use of NIBS techniques. Magnetic resonance current density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT......Knowing the electrical conductivity and current density distribution inside the human brain will be useful in various biomedical applications, i.e. for improving the efficiency of non-invasive brain stimulation (NIBS) techniques, the accuracy of electroencephalography (EEG......) and magnetoencephalography (MEG) source localization, or localization of pathological tissues. For example, the accuracy of electric field simulations for NIBS techniques is currently reduced by assigning inaccurate ohmic conductivity values taken from literature to different brain tissues. Therefore, the knowledge...

  14. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  15. Brain Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Findings of Children with Kernicterus

    International Nuclear Information System (INIS)

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of 1 H magnetic resonance spectroscopy (MRS) in demonstrating these metabolic changes and to review conventional MRI findings of kernicterus. Forty-eight pediatric cases with kernicterus were included in this study. MRI and MRS examinations were performed on variable dates (10–29 days after birth). NAA, Cr, Cho, NAA/Cr, NAA/Cho, and Cho/Cr values were evaluated visually and by computer analysis. There was no statistically significant difference between the NAA and Cho levels in the acute kernicterus patients and the control group (healthy patients), whereas both were significantly elevated in the chronic kernicterus patients. Both the mean NAA/Cr and Cho/Cr ratio values were significantly higher in the acute and chronic cases compared to the control group. The NAA/Cho ratio value was statistically lower in the acute cases than in the control group while it was similar in the chronic cases. Conventional MR imaging and 1 H-MRS are important complementary tools in the diagnostics of neonatal bilirubin encephalopathy. This study provided important information for applying these MR modalities in the evaluation of neonates with bilirubin encephalopathy

  16. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T.

    2007-01-01

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  17. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  18. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  19. Magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging

  20. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  1. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  2. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  3. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  5. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    OpenAIRE

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was use...

  6. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Clinical applications of proton magnetic resonance spectroscopy of the brain

    International Nuclear Information System (INIS)

    Laubenberger, J.; Bayer, S.; Thiel, T.; Hennig, J.; Langer, M.

    1998-01-01

    In spite of all the scientific advances of the past few years, proton magnetic resonance spectroscopy of the brain has not attained the status of a routine examination technique with clinically accepted indications. The method should be considered as an additional option to MR imaging for inherited and acquired encephalopathic changes as well as, in future, for localization diagnosis of epilepsies. A proton magnetic resonance spectroscopic investigation without a prior intensive clinical and imaging investigation is not useful. Above all, factors influencing metabolite distribution such as for example, serum osmolability must be known. Methodological prerequisites for the clinical application of proton resonance spectroscopy are, first of all, a high stability of the chosen technique as well as a sufficiently certain quantification of metabolites and the availability of a reference group. The use of short echo times is necessary for the quantification of glutamine and the osmolyte myo-inositol. Indications for individual cases in which clinical investigations and MR topography cannot provide sufficient certainty and spectroscopy can furnish additional information are, in addition to uses in neuropediatrics, the suspicion of Alzheimer's dementia, HIV encephalopathy in early manifestations, and unclarified depressions of consciousness accompanying liver cirrhosis. (orig.) [de

  8. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  9. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yasuo Yamashita

    2009-07-01

    Full Text Available This paper reviews the basics and recent researches of computer-aided diagnosis (CAD systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multiple sclerosis (MS, in magnetic resonance (MR images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.

  10. Postmortem magnetic resonance images of the injured brain: effective evidence in the courtroom.

    Science.gov (United States)

    Harris, L S

    1991-09-01

    Magnetic resonance images (MRI) of the whole, formalin-fixed brain produce details of pathologic changes deep within brain substance not apparent on external examination. Photographs of these radiographic images present pathologic features in a black-and-white, 2-dimensional format which has proven particularly effective in court before judge and jury. This pathologist has noted acceptance of such photographs in explaining to jurors the details of his testimony in selected cases where brain trauma resulted in a wrongful death. Penetrating missile wounds and blunt impact injuries are particularly well documented by this method.

  11. Magnetic resonance imaging of experimental brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Chuzo; Naruse, Shoji; Horikawa, Yoshiharu; Higuchi, Toshihiro; Ebisu, Toshihiko; Hirakawa, Kimiyoshi; Ohno, Yoshioki; Maki, Sou

    1987-04-01

    Experimental brain edema was produced by either cold injury or TET (triethyl-tin) intoxication in twenty-five Wistar rats, weighing about 250 g each, and then analyzed using MRI (magnetic resonance imaging). The MRI was carried out with a 0.1 Tesla clinical apparatus (Asahi Mark J), using a special coil (7 cm in diameter) devised for small animals in order to obtain SR, SE, IR, and calculated T/sub 1/ and T/sub 2/ images. A dose of 0.5 mmol/kg of Gd-DTPA was injected intravenously for the cold-injury edema, and MRIs of the rat brains were started immediately and obtained successively for 3 hours. MRI showed spatial resolution sufficient to differentiate the cortex from the caudate nucleus, even in such a small rat brain. Rat brains with TET intoxication (cytotoxic edema) showed a marked prolongation of T/sub 1/ and T/sub 2/ in the white matter. Consequently, the TET-intoxication images reflected these characteristic findings. Cold-induced edema showed an increased signal intensity in the injured cortex, the white matter, and the opposite white matter when compared with a normal brain. These changes correlate well with the previously reported in vitro data. When Gd-DTPA was administered to the rats with cold-induced edema, the signal intensity of the cold-injury lesion was significantly reduced. These changes were clearly demonstrated by the calculated T/sub 1/ images. To two rats we administered a dose of 0.5 mmol/kg of Gd-DTPA; The T/sub 1/ values for the cold-injury lesions, before and after the injection, were about 445 msec and about 200 msec respectively. These studies were useful not only in evaluating brain edema, but also in analysing the effect of Gd-DTPA on the brain edema.

  12. Magnetic resonance imaging in sudden deafness

    International Nuclear Information System (INIS)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo; Yamashita, Helio

    2005-01-01

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  13. Sequential observations of brain edema with proton magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    1996-01-01

    The purpose of this study was to assess the relationship between morphological and metabolic changes in brain edema using proton magnetic resonance systems. The serial changes during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance imaging ( 1 H MRI) and high-resolution proton MR spectroscopy ( 1 H MRS). We also analyzed the efficacy of AVS 1,2-bis (nicotinamide)-propane which can scavenge free radicals to the edema in this experiment. The edema was developing extensively via the corpus callosum in ipsi- and contralateral hemispheres as shown by gradually increased signal intensity on 1 H MRI. 1 H MRS initially showed accumulation of acetate and lactate, and transient increasing of glutamine. After 24 hours, the increased glutamine decreased below the control, alanine increased, and N-acetyl aspartate decreased with the edema development. AVS-treatment significantly suppressed edema development, increases of lactate and alanine and decreases of N-acetyl aspartate. We suggest that the cold-induced lesion contains anaerobic glycolysis deterioration and results in severe brain tissue breakdown. AVS is proved valuable for the treatment of this edema lesion. Clinical 1 H MRS showed prolonged lactate elevation and significant decreases of other metabolites in human ischemic stroke edema. In peritumoral edema, decreased N-acetyl aspartate gradually improved, and slightly elevated lactate disappeared after tumor removal. 1 H MRS feasibly characterizes the ischemic and peritumoral edema and makes a quantitative analysis in human brain metabolism. We believe the combined 1 H MRI and MRS study is a practical method to monitor the brain conditions and will make it easy and possible to find new therapeutic agents to some brain disorders. (author)

  14. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  15. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  16. Magnetic resonance imaging-based detection of glial brain tumors in mice after antiangiogenic treatment.

    NARCIS (Netherlands)

    Claes, A.; Gambarota, G.; Hamans, B.C.; Tellingen, O. van; Wesseling, P.; Maass, C.N.; Heerschap, A.; Leenders, W.P.J.

    2008-01-01

    Proper delineation of gliomas using contrast-enhanced magnetic resonance imaging (CE-MRI) poses a problem in neuro-oncology. The blood brain barrier (BBB) in areas of diffuse-infiltrative growth may be intact, precluding extravasation and subsequent MR-based detection of the contrast agent

  17. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes.

    NARCIS (Netherlands)

    Manschot, S.M.; Brands, A.M.; Grond, J. van der; Kessels, R.P.C.; Algra, A.; Kappelle, L.J.; Biessels, G.J.

    2006-01-01

    The structural correlates of impaired cognition in type 2 diabetes are unclear. The present study compared cognition and brain magnetic resonance imaging (MRI) between type 2 diabetic patients and nondiabetic control subjects and assessed the relationship between cognition and MRI findings and blood

  18. Magnetic resonance spectroscopy of brain tumors; MR-Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Ditter, P.; Hattingen, E. [Universitaetsklinikum Bonn, FE Neuroradiologie, Radiologische Klinik, Bonn (Germany)

    2017-06-15

    Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods. This article critically discusses the importance of magnetic resonance spectroscopy ({sup 1}H-MRS) in brain tumors. The concentration of normal and pathological brain metabolites can be non-invasively measured by {sup 1}H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N-acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time. The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas. The use of {sup 1}H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of {sup 1}H-MRS for use in clinical routine diagnostics. (orig.) [German] Die konventionelle MRT ermoeglicht unter Beruecksichtigung klinischer Information bei einem Grossteil zerebraler Raumforderungen die richtige

  19. An ultra­high field Magnetic Resonance Spectroscopy study of post exercise brain lactate, glutamate and glutamine change in the human brain.

    Directory of Open Access Journals (Sweden)

    Andrea eDennis

    2015-12-01

    Full Text Available During strenuous exercise there is a progressive increase in lactate uptake and metabolism into the brain as workload and plasma lactate levels increase. Although it is now widely accepted that the brain can metabolise lactate, few studies have directly measured brain lactate following vigorous exercise. Here, we used ultra-high field Magnetic Resonance Spectroscopy of the brain to obtain static measures of brain lactate, as well as brain glutamate and glutamine after vigorous exercise. The aims of our experiment were to (a track the changes in brain lactate following recovery from exercise and, (b to simultaneously measure the signals from brain glutamate and glutamine. The results of our experiment showed that vigorous exercise resulted in a significant increase in brain lactate. Furthermore, both glutamate and glutamine were successfully resolved, and as expected, although contrary to some previous reports, we did not observe any significant change in either amino acid after exercise. We did however observe a negative correlation between glutamate and a measure of fitness. These results support the hypothesis that peripherally-derived lactate is taken up by the brain when available. Our data additionally highlight the potential of ultra-high field magnetic resonance spectroscopy as a non-invasive way of measuring multiple brain metabolite changes with exercise.

  20. Single voxel magnetic resonance spectroscopy in distinguishing ...

    African Journals Online (AJOL)

    Objective: Assess diagnostic utility of combined magnetic resonance imaging and magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University ...

  1. The Correlation Between a Short-term Conventional Electroencephalography in the First Day of Life and Brain Magnetic Resonance Imaging in Newborns Undergoing Hypothermia for Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    Obeid, Rawad; Sogawa, Yoshimi; Gedela, Satyanarayana; Naik, Monica; Lee, Vince; Telesco, Richard; Wisnowski, Jessica; Magill, Christine; Painter, Michael J; Panigrahy, Ashok

    2017-02-01

    Electroencephalograph recorded in the first day of life in newborns treated with hypothermia for hypoxic-ischemic encephalopathy could be utilized as a predictive tool for the severity of brain injury on magnetic resonance imaging and mortality. We analyzed newborns who were admitted for therapeutic hypothermia due to hypoxic-ischemic encephalopathy. All enrolled infants underwent encephalography within the first 24 hours of life and underwent brain magnetic resonance imaging after rewarming. All encephalographs were independently reviewed for background amplitude, continuity, and variability. Brain injury determined by magnetic resonance imaging was scored using methods described by Bonifacio et al. Forty-one newborns were included in the study. Each encephalograph variable correlated significantly with the severity of injury on brain magnetic resonance imaging (P encephalopathy correlated with the extent of injury on brain magnetic resonance imaging. This information may be useful for families and aid guide clinical decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  4. Brain Magnetic Resonance Imaging Findings in Developmentally Delayed Children

    Directory of Open Access Journals (Sweden)

    Ali Akbar Momen

    2011-01-01

    Full Text Available Background. Developmental disorders are failure or inability to acquire various age-specific skills at expected maturational age, which affects about 5–10% of preschool children. One of the most important methods for evaluation of developmentally delayed children is neuroimaging, especially, brain magnetic resonance imaging (MRI that provides useful information regarding brain tissue structures and anomalies. Method and Material. In this study, hospital records of 580 developmentally delayed children (aged 2 months to 15 years who admitted in pediatric ward of Golestan Hospital from 1997 to 2009 were selected. Information such as age, MRI findings were collected in the questionnaire and statistically analyzed. Results. Total, 580 children including 333 males (57.4% and 247 females (42.6% were studied. Abnormal brain MRI was observed in 340 (58.6% cases (204 Males, 136 females. The finding includes nonspecific in 38 (6.6%, congenital and developmental anomalies of brain in 39 (6.7%, recognizable syndromes in 3 (0.5%, neurovascular diseases or trauma in 218 (37.6%, and metabolic or neurodegenerative diseases in 42 (7.2% cases. Conclusion. Because 60% of all study groups showed abnormal brain MRI, using this method could be effective in diagnosis, management, and almost prognosis determination processes.

  5. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ...

  6. Importance of Proton Magnetic Resonance Spectroscopy in Diagnosis of Brain Tumors

    International Nuclear Information System (INIS)

    Polacek, H.; Zelenak, K.; Bittsansky, M.; Cisarikova, V.; DeRiggo, J.; Tichterova, R.

    2011-01-01

    Most brain tumors are routinely examined by CT and magnetic resonance (MR). MR plays a crucial role in the preoperative diagnosis and postoperative monitoring. In some cases, proton MR spectroscopy (MRS) provides additional diagnostic information to standard MR results. MRS analyzes important cerebral biochemical substances containing choline, N-acetylaspartate and more. We present a case of 42-year old patient with high-grade glioblastoma examined using MRS in addition to MR imaging before and after surgery. (author)

  7. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  8. Magnetic resonance spectroscopy of the canine brain at 3.0 T and 7.0 T.

    Science.gov (United States)

    Martin-Vaquero, Paula; da Costa, Ronaldo C; Echandi, Rita L; Sammet, Christina L; Knopp, Michael V; Sammet, Steffen

    2012-08-01

    The purpose of this study was to evaluate the feasibility of proton magnetic resonance spectroscopy (1H MRS) to study the concentration of metabolites in the brain of dogs at 3.0 and 7.0 T. Four healthy male beagles were scanned using 3.0 T and 7.0 T human magnetic resonance imaging (MRI) units. The results obtained showed that all dogs had excellent quality spectra for a small (1 cm3) and large (8 cm3) voxel at 3.0 T, whereas only 2 dogs had high quality spectra at 7.0 T due to insufficient water suppression. 1H MRS at 3.0 T appears to be a reliable method to study metabolite concentrations in the canine brain. The development of more advanced water suppression techniques is necessary to improve the results at 7.0 T. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Brain Function, Structure, and Neurochemistry After Tamoxifen/Chemotherapy Assessed by Neuropsychologic Testing and H Magnetic Resonance Spectroscopy

    National Research Council Canada - National Science Library

    Ernst, Thomas

    2000-01-01

    ...). On magnetic resonance spectroscopy (1H MRS), women who received tamoxifen (average 4.4 years) had no statistically significant differences in brain metabolite ratios compared to the negative control group...

  10. Proton nuclear magnetic resonance studies on brain edema

    International Nuclear Information System (INIS)

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-01-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research

  11. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  12. Further technical development in magnetic resonance imaging of the brain in children

    International Nuclear Information System (INIS)

    Young, I.R.; Dubowitz, L.M.S.; Pennock, J.M.; Bydder, G.M.

    1988-01-01

    Further technical developments implemented in magnetic resonance imaging (MRI) of the brain in children are described. These include the use of longer data collection periods, T2-dependent field echoes, susceptibility mapping, short inversion time inversion recovery sequences, very long echo time spin-echo sequences, and phase mapping techniques to detect tissue perfusion. These techniques are illustrated in selected cases and have increased the range of options available in MR examinations of children. (author)

  13. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Gertrudis de los Angeles; Alvarez Sanchez, Marilet; Jordan Gonzalez, Jose

    2010-01-01

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  14. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  15. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  16. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  17. Magnetic resonance spectroscopy for inflammatory brain diseases; Magnetresonanzspektroskopie bei entzuendlichen Hirnerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Grunwald, I.Q.; Hartmann, K.M.; Politi, M.; Roth, C.; Reith, W. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Farmakis, G. [Universitaetsklinikum des Saarlandes, Klinik fuer Nuklearmedizin, Homburg/Saar (Germany)

    2008-06-15

    Magnetic resonance spectroscopy (MRS) is a non-invasive method for investigation of cerebral metabolite concentrations in various pathologic conditions. The clinical use of MRS for intracranial disorders is well established. In this review the characteristic MRS findings for the most important inflammatory brain diseases will be discussed. (orig.) [German] Die Magnetresonanzspektroskopie (MRS) ist eine nichtinvasive Methode, die die Messung der Konzentration zerebraler Metaboliten erlaubt. Die Verwendung der MRS bei verschiedenen intrakraniellen Erkrankungen ist gut etabliert. In diesem Review werden die MRS-Charakteristiken der wichtigsten entzuendlichen Hirnerkrankungen diskutiert. (orig.)

  18. Whole-brain functional magnetic resonance imaging of human brain during voluntary movements of dominant and subdominant hands

    International Nuclear Information System (INIS)

    Yu Wei; Yan Zixu; Ma Xiaohai; Zhang Zhaoqi; Lin Chongyu; Zang Yufeng; Weng Xuchu

    2003-01-01

    Objective: To identify the neural substrates of voluntary movements of dominant and subdominant hands by using the whole-brain functional magnetic resonance imaging. Methods: Seven right-handed healthy volunteers were scanned at a Sonata 1.5 Tesla magnetic resonance imaging scanner (Siemens) while they were performing the visually instructive movement tasks with their right and left index fingers. Image data were co-registered to correct head motion, spatially normalized according to the standard coordinates, and spatially smoothed with isotopic Guassian Kernel. Statistical parametric maps (activation maps) for right and left hands were generated respectively by cross-correlation analysis. Results: Voluntary movements of the right/dominant hand mainly activated contralateral primary motor cortex (MI), bilateral supplementary motor area (SMA), bilateral second motor area (MII), and ipsilateral cerebellum, whereas movements of the left/subdominant hand additionally elicited activation in contralateral premotor area (PMC). Moreover, activation volumes in SMA and MII during movements of the subdominant hand were significantly larger than those during movements of the dominant hand. Conclusion: A large set of structures in the cerebral cortex and cerebellum is involved in voluntary movements, as revealed by whole brain-based fMRI. Movements of the subdominant hand are more dependent on higher control areas, such as SMA and PMC, comparing to movements of the dominant hand

  19. The contribution of the Magnetic Resonance Spectroscopy in the brain lesions

    International Nuclear Information System (INIS)

    Surur, Alberto; Cabral, Jose F.; Marangoni, Alberto; Marchegiani, Silvio; Palacios, Claudio; Herrera, Enrique; Suarez, Julio

    2010-01-01

    Introduction: The Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique which allows study of the metabolism of lesions or of normal tissue, increasing the method's specificity. In this way, the biochemical information provided by MRS is added to the morphologic information provided by the Magnetic Resonance Imaging (MRI). Even though the gold standards to determine the definite diagnosis of a brain lesion is still the biopsy, the MRS is a non-invasive method, free of complications which would help determine the type of lesion and avoid unnecessary biopsies in non-tumor processes. The objective of this work is to determine if the monovoxel MRS hydrogen proton (H+) long Eco Time (TE) is capable to differentiating or not the nature of the tumor from the brain lesions and classify them into levels of malignity. Material and Method: This is a retrospective study in which female and male patients of any ages were selected. A standard study of MRI was performed in them and it was completed with monovoxel ERM. Results: 47 lesions were analyzed and 43 (92.9%) were adequately characterized, with a sensibility (S) of 96.8% (IC 89-100), specificity (E) of 89.6% (IC 76-100), positive predictive value (PPV) of 91.1% (IC 80-100) and a negative predictive value (NPV) of 96.3% (IC 87-100). There are many variables that can influence the acquisition of a spectrum capable of being analyzed and from them, inter-observer differences can emerge. However, our results were similar to those in other publications. Conclusion: The MRS together with the MRI proved to be a reliable method to determine whether a brain lesion is a tumor or not, with acceptable statistic values. (authors) [es

  20. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).

    Science.gov (United States)

    Fox, Michael D; Halko, Mark A; Eldaief, Mark C; Pascual-Leone, Alvaro

    2012-10-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla

    International Nuclear Information System (INIS)

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-01-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH 2 -) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain

  2. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    Science.gov (United States)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  3. Localized 31P magnetic resonance spectroscopy of large pediatric brain tumors

    International Nuclear Information System (INIS)

    Sutton, L.N.; Lenkinski, R.E.; Cohen, B.H.; Packer, R.J.; Zimmerman, R.A.

    1990-01-01

    Fourteen children aged 1 week to 16 years, with a variety of large or superficial brain tumors, underwent localized in vivo 31 P magnetic resonance spectroscopy of their tumor. Quantitative spectral analysis was performed by measuring the area under individual peaks using a computer algorithm. In eight patients with histologically benign tumors the spectra were considered to be qualitatively indistinguishable from normal brain. The phosphocreatine/inorganic phosphate ratio (PCr/Pi) averaged 2.0. Five patients had histologically malignant tumors; qualitatively, four of these were considered to have abnormal spectra, showing a decrease in the PCr peak. The PCr/Pi ratio for this group averaged 0.85, which was significantly lower than that seen in the benign tumor group (p less than 0.05). No difference between the two groups was seen in adenosine triphosphate or phosphomonoesters. It is concluded that a specific metabolic fingerprint for childhood brain tumors may not exist, but that some malignant tumors show a pattern suggestive of ischemia

  4. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  5. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  6. Exploring brain function with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G

    1999-05-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology.

  7. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  8. Neuromyelitis optica with linear enhancement of corpus callosum in brain magnetic resonance imaging with contrast: a case report.

    Science.gov (United States)

    Sahraian, Mohammad Ali; Moghadasi, Abdorreza Naser; Owji, Mahsa; Naghshineh, Hoda; Minagar, Alireza

    2015-06-10

    Neuromyelitis optica is a demyelinating disease of the central nervous system with various patterns of brain lesions. Corpus callosum may be involved in both multiple sclerosis and neuromyelitis optica. Previous case reports have demonstrated that callosal lesions in neuromyelitis optica are usually large and edematous and have a heterogeneous intensity showing a "marbled pattern" in the acute phase. Their size and intensity may reduce with time or disappear in the chronic stages. In this report, we describe a case of a 25-year-old Caucasian man with neuromyelitis optica who presented clinically with optic neuritis and myelitis. His brain magnetic resonance imaging demonstrated linear enhancement of the corpus callosum. Brain images with contrast agent added also showed linear ependymal layer enhancement of the lateral ventricles, which has been reported in this disease previously. Linear enhancement of corpus callosum in magnetic resonance imaging with contrast agent could help in diagnosing neuromyelitis optica and differentiating it from other demyelinating disease, especially multiple sclerosis.

  9. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  11. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  12. Magnetic resonance imaging of the brain in normal aging and dementia

    International Nuclear Information System (INIS)

    Alavi, A.; Fazekas, F.; Chawluk, J.; Zimmerman, R.

    1987-01-01

    The unusual sensitivity of magnetic resonance imaging in detecting white matter lesions has yielded striking results in studying the aging brain and in diagnosing a variety of central nervous system disorders. These lesions are most obvious in the periventricular white matter and appear as punctate or confluent hyperintense abnormalities on T2-weighted images. Their correlation with increasing age and the ensuing increase of cardiovascular risk factors suggests ischemic damage as their probable underlying pathologic cause. MRI thus may prove an early and very sensitive indicator of incipient cerebrovascular disease, adding information on the association of vascular damage with the development of dementing illness. This report is a preliminary communication of an ongoing study which is evaluating the importance of these findings in the 'normal' aging brain and different forms of dementia. 11 refs.; 1 table

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  16. Mannitol as a Potential Pitfall for Peak Assignment on Magnetic Resonance Spectra (MRS) for Brain Tumors: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jee Young; Ahn, Kook Jin; Yu, Won Jong; Kim, Bum Soo [Catholic University, Seoul (Korea, Republic of); Park, Ik Sung [Catholic University, Bucheon St. Mary' s Hospital, Bucheon (Korea, Republic of)

    2009-06-15

    Mannitol is a xenobiotic commonly used for the control of brain edema in patients with brain tumors. Although not typically identifiable with the use of routine proton magnetic resonance spectroscopy (MRS), we report a case where the mannitol peak was clearly visible on the MR spectra of a recurrent meningioma.

  17. Investigation of Resonance Effect Caused by Local Exposure of Extremely Low Frequency Magnetic Field on Brain Signals: A Randomize Clinical Trial

    Directory of Open Access Journals (Sweden)

    Rasul Zadeh Tabataba’ei K

    2011-03-01

    Full Text Available Background and Objectives: Some studies have investigated the effects of extremely low frequency magnetic fields (ELF-MFs on brain signals, but only few of them have reported that humans exposed to magnetic fields exhibit changes in brain signals at the frequency of stimulation, i.e. resonance effect. In most investigations, researchers usually take advantage of a uniform field which encompasses the head. The aim of present study was to expose different parts of the brain to ELF-MFs locally and to investigate variation of brain signal and resonance effect.Methods: The subjects consisting of 19 male-students with the mean age of 25.6±1.6 years participated in this study. Local ELF-MFs with 3, 5, 10, 17 and 45Hz frequencies and 240 μT intensity was applied on five points (T3, T4, Cz, F3 and F4 of participants scalp Separately in 10-20 system. In the end, relative power over this points in common frequency bands and at the frequency of magnetic fields was evaluated by paired t-test.Results: Exposure of Central area by local magnetic field caused significant change (p<0.05 in the forehead alpha band. Reduction in the alpha band over central area was observed when temporal area was exposed to ELF MF.Conclusion: The results showed that resonance effect in the brain signals caused by local magnetic field exposure was not observed and change in every part of the relative power spectrum might occur. The changes in the EEG bands were not limited necessarily to the exposure point.

  18. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    International Nuclear Information System (INIS)

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD

  19. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik

    2015-01-01

    tomography (PET) and magnetic resonance imaging (MRI). PATIENTS: Forty patients with Fabry disease (14 males, 26 females, age at inclusion: 10-66 years, median: 39 years) underwent a brain F-18-FDG-PET-scan at inclusion, and 31 patients were followed with FDG-PET biannually for up to seven years. All...... patients (except one) had a brain MRI-scan at inclusion, and 34 patients were followed with MRI biannually for up to nine years. IMAGE ANALYSIS: The FDG-PET-images were inspected visually and analysed using a quantitative 3-dimensional stereotactic surface projection analysis (Neurostat). MRI images were...... also inspected visually and severity of white matter lesions (WMLs) was graded using a visual rating scale. RESULTS: In 28 patients brain-FDG-PET was normal; in 23 of these 28 patients brain MRI was normal--of the remaining five patients in this group, four patients had WMLs and one patient never had...

  20. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Image Dept.], e-mail: jrl.ferraz@terra.com.br; Rocha-Filho, Jose Alves; Mauad, Fernando [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Radiology Dept.; Sanches, Rafael Angelo [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Imaging Dept.

    2009-06-15

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  1. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    International Nuclear Information System (INIS)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline; Rocha-Filho, Jose Alves; Mauad, Fernando; Sanches, Rafael Angelo

    2009-01-01

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  2. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction

    International Nuclear Information System (INIS)

    Narisawa, Aya; Shamoto, Hiroshi; Shimizu, Hiroaki; Tominaga, Teiji; Yoshimoto, Takashi

    2001-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) provides one of the earliest demonstrations of ischemic lesions. However some lesions may be missed in the acute stage due to technical limitation of DWI. We therefore conducted the study to clarify the sensitivity of DWI to acute brain stem infarctions. Twenty-eight patients with the final diagnosis of brain stem infarction (midbrain 2, pons 9, medulla oblongata 17) who had been examined by DWI within 24 hours of onset were retrospectively analyzed for how sensitively the initial DWI demonstrated the final ischemic lesion. Only obvious (distinguishable with DWI alone without referring clinical symptoms and other informations) hyperintensity on DWI was regarded to show an ischemic lesion. Sixteen (57.1%) out of 28 patients had brain stem infarctions demonstrated by initial DWI. In the remaining 12 cases, no obvious ischemic lesion was evident on initial DWI. Subsequent MRI studies obtained 127 hours, on average after the onset showed infarction in the medulla oblongate in 11 cases and in the pons in one case. Negative findings of DWI in the acute stage does not exclude possibility of the brain stem infarction, in particularly medulla oblongata infarction. (author)

  3. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  4. Analysis of the brain proton magnetic resonance spectroscopy - differences between normal grey and white matter

    International Nuclear Information System (INIS)

    Krukowski, P.; Podgorski, P.; Guzinski, M.; Szewczyk, P.; Sasiadek, M.

    2010-01-01

    Background: The proton magnetic resonance spectroscopy (HMRS) is a non-invasive diagnostic method that allows for an assessment of the metabolite concentration in tissues. The sources of the strongest resonance signals within the brain are N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol (mI) and water. The aim of our study was to analyse the ratios of metabolite signals within the brain in HMRS in the healthy population, to define the differences between the grey and white matter spectra. Material/Methods: We studied prospectively 90 subjects aged from 8 to 80 years (mean 43.3 years, SD=17.9), without neurological symptoms or abnormalities in magnetic resonance imaging. In all patients, brain HMRS with Signa HDx 1.5 T MR unit (GE Healthcare) was performed with PRESS sequence, using a single voxel method, at TE of 35 ms and TR of 1500 ms. Spectroscopic evaluation involved voxels placed in the white matter of parietal lobe (PWM) and the grey matter of posterior cingulate gyrus (PGM). On the basis of the intensity of NAA, Cr, Cho, mI and water signals, the proportions of these signals were calculated, as well as the ratio of the analyzed metabolite signal to the sum of signals of NAA, Cho, Cr and mI (%Met) in the PGM and PWM voxels. We compared the proportions in the same patients in PGM and PWM voxels. Results: There has been a statistically significant difference between the proportions of a majority of the metabolite ratios evaluated in PGM and PWM, indicating the higher concentration of NAA, Cr and mI in grey matter, and higher concentration of Cho in white matter. Conclusions: HMRS spectra of the brain grey and white matter differ significantly. The concentrations of NAA, Cr and mI are higher in grey matter, while of choline - in the white matter. (authors)

  5. Preliminary analysis of proton magnetic resonance 1D spectra of cerebrospinal fluid and brain cancer extracts

    International Nuclear Information System (INIS)

    Toczylowska, B.; Jozwik, A.; Kierul, K.; Matysiak, Z.; Sidor, M.; Wojcik, J.

    1999-01-01

    In series of cerebrospinal fluid samples from 25 patients proton spectra of magnetic resonance were measured. The spectra were measured also for series of brain tumor tissue extracts received from another 25 patients. This paper presents an attempt to apply statistical methods of image recognition for spectra analysis of the two measured series

  6. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... about radiology? Share your patient story here Images ... Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  7. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  8. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  9. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  10. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  11. Proton magnetic resonance spectroscopy in the fetus.

    Science.gov (United States)

    Story, Lisa; Damodaram, Mellisa S; Allsop, Joanna M; McGuinness, Amy; Wylezinska, Marzena; Kumar, Sailesh; Rutherford, Mary A

    2011-09-01

    Magnetic Resonance Imaging (MRI) has become an established technique in fetal medicine, providing complementary information to ultrasound in studies of the brain. MRI can provide detailed structural information irrespective of the position of the fetal head or maternal habitus. Proton Magnetic Resonance Spectroscopy ((1)HMRS) is based on the same physical principles as MRI but data are collected as a spectrum, allowing the biochemical and metabolic status of in vivo tissue to be studied in a non-invasive manner. (1)HMRS has been used to assess metabolic function in the neonatal brain but fetal studies have been limited, primarily due to fetal motion. This review will assess the technique and findings from fetal studies to date. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Magnetic resonance imaging features of brain and spinal cord injury in a fatal case of isopropanol intoxication

    Directory of Open Access Journals (Sweden)

    Mahajan PS

    2014-03-01

    Full Text Available Parag Suresh Mahajan,1 Joyal Jacob Mathew,2 Abhilash Pulincherry Jayaram,1 Vidya Chander Negi,1 Mohamed Milad Abu Hmaira21Department of Radiology, 2Department of Medicine, Al-Khor Hospital, Hamad Medical Corporation, Doha, QatarAbstract: A 60-year-old man presented with headache, dizziness, and disorientation one day after consumption of isopropanol along with ethanol. Computed tomography (CT of the brain performed immediately was unremarkable. The patient collapsed within the hospital 30 minutes after the CT scan was done, and remained comatose until death, showing no improvement with symptomatic treatment. Magnetic resonance imaging of the brain and spine done 6 days after admission revealed bilaterally symmetrical hyperintensities involving the cerebral and cerebellar cortex and white matter, basal ganglia, thalami, and brainstem on T2-weighted, fluid attenuated inversion recovery and diffusion weighted images; similar hyperintensities were seen involving the swollen and edematous cervical spinal cord and cerebellar tonsillar herniation compressing the proximal cervical cord. Petechial hemorrhages were also noted within the brainstem. These features are compatible with toxic injury to the brain and cervical spinal cord. To our knowledge, the magnetic resonance imaging features of brain and spinal cord injury and cerebellar tonsillar herniation, secondary to isopropanol intoxication have not been reported in the published literature before.Keywords: alcohol intoxication, computed tomography, isopropyl alcohol, ethyl alcohol, toxicity

  13. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  14. Magnetic resonance imaging and angiography of the brain in embolic left atrial myxoma

    International Nuclear Information System (INIS)

    Marazuela, M.; Yebra, M.; Diego, J.; Durantez, A.; Garcia-Merino, A.; Brasa, J.M.

    1989-01-01

    A case of left atrial myxoma presenting exclusively with neurological symptoms, studies with magnetic resonance imaging (MRI) combined with cerebral angiography and computed tomography (CT) is reported. Typical angiographic findings suggested the diagnosis of myxoma. MRI showed multiple ischemic lesions disseminated throughout the entire brain, some of which had been clinically asymptomatic. Because of its sensitivity in identifying small cerebral infarcts, MRI should prove in the future to be a first-choice technique in the evaluation of the presence of an extent of cerebral involvement in embolic left atrial myxoma. (orig.)

  15. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  16. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  17. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    International Nuclear Information System (INIS)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin

    1998-01-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  18. [Microsurgery assisted by intraoperative magnetic resonance imaging and neuronavigation for small lesions in deep brain].

    Science.gov (United States)

    Song, Zhi-jun; Chen, Xiao-lei; Xu, Bai-nan; Sun, Zheng-hui; Sun, Guo-chen; Zhao, Yan; Wang, Fei; Wang, Yu-bo; Zhou, Ding-biao

    2012-01-03

    To explore the practicability of resecting small lesions in deep brain by intraoperative magnetic resonance imaging (iMRI) and neuronavigator-assisted microsurgery and its clinical efficacies. A total of 42 cases with small lesions in deep brain underwent intraoperative MRI and neuronavigator-assisted microsurgery. The drifting of neuronavigation was corrected by images acquired from intraoperative MR rescanning. All lesions were successfully identified and 40 cases totally removed without mortality. Only 3 cases developed new neurological deficits post-operatively while 2 of them returned to normal neurological functions after a follow-up duration of 3 months to 2 years. The application of intraoperative MRI can effectively correct the drifting of neuronavigation and enhance the accuracy of microsurgical neuronavigation for small lesions in deep brain.

  19. Accurate Classification of Chronic Migraine via Brain Magnetic Resonance Imaging

    Science.gov (United States)

    Schwedt, Todd J.; Chong, Catherine D.; Wu, Teresa; Gaw, Nathan; Fu, Yinlin; Li, Jing

    2015-01-01

    Background The International Classification of Headache Disorders provides criteria for the diagnosis and subclassification of migraine. Since there is no objective gold standard by which to test these diagnostic criteria, the criteria are based on the consensus opinion of content experts. Accurate migraine classifiers consisting of brain structural measures could serve as an objective gold standard by which to test and revise diagnostic criteria. The objectives of this study were to utilize magnetic resonance imaging measures of brain structure for constructing classifiers: 1) that accurately identify individuals as having chronic vs. episodic migraine vs. being a healthy control; and 2) that test the currently used threshold of 15 headache days/month for differentiating chronic migraine from episodic migraine. Methods Study participants underwent magnetic resonance imaging for determination of regional cortical thickness, cortical surface area, and volume. Principal components analysis combined structural measurements into principal components accounting for 85% of variability in brain structure. Models consisting of these principal components were developed to achieve the classification objectives. Ten-fold cross validation assessed classification accuracy within each of the ten runs, with data from 90% of participants randomly selected for classifier development and data from the remaining 10% of participants used to test classification performance. Headache frequency thresholds ranging from 5–15 headache days/month were evaluated to determine the threshold allowing for the most accurate subclassification of individuals into lower and higher frequency subgroups. Results Participants were 66 migraineurs and 54 healthy controls, 75.8% female, with an average age of 36 +/− 11 years. Average classifier accuracies were: a) 68% for migraine (episodic + chronic) vs. healthy controls; b) 67.2% for episodic migraine vs. healthy controls; c) 86.3% for chronic

  20. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm

    DEFF Research Database (Denmark)

    Letteboer, Marloes M J; Olsen, Ole F; Dam, Erik B

    2004-01-01

    RATIONALE AND OBJECTIVE: This article presents the evaluation of an interactive multiscale watershed segmentation algorithm for segmenting tumors in magnetic resonance brain images of patients scheduled for neuronavigational procedures. MATERIALS AND METHODS: The watershed method is compared...... delineation shows that the two methods are interchangeable according to the Bland and Altman criterion, and thus equally accurate. The repeatability of the watershed method and the manual method are compared by looking at the similarity of the segmented volumes. The similarity for intraobserver...

  1. Functional magnetic resonance imaging-controlled neuronavigator-guided brain surgery: a case report.

    Science.gov (United States)

    Morioka, J; Nishizaki, T; Tokumaru, T; Uesugi, S; Yamashita, K; Ito, H; Suzuki, M

    2001-05-01

    The effectiveness of functional magnetic resonance imaging (f-MRI)-controlled and navigator-guided brain surgery for a patient with a recurrent astrocytoma is demonstrated. Preoperative f-MRI was performed in order to identify the motor area and ensure that the tumour was in the left prefrontal area. A more aggressive operation was planned for the recurrent tumour. The f-MRI data were input to the MKM navigation system and during the operation the contours of the tumour and motor area were visualised b y the microscope of the navigation system. The tumour and surrounding gliotic brain tissue were removed completely. The diagnosis was a grade III astrocytoma. The combination of the navigation system and f-MRI was useful for preoperative design of the surgical strategy, and tumour orientation during the operation, enabling aggressive surgery to be performed without functional deficits ensuing. Copyright 2001 Harcourt Publishers Ltd.

  2. Brain magnetic resonance imaging findings in patients with systemic sclerosis.

    Science.gov (United States)

    Mohamed, Reem H A; Nassef, Amr A

    2010-02-01

    Systemic sclerosis is a multisystem disease where functional and structural abnormalities of small blood vessels prevail. Recently, transient ischemic attacks, ischemic stroke, and hemorrhages have been reported as primary consequence of vascular central nervous system affection in systemic sclerosis. Magnetic resonance imaging (MRI) is considered to be the most sensitive diagnostic technique for detecting symptomatic and asymptomatic lesions in the brain in cases of multifocal diseases. Evaluate brain changes in patients with systemic sclerosis using MRI. Thirty female patients with systemic sclerosis aged 27-61 years, with disease duration of 1-9 years and with no history of other systemic disease or cerebrovascular accidents, were enrolled. An age-matched female control group of 30 clinically normal subjects, underwent brain MR examination. Central nervous system involvement in the form of white matter hyperintense foci of variable sizes were found in significantly abundant forms in systemic sclerosis patients on MR evaluation than in the age-related control group, signifying a form of central nervous system vasculopathy. Such foci showed no definite correlation with disease duration, yet they showed significant correlation to severity of peripheral vascular disease, headaches, fainting attacks and depression in the group under study. Asymptomatic as well as symptomatic central nervous system ischemic vasculopathy is not uncommon in systemic sclerosis patients and MRI is considered a sensitive noninvasive screening tool for early detection of CNS involvement in patients with systemic sclerosis.

  3. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gur, R.C.; Mozley, P.D.; Resnick, S.M.; Gottlieb, G.L.; Kohn, M.; Zimmerman, R.; Herman, G.; Atlas, S.; Grossman, R.; Berretta, D.; Erwin, R.; Gur, R.E.

    1991-01-01

    A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T 2 pixel values to correct field inhomogeneities (shading). Average (±SD) brain volume, excluding cerebellum, was 1090.91 ml and cerebrospinal fluid (DSF) volume was 127.91 ml. Brain volume was higher (by 5 ml) in the right hemisphere. Men had 91 ml higher brain and 20 ml higher CSF volume than women. Age was negatively correlated with brain volume and positively correlated with CSF volume. The slope fo the regression line with age for CSF was steeper for men than women. This difference in slopes was significant for sulca but not ventricular, CSF. The greatest amount of atrophy in elderly men was in the left hemisphere, whereas is women age effects were symmetric. The findings may point to neuroanatomic substrates of hemispheric specialization and gender differences in age-related changes in brain function. They suggest that women are less vulnerable to age-related changes in mental abilities, whereas men are particularly susceptible to aging effects on left hemispheric functions

  4. Brain magnetic resonance findings in infective endocarditis with neurological complications

    International Nuclear Information System (INIS)

    Azuma, Asako; O'uchi, Toshihiro; Toyoda, Keiko

    2009-01-01

    Diagnosing infective endocarditis and its complications can be difficult because of the nonspecific symptoms. We reviewed findings of intracranial abnormalities on magnetic resonance imaging (MRI) in 14 patients with neurological complications and herein discuss the overall intracranial MRI findings. We retrospectively reviewed patients with infective endocarditis from August 2004 to August 2006. Brain MRI, the causative bacteria, and abnormal neurological symptoms were reviewed for 14 patients with neurological complications. Of the 14 patients, 13 showed intracranial abnormalities on MRI. Embolization was seen in 10 patients, hemorrhage in 3, abscess formation in 3, and encephalitis in 2. Hyperintense lesions with a central hypointense area on T2-weighted and/or T2*-weighted imaging (Bull's-eye-like lesion) were seen in four patients. A combination of these intracranial abnormalities was observed in 6 patients. The MRI findings associated with infective endocarditis are wide-ranging: embolization, hemorrhage, meningitis, cerebritis, abscess, the bull's-eye-like lesion. Clinicians should consider the possibility of infective endocarditis in patients with unknown fever and neurological abnormality. Brain MRI should be promptly performed for those patients, and T2*-weighted imaging is recommended for an early diagnosis of infective endocarditis. (author)

  5. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mehrabian, S.; Raycheva, M.; Traykova, M.; Stankova, T.; Penev, L.; Georgieva-Kozarova, G.; Grigorova, O.; Traykov, L.

    2012-01-01

    Full text: Background: This article reports a rare case of active neurosyphilis in a 33-years-old man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer's disease. Few number of cases described bilateral hippocampal atrophy mimicking Alzheimer's disease in neurosyphilis. Case presentation: The clinical feature is characterized by a progressive cognitive decline and behavioral changes for the last 18 months. Neuropsychological examination revealed mild to moderate dementia (MMSE=16) with impaired memory, attention and executive dysfunction. Pyramidal, extrapyramidal signs, dysarthria and impairment in coordination were documented. Brain magnetic resonance imaging showed cortical atrophy with marked bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of Venereal Disease Research Laboratory test - Treponema Pallidum. Hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High dose intravenous penicillin therapy was administered. During the follow up examination at 6 month, the clinical signs, and neuropsychological examinations, and cerebrospinal fluid samples showed improvement. Conclusion: This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition and needs early aggressive antibiotic therapy

  6. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  7. Magnetic resonance imaging in sudden deafness; Ressonancia magnetica em surdez subita

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo [Sao Paulo Univ., SP (Brazil). Dept. de Otorinolaringologia e Cirurgia da Cabeca e Pescoco; Yamashita, Helio [Sao Paulo Univ., SP (Brazil). Dept. de Imagem e Diagnostico]. E-mail: hvlramos@gmail.com

    2005-07-15

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  8. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  9. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  10. Automated prescription of oblique brain 3D magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Ozhinsky, Eugene; Vigneron, Daniel B; Chang, Susan M; Nelson, Sarah J

    2013-04-01

    Two major difficulties encountered in implementing Magnetic Resonance Spectroscopic Imaging (MRSI) in a clinical setting are limited coverage and difficulty in prescription. The goal of this project was to automate completely the process of 3D PRESS MRSI prescription, including placement of the selection box, saturation bands and shim volume, while maximizing the coverage of the brain. The automated prescription technique included acquisition of an anatomical MRI image, optimization of the oblique selection box parameters, optimization of the placement of outer-volume suppression saturation bands, and loading of the calculated parameters into a customized 3D MRSI pulse sequence. To validate the technique and compare its performance with existing protocols, 3D MRSI data were acquired from six exams from three healthy volunteers. To assess the performance of the automated 3D MRSI prescription for patients with brain tumors, the data were collected from 16 exams from 8 subjects with gliomas. This technique demonstrated robust coverage of the tumor, high consistency of prescription and very good data quality within the T2 lesion. Copyright © 2012 Wiley Periodicals, Inc.

  11. Magnetic resonance image enhancement using V-filter

    International Nuclear Information System (INIS)

    Yamamoto, H.; Sugita, K.; Kanzaki, N.; Johja, I.; Hiraki, Y.

    1990-01-01

    The purpose of this study is to present a method of boundary enhancement algorithms for magnetic resonance images using a V-filter. The boundary of the brain tumor was precisely extracted by the region segmentation techniques

  12. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    International Nuclear Information System (INIS)

    Caviness, V.S. Jr.; Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-01-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author)

  13. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  14. Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies.

    Science.gov (United States)

    Chen, Chiao-Chi V; Chen, Yu-Chen; Hsiao, Han-Yun; Chang, Chen; Chern, Yijuang

    2013-07-05

    The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.

  15. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours

    DEFF Research Database (Denmark)

    Kristensen, B.H.; Laursen, F.J.; Logager, V.

    2008-01-01

    Background and purpose: Magnetic resonance (MR) imaging is superior to computed tomography (CT) in radiotherapy of brain tumours. In this study an open low-field MR-simulator is evaluated in order to eliminate the cost of and time spent on additional CT scanning. Materials and methods: Eleven...

  16. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, 8091 Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, 8091 Zurich (Switzerland)

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  17. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut; Martin, Ernst

    2002-01-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  18. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development.

    Science.gov (United States)

    Huisman, Thierry A G M; Martin, Ernst; Kubik-Huch, Rahel; Marincek, Borut

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality.

  19. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    Neuberger, Thomas

    2009-01-01

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  20. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  1. Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours.

    Science.gov (United States)

    Wilson, Martin; Cummins, Carole L; Macpherson, Lesley; Sun, Yu; Natarajan, Kal; Grundy, Richard G; Arvanitis, Theodoros N; Kauppinen, Risto A; Peet, Andrew C

    2013-01-01

    Brain tumours cause the highest mortality and morbidity rate of all childhood tumour groups and new methods are required to improve clinical management. (1)H magnetic resonance spectroscopy (MRS) allows non-invasive concentration measurements of small molecules present in tumour tissue, providing clinically useful imaging biomarkers. The primary aim of this study was to investigate whether MRS detectable molecules can predict the survival of paediatric brain tumour patients. Short echo time (30ms) single voxel (1)H MRS was performed on children attending Birmingham Children's Hospital with a suspected brain tumour and 115 patients were included in the survival analysis. Patients were followed-up for a median period of 35 months and Cox-Regression was used to establish the prognostic value of individual MRS detectable molecules. A multivariate model of survival was also investigated to improve prognostic power. Lipids and scyllo-inositol predicted poor survival whilst glutamine and N-acetyl aspartate predicted improved survival (pmodel of survival based on three MRS biomarkers predicted survival with a similar accuracy to histologic grading (p5e-5). A negative correlation between lipids and glutamine was found, suggesting a functional link between these molecules. MRS detectable biomolecules have been identified that predict survival of paediatric brain tumour patients across a range of tumour types. The evaluation of these biomarkers in large prospective studies of specific tumour types should be undertaken. The correlation between lipids and glutamine provides new insight into paediatric brain tumour metabolism that may present novel targets for therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Detection of cerebral atrophy in type- II diabetes mellitus by magnetic resonance imaging of brain

    International Nuclear Information System (INIS)

    Khan, G.; Khan, N.; Aziz, A.

    2010-01-01

    Background: Diabetes is a metabolic disorder that affects many systems in the body. Cerebral atrophy is one of the complications of diabetes and research is on going to find out its aetiopathological factors. The main aim of the study was to determine the frequency of cerebral atrophy in type-II diabetes mellitus using magnetic resonance imaging of the brain. Methods: One hundred diabetic patients (Random blood sugar >126 mg/dl) were recruited in this study after the informed consent from every patient. Duration of diabetes was five years and more in all the patients as determined by their glycosylated haemoglobin which was >6 in all the patients. All the patients were undergone MRI of brain using 1.5 Tesla power magnetic resonance imaging machine of Picker Company. Evan's index, a specific parameter for measurement of cerebral atrophy was calculated on MR images and was used in this study. Results: In male group the frequency of cerebral atrophy was 22 (47%) and in female group it was found to be 23 (43%). When we study the overall population the frequency was found to be 45 (45%). The results are well in concordance with the previous data published on this issue. Conclusions: Cerebral atrophy, a complication of long standing diabetes is quite frequent in our population and is well diagnosed by MRI. (author)

  3. Brain Magnetic Resonance Elastography on Healthy Volunteers: A Safety Study

    International Nuclear Information System (INIS)

    Guang-Rui Liu; Pei-Yi Gao; Yan Lin; Jing Xue; Xiao-Chun Wang; Bin-Bin Sui; Li Ma; Zhi-Nong Xi; Qin Bai; Hao Shen

    2009-01-01

    Background: Magnetic resonance elastography (MRE) is a recently developed imaging technique that can directly visualize and quantitatively measure tissue elasticity. Purpose: To evaluate the safety of brain MRE on human subjects. Material and Methods: The study included 20 healthy volunteers. MRE sequence scan (drive signal not applied to external force actuator) and MRE study were separately performed on each volunteer at an interval of more than 24 hours. The heart rate and blood pressure of each volunteer were measured immediately before and after MRE sequence scan and MRE study. Electroencephalography (EEG) was also performed within 2 hours after each scan. The volunteers were asked about their experience of the two scans. Randomized-block analysis of variance (ANOVA) was used to analyze the data of blood pressure and heart rate. Paired t test was used to analyze the data of the two EEG examinations. The volunteers were followed up 1 week after the examination. Results: All procedures were performed on each volunteer, and no one complained of obvious discomfort. No related adverse events were reported during follow-up. There was no statistically significant difference in heart rate or blood pressure. There was a statistically significant difference (P<0.05) in EEG results in the right temporoparietal region. Increased power was found in the theta, delta, alpha, and beta2 bands. No brain injury was detected by the EEG examinations. Conclusion: Based on the study results, brain MRE examinations are safe to perform on human subjects

  4. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  5. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    Directory of Open Access Journals (Sweden)

    E. V. Shimchenko

    2014-01-01

    Full Text Available The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI for diagnostics of hypoxic-ischemic lesions in comparison with regular standard modes. In the event of no structural brain lesions of neonates, pronounced increase in signal characteristics revealed by DWI indicated considerable pathophysiological alterations. Subsequently, children developed structural alterations in the form of cystic encephalomalacia with expansion of cerebrospinal fluid spaces manifested with pronounced neurological deficit. DW MRI has been offered as a method of prognosticating further neurological development of children on early stages. 

  6. Magnetic Resonance Imaging of Japanese monkey brains compared with X-ray photography and histology

    International Nuclear Information System (INIS)

    Kaji, Shinji; Matsuda, Keiji; Kawano, Kenji; Komatsu, Hidehiko; Yamane, Shigeru; Yoshizawa, Takashi; Nose, Tadao.

    1991-01-01

    The localization of a small target area in the brain is usually estimated by using stereotaxic atlases, assisted by X-ray photography or electrophysiological mapping, and determined finally by histological reconstruction. Magnetic Resonance Imaging (MRI) can visualize, noninvasively cross sections in any plane of three dimensional structures of the brain. We compared images of MRI, X-ray, and histology from a monkey brain. A Japanese monkey (Macaca fuscata, male, 11 kg) was anesthetised, fixed in a newly developed magnetic-free stereotaxic apparatus, and mounted in the MRI scanner unit (BRUKER, BIOSPEC 24/40, 2.4 Tesla). Some para-saggital (5 mm thick) and para-frontal (2.5 mm thick, every 5 mm distance) images were obtained. The outline of the bone on the MRI image was compared with that on the X-ray photograph taken by an X-ray instrument (Toshiba, TR-80A). The two images fitted very well. The animal was sacrificed, the brain was sliced in 100 μm and stained with Cresyl violet. The histological preparations were shrunk some 10 % during the process, which was revealed by comparison of MRI, X-ray, and histological images. In conclusion, MRI images are reliable enough to determine a small target in deep structures of the brain, and their superimposed images on X-rays will assist in identifying the location of electrode or needle tips. We constructed a data base of these MRI and histological images on a Macintosh computer, and they can be easily accessed by a mouse operation. (author)

  7. Low-field-strength magnetic resonance imaging in the canine brain

    International Nuclear Information System (INIS)

    Esteve Ratsch, B.

    2000-06-01

    Magnetic resonance imaging (MRI; 0,23 T) of the canine brain was performed. Each scan plane was compared with corresponding anatomic sections. The best imaging planes to visualize various anatomic structures were determined. Low-field-strength MRI allowed the good definition of all relevant anatomic structures of the brain of 55 dogs with the exception of most cranial nerves. White matter could be best differentiated using proton-weighted images. On T1-weighted images the contrast of white matter was markedly limited in the living dogs in contrast to the examined canine specimens. The relative size of the lateral ventricle was defined as the ratio of the size of the lateral ventricle and the size of the half brain. The relative size of the lateral ventricle of Yorkshire Terrier dogs (5,35 %) was significantly (p 0,05) in the relative size of the lateral ventricles of healthy Yorkshire Terrier dogs (5,35 %) and Yorkshire Terrier dogs with neurological symptoms (7,06 %). Asymmetric lateral ventricles were very common in the examined dogs independently from body size, skull shape and neurological status. Occasionally the septum telencephali was not developed completely. 11 of 12 intracranial neoplasm could be delineated using low-field-strength MRI. Anatomic site, number of intracerebral lesions, limitation, shape and growth pattern, secondary brain lesions and development of peritumoral edema were described for each intracranial neoplasm as well as its signal intensity on T1- and T2-weighted images and contrast enhancement pattern. MRI did not allow an accurate diagnosis of tumor type, nevertheless skull shape (brachycephalic/dolichocephalic), anatomic site and number of intracerebral lesions facilitated a presumable diagnosis of the tumor type. (author)

  8. Magnetic resonance spectroscopy and brain volumetry in mild cognitive impairment. A prospective study.

    Science.gov (United States)

    Fayed, Nicolás; Modrego, Pedro J; García-Martí, Gracián; Sanz-Requena, Roberto; Marti-Bonmatí, Luis

    2017-05-01

    To assess the accuracy of magnetic resonance spectroscopy (1H-MRS) and brain volumetry in mild cognitive impairment (MCI) to predict conversion to probable Alzheimer's disease (AD). Forty-eight patients fulfilling the criteria of amnestic MCI who underwent a conventional magnetic resonance imaging (MRI) followed by MRS, and T1-3D on 1.5 Tesla MR unit. At baseline the patients underwent neuropsychological examination. 1H-MRS of the brain was carried out by exploring the left medial occipital lobe and ventral posterior cingulated cortex (vPCC) using the LCModel software. A high resolution T1-3D sequence was acquired to carry out the volumetric measurement. A cortical and subcortical parcellation strategy was used to obtain the volumes of each area within the brain. The patients were followed up to detect conversion to probable AD. After a 3-year follow-up, 15 (31.2%) patients converted to AD. The myo-inositol in the occipital cortex and glutamate+glutamine (Glx) in the posterior cingulate cortex predicted conversion to probable AD at 46.1% sensitivity and 90.6% specificity. The positive predictive value was 66.7%, and the negative predictive value was 80.6%, with an overall cross-validated classification accuracy of 77.8%. The volume of the third ventricle, the total white matter and entorhinal cortex predict conversion to probable AD at 46.7% sensitivity and 90.9% specificity. The positive predictive value was 70%, and the negative predictive value was 78.9%, with an overall cross-validated classification accuracy of 77.1%. Combining volumetric measures in addition to the MRS measures the prediction to probable AD has a 38.5% sensitivity and 87.5% specificity, with a positive predictive value of 55.6%, a negative predictive value of 77.8% and an overall accuracy of 73.3%. Either MRS or brain volumetric measures are markers separately of cognitive decline and may serve as a noninvasive tool to monitor cognitive changes and progression to dementia in patients with

  9. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  10. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  11. Accelerated high-resolution 3D magnetic resonance spectroscopic imaging in the brain At 7 T

    International Nuclear Information System (INIS)

    Hangel, G.

    2015-01-01

    With the announcement of the first series of magnetic resonance (MR) scanners with a field strength of 7 Tesla (T) intended for clinical practice, the development of high-performance sequences for higher field strengths has gained importance. Magnetic resonance spectroscopic imaging (MRSI) in the brain currently offers the unique ability to spatially resolve the distribution of multiple metabolites simultaneously. Its big diagnostic potential could be applied to many clinical protocols, for example the assessment of tumour treatment or progress of Multiple Sclerosis. Moving to ultra-high fields like 7 T has the main benefits of increased signal-to-noise ratio (SNR) and improved spectral quality, but brings its own challenges due to stronger field inhomogeneities. Necessary for a robust, flexible and useful MRSI sequence in the brain are high resolutions, shortened measurement times, the possibility for 3D-MRSI and the suppression of spectral contamination by trans-cranial lipids. This thesis addresses these limitations and proposes Hadamard spectroscopic imaging (HSI) as solution for multi-slice MRSI, the application of generalized autocalibrating partially parallel acquisition (GRAPPA) and spiral trajectories for measurement acceleration, non-selective inversion recovery (IR) lipid-suppression as well as combinations of these methods. Further, the optimisation of water suppression for 7 T systems and the acquisition of ultra-high resolution (UHR)-MRSI are discussed. In order to demonstrate the clinical feasibility of these approaches, MRSI measurement results of a glioma patient are presented. The discussion of the obtained results in the context of the state-of-art in 7 T MRSI in the brain, possible future applications as well as potential further improvements of the MRSI sequences conclude this thesis. (author) [de

  12. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    International Nuclear Information System (INIS)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng; Yang, Fei-Xiang; Yang, Zhao-Yang; Wang, Zhan-Jing; Lei, Jian-Feng; Li, Xiao-Guang

    2017-01-01

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ( 1 H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1 H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  13. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Yang, Fei-Xiang; Yang, Zhao-Yang [Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China); Wang, Zhan-Jing; Lei, Jian-Feng [Capital Medical University, Medical Experiment and Test Center, Beijing (China); Li, Xiao-Guang [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China)

    2017-12-15

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ({sup 1}H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and {sup 1}H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  14. Brain 'Embolism' Detected by Magnetic Resonance Imaging During Percutaneous Mitral Balloon Commissurotomy

    International Nuclear Information System (INIS)

    Rocha, Paulo; Qanadli, Salah D.; Strumza, Pierre; Kacher, Safia; Aberkane, Linda; Aubry, Pierre; Rigaud, Michel; Lacombe, Pascal; Raffestin, Bernadette

    1999-01-01

    Purpose: The common finding of thrombi between the bifoil balloons when they were extracted after mitral dilation prompted us to look for evidence of minor brain embolisms using the sensitive technique of BMRI (brain magnetic resonance T2-weighted imaging). Methods: BMRI was performed within 48 hr before and after a percutaneous mitral balloon commissurotomy (PMBC) in each of the 63 patients in this study. Results: There was evidence (hyperintensity foci: HI) of a previous asymptomatic brain embolism in 38 of 63 patients before PMBC and a new HI appeared in 18 of 63 patients after the procedure. New HI signals were found exclusively in the white matter in 8 of 18 patients and in only 3 of 18 were HI signs larger than 1 cm. One patient, with an HI signal >1 cm in the thalamus and another 8; 4, patients from western countries vs the others) were not statistically significant, probably because the number of patients in each subgroup was low. Patients in atrial fibrillation had slightly more (not significant) HI before PMBC (15/20, 75%) than patients in sinus rhythm (23/43, 53%), but after PMBC their HI frequencies were similar (atrial fibrillation: 5/20, 25%; sinus rhythm: 13/43, 30%). Conclusion: Brain microembolism is frequent during PMBC, but is often anatomically limited and free from clinical signs in most cases. Brain embolism seems to be related mainly to the procedure itself and not the features of the patient

  15. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    International Nuclear Information System (INIS)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi

    1994-01-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author)

  16. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi (Kyoto Prefectural Univ. of Medicine (Japan))

    1994-11-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author).

  17. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  18. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    Science.gov (United States)

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  19. Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data.

    Science.gov (United States)

    Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna

    2018-01-01

    Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.

  20. Pattern of magnetic resonance imaging and magnetic resonance venography changes in cerebral venous sinus thrombosis

    International Nuclear Information System (INIS)

    Zafar, A.; Ali, Z.

    2012-01-01

    Background: Cerebral venous sinus thrombosis is a common but highly under-recognised condition, which is missed not only by general practitioners but also by neurologists. Computerised tomography (CT) or magnetic resonance imaging (MRI) of brain alone is not sufficient to diagnose this condition. Objective of this study was to explore the pattern of magnetic resonance imaging (MRI) and magnetic resonance venography (MRV) changes in cerebral venous sinus thrombosis (CVST). Methods: This was a descriptive study in which 52 cases of cerebral venous sinus thrombosis with special emphasis on their MRI and MRV findings were included. The study was conducted in Neurology Unit, Lady Reading Hospital, Peshawar, Pakistan, from January 2010 to July 2011. All patients suffering from cerebral venous sinus thrombosis were included in the study. Multi-planar/multi-sequential, Tesla 1.5 MRI/MRV time of flight images were done in all cases where there was suspicion of cerebral venous sinus thrombosis. Results: Out of 52 patients with cerebral venous sinus thrombosis 41 (78.84%) were female and 11 (21.15%) were male. Mean age was 37+-5 years. Definite risk factors were found in 38 (73.076%) patients with pregnancy, use of oral contraceptives or puerperium being the most frequently found risk factor in 20 (73.076%) patients. Most common complaint was headache found in 41 (78.84%) patients, followed by focal neurological deficits, and altered mental status and seizures. Papilloedema was seen in 20 (38.46%) patients. The cerebral venous sinuses most frequently involved were transverse and sigmoid sinuses in 17 patients (32.69%) while superior sagittal sinus alone in 10 (19.23%) patients. Overall CT brain was normal in 30% and MRI brain in 23.07% patients; however, MRV of these patients revealed CVST. Conclusion: Imaging plays a primary role in the diagnosis of cerebral venous sinus thrombosis because the clinical picture of CVST is non-specific and highly variable. Thrombosis of

  1. Successful deep brain stimulation surgery with intraoperative magnetic resonance imaging on a difficult neuroacanthocytosis case: case report.

    Science.gov (United States)

    Lim, Thien Thien; Fernandez, Hubert H; Cooper, Scott; Wilson, Kathryn Mary K; Machado, Andre G

    2013-07-01

    Chorea acanthocytosis is a progressive hereditary neurodegenerative disorder characterized by hyperkinetic movements, seizures, and acanthocytosis in the absence of any lipid abnormality. Medical treatment is typically limited and disappointing. We report on a 32-year-old patient with chorea acanthocytosis with a failed attempt at awake deep brain stimulation (DBS) surgery due to intraoperative seizures and postoperative intracranial hematoma. He then underwent a second DBS operation, but under general anesthesia and with intraoperative magnetic resonance imaging guidance. Marked improvement in his dystonia, chorea, and overall quality of life was noted 2 and 8 months postoperatively. DBS surgery of the bilateral globus pallidus pars interna may be useful in controlling the hyperkinetic movements in neuroacanthocytosis. Because of the high propensity for seizures in this disorder, DBS performed under general anesthesia, with intraoperative magnetic resonance imaging guidance, may allow successful implantation while maintaining accurate target localization.

  2. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    International Nuclear Information System (INIS)

    Parazzini, C.; Righini, A.; Triulzi, F.; Rustico, M.; Consonni, D.

    2008-01-01

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  3. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  4. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis

    International Nuclear Information System (INIS)

    Taylor, June S.; Langston, James W.; Reddick, Wilburn E.; Kingsley, Peter B.; Ogg, Robert J.; Pui, Margaret H.; Kun, Larry E.; Jenkins, Jesse J.; Gang, Chen; Ochs, Judith J.; Sanford, Robert A.; Heideman, Richard L.

    1996-01-01

    Purpose: Delayed cerebral necrosis (DN) is a significant risk for brain tumor patients treated with high-dose irradiation. Although differentiating DN from tumor progression is an important clinical question, the distinction cannot be made reliably by conventional imaging techniques. We undertook a pilot study to assess the ability of proton magnetic resonance spectroscopy ( 1 H MRS) to differentiate prospectively between DN or recurrent/residual tumor in a series of children treated for primary brain tumors with high-dose irradiation. Methods and Materials: Twelve children (ages 3-16 years), who had clinical and MR imaging (MRI) changes that suggested a diagnosis of either DN or progressive/recurrent brain tumor, underwent localized 1 H MRS prior to planned biopsy, resection, or other confirmatory histological procedure. Prospective 1 H MRS interpretations were based on comparison of spectral peak patterns and quantitative peak area values from normalized spectra: a marked depression of the intracellular metabolite peaks from choline, creatine, and N-acetyl compounds was hypothesized to indicate DN, and median-to-high choline with easily visible creatine metabolite peaks was labeled progressive/recurrent tumor. Subsequent histological studies identified the brain lesion as DN or recurrent/residual tumor. Results: The patient series included five cases of DN and seven recurrent/residual tumor cases, based on histology. The MRS criteria prospectively identified five out of seven patients with active tumor, and four out of five patients with histologically proven DN correctly. Discriminant analysis suggested that the primary diagnostic information for differentiating DN from tumor lay in the normalized MRS peak areas for choline and creatine compounds. Conclusions: Magnetic resonance spectroscopy shows promising sensitivity and selectivity for differentiating DN from recurrent/progressive brain tumor. A novel diagnostic index based on peak areas for choline and

  5. Subacute sclerosing panencephalitis with bilateral inferior collicular hyperintensity on magnetic resonance imaging brain

    Directory of Open Access Journals (Sweden)

    Maya Thomas

    2012-01-01

    Full Text Available Subacute sclerosing panencephalitis (SSPE is chronic encephalitis occurring after infection with measles virus. An 8-year-old boy presented with progressive behavioral changes, cognitive decline and myoclonic jerks, progressing to a bed bound state over 2 months. Magnetic resonance imaging (MRI brain showed T2-weighted hyperintensities in the subcortical areas of the left occipital lobe and brachium of the inferior colliculus on both sides. EEG showed bilateral, synchronous periodic discharges. Serum/cerebrospinal fluid measles IgG titer was significantly positive. The overall features were suggestive of SSPE. MRI finding of bilateral inferior colliculus changes on MRI without significant involvement of other commonly involved areas suggests an uncommon/rare imaging pattern of SSPE.

  6. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  7. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    Science.gov (United States)

    Rae, Caroline D; Williams, Stephen R

    2017-07-15

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Noninvasive brain metabolism measurement using carbon-13 magnetic resonance spectroscopy ({sup 13}C-MRS); Tanso 13 jiki kyomei spectroscopy ({sup 13}C-MRS) ni yoru mushinshuteki notaisha keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Tsukada, Y. [Toshiba Corp., Tokyo (Japan)

    1998-10-10

    Carbon-13 magnetic resonance spectroscopy ({sup 13}C-MRS) and research and development efforts for brain metabolism measurement are described. Brain metabolism is a process characterized in that it not only extracts energy by disintegrating grape sugar that is the practically sole source of energy into H2O, CO2, etc., but also vigorously synthesizes amino acids that perform important functions in neural transmission, such as glutamic acid, glutamine, and {gamma}-amino acid. MRS is a technique that utilizes the magnetic resonance, which is generated when an atomic nucleus with a spin is placed in a magnetic field, for the isolation and identification of chemicals in a living body through examining the delicate difference in the magnetic resonance frequencies of the nuclei under observation. Since the signals from {sup 13}C are low in intensity as compared with those from other nuclides, a method was contrived around 1980, which observes {sup 1}H combined with {sup 13}C in grape sugar and amino acids, named the HSQC (heteronuclear single quantum coherence) method. The author et al., combining gradient magnetic pulses with HSQC, actually measure Homo sapiens brain metabolism using {sup 13}C-MRS, and now believe that the technology will be put to practical application. 7 refs., 10 figs., 1 tab.

  9. A preliminary report on the use of functional magnetic resonance imaging with simultaneous urodynamics to record brain activity during micturition.

    Science.gov (United States)

    Krhut, Jan; Tintera, Jaroslav; Holý, Petr; Zachoval, Roman; Zvara, Peter

    2012-08-01

    We mapped brain activity during micturition using functional magnetic resonance imaging with simultaneous recording of urodynamic properties during slow bladder filling and micturition. We evaluated 12 healthy female volunteers 20 to 68 years old. Eight subjects could urinate while supine. Meaningful data were obtained on 6 of these subjects. Brain activity was recorded continuously during bladder filling and micturition. Functional magnetic resonance imaging measurements made during the micturition phase were used for the final analysis. Using group statistics we identified clusters of brain activity in the parahippocampal gyrus, anterior cingulate gyrus, inferior temporal gyrus and inferior frontal gyrus during micturition. At the individual level we also observed activation in the upper pontine region, thalamus and posterior cingulum. In subjects unable to void brain activation was documented in the frontal lobe and posterior cingulate gyrus but not in the pons, thalamus or anterior cingulate gyrus. In 5 subjects we identified a relevant pattern of brain activity during the terminal portion of the filling phase when the patient reported a strong desire to urinate. This new protocol allows for the localization of brain structures that are active during micturition. Data suggest that additional validation studies are needed. Future studies will test modifications that include more detailed monitoring of bladder sensation, stratifying subjects based on age and gender, and increasing the number of data points by adding subjects and the number of micturitions recorded in a single subject. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  11. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  12. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  13. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    International Nuclear Information System (INIS)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T.

    2006-01-01

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord

  14. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T. [Radiologian Klinikka, Oulu (Finland)

    2006-11-15

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord.

  15. The study of human organs by phosphorus-31 topical magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Oberhaensli, R.D.; Galloway, G.J.; Hilton-Jones, David; Bore, P.J.; Styles, Peter; Rajagopalan, Bheeshma; Taylor, D.J.; Radda, G.K.

    1987-01-01

    The potential clinical use of topical magnetic resonance spectroscopy (volume selection by static magnetic field gradients) was tested in 50 studies in volunteers. Topical magnetic resonance spectroscopy (MRS) was shown to be a straightforward method for localising 31 P spectra of brain and liver. However, the spherical shape and fixed position of the selected volume posed serious limitations to the study of heart and transplanted kidney by topical MRS. Phosphorus-31 spectra of approx. 30 cm -3 of brain or liver could be obtained in 8 min. Ratios of metabolite concentrations could be determined with a coefficient of variation ranging from 10% to 30%. The ratios of phosphocreatine/ATP and inorganic phosphate/ATP in brain were 1.8 and 0.3, respectively. The ratio of inorganic phosphate/ATP in liver was 0.9. Intracellular pH was 7.03 in brain and 7.24 in liver. The T 1 relaxation times of phosphocreatine, inorganic phosphate and γ-ATP in brain were 4.8 s, 2.5 s and 1.0 s, respectively. (author)

  16. Sensorineural hearing loss after magnetic resonance imaging

    DEFF Research Database (Denmark)

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus)......). In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient's hearing loss was accompanied with tinnitus and was not improved after 3 months of followup.......Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus...

  17. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  18. Study of intracranial pressure in human brain during transcranial magnetic stimulation.

    Science.gov (United States)

    Honrath, Marc; Sabouni, Abas

    2015-01-01

    This paper presents the results of cranial force in human brain due to electromagnetic pulse during transcranial magnetic stimulation. To model the force in a realistic brain, we used three dimensional magnetic resonance image of the 26 years old female subject. Simulation results show that during TMS procedure, there is a small force generated within the cranial tissue layers along with a torque value in different layers of brain tissues. The force depends on the magnitude of the magnetic field generated by the TMS coil.

  19. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study

    OpenAIRE

    Raider, Kayla; Ma, Delin; Harris, Janna L.; Fuentes, Isabella; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M.; Stanford, John A.

    2016-01-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy (1H-MRS) to measure neurochemicals in ...

  20. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty......-two of these patients also underwent measurement of the transverse relaxation time (T2). Only one plaque was evaluated in each patient. Based on prior knowledge, 12 plaques were classified as being 3 mo or less in age, and 7 plaques were classified as being more than 3 mo old. In all 25 plaques, water self......-diffusion was found to be higher than in apparently normal white matter. Furthermore, water self-diffusion was found to be higher in acute plaques compared with chronic plaques. Finally, a slight tendency toward a relationship between the diffusion capability and T2 was found. We believe that an increased diffusion...

  1. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Directory of Open Access Journals (Sweden)

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  2. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  3. Clinical application of magnetic resonance in acute traumatic brain injury

    International Nuclear Information System (INIS)

    Morais, Dionei F.; Gaia, Felipe F.P.; Spotti, Antonio R.; Tognola, Waldir A.; Andrade, Almir F.

    2008-01-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  4. Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.

    Science.gov (United States)

    Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza

    2017-04-01

    Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki

    1991-01-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author)

  6. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1991-11-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).

  7. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    International Nuclear Information System (INIS)

    Diniz, P.R.B.; Brum, D.G.; Santos, A. C.; Murta-Junior, L.O.; Araujo, D.B. de

    2010-01-01

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  8. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  9. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  10. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  11. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  12. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C

    1988-01-01

    31P nuclear magnetic resonance (NMR) spectroscopy allows noninvasive studies of cerebral energy-rich phosphorous compounds in humans. In an attempt to characterize the relationship between peripheral blood glucose concentrations and whole-brain phosphate metabolism during insulin......-induced hypoglycemia, 31P NMR spectra were obtained before and after intravenous injection of insulin (0.15 IU/kg body wt) in six men. Compared with prehypoglycemic measurements, no significant changes were found in brain content of Pi, sugar phosphates, phosphocreatine, phosphodiesters, and ATP, and brain pH remained...... constant during the experiment. These results show that the integrated brain profile of energy-rich phosphorous compounds is unaffected by experimental insulin-induced hypoglycemia in humans....

  13. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  14. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    International Nuclear Information System (INIS)

    Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.

    2012-01-01

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.

  15. Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Howland D. T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayer, Andrew R. [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Caprihan, Arvind [Mind Research Network, Albuquerque, NM (United States); Gasparovic, Charles [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Blagoev, Krastan B. [Mind Research Network, Albuquerque, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haaland, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.

  16. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  17. Classification of brain tumors by means of proton nuclear magnetic resonance (NMR) spectroscopy

    International Nuclear Information System (INIS)

    Sottile, V.S.; Zanchi, D.E.

    2017-01-01

    In the present work, at the request of health professionals, a computer application named “ViDa” was developed. The aim of this study is to differentiate brain lesions according to whether or not they are tumors, and their subsequent classification into different tumor types using magnetic resonance spectroscopy (SVS) with an echo time of 30 milliseconds. For this development, different areas of knowledge were integrated, among which are Artificial intelligence, physics, programming, physiopathology, images in medicine, among others. Biomedical imaging can be divided into two stages: the pre-processing, performed by the resonator, and post-processing software, performed by ViDa, for the interpretation of the data. This application is included within the Medical Informatics area, as it provides assistance for clinical decision making. The role of the biomedical engineer is fulfilled by developing a health technology in response to a manifested real-life problem. The tool developed shows promising results achieving a 100% Sensitivity, 73% Specificity, 77% Positive Predictive Value and 100% Negative Predictive Value reported in 21 cases tested. The correct classifications of the tumor’s origin reach 70%, the classification of non-astrocytic lesions achieves 67% of correct classifications in that the gradation of astrocytomas achieves a 57% of gradations that agree with biopsies and 43% of slight errors. It was possible to develop an application of assistance to the diagnosis, which together with others medical tests, will make it possible to sharpen the diagnoses of brain tumors. (authors) [es

  18. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  19. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  20. Using R2* values to evaluate brain tumours on magnetic resonance imaging: Preliminary results

    International Nuclear Information System (INIS)

    Liu, Zhenghua; Liao, Haibo; Yin, Jianhua; Li, Yanfang

    2014-01-01

    To determine the usefulness of the R2* value in assessing the histopathological grade of glioma at magnetic resonance imaging and differentiating various brain tumours. Sixty-four patients with brain tumours underwent R2* mapping and diffusion-weighted imaging examinations. ANOVA was performed to analyse R2* values among four groups of glioma and among high-grade gliomas (grades III and IV), low-grade gliomas (grades I and II), meningiomas, and brain metastasis. Spearman's correlation coefficients were used to determine the relationships between the R2* values or apparent diffusion coefficient (ADC) and the histopathological grade of gliomas. R2* values of low- and high-grade gliomas were analysed with the receiver-operator characteristic curve. R2* values were significantly different among high-grade gliomas, low-grade gliomas, meningiomas, and brain metastasis, but not between grade I and grade II or between grade III and grade IV. The R2* value (18.73) of high-grade gliomas provided a very high sensitivity and specificity for differentiating low-grade gliomas. A strong correlation existed between the R2* value and the pathological grade of gliomas. R2* mapping is a useful sequence for determining grade of gliomas and in distinguishing benign from malignant tumours. R2* values are better than ADC for characterising gliomas. (orig.)

  1. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...... subjects. We estimated the concentrations of the metabolites using the water signal as an internal standard. The concentrations of Cho and Cr/PCr in both brain regions, as well as the concentration of NAA in the cerebellum, were unaltered in the MND patients compared with the controls. Only MND patients...... with both upper and lower motor neuron signs had a significantly decreased concentration of NAA (9.13 +/- 0.28 mM, mean +/- SEM) in the primary motor cortex when compared with healthy controls (10.03 +/- 0.22 mM). In conclusion, the slightly decreased concentration of NAA in the primary motor cortex from...

  2. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  3. Cranial magnetic resonance imaging

    International Nuclear Information System (INIS)

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes

  4. Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawaguchi

    Full Text Available BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group. Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia.

  5. Grid Computing Application for Brain Magnetic Resonance Image Processing

    International Nuclear Information System (INIS)

    Valdivia, F; Crépeault, B; Duchesne, S

    2012-01-01

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  6. A tumefactive multiple sclerosis lesion in the brain: An uncommon site with atypical magnetic resonance image findings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Kim, Hyun Sook; Kim, Jae Hoon; Kim, Eun Kyung; Choi, Yun Sun [Eulji Hospital, Eulji University, Seoul (Korea, Republic of)

    2013-11-15

    Tumefactive multiple sclerosis (MS) is a rare type of demyelinating disease. Typical magnetic resonance (MR) image findings show incomplete ring enhancement with a mild mass effect. This lesion is otherwise indistinguishable from other mass-like lesions in the brain. Knowledge of the MR imaging findings for tumefactive MS is thus helpful for correct diagnosis and appropriate therapy. In this report we describe the MR image findings for pathology-confirmed tumefactive MS in an uncommon location, alongside a discussion of its aggressive features.

  7. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  8. Proton magnetic resonance spectroscopy in schizophrenia

    International Nuclear Information System (INIS)

    Bertolino, Alessandro; Weinberger, Daniel R.

    1999-01-01

    Proton magnetic resonance spectroscopy (MRS) has become an important tool to study in vivo certain biochemical aspects of brain disorders. In the last decade this technique has been applied to the in vivo investigation of pathophysiological aspects of psychiatric disorders, extending knowledge of the related brain alterations. This review will focus on providing some background to clarify technical and biochemical issues and it will describe the studies that have been performed in schizophrenia. The results will be framed in a more general context to highlight what we have learned and what remains to be understood from the application of this technique to schizophrenia

  9. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    Science.gov (United States)

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).

  10. Corpus callosum dysgenesis and lipoma: embryologic and magnetic resonance imaging aspects

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Borri, Maria Lucia; Wolosker, Angela Maria Borri; Hartmann, Luiz Guilherme de Carvalho; Galvao Filho, Mario de Melo; D'Ippolito, Giuseppe

    2005-01-01

    The corpus callosum is the major system of association fibers that permits communication of both cerebral hemispheres. Magnetic resonance imaging has improved the study of brain malformations, including the corpus callosum dysgenesis. Lipoma is a common finding in the spectrum of corpus callosum dysgenesis. The purpose of these study was to review the embryologic events and the magnetic resonance imaging aspects related to the corpus callosum dysgenesis and to the formation of the related lipoma. (author)

  11. Aortic valve bypass surgery in severe aortic valve stenosis: Insights from cardiac and brain magnetic resonance imaging.

    Science.gov (United States)

    Mantini, Cesare; Caulo, Massimo; Marinelli, Daniele; Chiacchiaretta, Piero; Tartaro, Armando; Cotroneo, Antonio Raffaele; Di Giammarco, Gabriele

    2018-04-13

    To investigate and describe the distribution of aortic and cerebral blood flow (CBF) in patients with severe valvular aortic stenosis (AS) before and after aortic valve bypass (AVB) surgery. We enrolled 10 consecutive patients who underwent AVB surgery for severe AS. Cardiovascular magnetic resonance imaging (CMR) and brain magnetic resonance imaging were performed as baseline before surgery and twice after surgery. Quantitative flow measurements were obtained using 1.5-T magnetic resonance imaging (MRI) scanner phase-contrast images of the ascending aorta, descending thoracic aorta (3 cm proximally and distally from the conduit-to-aorta anastomosis), and ventricular outflow portion of the conduit. The evaluation of CBF was performed using 3.0-T MRI scanner arterial spin labeling (ASL) through sequences acquired at the gray matter, dorsal default-mode network, and sensorimotor levels. Conduit flow, expressed as the percentage of total antegrade flow through the conduit, was 63.5 ± 8% and 67.8 ± 7% on early and mid-term postoperative CMR, respectively (P surgery in patients with severe AS, cardiac output is split between the native left ventricular outflow tract and the apico-aortic bypass, with two-thirds of the total antegrade flow passing through the latter and one-third passing through the former. In our experience, CBF assessment confirms that the flow redistribution does not jeopardize cerebral blood supply. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  12. An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa.

    Directory of Open Access Journals (Sweden)

    Matthew S Conrad

    Full Text Available Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.

  13. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  14. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  15. Magnetic resonance imaging of brain involvement in aids

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Pharaboz, C.; Jeanbourquin, D.; Le Gall, R.; Derosier, C.; Cosnard, G.

    1991-01-01

    Magnetic resonance imaging is the most sensitive and the most specific technique for the study of the neurological complications of AIDS. The analysis of the images must be aimed at recognizing the specific lesions produced by the human immunodeficiency virus (HIV), in order to identify the opportunistic lesions, which are often multiple. For each major opportunistic disease, a number of arguments likely to guide the treatment can be pointed out [fr

  16. Magnetic resonance imaging of the brain in phenylketonuria

    International Nuclear Information System (INIS)

    Izumi, Mina; Yamazaki, Hirotaka; Nakabayashi, Hiroki; Owada, Misao

    2006-01-01

    To investigate the correlation between the abnormalities of magnetic resonance imaging (MRI) of the brain and blood phenylalanine (Phe) levels in phenylketonuria (PKU) and hyperphenylalaninemia (HPA), we reviewed MRIs from 16 patients with early treated PKU and HPA. Their ages ranged from 4-24 years and were found by mass screening and treated from early infancy, and 5 patients with late detected PKU who were aged 24-33 years. The former patients had no remarkable neurological signs or symptoms. One patient of the latter had severe mental retardation and 3 patients had mild to border mental retardation. Axial T 1 -weighted and T 2 -weighted spin echo sequences, fluid attenuated inversion recovery MR sequences (FLAIR) through the brain were performed. The scans were graded according to the extent of increased signal intensity of white matter on T 2 -weighted and FLAIR sequences. To investigate the influence of plasma Phe levels, three approaches were used. Firstly an average of all yearly serial blood Phe concentration was calculated for each patient, then Phe was determined for a period of 6 months and 12 months prior to MRI, and also for their lifetime up to their age at the time this study began. These average blood Phe levels were classified into four categories: group A: Phe level below 5 mg/dl, group B: 5-8 mg/dl, group C: 9-12 mg/dl, group D: above 12 mg/dl. MRI findings were not significant in group A. Remarkable high signals of white matter were obtained in group C and D, except for one patient in group D whose MRI finding was normal. MRI findings correlated to long-term dietary control stronger than those of 6 months prior to MRI. The clinical significance of MRI abnormalities is still unclear, and further study is required to clarify the relationship of the MRI findings and clinical conditions. (author)

  17. Diffusion magnetic resonance imaging of breast lesions: Initial ...

    African Journals Online (AJOL)

    Hebatallah Hassan Mamdouh Hassan

    2013-03-31

    Mar 31, 2013 ... breast cancer.2 Additional lesions seen by MRI that are not visible on ... characterization of lesions as benign or malignant on the basis ... lular density associated with numerous intact cell ..... ence for ADC values between the two MRI devices, the lesions .... Magnetic resonance imaging of brain and spine.

  18. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  19. Brain temperature measured by 1H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Murakami, Toshiyuki; Ogawa, Akira; Ogasawara, Kuniaki; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Beppu, Takaaki

    2016-01-01

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using 1 H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  20. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Hashida, Masahiro; Yamauchi, Syuichi; Wu, Jing-Long

    2001-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  1. Magnetic resonance imaging of the brain in patients with migraine

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.; Sakai, F.; Kan, S.; Okada, J.; Tazaki, Y. (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine)

    1991-05-01

    Magnetic resonance imaging (MRI) was studied in 91 patients with migraine and in 98 controls. Risk factors known to cause MRI lesions were carefully examined. In 36 patients with migraine (39.6%), small foci of high intensity on T{sub 2}-weighted and proton-density-weighted images were seen in the white matter. Of patients with migraine who were less than 40 years old and without any risk factor, 29.4% showed lesions on MRI; this was singificantly higher than the 11.2% for the group of age-matched controls (n=98). The lesions were distributed predominantly in the centrum semiovale and frontal white matter in young patients, but extended to the deeper white matter at the level of basal ganglia in the older age group. The side of the MRI lesions did not always correspond to the side of usual aura or headache. Migraine-related variables such as type of migraine, frequency, duration or intensity of headache or consumption of ergotamine showed no significant correlation with the incidence om MRI abnormalities. The data indicated that migraine may be associated with early pathologic changes in the brain. 26 refs., 4 figs., 3 tabs.

  2. Magnetic resonance imaging of the brain in patients with migraine

    International Nuclear Information System (INIS)

    Igarashi, H.; Sakai, F.; Kan, S.; Okada, J.; Tazaki, Y.

    1991-01-01

    Magnetic resonance imaging (MRI) was studied in 91 patients with migraine and in 98 controls. Risk factors known to cause MRI lesions were carefully examined. In 36 patients with migraine (39.6%), small foci of high intensity on T 2 -weighted and proton-density-weighted images were seen in the white matter. Of patients with migraine who were less than 40 years old and without any risk factor, 29.4% showed lesions on MRI; this was singificantly higher than the 11.2% for the group of age-matched controls (n=98). The lesions were distributed predominantly in the centrum semiovale and frontal white matter in young patients, but extended to the deeper white matter at the level of basal ganglia in the older age group. The side of the MRI lesions did not always correspond to the side of usual aura or headache. Migraine-related variables such as type of migraine, frequency, duration or intensity of headache or consumption of ergotamine showed no significant correlation with the incidence om MRI abnormalities. The data indicated that migraine may be associated with early pathologic changes in the brain. 26 refs., 4 figs., 3 tabs

  3. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  4. Canine histiocytic sarcoma presenting as a target lesion on brain magnetic resonance imaging and as a solitary pulmonary mass.

    Science.gov (United States)

    Hicks, Jill; Barber, Renee; Childs, Bronwen; Kirejczyk, Shannon Gm; Uhl, Elizabeth W

    2017-04-17

    A 6-year-old spayed female miniature schnauzer presented with generalized seizures and progressive multifocal intracranial neurologic disease. Thoracic radiographs and computed tomography (CT) revealed a large solitary pulmonary mass within the right cranial lung lobe. On brain magnetic resonance imaging (MRI), a solitary intraparenchymal mass within the left piriform lobe had a "target" appearance on both pre- and postcontrast sequences. Cerebrospinal fluid was unremarkable and histopathology indicated both masses represented histiocytic sarcoma. This case represents an uncommonly reported MRI appearance of histiocytic sarcoma in the canine brain and a large, solitary-appearing pulmonary histiocytic sarcoma in the same dog. © 2017 American College of Veterinary Radiology.

  5. Proton magnetic resonance spectroscopic imaging in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Schuff, Norbert; Vermathen, Peter; Maudsley, Andrew A.; Weiner, Michael W.

    1999-01-01

    Proton magnetic resonance spectroscopic imaging ( 1 H MRSI) was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1 H MRSI of the human brain, without volume pre selection offers considerable advantage over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectral curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtain full volumetric brain coverage and data acquisition at short spin-echo times (TE<30 ms) for the detection of metabolites. (author)

  6. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    International Nuclear Information System (INIS)

    Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens

    2017-01-01

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  7. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  8. Role of proton magnetic resonance spectroscopy in diagnosis of ...

    African Journals Online (AJOL)

    Background: Pilocytic astrocytomas are the second overall most common pediatric brain tumor. Magnetic resonance (MR) imaging is widely used in the diagnosis and follow up of pediatric patients with pilocytic astrocytomas because of its ability to provide anatomical detail. However conventional MR imaging does not ...

  9. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  10. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  11. Evaluation of biexponential relaxation behaviour in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1989-01-01

    Quantitative estimation of individual biologic components in relaxation curves obtained in vivo may increase the specificity of tissue characterization by magnetic resonance imaging. In this study, the potential of biexponential curve analysis was evaluated in T1 and T2 measurements on the human...... brain at 1.5 tesla. Optimal experimental conditions were carefully observed, including the use of long TR values and a very small voxel size. T1 determination was based on a 12-points partial saturation inversion recovery pulse sequence. T2 determination involved a multiple spin echo sequence with 32...... echoes. No genuine biexponentiality was demonstrated in the T1 and T2 relaxation processes of white matter, cortical grey matter, or cerebrospinal fluid. Thus, a monoexponential model seems adequate for description of the relaxation behaviour in these cases. Furthermore, the results suggest...

  12. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  13. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  14. Encephalic magnetic resonance imaging in spinal clinical forms of multiple sclerosis

    International Nuclear Information System (INIS)

    Lubetzki, C.; Lyon-Caen, O.; Lhermitte, F.; Iba-Zizen, M.T.

    1988-01-01

    The diagnosis of multiple sclerosis (MS) in patients presenting with signs and symptoms of pure spinal cord involvement is always difficult. Previous studies have shown the usefulness of encephalic magnetic resonance imaging (MRI) of the brain in those cases. The aim was to evaluate the diagnosis value of brain MRI in medullar forms of MS. 3 refs

  15. An evaluation of magnetic resonance imaging at the Royal North Shore Hospital of Sydney, 1986-1987

    International Nuclear Information System (INIS)

    Sorby, W.A.

    1989-01-01

    The diagnostic accuracy and clinical utility have been evaluated of 2810 consecutive magnetic-resonance-imaging examinations that were performed on a 1.5-T Signa magnetic-resonance-imaging unit at The Royal North Shore Hospital of Sydney between November 1986 and December 1987. The average accuracy of magnetic resonance imaging was 80%, and ranged from 21%-98% in various brain-disease and spinal-disease categories, compared with the average provisional premagnetic-resonance-imaging diagnostic accuracy of 64%, and an average accuracy of computed tomography of 45%. Clinical follow-up at three months after magnetic-resonance-imaging investigation indicated that, as a result of the magnetic-resonance-imaging examination, patient management was altered in 70% of cases, and patient outcome was altered in 62% of cases. 32 refs., 4 tabs

  16. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  17. A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution

    International Nuclear Information System (INIS)

    McCrea, Richard P.E.; Harder, Sheri L.; Martin, Melanie; Buist, Richard; Nichol, Helen

    2008-01-01

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences

  18. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Science.gov (United States)

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H; Valcour, Victor

    2012-01-01

    Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  20. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  1. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  2. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  3. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  4. Brain Activity in Patients With Adductor Spasmodic Dysphonia Detected by Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Kiyuna, Asanori; Kise, Norimoto; Hiratsuka, Munehisa; Kondo, Shunsuke; Uehara, Takayuki; Maeda, Hiroyuki; Ganaha, Akira; Suzuki, Mikio

    2017-05-01

    Spasmodic dysphonia (SD) is considered a focal dystonia. However, the detailed pathophysiology of SD remains unclear, despite the detection of abnormal activity in several brain regions. The aim of this study was to clarify the pathophysiological background of SD. This is a case-control study. Both task-related brain activity measured by functional magnetic resonance imaging by reading the five-digit numbers and resting-state functional connectivity (FC) measured by 150 T2-weighted echo planar images acquired without any task were investigated in 12 patients with adductor SD and in 16 healthy controls. The patients with SD showed significantly higher task-related brain activation in the left middle temporal gyrus, left thalamus, bilateral primary motor area, bilateral premotor area, bilateral cerebellum, bilateral somatosensory area, right insula, and right putamen compared with the controls. Region of interest voxel FC analysis revealed many FC changes within the cerebellum-basal ganglia-thalamus-cortex loop in the patients with SD. Of the significant connectivity changes between the patients with SD and the controls, the FC between the left thalamus and the left caudate nucleus was significantly correlated with clinical parameters in SD. The higher task-related brain activity in the insula and cerebellum was consistent with previous neuroimaging studies, suggesting that these areas are one of the unique characteristics of phonation-induced brain activity in SD. Based on FC analysis and their significant correlations with clinical parameters, the basal ganglia network plays an important role in the pathogenesis of SD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Association Between Brain Gene Expression, DNA Methylation, and Alteration of Ex Vivo Magnetic Resonance Imaging Transverse Relaxation in Late-Life Cognitive Decline.

    Science.gov (United States)

    Yu, Lei; Dawe, Robert J; Boyle, Patricia A; Gaiteri, Chris; Yang, Jingyun; Buchman, Aron S; Schneider, Julie A; Arfanakis, Konstantinos; De Jager, Philip L; Bennett, David A

    2017-12-01

    Alteration of ex vivo magnetic resonance imaging transverse relaxation is associated with late-life cognitive decline even after controlling for common neuropathologic conditions. However, the underlying neurobiology of this association is unknown. To investigate the association between brain gene expression, DNA methylation, and alteration of magnetic resonance imaging transverse relaxation in late-life cognitive decline. Data came from 2 community-based longitudinal cohort studies of aging and dementia, the Religious Orders Study, which began in 1993, and the Rush Memory and Aging Project, which began in 1997. All participants agreed to undergo annual clinical evaluations and to donate their brains after death. By October 24, 2016, a total of 1358 individuals had died and had brain autopsies that were approved by board-certified neuropathologists. Of those, 552 had undergone ex vivo imaging. The gene expression analysis was limited to 174 individuals with both imaging and brain RNA sequencing data. The DNA methylation analysis was limited to 225 individuals with both imaging and brain methylation data. Maps of ex vivo magnetic resonance imaging transverse relaxation were generated using fast spin echo imaging. The target was a composite measure of the transverse relaxation rate (R2) that was associated with cognitive decline after controlling for common neuropathologic conditions. Next-generation RNA sequencing and DNA methylation data were generated using frozen tissue from the dorsolateral prefrontal cortex. Genome-wide association analysis was used to investigate gene expression and, separately, DNA methylation for signals associated with the R2 measure. Of the 552 individuals with ex vivo imaging data, 394 were women and 158 were men, and the mean (SD) age at death was 90.4 (6.0) years. Four co-expressed genes (PADI2 [Ensembl ENSG00000117115], ZNF385A [Ensembl ENSG00000161642], PSD2 [Ensembl ENSG00000146005], and A2ML1 [Ensembl ENSG00000166535]) were

  6. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  8. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  9. Brain temperature measured by {sup 1}H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Murakami, Toshiyuki; Ogawa, Akira; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka (Japan); Matsuda, Tsuyoshi [MR Applications and Workflow Asia Pacific, GE Healthcare Japan, Tokyo (Japan); Beppu, Takaaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Iwate Medical University, Department of Hyperbaric Medicine, Iwate (Japan)

    2016-01-15

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using {sup 1}H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  10. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  11. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  12. Big cat scan: magnetic resonance imaging of the tiger

    International Nuclear Information System (INIS)

    Snow, Thomas M.; Gregory, Richard J.W.; Litster, Annette L.; Hanger, Jonathan J.

    2004-01-01

    In August 2002, we performed MRI scans on a female juvenile Bengal tiger. We present the clinical course, imaging and autopsy findings, and some comparative anatomy of the tiger brain and skull. Magnetic resonance images of a tiger have not previously been published Copyright (2004) Blackwell Publishing Asia Pty Ltd

  13. The role of Magnetic Resonance Imaging and Visual Evoked ...

    African Journals Online (AJOL)

    Introduction: To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated. Methods: This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years ...

  14. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  15. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  16. Magnetic resonance imaging in neuroradiology

    International Nuclear Information System (INIS)

    Voigt, K.; Lotx, J.W.

    1990-01-01

    Magnetic resonance imaging (MRI) is now accepted as an effective method of investigating a wide range of disorders, especially of the brain and spine. A short introduction on image contrast in MRI is given and the advantages and disadvantages for the different diseases of the brain is discussed. Excellent soft-tissue contrast, multiplanar imaging capabilities and lack of ionising radiation are conspicuous advantages, and it is now established as the investigation of choice in a large number of clinical conditions, especially when the central nervous system is involved. However, it remains only one of a series of imaging modalities. A confident provisional clinical diagnosis is essential for establishing an imaging protocol and the intention should always be to reach a definitive diagnosis in the least invasive and most cost-effective way. 7 figs., 19 refs

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  18. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study*.

    Science.gov (United States)

    Gunther, Max L; Morandi, Alessandro; Krauskopf, Erin; Pandharipande, Pratik; Girard, Timothy D; Jackson, James C; Thompson, Jennifer; Shintani, Ayumi K; Geevarghese, Sunil; Miller, Russell R; Canonico, Angelo; Merkle, Kristen; Cannistraci, Christopher J; Rogers, Baxter P; Gatenby, J Chris; Heckers, Stephan; Gore, John C; Hopkins, Ramona O; Ely, E Wesley

    2012-07-01

    Delirium duration is predictive of long-term cognitive impairment in intensive care unit survivors. Hypothesizing that a neuroanatomical basis may exist for the relationship between delirium and long-term cognitive impairment, we conducted this exploratory investigation of the associations between delirium duration, brain volumes, and long-term cognitive impairment. A prospective cohort of medical and surgical intensive care unit survivors with respiratory failure or shock. Quantitative high resolution 3-Tesla brain magnetic resonance imaging was used to calculate brain volumes at discharge and 3-month follow-up. Delirium was evaluated using the confusion assessment method for the intensive care unit; cognitive outcomes were tested at 3- and 12-month follow-up. Linear regression was used to examine associations between delirium duration and brain volumes, and between brain volumes and cognitive outcomes. A total of 47 patients completed the magnetic resonance imaging protocol. Patients with longer duration of delirium displayed greater brain atrophy as measured by a larger ventricle-to-brain ratio at hospital discharge (0.76, 95% confidence intervals [0.10, 1.41]; p = .03) and at 3-month follow-up (0.62 [0.02, 1.21], p = .05). Longer duration of delirium was associated with smaller superior frontal lobe (-2.11 cm(3) [-3.89, -0.32]; p = .03) and hippocampal volumes at discharge (-0.58 cm(3) [-0.85, -0.31], p Battery for the Assessment of Neuropsychological Status score -11.17 [-21.12, -1.22], p = .04). Smaller superior frontal lobes, thalamus, and cerebellar volumes at 3 months were associated with worse executive functioning and visual attention at 12 months. These preliminary data show that longer duration of delirium is associated with smaller brain volumes up to 3 months after discharge, and that smaller brain volumes are associated with long-term cognitive impairment up to 12 months. We cannot, however, rule out that smaller preexisting brain volumes explain

  19. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  20. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    Science.gov (United States)

    Gao, Jie; Sun, Qin-Li; Zhang, Yu-Miao; Li, Yan-Yan; Li, Huan; Hou, Xin; Yu, Bo-Lang; Zhou, Xi-Hui; Yang, Jian

    2015-01-01

    Background: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). Methods: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. Results: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. Conclusions: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes

  1. Magnetic resonance techniques for investigation of multiple sclerosis

    Science.gov (United States)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  2. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de

  3. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  4. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  5. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  6. IMAGING DIAGNOSIS-MAGNETIC RESONANCE IMAGING OF A NEURONAL HETEROTOPIA IN THE BRAIN OF A CAT.

    Science.gov (United States)

    DeJesus, Antonia; Turek, Bradley J; Galban, Evelyn; Suran, Jantra Ngosuwan

    2018-03-01

    A domestic shorthair kitten was presented for evaluation and further treatment of seizures. Magnetic resonance imaging of the brain revealed a large multilobulated mass in the third ventricle extending into the right lateral ventricle with secondary obstructive hydrocephalus. The mass was homogeneously isointense to gray matter on T2W, T2-FLAIR, T2 * W, T1W, and ADC images, and hyperintense on DW-EPI. There was no appreciable contrast enhancement. Seizures were managed medically and with subsequent ventriculoperitoneal shunt placement. Clinical status later deteriorated and the cat was euthanized. Histopathology confirmed that the mass was the result of neuronal heterotopia. To the authors' knowledge this is the first report of neuronal heterotopia in a cat. © 2016 American College of Veterinary Radiology.

  7. The effect of magnetic resonance imaging in a teaching hospital on patient management

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, D M; Crowe, B L [Australian Inst. of Health, Canberra, ACT (Australia). Health Technology Div.; Burgess, I A [Royal North Shore Hospital, Crows Nest, NSW (Australia); Khangure, M S; Morris, I [Sir Charles Gairdner Hospital, Perth, WA (Australia). Dept. of Diagnostic Radiology

    1993-05-01

    An observational study was undertaken to obtain measures of the impact of magnetic resonance imaging (MRI) on diagnosis, patient management and patient outcome. A minimum data set at the time of examination was used for 1119 consecutive patients referred by specialists for MRI of the brain or spine. Three months follow up of 707 brain examinations and 235 spinal examinations were undertaken using a questionnaire on diagnosis and patient management. Magnetic resonance imaging made a dominant contribution to final diagnoses of neoplasia and vascular disorders, but was less significant for white matter disease. In a high proportion of cases other types of examination also influenced the final diagnosis. It was concluded that magnetic resonance imaging affected patient management in a high proportion of spinal examinations and in cases of cerebral neoplasm, with lesser contributions to cases of cerebrovascular disorder and white matter disease. While MRI was considered superior to other imaging methods, which it could often replace, in practice it will form only one input to the diagnostic decision. 7 refs., 3 tabs.

  8. The effect of magnetic resonance imaging in a teaching hospital on patient management

    International Nuclear Information System (INIS)

    Hailey, D.M.; Crowe, B.L.; Khangure, M.S.; Morris, I.

    1993-01-01

    An observational study was undertaken to obtain measures of the impact of magnetic resonance imaging (MRI) on diagnosis, patient management and patient outcome. A minimum data set at the time of examination was used for 1119 consecutive patients referred by specialists for MRI of the brain or spine. Three months follow up of 707 brain examinations and 235 spinal examinations were undertaken using a questionnaire on diagnosis and patient management. Magnetic resonance imaging made a dominant contribution to final diagnoses of neoplasia and vascular disorders, but was less significant for white matter disease. In a high proportion of cases other types of examination also influenced the final diagnosis. It was concluded that magnetic resonance imaging affected patient management in a high proportion of spinal examinations and in cases of cerebral neoplasm, with lesser contributions to cases of cerebrovascular disorder and white matter disease. While MRI was considered superior to other imaging methods, which it could often replace, in practice it will form only one input to the diagnostic decision. 7 refs., 3 tabs

  9. Boys with precocious or early puberty: incidence of pathological brain magnetic resonance imaging findings and factors related to newly developed brain lesions

    Directory of Open Access Journals (Sweden)

    Keun Hee Choi

    2013-12-01

    Full Text Available PurposeBrain magnetic resonance imaging (MRI findings and factors predictive of pathological brain lesions in boys with precocious puberty (PP or early puberty (EP were investigated.MethodsSixty-one boys with PP or EP who had brain MRI performed were included. PP was classified into the central or peripheral type. Brain MRI findings were categorized into group I (pathological brain lesion known to cause puberty; newly diagnosed [group Ia] or previously diagnosed [group Ib]; group II (brain lesion possibly related to puberty; and group III (incidental or normal findings. Medical history, height, weight, hormone test results, and bone age were reviewed.ResultsBrain lesions in groups I and II were detected in 17 of 23 boys (74% with central PP, 9 of 30 boys (30% with EP, and 7 of 8 boys (88% with peripheral PP. All brain lesions in boys with peripheral PP were germ cell tumors (GCT, and 3 lesions developed later during follow-up. Group I showed earlier pubertal onset (P<0.01 and greater bone age advancement (P<0.05 than group III. Group III had lower birth weight and fewer neurological symptoms than "Ia and II" (all P<0.05.ConclusionEarlier onset of puberty, greater bone age advancement, and/or neurological symptoms suggested a greater chance of pathological brain lesions in boys with central PP or EP. All boys with peripheral PP, even those with normal initial MRI findings, should be evaluated for the emergence of GCT during follow-up.

  10. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  11. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution.

    Science.gov (United States)

    Cho, Hyun-Hae; Kim, In-One; Cheon, Jung-Eun; Choi, Young Hun; Lee, So Mi; Kim, Woo Sun

    2016-09-01

    To evaluate the changes in using patterns of brain magnetic resonance imaging (MRI) in preterm infants after introduction of a MR-compatible incubator coil system. Brain MRIs for preterm infants with the MR-compatible incubator coil from March 2010 to July 2014 (n=154, group A) were compared with MRIs prior to the introduction of the incubator coil, from March 2005 to February 2010 (n=65, group B). Clinical data, MRI findings, acquisition time, and incidence of adverse events during the study were retrospectively reviewed. For the qualitative analysis of the examinations, the presence of motion artefact, spatial resolution, and overall image quality were assessed. Signal uniformity of each sequence was evaluated for a quantitative comparison. Comparing with group B, Group A was significantly younger (36+3 vs. 38+3 weeks, pimage acquisition time was significantly shorter in group A (21.4±4.5 vs. 25.4±5.5min, pimage quality with decreased signal variation than group B (all pimage quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Phosphorous31 magnetic resonance spectroscopy after total sleep deprivation in healthy adult men.

    Science.gov (United States)

    Dorsey, Cynthia M; Lukas, Scott E; Moore, Constance M; Tartarini, Wendy L; Parow, Aimee M; Villafuerte, Rosemond A; Renshaw, Perry F

    2003-08-01

    To investigate chemical changes in the brains of healthy adults after sleep deprivation and recovery sleep, using phosphorous magnetic resonance spectroscopy. Three consecutive nights (baseline, sleep deprivation, recovery) were spent in the laboratory. Objective sleep measures were assessed on the baseline and recovery nights using polysomnography. Phosphorous magnetic resonance spectroscopy scans took place beginning at 7 am to 8 am on the morning after each of the 3 nights. Sleep laboratory in a private psychiatric teaching hospital. Eleven healthy young men. Following a baseline night of sleep, subjects underwent a night of total sleep deprivation, which involved supervision to ensure the absence of sleep but was not polysomnographically monitored. No significant changes in any measure of brain chemistry were observed the morning after a night of total sleep deprivation. However, after the recovery night, significant increases in total and beta-nucleoside triphosphate and decreases in phospholipid catabolism, measured by an increase in the concentration of glycerylphosphorylcholine, were observed. Chemical changes paralleled some changes in objective sleep measures. Significant chemical changes in the brain were observed following recovery sleep after 1 night of total sleep deprivation. The specific process underlying these changes is unclear due to the large brain region sampled in this exploratory study, but changes may reflect sleep inertia or some aspect of the homeostatic sleep mechanism that underlies the depletion and restoration of sleep. Phosphorous magnetic resonance spectroscopy is a technique that may be of value in further exploration of such sleep-wake functions.

  13. Central pontine myelinolysis in a chronic alcoholic: A clinical and brain magnetic resonance imaging follow-up

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2013-01-01

    Full Text Available Introduction. Central pontine myelinolysis (CPM is a noninflammatory, demyelinating lesion usually localised in the basis pontis. Chronic alcoholism is frequently associated with this condition which may have a variable clinical outcome. Until now, brain magnetic resonance imaging (MRI follow-up in alcoholic CPM cases after alcohol withdrawal has been rarely described. Case report. We reported a 30- year-old male with a 12-year history of alcohol abuse, who presented with inability to stand and walk, nausea, vomiting and somnolence. Neurological examination revealed: impared fixation on lateral gaze, dysarthria, mild spastic quadriparesis, truncal and extremity ataxia, sock-like hypesthesia and moderate decrease in vibration sense in legs. Brain MRI showed a trident-shaped non-enhancing pontine lesion highly suggestive of CPM. After an eight-month alcoholfree follow-up period, the patient’s clinical status significantly improved, while the extent of MRI pontine lesion was merely slightly reduced. Conclusion. The presented case demonstrates that CPM in chronic alcoholics may have a benign clinical course after alcohol withdrawal, which is not necessarily associated with the reduction of lesions on brain MRI. [Projekat Ministarstva nauke Republike Srbije, br. 175031

  14. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    International Nuclear Information System (INIS)

    Costa, Flavia Martins; Setti, Marcela; Vianna, Evandro Miguelote; Domingues, Romulo Cortes; Meohas, Walter; Rezende, Jose Francisco; Gasparetto, Emerson Leandro

    2009-01-01

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  15. Magnetic resonance tomography and computed tomography of the brain for diagnosing Wilson's disease

    International Nuclear Information System (INIS)

    Uhlenbrock, D.; Straube, A.; Beyer, H.K.; Leopold, H.C.

    1985-01-01

    The authors report on two woman patients with confirmed Wilson's desease (hepatolenticular degeneration) who had neurological deficits and showed typical changes evident from laboratory data. Both computed tomography and magnetic resonance tomography revealed degenerative changes in the basal ganglia, especially of the lenticular nucleus, MR showing these defects more clearly than CT. There was a noticeable symmetrical enhancement of signals in the lenticular nucleus which was particularly evident on the image basing on the T 2 (spin-spin relaxation time constant) values. MR could be superior to CT with regard to showing up pathological changes in the basal ganglia. The future indication of MR could be the establishment of an exact correlation between clinical signs and symptoms on the one hand, and morphological findings on the other. Over and above this, it should be explored to what extent MR can already detect degenerative changes in the brain in primarily hepatic types of the disease even without prior neurological examination. (orig.) [de

  16. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder

    NARCIS (Netherlands)

    S. Kremer (Stephane); F. Renard (Felix); S. Achard (Sophie); M.A. Lana-Peixoto (Marco A.); J. Palace (Jacqueline); N. Asgari (Nasrin); E.C. Klawiter (Eric C.); S. Tenembaum (Silvia); B. Banwell (Brenda); B.M. Greenberg (Benjamin M.); J.L. Bennett (Jeffrey); M. Levy (Michael); P. Villoslada (Pablo); A. Saiz (Albert Abe); K. Fujihara (Kazuo); K.H. Chan (Koon Ho); S. Schippling (Sven); F. Paul (Friedemann); H.J. Kim (Ho Jin); J. De Seze (Jerome); J.T. Wuerfel (Jens T.); P. Cabre (Philippe); R. Marignier (Romain); T. Tedder (Thomas); E.D. van Pelt - Gravesteijn (Daniëlle); S. Broadley (Simon); T. Chitnis (Tanuja); D. Wingerchuk (Dean); L. Pandit (Lekha); M.I. Leite (M. Isabel); M. Apiwattanakul (Metha); I. Kleiter (Ingo); N. Prayoonwiwat (Naraporn); M. Han (May); K. Hellwig (Kerstin); K. Van Herle (Katja); G. John (Gareth); D.C. Hooper (D. Craig); I. Nakashima (Ichiro); D. Sato (Douglas); M.R. Yeaman (Michael R.); E. Waubant (Emmanuelle); S. Zamvil (Scott); O. Stüve (Olaf); O. Aktas (Orhan); T.J. Smith (Terry J.); A. Jacob (Anu); K. O'Connor (Kevin)

    2015-01-01

    textabstractBrain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other

  17. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mouras, Harold; Stoléru, Serge; Bittoun, Jacques; Glutron, Dominique; Pélégrini-Issac, Mélanie; Paradis, Anne-Lise; Burnod, Yves

    2003-10-01

    The brain plays a central role in sexual motivation. To identify cerebral areas whose activation was correlated with sexual desire, eight healthy male volunteers were studied with functional magnetic resonance imaging (fMRI). Visual stimuli were sexually stimulating photographs (S condition) and emotionally neutral photographs (N condition). Subjective responses pertaining to sexual desire were recorded after each condition. To image the entire brain, separate runs focused on the upper and the lower parts of the brain. Statistical Parametric Mapping was used for data analysis. Subjective ratings confirmed that sexual pictures effectively induced sexual arousal. In the S condition compared to the N condition, a group analysis conducted on the upper part of the brain demonstrated an increased signal in the parietal lobes (superior parietal lobules, left intraparietal sulcus, left inferior parietal lobule, and right postcentral gyrus), the right parietooccipital sulcus, the left superior occipital gyrus, and the precentral gyri. In addition, a decreased signal was recorded in the right posterior cingulate gyrus and the left precuneus. In individual analyses conducted on the lower part of the brain, an increased signal was found in the right and/or left middle occipital gyrus in seven subjects, and in the right and/or left fusiform gyrus in six subjects. In conclusion, fMRI allows to identify brain responses to visual sexual stimuli. Among activated regions in the S condition, parietal areas are known to be involved in attentional processes directed toward motivationally relevant stimuli, while frontal premotor areas have been implicated in motor preparation and motor imagery. Further work is needed to identify those specific features of the neural responses that distinguish sexual desire from other emotional and motivational states.

  18. Sensorineural hearing loss after magnetic resonance imaging

    DEFF Research Database (Denmark)

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus......). In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient's hearing loss was accompanied with tinnitus and was not improved after 3 months of followup....

  19. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  20. Cerebral fat embolism: magnetic resonance study

    International Nuclear Information System (INIS)

    Guedea, A.; Barrena, R.; Guelbenzu, S.; Tejada, A.

    1998-01-01

    We report the case of 26-year-old man who presented clinical evidence of fat embolism following a traffic accident. Although computed tomography (CT) of the brain showed no abnormalities, magnetic resonance imaging (MRI) disclosed several scattered points of high intensity on T2-weighted and proton density (PD) images, with complete resolution of the lesions on follow-up scan. MRI is considered more sensitive than computed tomography in detecting these lesions, and may be useful for their diagnosis, correlating well with the clinical course. (Author) 10 refs

  1. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    Science.gov (United States)

    Hanvey, S.; Glegg, M.; Foster, J.

    2009-09-01

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  2. N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI Features in Middle Age: The CARDIA Brain MRI Study

    Directory of Open Access Journals (Sweden)

    Ian T. Ferguson

    2018-05-01

    Full Text Available ObjectiveAs part of research on the heart–brain axis, we investigated the association of N-terminal pro-brain natriuretic peptide (NT-proBNP with brain structure and function in a community-based cohort of middle-aged adults from the Brain Magnetic Resonance Imaging sub-study of the Coronary Artery Risk Development in Young Adults (CARDIA Study.Approach and resultsIn a cohort of 634 community-dwelling adults with a mean (range age of 50.4 (46–52 years, we examined the cross-sectional association of NT-proBNP to total, gray (GM and white matter (WM volumes, abnormal WM load and WM integrity, and to cognitive function tests [the Digit Symbol Substitution Test (DSST, the Stroop test, and the Rey Auditory–Verbal Learning Test]. These associations were examined using linear regression models adjusted for demographic and cardiovascular risk factors and cardiac output. Higher NT-proBNP concentration was significantly associated with smaller GM volume (β = −3.44; 95% CI = −5.32, −0.53; p = 0.003, even after additionally adjusting for cardiac output (β = −2.93; 95% CI = −5.32, −0.53; p = 0.017. Higher NT-proBNP levels were also associated with lower DSST scores. NT-proBNP was not related to WM volume, WM integrity, or abnormal WM load.ConclusionIn this middle-aged cohort, subclinical levels of NT-proBNP were related to brain function and specifically to GM and not WM measures, extending similar findings in older cohorts. Further research is warranted into biomarkers of cardiac dysfunction as a target for early markers of a brain at risk.

  3. Application of 3.0T magnetic resonance spectroscopy imaging in the evaluation on the development of normal brain white matter in infants and young children

    Directory of Open Access Journals (Sweden)

    Wen-li XU

    2014-01-01

    Full Text Available Objective To calculate the radios of peak area of proton magnetic resonance spectroscopy metabolites in brain white matter of normal infants and young children, to observe the features of metabolite spectra, and to explore the relations between their ratio with age. Methods The peak areas of metabolites, including N-acetyl aspartate (NAA, choline (Cho, creatine (Cr, and their ratio of NAA/Cho, NAA/Cr, Cho/Cr, in paraventricular white matter of 180 normal infants and young children with different ages as evaluated by multi-voxel proton magnetic resonance spectroscopy. Results In paraventricular white matter, spectrum of NAA increased, and that of Cho decreased gradually, while both of them were stabilized at 2 years old. Cr was increased obviously within 3 months, and stabilized after 4 months. Significant differences were found in ratio of different metabolites in paraventricular white matter in different ages (P<0.05. The ratios of NAA/Cho and NAA/Cr in paraventricular white mater were positively correlated with age (r=0.741, r=0.625, while that of Cho/Cr was negatively correlated with age (r=–0.552, P<0.05. Conclusion The ratios of different metabolites are different in brain white matter in infants of different ages. Metabolites concentrations in brain white matter are correlated to some extent with age, which may provide a diagnostic criterion for evaluation of normal brain development and abnormal brain metabolism. DOI: 10.11855/j.issn.0577-7402.2013.12.05

  4. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  5. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  6. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  7. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    Science.gov (United States)

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  8. Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.

    Science.gov (United States)

    Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.

  9. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo

    International Nuclear Information System (INIS)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-01-01

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1 H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo 1 H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 ± 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 ± 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. 1 H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation

  10. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Rowland, L M; Pradhan, S; Korenic, S; Wijtenburg, S A; Hong, L E; Edden, R A; Barker, P B

    2016-11-29

    Various lines of evidence suggest that brain bioenergetics and mitochondrial function may be altered in schizophrenia. On the basis of prior phosphorus-31 ( 31 P)-magnetic resonance spectroscopy (MRS), post-mortem and preclinical studies, this study was designed to test the hypothesis that abnormal glycolysis leads to elevated lactate concentrations in subjects with schizophrenia. The high sensitivity of 7 Tesla proton ( 1 H)-MRS was used to measure brain lactate levels in vivo. Twenty-nine controls and 27 participants with schizophrenia completed the study. MRS scanning was conducted on a Philips 'Achieva' 7T scanner, and spectra were acquired from a voxel in the anterior cingulate cortex. Patients were assessed for psychiatric symptom severity, and all participants completed the MATRICS Consensus Cognitive Battery (MCCB) and University of California, San Diego Performance-Based Skills Assessment (UPSA). The relationship between lactate, psychiatric symptom severity, MCCB and UPSA was examined. Lactate was significantly higher in patients compared with controls (P=0.013). Higher lactate was associated with lower MCCB (r=-0.36, P=0.01) and UPSA total scores (r=-0.43, P=0.001). We believe this is the first study to report elevated in vivo cerebral lactate levels in schizophrenia. Elevated lactate levels in schizophrenia may reflect increased anaerobic glycolysis possibly because of mitochondrial dysfunction. This study also suggests that altered cerebral bioenergetics contribute to cognitive and functional impairments in schizophrenia.

  11. Brain magnetic resonance imaging screening is not useful for HIV-1-infected patients without neurological symptoms.

    Science.gov (United States)

    Nishijima, Takeshi; Gatanaga, Hiroyuki; Teruya, Katsuji; Tajima, Tsuyoshi; Kikuchi, Yoshimi; Hasuo, Kanehiro; Oka, Shinichi

    2014-10-01

    We investigated the diagnostic usefulness of brain magnetic resonance imaging (MRI) screening in HIV-1-infected patients without neurological symptoms in detecting intracranial diseases at early stages. In this retrospective analysis, the study patients were HIV-1-infected patients who underwent brain MRI scan in clinical practice between 2001 and 2013. We excluded patients with MRI for (1) follow-up examination for prediagnosed intracranial diseases, (2) cancer staging, (3) screening mycobacterium/bacteria/fungi disease proliferation in the brain, and (4) evaluation for meningitis/encephalitis. The study patients (n=485) were classified into two groups: those who underwent brain MRI scan without any neurological symptoms/signs (asymptomatic patients, n=158) and those who underwent MRI due to such symptoms (symptomatic patients, n=327). Asymptomatic patients had lower CD4 counts than symptomatic patients (median 78 versus 241/μl). Intracranial diseases were detected in three (2%) of the asymptomatic patients [two toxoplasmosis and one progressive multifocal leukoencephalopathy (PML)] compared to 58 (19%) of the symptomatic patients (the χ(2) test, pHIV-associated dementia (n=17). Among symptomatic patients, intracranial diseases were common in those with slurred speech (3/6, 50%), seizure (4/10, 40%), eyesight/vision abnormality (5/16, 31%), altered mental status (8/31, 26%), and hemiplegia/numbness (13/50, 26%). For patients with CD4 count HIV-1-infected patients without neurological symptoms is of little value.

  12. Development of fetal brain of 20 weeks gestational age: Assessment with post-mortem Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Zhang Zhonghe; Liu Shuwei; Lin Xiangtao; Teng Gaojun; Yu Taifei; Fang Fang; Zang Fengchao

    2011-01-01

    Background: The 20th week gestational age (GA) is at mid-gestation and corresponds to the age at which the termination of pregnancy in several countries and the first Magnetic Resonance Imaging (MRI) can be performed, and at which the premature babies may survive. However, at present, very little is known about the exact anatomical character at this GA. Objective: To delineate the developing fetal brain of 20 weeks GA and obtain the three dimensional visualization model. Materials and methods: 20 fetal specimens were scanned by 3.0 T and 7.0 T post-mortem MRI, and the three dimensional visualization model was obtained with Amira 4.1. Results: Most of the sulci or their anlage, except the postcentral sulcus and intraparietal sulcus, were present. The laminar organization, described as layers with different signal intensities, was most clearly distinguished at the parieto-occipital lobe and peripheral regions of the hippocampus. The basal nuclei could be clearly visualized, and the brain stem and cerebellum had formed their common shape. On the visualization model, the shape and relative relationship of the structures could be appropriately delineated. The ranges of normal values of the brain structures were obtained, but no sexual dimorphisms or cerebral asymmetries were found. Conclusions: The developing fetal brain of 20 weeks GA can be clearly delineated on 3.0 T and 7.0 T post-mortem MRIs, and the three dimensional visualization model supplies great help in precise cognition of the immature brain. These results may have positive influences on the evaluation of the fetal brain in the uterus.

  13. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  14. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  15. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime [Diagnostic Radiology Department, Clinica Quiron, Zaragoza (Spain); Olmos, Salvador [Instituto de Investigacion en Ingenieria de Aragon, Zaragoza (Spain)], E-mail: olmos@unizar.es

    2008-09-15

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  16. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime; Olmos, Salvador

    2008-01-01

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  17. Magnetic resonance imaging in psychiatry

    International Nuclear Information System (INIS)

    Mann, K.

    1993-01-01

    Diagnosis and research in psychiatry are increasingly availing themselves of magnetic resonance imaging (MRI). In comparison to computed tomography (CT), this offers the combined benefits of no exposure to radiation, high resolution, artefact-free display of structures near bone, and a sharp contrast between the grey and white brain matter, with freedom to select the section. With the exception of very anxious patients, MRI will gradually replace CT scans for a wide range of differential diagnostic investigations. Its superiority in systematic studies of psychiatric patients with discrete cerebral parenchyma lesions is already considered proven. This is illustrated on the basis of research into schizophrenia and alcoholism. (orig.) [de

  18. Sensorineural Hearing Loss after Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Abolfazl Mollasadeghi

    2013-01-01

    Full Text Available Magnetic resonance imaging (MRI devices produce noise, which may affect patient’s or operators’ hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus. In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient’s hearing loss was accompanied with tinnitus and was not improved after 3 months of followup.

  19. Low-Field Magnetic Resonance Imaging of Canine Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Z. Adamiak* and M. Jaskólska and A. Pomianowski1

    2012-01-01

    Full Text Available The aim of presented study was to evaluate selected surface spine coil, and low-field magnetic resonance (MR selected sequences in diagnosing hydrocephalus in dogs. This paper discusses 19 dogs (14 canine patients with hydrocephalus and 5 healthy dogs, of five breeds, subjected to low-field magnetic resonance imaging (MRI of hydrocephalus. Area of the lateral ventricles and brain were examined in dogs with hydrocephalus using low-field MRI (at 0.25 Tesla. The MRI of FSE REL, SE, FLAIR, STIR, 3D HYCE, T3DT1, GE STIR 3D and 3D SHARC sequences with an indication of the most effective sequences are described. Additionally, coils for MR were compared, and models for infusion anesthesia were described. As a result of performed study all estimated sequences were diagnostically useful. However, spinal coil No. 2 (ESAOTE was the most optimal for examining and positioning the cranium.

  20. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  1. Developmental changes in magnetic resonance imaging of the brain in children

    International Nuclear Information System (INIS)

    Aihara, Masao; Iai, Mizue; Takeuchi, Akio; Tamai, Kazuto; Tanabe, Yuzo; Nakajima, Hironori

    1986-01-01

    Nine normal subjects (aged 3 months to 15 years) were exmined by a Picker Vista magnetic resonance (MR) imager with a 0.5 T superconducting magnet operated at 0.256 T. Inversion-recovery images showed a high intensity in the posterior limb of the internal capsule and thalami and occipital radiation, and a low intensity in the frontal region in an infant aged 3 months. In an infant aged 8 months, high intensity areas were seen in the anterior limb of the internal capsule and in the corpus callosum. In a child aged 1 year, there were extensive high intensities in the subcortical white matter. At the age of 8, this became more extensive. A consistent decrease in the T1 values in all regions was observed with age. The T1 values decreased rapidly from 3 to 8 months, and then remained relatively constant in the second decade of life. There was a difference in T1 values between the frontal and occipital white matter in the first year of life. For a 3-month-old infant, the T1 value was 650 msec in the posterior limb of the internal capsule. The T1 value decreased rapidly in infants below 1 year and reached the constant level (300 to 350 msec) in the second decade of life. The central somatosensory conduction time decreased gradually from 3 to 8 months after birth. We suppose that the developmental changes in MR imaging and T1 values are correlated with those of the water and lipid contents and the myelination cycles of the brain. (J.P.N.)

  2. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children With Cerebral Palsy.

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-05-24

    The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). The study included 172 children with CP who underwent brain MRI and language assessments between 3 and 7 years of age. The MRI characteristics were categorized as normal, malformation, periventricular white matter lesion (PVWL), deep gray matter lesion, focal infarct, cortical/subcortical lesion, and others. Neurodevelopmental outcomes such as ambulatory status, manual ability, cognitive function, and accompanying impairments were assessed. Both receptive and expressive language development quotients (DQs) were significantly related to PVWL or deep gray matter lesion severity. In multivariable analysis, only cognitive function was significantly related to receptive language development, whereas ambulatory status and cognitive function were significantly associated with expressive language development. More than one third of the children had a language developmental discrepancy between receptive and expressive DQs. Children with cortical/subcortical lesions were at high risk for this discrepancy. Cognitive function is a key factor for both receptive and expressive language development. In children with PVWL or deep gray matter lesion, lesion severity seems to be useful to predict language development.

  3. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  4. A compatible electrocutaneous display for functional magnetic resonance imaging application.

    Science.gov (United States)

    Hartwig, V; Cappelli, C; Vanello, N; Ricciardi, E; Scilingo, E P; Giovannetti, G; Santarelli, M F; Positano, V; Pietrini, P; Landini, L; Bicchi, A

    2006-01-01

    In this paper we propose an MR (magnetic resonance) compatible electrocutaneous stimulator able to inject an electric current, variable in amplitude and frequency, into the fingertips in order to elicit tactile skin receptors (mechanoreceptors). The desired goal is to evoke specific tactile sensations selectively stimulating skin receptors by means of an electric current in place of mechanical stimuli. The field of application ranges from functional magnetic resonance imaging (fMRI) tactile studies to augmented reality technology. The device here proposed is designed using safety criteria in order to comply with the threshold of voltage and current permitted by regulations. Moreover, MR safety and compatibility criteria were considered in order to perform experiments inside the MR scanner during an fMRI acquisition for functional brain activation analysis. Psychophysical laboratory tests are performed in order to define the different evoked tactile sensation. After verifying the device MR safety and compatibility on a phantom, a test on a human subject during fMRI acquisition is performed to visualize the brain areas activated by the simulated tactile sensation.

  5. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  6. Computer-assisted superimposition of magnetic resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT images of the brain

    International Nuclear Information System (INIS)

    Holman, B.L.; Zimmerman, R.E.; Johnson, K.A.; Carvalho, P.A.; Schwartz, R.B.; Loeffler, J.S.; Alexander, E.; Pelizzari, C.A.; Chen, G.T.

    1991-01-01

    A method for registering three-dimensional CT, MR, and PET data sets that require no special patient immobilization or other precise positioning measures was adapted to high-resolution SPECT and MRI and was applied in 14 subjects [five normal volunteers, four patients with dementia (Alzheimer's disease), two patients with recurrent glioblastoma, and three patients with focal lesions (stroke, arachnoid cyst and head trauma)]. T2-weighted axial magnetic resonance images and transaxial 99mTc-HMPAO and 201Tl images acquired with an annular gamma camera were merged using an objective registration (translation, rotation and rescaling) program. In the normal subjects and patients with dementia and focal lesions, focal areas of high uptake corresponded to gray matter structures. Focal lesions observed on MRI corresponded to perfusion defects on SPECT. In the patients who had undergone surgical resection of glioblastoma followed by interstitial brachytherapy, increased 201Tl corresponding to recurrent tumor could be localized from the superimposed images. The method was evaluated by measuring the residuals in all subjects and translational errors due to superimposition of deep structures in the 12 subjects with normal thalamic anatomy and 99mTc-HMPAO uptake. This method for superimposing magnetic resonance and high-resolution SPECT images of the brain is a useful technique for correlating regional function with brain anatomy

  7. 2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T.

    Science.gov (United States)

    Crisi, Girolamo; Filice, Silvano; Michiara, Maria; Crafa, Pellegrino; Lana, Silvia

    The objective of this study was to assess the effective performance of short echo time magnetic resonance spectroscopy (short TE MRS) for 2HG detection as biomarker of isocitrate dehydrogenase (IDH) status in all grade glioma (GL). A total of 82 GL patients were prospectively investigated by short TE MRS at 3.0 T as part of a multimodal magnetic resonance imaging study protocol. Spectral analysis was performed using linear combination model. Tumor specimens were diagnosed as IDH mutant or wild type according to the 2016 World Health Organization (WHO) classification of brain tumors. Spectra were analyzed for the presence of 2HG. The performance of short TE MRS was evaluated in terms of sensitivity, specificity, and positive and negative likelihood ratio on the overall sample and on GL WHO grades II and III and glioblastoma separately. The specificity and sensitivity estimated on the overall sample were 88% and 77%, respectively. In GL WHO grades II and III, 100% specificity and 75% sensitivity were estimated. We reiterate the feasibility to identify IDH status of brain GL using short TE MRS at 3.0 T. The method can correctly detect 2HG as expression of IDH mutation in WHO grades II and III GL with a 100% specificity but a 75% sensitivity. In the evaluation of glioblastoma, short TE MRS performs poorly having a 17% false positive rate.

  8. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    Science.gov (United States)

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  10. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    NARCIS (Netherlands)

    van Doormaal, Pieter Jan; Meiners, Linda C.; ter Horst, Hendrik J.; Veere, van der Christa; Sijens, Paul E.

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and

  11. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    Science.gov (United States)

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen

  12. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  13. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  14. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  15. Serial changes in metabolism and histology in the cold-injury trauma rat brain model. Proton magnetic resonance imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kyousuke; Houkin, Kiyohiro; Hida, Kazutoshi; Iwasaki, Yoshinobu; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1995-01-01

    The serial changes in metabolism and histology during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance (MR) imaging and high-resolution proton MR spectroscopy. Edema developed extensively via the corpus callosum in the ipsi- and contralateral hemispheres during observation as shown by gradually increased signal intensity on proton MR images. Proton MR spectroscopy showed increased levels of acetate (Ace), lactate (Lac), and glutamine (Glmi) 1 hour after lesion formation. The elevated Glmi level slightly decreased, the level of alanine (Ala) increased substantially, and that of N-acetyl-aspartate (NAA) decreased markedly after 24 hours. Increased Lac, Ace, and Ala might reflect anaerobic glycolysis associated with mitochondrial dysfunction, while decreased Glmi and NAA reveal brain tissue breakdown. The relationship between brain edema and tissue viability can be analyzed in detail using this simple traumatic model and MR techniques which will be useful in the development of therapeutic agents for brain injury. (author).

  16. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  17. High-Resolution Longitudinal Screening with Magnetic Resonance Imaging in a Murine Brain Cancer Model

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bock

    2003-11-01

    Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.

  18. Clinical relevance of magnetic resonance imaging and magnetic resonance spectroscopy for the cirrhotic without overt hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Yukou; Kato, Akinobu; Suzuki, Kazuyuki [Iwate Medical Univ., Morioka (Japan). School of Medicine

    1999-04-01

    To clarify the changes of pallidal high intensity on T1-weighted magnetic resonance imaging (MRI) and brain metabolites on magnetic resonance spectroscopy (MRS) as related to the severity of hepatic functions, the concentrations of blood ammonia (B-NH{sub 3}) and the levels of trace elements (Mn, Cu and Zn), 30 patients with liver cirrhosis without hepatic encephalopathy (HE) and 5 age-matched healthy control subjects underwent MRI and proton MRS. Pallidal high intensity (Pl index) and glutamine are higher in cirrhosis, and myo-inositol is lower than that of control statistically. In cirrhosis, there were statistically negative correlation between B-NH{sub 3} and myo-inositol and positive correlation between B-NH{sub 3} and glutamine. There was a statistically lower myo-inositol and higher Pl index, glutamine as the severity of hepatic functions increased. Furthermore there was a statistically positive correlation between Pl index and Mn. These data suggest that the changes of MRI and MRS findings already detected in cirrhosis without HE and these abnormalities may be reflect the B-NH{sub 3} and Mn metabolism and the severity of the hepatic functions. (author)

  19. Clinical relevance of magnetic resonance imaging and magnetic resonance spectroscopy for the cirrhotic without overt hepatic encephalopathy

    International Nuclear Information System (INIS)

    Fujishima, Yukou; Kato, Akinobu; Suzuki, Kazuyuki

    1999-01-01

    To clarify the changes of pallidal high intensity on T1-weighted magnetic resonance imaging (MRI) and brain metabolites on magnetic resonance spectroscopy (MRS) as related to the severity of hepatic functions, the concentrations of blood ammonia (B-NH 3 ) and the levels of trace elements (Mn, Cu and Zn), 30 patients with liver cirrhosis without hepatic encephalopathy (HE) and 5 age-matched healthy control subjects underwent MRI and proton MRS. Pallidal high intensity (Pl index) and glutamine are higher in cirrhosis, and myo-inositol is lower than that of control statistically. In cirrhosis, there were statistically negative correlation between B-NH 3 and myo-inositol and positive correlation between B-NH 3 and glutamine. There was a statistically lower myo-inositol and higher Pl index, glutamine as the severity of hepatic functions increased. Furthermore there was a statistically positive correlation between Pl index and Mn. These data suggest that the changes of MRI and MRS findings already detected in cirrhosis without HE and these abnormalities may be reflect the B-NH 3 and Mn metabolism and the severity of the hepatic functions. (author)

  20. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Teramoto, Daisuke; Ushioda, Yuichi; Sasaki, Ayaka; Sakurai Yuki; Nagahama, Hiroshi; Nakamura, Manami; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T 1 -value and T 2 -values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T 1 - and T 2 -weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T 1 and T 2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  1. Validation of model-based brain shift correction in neurosurgery via intraoperative magnetic resonance imaging: preliminary results

    Science.gov (United States)

    Luo, Ma; Frisken, Sarah F.; Weis, Jared A.; Clements, Logan W.; Unadkat, Prashin; Thompson, Reid C.; Golby, Alexandra J.; Miga, Michael I.

    2017-03-01

    The quality of brain tumor resection surgery is dependent on the spatial agreement between preoperative image and intraoperative anatomy. However, brain shift compromises the aforementioned alignment. Currently, the clinical standard to monitor brain shift is intraoperative magnetic resonance (iMR). While iMR provides better understanding of brain shift, its cost and encumbrance is a consideration for medical centers. Hence, we are developing a model-based method that can be a complementary technology to address brain shift in standard resections, with resource-intensive cases as referrals for iMR facilities. Our strategy constructs a deformation `atlas' containing potential deformation solutions derived from a biomechanical model that account for variables such as cerebrospinal fluid drainage and mannitol effects. Volumetric deformation is estimated with an inverse approach that determines the optimal combinatory `atlas' solution fit to best match measured surface deformation. Accordingly, preoperative image is updated based on the computed deformation field. This study is the latest development to validate our methodology with iMR. Briefly, preoperative and intraoperative MR images of 2 patients were acquired. Homologous surface points were selected on preoperative and intraoperative scans as measurement of surface deformation and used to drive the inverse problem. To assess the model accuracy, subsurface shift of targets between preoperative and intraoperative states was measured and compared to model prediction. Considering subsurface shift above 3 mm, the proposed strategy provides an average shift correction of 59% across 2 cases. While further improvements in both the model and ability to validate with iMR are desired, the results reported are encouraging.

  2. Accuracy of magnetic resonance based susceptibility measurements

    Science.gov (United States)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  3. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  4. Magnetic resonance study of maghemite-based magnetic fluid

    International Nuclear Information System (INIS)

    Figueiredo, L.C.; Lacava, B.M.; Skeff Neto, K.; Pelegrini, F.; Morais, P.C.

    2008-01-01

    This study reports on the magnetic resonance (MR) data (X-band experiment) of 10.2 nm average diameter maghemite nanoparticle in the temperature range of 100-230 K. Maghemite nanoparticles were suspended as low-pH ionic magnetic fluid containing 2.3x10 17 particles/cm 3 . The temperature dependence of both resonance linewidth and resonance field of the zero-field-cooled sample as well as the resonance field of the field-cooled sample (angular variation experiment) was analyzed using well-established methodology. Information regarding particle size, particle clusterization and surface magnetic anisotropy were obtained from the analysis of the MR data. The number of magnetic sites per particle from the MR data is in excellent agreement with the number provided by the transmission electron microscopy (TEM) data. The demagnetizing field value obtained from the MR data indicates cluster of particles containing on average 1.42 particles. The MR angular variation data suggest that magnetoelastic effect accounts for the non-linearity observed for the surface component of the magnetic anisotropy

  5. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  6. Resonant and nonresonant magnetic scattering (invited)

    International Nuclear Information System (INIS)

    McWhan, D.B.; Hastings, J.B.; Kao, C.; Siddons, D.P.

    1992-01-01

    The tunability and the polarization of synchrotron radiation open up new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and they fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin-polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation

  7. Magnetic resonance in neuroborreliosis

    International Nuclear Information System (INIS)

    Ustymowicz, A.; Zajkowska, J.

    2003-01-01

    Magnetic resonance (MR) is commonly used in diagnosing infections of the central nervous system. The aim of the study is to evaluate central nervous system changes in neuroborreliosis patients. MR examinations were performed in 44 patients with clinical symptoms, epidemiology and laboratory tests results of neuroborreliosis. Abnormalities were detected in 22 patients. Most of them presented cortico-subcortical atrophy (86%). In 9 cases foci of increased signal in T2-weighted and FLAIR images were observed in white matter. They were single or multiple, located subcorticaly and paraventriculary. In 2 subjects areas of increased signal were found in the brain stem. Central nervous system abnormalities detected with MR are not specific for Lyme disease. They can suggest demyelinating lesions and/or gliosis observed in many nervous system disorders (SM, ADEM, lacunar infarcts). (author)

  8. Radiation-induced changes in human brain metabolites as studied by {sup 1}H nuclear magnetic resonance spectroscopy in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-10-15

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. {sup 1}H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo{sup 1}H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 {+-} 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 {+-} 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. {sup 1}H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.

  9. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  10. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo; Yang, Jong Chul; Kim, Seok Kwun

    2012-01-01

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  11. A superconducting magnet for whole-body magnetic-resonance imaging

    International Nuclear Information System (INIS)

    Kan, Hisao; Watanabe, Tsugio; Takechi, Moriaki; Ogino, Osamu; Yamada, Tadatoshi

    1986-01-01

    Magnetic-resonance imaging is a promising new clinical diagnosis system that employs magnetic resonance to generate cross-sectional images of the object under examination. A large magnet plays a critical role in this system-it must supply a high-strength magnetic field that meets rigid standards of space and time uniformity. Mitsubishi Electric has developed a superconducting magnet that not only offers excellent magnetic characteristics but also features reduced helium consumption and a horizontal service port, and permits direct mounting of a magnetic shield. (author)

  12. Towards Motion-Insensitive Magnetic Resonance Imaging Using Dynamic Field Measurements

    DEFF Research Database (Denmark)

    Andersen, Mads

    motion during scanning and update the MRI scanner in real-time such that the imaging volume follows the head motion (prospective motion correction). In this thesis, prospective motion correction is presented where head motion is determined from signals measured with an electroencephalography (EEG) cap......Magnetic resonance imaging (MRI) of the brain is frequently used for both clinical diagnosis and brain research. This is due to the great versatility of the technique and the excellent ability to distinguish different types of soft tissue. The image quality is, however, heavily degraded when...

  13. Measures of Morphological Complexity of Gray Matter on Magnetic Resonance Imaging for Control Age Grouping

    OpenAIRE

    Pham, Tuan; Abe, Taishi; Oka, Ryuichi; Chen, Yung-Fu

    2015-01-01

    Current brain-age prediction methods using magnetic resonance imaging (MRI) attempt to estimate the physiological brain age via some kind of machine learning of chronological brain age data to perform the classification task. Such a predictive approach imposes greater risk of either over-estimate or under-estimate, mainly due to limited training data. A new conceptual framework for more reliable MRI-based brain-age prediction is by systematic brain-age grouping via the implementation of the p...

  14. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  15. Magnetic resonance elastometry using a single-sided permanent magnet

    International Nuclear Information System (INIS)

    Tan, Carl S; Marble, Andrew E; Ono, Yuu

    2012-01-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system. (paper)

  16. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  17. A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head.

    Science.gov (United States)

    Delora, Adam; Gonzales, Aaron; Medina, Christopher S; Mitchell, Adam; Mohed, Abdul Faheem; Jacobs, Russell E; Bearer, Elaine L

    2016-01-15

    Magnetic resonance imaging (MRI) is a well-developed technique in neuroscience. Limitations in applying MRI to rodent models of neuropsychiatric disorders include the large number of animals required to achieve statistical significance, and the paucity of automation tools for the critical early step in processing, brain extraction, which prepares brain images for alignment and voxel-wise statistics. This novel timesaving automation of template-based brain extraction ("skull-stripping") is capable of quickly and reliably extracting the brain from large numbers of whole head images in a single step. The method is simple to install and requires minimal user interaction. This method is equally applicable to different types of MR images. Results were evaluated with Dice and Jacquard similarity indices and compared in 3D surface projections with other stripping approaches. Statistical comparisons demonstrate that individual variation of brain volumes are preserved. A downloadable software package not otherwise available for extraction of brains from whole head images is included here. This software tool increases speed, can be used with an atlas or a template from within the dataset, and produces masks that need little further refinement. Our new automation can be applied to any MR dataset, since the starting point is a template mask generated specifically for that dataset. The method reliably and rapidly extracts brain images from whole head images, rendering them useable for subsequent analytical processing. This software tool will accelerate the exploitation of mouse models for the investigation of human brain disorders by MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities

    NARCIS (Netherlands)

    vanderKnaap, MS; Smit, LME; Barth, PG; CatsmanBerrevoets, CE; Brouwer, OF; Begeer, JH; deCoo, IFM; Valk, J.

    A survey was performed of magnetic resonance imaging (MRI) findings in 21 patients with congenital muscular dystrophy (QID) with cerebral abnormalities to evaluate the contribution of MRI to the classification of CMD patients. In 5 patients with Walker-Warburg syndrome (WWS), MRI showed

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  20. Estimating blood and brain concentrations and blood-to-brain influx by magnetic resonance imaging with step-down infusion of Gd-DTPA in focal transient cerebral ischemia and confirmation by quantitative autoradiography with Gd-[14C]DTPA

    OpenAIRE

    Knight, Robert A; Karki, Kishor; Ewing, James R; Divine, George W; Fenstermacher, Joseph D; Patlak, Clifford S; Nagaraja, Tavarekere N

    2009-01-01

    An intravenous step-down infusion procedure that maintained a constant gadolinium-diethylene-triaminepentaacetic acid (Gd-DTPA) blood concentration and magnetic resonance imaging (MRI) were used to localize and quantify the blood–brain barrier (BBB) opening in a rat model of transient cerebral ischemia (n = 7). Blood-to-brain influx rate constant (Ki) values of Gd-DTPA from such regions were estimated using MRI–Patlak plots and compared with the Ki values of Gd-[14C]DTPA, determined minutes l...

  1. Brain abnormalities detected on magnetic resonance imaging of amphetamine users presenting to an emergency department: a pilot study.

    Science.gov (United States)

    Fatovich, Daniel M; McCoubrie, David L; Song, Swithin J; Rosen, David M; Lawn, Nick D; Daly, Frank F

    2010-09-06

    To determine the prevalence of occult brain abnormalities in magnetic resonance imaging of active amphetamine users. Prospective convenience study in a tertiary hospital emergency department (ED). Patients presenting to the ED for an amphetamine-related reason were eligible for inclusion. We collected demographic data, drug use data, and performed a mini-mental state examination (MMSE). The proportion of patients with an abnormality on their MRI scan. Of 38 patients enrolled, 30 had MRI scans. Nineteen were male and their mean age was 26.7 +/- 5.4 years (range 19-41 years). The mean age of first amphetamine use was 18 years (range 13-26 years). Sixteen patients used crystal methamphetamine (mean amount 2.5 g/week), nine used amphetamine ("speed") (mean amount 2.9 g/week), and 23 used ecstasy (mean amount 2.3 tablets/week). Marijuana was smoked by 26 (mean amount 5.9 g/week), and 28 drank alcohol (mean amount 207 g/week). The median MMSE score was 27/30 (interquartile range, 26-29). Abnormalities on brain MRI scans were identified in six patients, most commonly an unidentified bright object (n = 4). In this pilot study of brain MRI of young people attending the ED with an amphetamine-related presentation, one in five had an occult brain lesion. While the significance of this is uncertain, it is congruent with evidence that amphetamines cause brain injury.

  2. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  3. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.

    Science.gov (United States)

    Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos

    2007-01-01

    The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  5. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  6. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  7. In Vivo Assessment of Neurotransmitters and Modulators with Magnetic Resonance Spectroscopy: Application to Schizophrenia

    Science.gov (United States)

    Wijtenburg, S. Andrea; Yang, Shaolin; Fischer, Bernard A.; Rowland, Laura M.

    2015-01-01

    In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. PMID:25614132

  8. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2009-01-01

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm 2 /ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm 2 /ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.

  9. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  10. Marchiafava-Bignami disease: a case studied with brain magnetic resonance and SPECT

    International Nuclear Information System (INIS)

    Cardozo Oliver, J.; Casas Parera, Ignacio; Libere, G.; Malagold, S.

    2006-01-01

    Objective: To show the correlation between brain magnetic resonance images (MRI) and single-photon-emission computed tomography (SPECT) in a patient with Marchiafava-Bignami (MB) disease. Background: MB disease is a rare disorder associated with chronic alcoholism. It is characterized by symmetric demyelination of corpus callosum (CC) and adjacent white matter. These lesions can be demonstrated both by computed tomography or/and MRI. Scarce information is available about MRI and SPECT according to the research done. Design/methods: A 79-year-old white man with a history of excessive alcohol consumption (predominantly wine) was admitted to our Institute. A decrease in his physical activity was evidenced in the two years prior to admission and in the last twelve months progressive dementia with hallucinations and severe apathy developed. On admission neurologic examination showed papillae pale in both eyes, left hearing loss, action tremor of upper limbs and proximal hyporeflexia with distal arreflexia of all four limbs was observed. Affectation of higher cortical functions was evident. Cerebrospinal fluid was normal and serology for syphilis and HIV were negative. Both renal and hepatic functions were normal. Brain MRI and SPECT were performed. The patient died 70 days after diagnosis of MB disease. Results: MRI scans of the brain showed multiple hyperintense T2-weighted lesions in white matter and basal ganglia. Cortical atrophy, especially in the fronto-temporal areas, and a CC thickness reduction were also observed. Sagittal view showed an irregular cavitation in the genu of the CC, hypointense and hyperintense on T1 and T2-weighted images respectively. The SPECT showed an abnormal low perfusion on both frontal lobes, left temporo-parietal lobes and right basal ganglia. Conclusion: The clinical features and MRI were consistent with the diagnosis of MB disease. MRI and SPECT studies showed the connection between the lesion in the CC and bilateral cortical

  11. Infrequent lesions involving the brain stem: assessment with magnetic resonance

    International Nuclear Information System (INIS)

    Gonzalez, Alejandro P.; Salvatico, Rosana; Romero, Carlos; Lambre, Hector; Trejo, Mariano; Meli, Francisco

    2005-01-01

    Purpose: Report five non frequent cases that involve the brain stem studied with MRI. Material and methods: 115 patients were evaluated retrospectively between January 2002 and March 2004. Five non frequent cases were selected. Their ages were between 3 and 75 years, and all of them were male. A 1.5 magnet was used. The diagnosis was made with the clinical evolution, blood and CSF analysis and in one case by biopsy. Results: The mentioned cases were posterior reversible leucoencephalopathy, rhombencephalitis due to listeria monocytogenes, brain stem infiltrating glioma, Leigh syndrome and pontine myelinolysis. Conclusions: We think that the reported cases have to be considered among the different diagnosis of the brainstem pathology, in spite of their non frequent presentation. (author)

  12. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes.

    Science.gov (United States)

    Eide, Per Kristian; Vatnehol, Svein Are Sirirud; Emblem, Kyrre Eeg; Ringstad, Geir

    2018-05-08

    Pre-clinical research in rodents provides evidence that the central nervous system (CNS) has functional lymphatic vessels. In-vivo observations in humans, however, are not demonstrated. We here show data on CNS lymphatic drainage to cervical lymph nodes in-vivo by magnetic resonance imaging (MRI) enhanced with an intrathecal contrast agent as a cerebrospinal fluid (CSF) tracer. Standardized MRI of the intracranial compartment and the neck were acquired before and up to 24-48 hours following intrathecal contrast agent administration in 19 individuals. Contrast enhancement was radiologically confirmed by signal changes in CSF nearby inferior frontal gyrus, brain parenchyma of inferior frontal gyrus, parahippocampal gyrus, thalamus and pons, and parenchyma of cervical lymph node, and with sagittal sinus and neck muscle serving as reference tissue for cranial and neck MRI acquisitions, respectively. Time series of changes in signal intensity shows that contrast enhancement within CSF precedes glymphatic enhancement and peaks at 4-6 hours following intrathecal injection. Cervical lymph node enhancement coincides in time with peak glymphatic enhancement, with peak after 24 hours. Our findings provide in-vivo evidence of CSF tracer drainage to cervical lymph nodes in humans. The time course of lymph node enhancement coincided with brain glymphatic enhancement rather than with CSF enhancement.

  13. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  14. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  15. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  16. Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study

    International Nuclear Information System (INIS)

    Liu Yang; Zhu Shanan; He Bin

    2009-01-01

    We have investigated induced current magnetic resonance electrical impedance tomography (IC-MREIT) by means of computer simulations. The J-substitution algorithm was implemented to solve the IC-MREIT reconstruction problem. By providing physical insight into the charge accumulating on the interfaces, the convergence characteristics of the reconstruction algorithm were analyzed. The simulation results conducted on different objects were well correlated with the proposed theoretical analysis. The feasibility of IC-MREIT to reconstruct the conductivity distribution of head-brain tissues was also examined in computer simulations using a multi-compartment realistic head model. The present simulation results suggest that IC-MREIT may have the potential to become a useful conductivity imaging technique.

  17. The prognostic value of proton magnetic resonance spectroscopy in term newborns treated with therapeutic hypothermia following asphyxia

    NARCIS (Netherlands)

    Sijens, Paul E.; Wischniowsky, Katharina; ter Horst, Hendrik J.

    2017-01-01

    Objective: The purpose of this study was to correlate brain metabolism assessed shortly after therapeutic hyperthermia by H-1 magnetic resonance spectroscopy (MRS), with neurodevelopmental outcome. Methods: At the age of 6.0 +/- 1.8 days, brain metabolites of 35 term asphyxiated newborns, treated

  18. Magnetic resonance spectroscopic diagnosis of acute alcohol ingestion with hidden history

    International Nuclear Information System (INIS)

    Pungavkar, S.A.; Joshi, V.; Patkar, D.P.; Lawande, M.; Gadani, S.; Shah-Mehta, N.

    2006-01-01

    Parenchymal changes within the brain in chronic alcoholics are well known, and specific MRI and MR spectroscopy findings have been described. However, recent alcohol ingestion goes undetected on routine MRI because of lack of specific parenchymal changes in the acute setting. Magnetic resonance spectroscopy can detect the presence of ethanol as a metabolite in the brain accurately and can provide valuable information regarding acute ingestion of alcohol. This may be useful especially in cases where history of alcohol ingestion is withheld. Copyright (2006) Blackwell Science Pty Ltd

  19. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  20. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  1. Investigation of magnetic interactions in sulfides by means of magnetic resonance

    International Nuclear Information System (INIS)

    Veen, G. van.

    1978-01-01

    Investigations have been designed to gather more information about magnetic pair interactions in sulfides by isomorphic substitution of the magnetic ions in suitable chosen diamagnetic host lattices and measurement of electron spin resonance of coupled pairs and of electron spin resonance or electron nuclear double resonance of the hyperfine interaction due to the nuclei of diamagnetic cations. The greater part of this thesis is devoted to preliminaries of magnetic resonance interpretation and sample selection and preparation. The measurements on the magnetically diluted compounds, which are described, only have an exploratory nature. (Auth.)

  2. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  3. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    De Guio, F. (François); Jouvent, E. (Eric); G.J. Biessels (Geert Jan); S.E. Black (Sandra); C. Brayne (Carol); C. Chen (Christopher); C. Cordonnier (Charlotte); H.F. de Leeuw (Frank); C. Kubisch (Christian); Doubal, F. (Fergus); Duering, M. (Marco); C. Dufouil (Carole); Duzel, E. (Emrah); F. Fazekas (Franz); V. Hachinski (Vladimir); M.K. Ikram (Kamran); J. Linn (Jennifer); P.M. Matthews (P.); B. Mazoyer (Bernard); Mok, V. (Vincent); B. Norrving (Bo); O'Brien, J.T. (John T.); Pantoni, L. (Leonardo); S. Ropele (Stefan); P.S. Sachdev (Perminder); R. Schmidt (Reinhold); S. Seshadri (Sudha); E.E. Smith (Eric); L.A. Sposato (Luciano A); B.C.M. Stephan; Swartz, R.H. (Richard H.); C. Tzourio (Christophe); M.A. van Buchem (Mark); A. van der Lugt (Aad); R.J. van Oostenbrugge (Robert); M.W. Vernooij (Meike); Viswanathan, A. (Anand); D.J. Werring (David); Wollenweber, F. (Frank); J.M. Wardlaw (J.); Chabriat, H. (Hugues)

    2016-01-01

    textabstractBrain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility

  4. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A study of spinal cord tumors by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro [Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio

    1989-10-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author).

  6. A study of spinal cord tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio.

    1989-01-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author)

  7. Segmentation of head magnetic resonance image using self-mapping characteristic

    International Nuclear Information System (INIS)

    Madokoro, Hirokazu; Sato, Kazuhito; Ishii, Masaki; Kadowaki, Sakura

    2004-01-01

    In this paper, we proposed a segmentation method, for head magnetic resonance (MR) images. Our method used self mapping characteristic of a self-organization map (SOM), and it does not need the setting of the representative point by the operator. We considered the continuity and boundary in the brain tissues by the definition of the local block. In the evaluation experiment, we obtained the segmentation result of matching anatomical structure information. In addition, our method applied the clinical MR images, it was possible to obtain the effective and objective result for supporting the diagnosis of the brain atrophy by the doctor. (author)

  8. [Magnetic resonance compatibility research for coronary mental stents].

    Science.gov (United States)

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  9. Chronic antiepileptic drug use and functional network efficiency : a functional magnetic resonance imaging study

    NARCIS (Netherlands)

    van Veenendaal, T.M.; IJff, D.M.; Aldenkamp, A.P.; Lazeron, R.H.C.; Hofman, P.A.M.; de Louw, A.J.A.; Backes, W.H.; Jansen, J.F.A.

    2017-01-01

    AIM: To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment. METHODS: The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients

  10. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    Guio, F. De; Jouvent, E.; Biessels, G.J.; Black, S.E.; Brayne, C.; Chen, C.; Cordonnier, C.; Leeuw, F.E. de; Dichgans, M.; Doubal, F.; Duering, M.; Dufouil, C.; Duzel, E.; Fazekas, F.; Hachinski, V.; Ikram, M.A.; Linn, J.; Matthews, P.M.; Mazoyer, B.; Mok, V.; Norrving, B.; O'Brien, J.T.; Pantoni, L.; Ropele, S.; Sachdev, P.; Schmidt, R.; Seshadri, S.; Smith, E.E.; Sposato, L.A.; Stephan, B.; Swartz, R.H.; Tzourio, C.; Buchem, M. van; Lugt, A. van der; Oostenbrugge, R.; Vernooij, M.W.; Viswanathan, A.; Werring, D.; Wollenweber, F.; Wardlaw, J.M.; Chabriat, H.

    2016-01-01

    Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these

  11. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    DEFF Research Database (Denmark)

    Kremer, S.; Renard, F.; Achard, S.

    2015-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder but the specific morphological and temporal patterns distinguishing them uneqtaivcally from lesions caused by other disorders have...... not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR voltametry, and ultrahigh...... diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MR I techniques may further our understanding of the pathogenic processes hi NMO spectrum disorders and may...

  12. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  13. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  14. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  15. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study

    OpenAIRE

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-01-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revea...

  16. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  17. Acupuncture therapy in treating migraine: results of a magnetic resonance spectroscopy imaging study.

    Science.gov (United States)

    Gu, Tao; Lin, Lei; Jiang, Yun; Chen, Juan; D'Arcy, Ryan Cn; Chen, Min; Song, Xiaowei

    2018-01-01

    Acupuncture has been proven to be effective as an alternative therapy in treating migraine, but the pathophysiological mechanisms of the treatment remain unclear. This study investigated possible neurochemical responses to acupuncture treatment. Proton magnetic resonance spectroscopy imaging was used to investigate biochemical levels pre- and post-acupuncture treatment. Participants (N=45) included subjects diagnosed with: 1) migraine without aura; 2) cervicogenic headache; and 3) healthy controls. Participants in the two patient groups received verum acupuncture using acupoints that target migraine without aura but not cervicogenic headache, while the healthy controls received a sham treatment. All participants had magnetic resonance spectroscopy scans before and after the acupuncture therapy. Levels of brain metabolites were examined in relation to clinical headache assessment scores. A significant increase in N -acetylaspartate/creatine was observed in bilateral thalamus in migraine without aura after the acupuncture treatment, which was significantly correlated with the headache intensity score. The data demonstrate brain biochemical changes underlying the effect of acupuncture treatment of migraine.

  18. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  19. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  20. A 2-in-1 single-element coil design for transcranial magnetic stimulation and magnetic resonance imaging.

    Science.gov (United States)

    Lu, Hai; Wang, Shumin

    2018-01-01

    To demonstrate the feasibility of turning transcranial magnetic stimulation (TMS) coil for MRI signal reception. A critically coupled network was formed by using a resonated turn of TMS coil as the secondary and a regular radiofrequency (RF) coil as the primary. A third coil was positioned between the two coils for detuning during RF transmission. Bench measurement, numerical simulation, and MRI experiment were performed for validation. The signal-to-noise ratio of the proposed 2-in-1 coil is 35% higher in its field of view, compared with a MRI-only reference coil of the same size, made by the same material, and backed up by an untuned TMS coil, but lower than a RF surface coil of the same size without any TMS coil nearby. Spin-echo images of the human brain further validated its performance. The proposed method can transform TMS coil for MRI signal acquisition with virtually no modifications on the TMS side. It not only enables flexible and close positioning of TMS coil inside MRI scanner, but also improves the signal-to-noise ratio compared with conventional implementations. It can be applied as a building block for developing advanced concurrent TMS/MRI hardware. Magn Reson Med 79:582-587, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Brain activity associated with memory and cognitive function during jaw-tapping movement in healthy subjects using functional magnetic resonance imaging.

    Science.gov (United States)

    Cho, Seung-Yeon; Shin, Ae-Sook; Na, Byung-Jo; Jahng, Geon-Ho; Park, Seong-Uk; Jung, Woo-Sang; Moon, Sang-Kwan; Park, Jung-Mi

    2013-06-01

    To determine whether jaw-tapping movement, a classically described as an indication of personal well-being and mental health, stimulates the memory and the cognitive regions of the brain and is associated with improved brain performance. Twelve healthy right-handed female subjects completed the study. Each patient performed a jaw-tapping task and an n-back task during functional magnetic resonance imaging (fMRI). The subjects were trained to carry out the jaw-tapping movement at home twice a day for 4 weeks. The fMRI was repeated when they returned. During the first and second jaw-tapping session, both sides of precentral gyrus and the right middle frontal gyrus (BA 6) were activated. And during the second session of the jaw-tapping task, parts of frontal lobe and temporal lobe related to memory function were more activated. In addition, the total percent task accuracy in n-back task significantly increased after 4 weeks of jawtapping movement. After jaw-tapping training for 4 weeks, brain areas related to memory showed significantly increased blood oxygen level dependent signals. Jaw-tapping movement might be a useful exercise for stimulating the memory and cognitive regions of the brain.

  2. Brain glutamate in anorexia nervosa: a magnetic resonance spectroscopy case control study at 7 Tesla.

    Science.gov (United States)

    Godlewska, Beata R; Pike, Alexandra; Sharpley, Ann L; Ayton, Agnes; Park, Rebecca J; Cowen, Philip J; Emir, Uzay E

    2017-02-01

    Anorexia nervosa (AN) is a serious psychiatric disorder with high morbidity and mortality. There are no established pharmacological treatments and the neurobiology of the condition is poorly understood. Previous studies using magnetic resonance spectroscopy (MRS) have shown that AN may be associated with reductions in indices of brain glutamate; however, at conventional field strengths (≤3 T), it is difficult to separate glutamate from its precursor and metabolite, glutamine. The objective of the present study was to use high field (7 T) MRS to measure concentrations of glutamate, in three separate brain voxels, in women with AN. We studied 13 female participants with AN and 12 healthy female controls who underwent MRS scanning at 7 T with voxels placed in anterior cingulate cortex, occipital cortex and putamen. Neurometabolites were calculated using the unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid concentration in the voxel. We found that participants with AN had significantly lower concentrations of glutamate in all three voxels (mean reduction 8%, p = 0.002) but glutamine levels were not altered. Concentrations of N-acetylaspartate, creatine, GABA and glutathione were also unchanged. However, inositol was lower in AN participants in anterior cingulate (p = 0.022) and occipital cortex (p = 0.002). Women with AN apparently have widespread reductions in brain glutamate. Further work will be needed to assess if this change has pathophysiological relevance or whether it is a consequence of the many physical changes produced in AN by food restriction.

  3. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  4. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    International Nuclear Information System (INIS)

    Khosravie, H.R.

    2000-01-01

    Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effects of thumb motor cortex of normal volunteer by using conventional standard 1.5 T imager and optimized gradient echo techniques. Activating sensory and motor stimulations can be led to, respective cortical area of that stimulation by which oxygenated blood flow is increased in that area (Bold contrast). By designing of a T 2* sensitized gradient echo protocol, thumb's sensory and motor cortex activation is evaluated. A protocol known as F AST i n picker system with the following specifications was used for F MRI: Band Width:24 Hz/Pixel, Tr=101 m Sec , T E=49 m Sec , Flip Angle= 10 deg., N E X=1 ,Slice thickness=5-7 mm F O V=250 mm ,Matrix=128*128 and total scan time= 14 Sec. Stimulation of the motor cortex was performed by periodic movement of dominant thumb in up-down and right-left direction within a Ls hape trajectory of plastic sheet with a frequency about 2 Hz. Then, acquired images in rest and stimulation period were evaluated by S P M 97, S P M 99 b software. During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T

  5. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  6. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  7. Evaluation of Parkinson's disease using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Vedolin, Leonardo; Marchiori, Edson; Rieder, Carlos

    2004-01-01

    The objective of this study was to evaluate the magnetic resonance imaging findings in patients with Parkinson's disease. In the period from October 1999 to October 2002, 42 patients with parkinsonism were investigated using a 1.5 T MR equipment. Patients were divided into two groups: patients with Parkinson's disease (n = 26) and patients with atypical Parkinsonian syndrome (n = 16). The results were compared with a control group (n = 18). The following variables were evaluated: thickness of the mesencephalon compact pars, hypointense signal in the putamen, degree of brain atrophy, lesions in the mesencephalon, lesions in the white matter, and the presence of lesions in the posterior-lateral edge of the putamen. Statistical data analysis was carried out using the SPSS program. Results: The mean age was 58.2 years for the Parkinson's disease and control groups, and 60.5 years for the atypical Parkinsonian syndrome group. Patients with Parkinson's disease and atypical Parkinsonian syndromes presented decreased thickness of the compact pars and a higher degree of signal hypointensity in the putamen. Cerebral atrophy was more prominent in the patients with atypical Parkinsonian syndrome. Lesions in mesencephalon and white matter were similar in both groups. The frequency of hyperintense signal in the posterior-lateral edge of the putamen was low within the studied population, although that could suggest multiple-system atrophy. Magnetic resonance imaging allows the detection of brain morphological changes that may help in the diagnosis of Parkinsonian syndromes. (author)

  8. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  9. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation.

    Science.gov (United States)

    Dogan, M; Turtay, M G; Oguzturk, H; Samdanci, E; Turkoz, Y; Tasdemir, S; Alkan, A; Bakir, S

    2012-06-01

    The effects of electromagnetic radiation (EMR) produced by a third-generation (3G) mobile phone (MP) on rat brain tissues were investigated in terms of magnetic resonance spectroscopy (MRS), biochemistry, and histopathological evaluations. The rats were randomly assigned to two groups: Group 1 is composed of 3G-EMR-exposed rats (n = 9) and Group 2 is the control group (n = 9). The first group was subjected to EMR for 20 days. The control group was not exposed to EMR. Choline (Cho), creatinin (Cr), and N-acetylaspartate (NAA) levels were evaluated by MRS. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were measured by spectrophotometric method. Histopathological analyses were carried out to evaluate apoptosis in the brain tissues of both groups. In MRS, NAA/Cr, Cho/Cr, and NAA/Cho ratios were not significantly different between Groups 1 and 2. Neither the oxidative stress parameters, CAT and GSH-Px, nor the number of apoptotic cells were significantly different between Groups 1 and 2. Usage of short-term 3G MP does not seem to have a harmful effect on rat brain tissue.

  10. Clinical application of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Alwatban, Adnan Z.W.

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  11. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  12. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study.

    Directory of Open Access Journals (Sweden)

    Nicolás Fayed

    Full Text Available INTRODUCTION: This work aimed to determine whether (1H magnetic resonance imaging (MRI, magnetic resonance spectroscopy (MRS, diffusion-weighted imaging (DWI and diffusion tensor imaging (DTI are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. MATERIALS AND METHODS: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. (1H-MRS (1.5 T of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC and fractional anisotropy (FA by MR-DTI. RESULTS: Myo-inositol (mI was increased in the posterior cingulate gyrus and Glutamate (Glu, N-acetyl-aspartate (NAA and N-acetyl-aspartate/Creatine (NAA/Cr was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019. We also found significant negative correlations between Glu (r = -0.452; p = .045, NAA (r = -0.617; p = .003 and NAA/Cr (r = -0.448; P = .047 in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = -0.4850, p = .0066. CONCLUSIONS: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators.

  13. Brain Changes in Long-Term Zen Meditators Using Proton Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: A Controlled Study

    Science.gov (United States)

    Fayed, Nicolás; Lopez del Hoyo, Yolanda; Andres, Eva; Serrano-Blanco, Antoni; Bellón, Juan; Aguilar, Keyla; Cebolla, Ausias; Garcia-Campayo, Javier

    2013-01-01

    Introduction This work aimed to determine whether 1H magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. Materials and Methods Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. 1H-MRS (1.5 T) of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL) and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC) and fractional anisotropy (FA) by MR-DTI. Results Myo-inositol (mI) was increased in the posterior cingulate gyrus and Glutamate (Glu), N-acetyl-aspartate (NAA) and N-acetyl-aspartate/Creatine (NAA/Cr) was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019). We also found significant negative correlations between Glu (r = −0.452; p = .045), NAA (r = −0.617; p = .003) and NAA/Cr (r = −0.448; P = .047) in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC) in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = −0.4850, p = .0066). Conclusions The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators. PMID:23536796

  14. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  15. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  16. Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways

    International Nuclear Information System (INIS)

    Ozdoba, C.; Remonda, L.; Loevblad, K.O.; Schroth, G.; Nirkko, A.C.

    2002-01-01

    To investigate cortical, basal ganglia and cerebellar activation in patients with arteriovenous malformations (AVMs) involving the motor pathways, we studied ten patients (six male, four female, mean age 30.3 years, range 7.4-44.1) by whole-brain functional magnetic resonance imaging (fMRI) in a 1.5-T scanner with the EPI-BOLD-technique. In seven cases multiple fMRI studies were available, acquired in the course of the multi-session endovascular interventional treatment. Self-paced right- and left-handed finger-tapping tasks were used to invoke activation. In six patients a super-selective amytal test (Wada test) was performed during diagnostic pre-interventional angiography studies. Abnormal cortical activation patterns, with activation of the primary sensorimotor area, the supplementary motor area and/or the cerebellum shifted to unphysiological locations, were found in four patients. In all cases, localization of the AVM could account for the changes from the normal. After endovascular procedures, fMRI demonstrated shifts in the activation pattern in three patients. In the six patients that had undergone fMRI studies and the Wada test, both methods yielded comparable results. The fact that AVMs are structural anomalies for which the brain can partly compensate ('plasticity') was underlined by these results. fMRI is a valuable tool in the pre-therapeutic evaluation and post-interventional follow-up of patients with cerebral AVMs in whom an operation or an endovascular procedure is planned. (orig.)

  17. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    Science.gov (United States)

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  18. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  19. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  20. Brain metastasis of small cell lung carcinoma. Comparison of Gd-DTPA enhanced magnetic resonance imaging and enhanced computerized tomography

    International Nuclear Information System (INIS)

    Nomoto, Yasushi; Yamaguchi, Yutaka; Miyamoto, Tadaaki.

    1994-01-01

    Small cell carcinoma of the lung (SCLC) frequently metastasizes into the brain, resulting in serious influences upon prognosis. Delayed brain damage caused by prophylactic cranial irradiation (PCI) is also problematic. Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI) was performed to detect early brain metastasis from SCLC, and its usefulness was compared with contrast computerized tomography (CT). Among 25 SCLC patients, brain metastasis was detected in 11 by MRI and in 10 by CT, although six of them were completely asymptomatic. In the 11 patients, 6.3 and 2.4 lesions were respectively detected on average by MRI and CT. The ability of MRI to detect metastatic lesions of ≥15 mm diameter did not differ from that of CT, but became different as lesions became smaller (P<0.002), and MRI had a decided advantage over CT because as many as 30 lesions of ≤5 mm diameter were detected by MRI, whereas such lesions visualized on CT numbered only one (P<0.0001). MRI was incomparably superior to CT (P<0.0004) for subtentorial lesions since 18 lesions were detected on MRI, but only three, measuring ≥25 mm in diameter, were demonstrated on CT. Gd-DTPA enhanced MRI was determined to be extremely useful in the early diagnosis of SCLC brain metastasis. MRI was thought to reduce delayed brain damage caused by PCI if performed according to an adequate schedule. (author)

  1. Soap bubble appearance in brain magnetic resonance imaging: cryptococcal meningoencephalitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha e Silva Vieira

    2013-09-01

    Full Text Available Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.

  2. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  3. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available OBJECTIVE: To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB. METHODS: Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz. RESULTS: Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07. |G*|, which in solids more relates to the material's stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001. However, some GB (5 of 22 showed increased stiffness. CONCLUSION: GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.

  4. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kurca, E.; Sivak, S.; Kucera, P.

    2006-01-01

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  5. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurca, E.; Sivak, S. [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Kucera, P. [Comenius University, 1st Clinic of Neurology, Faculty of Medicine, Bratislava (Slovakia)

    2006-09-15

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  6. Magnetic resonance imaging of the brain in congenital cytomegalovirus infection

    International Nuclear Information System (INIS)

    Boesch, C.; Issakainen, J.; Kewitz, G.; Kikinis, R.; Martin, E.; Boltshauser, E.

    1989-01-01

    The children (age 2 months to 8 years) with a congenital cytomegalovirus (CMV) infection were studied by magnetic resonance imaging (MRI) using a 2.35 Tesla magnet. CMV infection was confirmed by serological investigations and virus culture in the neonatal period. Nine children had severe mental retardation and cerebral palsy, 1 patient suffered from microcephaly, ataxia and deafness. The cranial MRI examination showed the following abnormalities (N): Dilated lateral ventricles (10) and subarachnoid space (8), oligo/pacgyria (8), delayed/pathological myelination (7), paraventricular cysts (6), intra-cerebral calcification (1). This lack of sensitivity for calcification is explainable by the basic principles of MRI. The paraventricular cystic lesions were adjacent ot the occipital horns of the lateral ventricles and separated only by a thin membrane. This finding might represent a 'new sign' for congenital CMV infection in MRI examinations, being characteristic but nevertheless nonspecific, like calcification in CT. (orig.)

  7. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help

  8. Artificial neural networks for stiffness estimation in magnetic resonance elastography.

    Science.gov (United States)

    Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L

    2018-07-01

    To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2  = 0.974) and in the brain (R 2  = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med 80:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Role of ultrasonography and magnetic resonance imaging in the diagnosis of intramuscular cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sujit Kumar [Postgraduate Institute of Medical Education and Research, Department of Orthopedics, Chandigarh (India); Friarage Hospital, Department of Orthopedics, Northallerton (United Kingdom); Sen, Ramesh Kumar; Akkina, Narendranadh; Hampannavar, Aravind; Tahasildar, Naveen [Postgraduate Institute of Medical Education and Research, Department of Orthopedics, Chandigarh (India); Limaye, Rajiv [Friarage Hospital, Department of Orthopedics, Northallerton (United Kingdom)

    2012-09-15

    Nonspecific clinical presentations often lead to misdiagnosis of focal cysticercal myositis. This report emphasizes the role of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of solitary intramuscular cysticercosis. Six patients with persistent post-traumatic isolated muscular swelling were treated with analgesic and antibiotics, but the swelling did not subside. Radiographs showed soft tissue swelling with no bony abnormalities. Laboratory markers were inconclusive. Ultrasonographic and magnetic resonance images (MRI) showed typical features of intramuscular cysticercosis. Clinical, radiological, and fundoscopic evaluation of brain and eyes could not isolate any cysticercosis focus in these organs. Patients were treated with 3 weeks albendazole therapy. The identifying sonographic features of intramuscular cysticercosis, as evident from this case series, included an intramuscular elliptical or oval anechoic lesion with echogenic intralesional focus likely to be scolex. Magnetic resonance images showed orientation of the cyst along the direction of muscle fibers with T2W hyperintense signal and post-contrast perilesional enhancement. All patients responded to medical treatment. Cysticercosis may manifest as isolated muscular swelling without neurological or ocular involvement. Clinicians should be aware of this clinical condition to avoid misdiagnosis. Ultrasonography and magnetic resonance imaging are good diagnostic aids to establish soft tissue cysticercosis. (orig.)

  10. Role of ultrasonography and magnetic resonance imaging in the diagnosis of intramuscular cysticercosis

    International Nuclear Information System (INIS)

    Tripathy, Sujit Kumar; Sen, Ramesh Kumar; Akkina, Narendranadh; Hampannavar, Aravind; Tahasildar, Naveen; Limaye, Rajiv

    2012-01-01

    Nonspecific clinical presentations often lead to misdiagnosis of focal cysticercal myositis. This report emphasizes the role of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of solitary intramuscular cysticercosis. Six patients with persistent post-traumatic isolated muscular swelling were treated with analgesic and antibiotics, but the swelling did not subside. Radiographs showed soft tissue swelling with no bony abnormalities. Laboratory markers were inconclusive. Ultrasonographic and magnetic resonance images (MRI) showed typical features of intramuscular cysticercosis. Clinical, radiological, and fundoscopic evaluation of brain and eyes could not isolate any cysticercosis focus in these organs. Patients were treated with 3 weeks albendazole therapy. The identifying sonographic features of intramuscular cysticercosis, as evident from this case series, included an intramuscular elliptical or oval anechoic lesion with echogenic intralesional focus likely to be scolex. Magnetic resonance images showed orientation of the cyst along the direction of muscle fibers with T2W hyperintense signal and post-contrast perilesional enhancement. All patients responded to medical treatment. Cysticercosis may manifest as isolated muscular swelling without neurological or ocular involvement. Clinicians should be aware of this clinical condition to avoid misdiagnosis. Ultrasonography and magnetic resonance imaging are good diagnostic aids to establish soft tissue cysticercosis. (orig.)

  11. Magnetization transfer on T2-weighted image : magnetization Transfer ratios in normal brain and cerebral lesions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Myung Kwan; Roh, Hong Gee; Suh, Chang Hae; Cho, Young Kook; Kim, Hyung Jin; Kim, Jin Hee; Kim, Sung Tae; Choi, Sung Kyu [Inha Univ. College of Medicine, Incheon (Korea, Republic of)

    1998-07-01

    To evaluate the magnetization transfer ratio(MTR) of various normal structures and pathologic lesions, as seen on magnetization transfer T2-weighted images (MT+T2WI). Materials and Methods : In ten normal volunteers, T2-weighted images without MT (MT-T2WI) and with MT(MT+T2WI) were obtained. Off-set pulses used in MT+T2WI were 400, 600, 1000, 1500, and 2000Hz. In 60 clinical cases infarction(n=10), brain tumors(n=5), traumatic hematomas(n=5), other hematomas(n=3) vascular malformation(n=2) white matter disease(n=2) normal(n=31) and others(n=2), both MT-T2WI and MT+T2WI images were obtained using an off-set pulse of 600 Hz. In all volunteers and patients, MTR in various normal brain parenchyma and abnormal areas was measured. Results : The MTRs of white and gray matter were 48% and 45% respectively at 400 Hz, 26% and 22% at 600Hz, 12% and 11% of 1000Hz, 10% and 9% 1500HZ, and 9% and 8% at 2000Hz of RF. The MTR of CSF was 43% at 400 Hz of off-resonance RF, while the contrast resolution of T2WI was poor. An off-resonance of 600Hz appeared to be the optimal frequency. In diseased areas,MTRs varied but were usually similar to or lower than those of brain parenchyma. Conclusion : The optimal off-resonance RF on MT+T2WI appears to be 600 Hz for relatively high MTR of brain parenchyma and low MTR of CSF,in which MTRs of white and gray matter were 26% and 22%, respectively, of 600Hz off-set pulse. The MTRs of cerebral lesions varied and further studies of various cerebral lesions are needed.

  12. HLA typing in acute optic neuritis. Relation to multiple sclerosis and magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Frederiksen, J.L.; Madsen, H.O.; Ryder, L.P.

    1997-01-01

    OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients with ON refe......OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients......: The frequency of HLA-DR15 was significantly increased in patients with ON + CDMS (52%) and ON (47%) compared with control subjects (31%). The frequency of HLA-DR17 was almost equal in the ON + CDMS (18%), ON (23%), and control (23%) groups. The frequencies of HLA-DQA-1B (55% in ON + CDMS, 58% in ON) and HLA...

  13. Magnetic resonance imaging by using nano-magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Khorramdin, A. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Isapour, Gh. [Department of Materials and Engineering, Hakim Sabzevari University (Iran, Islamic Republic of)

    2014-11-15

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants. - Highlights: • This paper studies the physics of MRI as a powerful diagnostic technique. • MRI uses the differentiation between healthy and pathological tissues. • The relaxation times can be shortened by the use of a magnetic contrast agent. • The magnetic nanoparticles act as contrast agents, helping to increase the resolution. • Different synthesis methods can influence the magnetic resonance behavior.

  14. Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity.

    Science.gov (United States)

    De Pasquale, Francesco; Caravasso, Chiara Falletta; Péran, Patrice; Catani, Sheila; Tuovinen, Noora; Sabatini, Umberto; Formisano, Rita

    2015-01-01

    The aim of this preliminary study was to present a new approach for connectivity analysis in patients with severe acquired brain injury (ABI) that overcomes some of the difficulties created by anatomical abnormalities due to the brain injury. Using a data-driven approach, resting-state structural MRI (sMRI) and functional MRI (fMRI) data from three severe ABI patients - two with disorders of consciousness (DOC) and one who had recovered consciousness (non-DOC) - were integrated and analyzed. Parameters extracted from the distribution of the connectivity values, such as mean, standard deviation and skeweness, were considered. The distribution parameters estimated seem to provide an accurate multivariate classification of the considered cases that can be summarized as follows: connectivity in the severe ABI patients with DOC was on average lower than in the severe ABI non-DOC patient and healthy subjects. The dispersion of connectivity values of the severe ABI patients, non-DOC and DOC, was comparable, however the shape of the distribution was different in the non-DOC patient. Eventually, seed-based connectivity maps of the default mode Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity network show a pattern of increasing disruption of this network from the healthy subjects to non-DOC and DOC patients. Consistent results are obtained using an ICA-based approach..

  15. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    Science.gov (United States)

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  16. Cerebral Magnetic Resonance Spectroscopy Demonstrates Long-Term Effect of Bone Marrow Transplantation in α-Mannosidosis

    DEFF Research Database (Denmark)

    Danielsen, Else R; Lund, Allan M; Thomsen, Carsten

    2013-01-01

    α-Mannosidosis, OMIM #248500, is an autosomal recessive lysosomal storage disease caused by acidic α-mannosidase deficiency. Treatment options include bone marrow transplantation (BMT) and, possibly in the future, enzyme replacement therapy. Brain magnetic resonance spectroscopy (MRS) enables non...

  17. Early detection of ventilation-induced brain injury using magnetic resonance spectroscopy and diffusion tensor imaging: an in vivo study in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Béatrice Skiöld

    Full Text Available BACKGROUND AND AIM: High tidal volume (VT ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS and/or diffusion tensor imaging (DTI can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. METHODS: Newborn lambs (0.85 gestation were stabilized with a "protective ventilation" strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP 5 cmH2O or an initial 15 minutes of "injurious ventilation" (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla. For measures of mean/axial/radial diffusivity (MD, AD, RD and fractional anisotropy (FA, 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac relative to N-acetylaspartate (NAA, choline (Cho and creatine (Cr were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. RESULTS: No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. CONCLUSION: Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is

  18. Brain magnetic resonance imaging findings in cryptogenic stroke patients under 60 years with patent foramen ovale

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Claire, E-mail: claire.boutet@chu-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Rouffiange-Leclair, Laure, E-mail: laurerouffiange@hotmail.com [Department of Radiology, University Hospital of Saint-Etienne (France); Garnier, Pierre, E-mail: pierre.garnier@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Quenet, Sara, E-mail: sara.quenet@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Delsart, Daphné, E-mail: daphne.delsart@hotmail.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Therapeutic Medicine, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne (France); Inserm, CIE3, F-42055 Saint-Etienne (France); Varvat, Jérôme, E-mail: jvarvat@9online.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Epinat, Magali, E-mail: magali.epinat@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Schneider, Fabien, E-mail: fabien.schneider@univ-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Antoine, Jean-Christophe, E-mail: j.christophe.antoine@chu-st-etienne.fr [Department of Neurology, University Hospital of Saint-Etienne (France); Lyon Neuroscience Research Center, INSERM U1028 – CNRS UMR5292 (France); EA 4338, Jean Monnet University, Saint-Etienne (France); and others

    2014-05-15

    Purpose: To compare magnetic resonance imaging (MRI) brain feature in cryptogenic stroke patients with patent foramen ovale (PFO), cryptogenic stroke patients without PFO and patients with cardioembolic stroke. Materials and methods: The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients’ medical records and imaging data. The patients’ medical files were retrospectively reviewed in accordance with human subject research protocols. Ninety-two patients under 60 years of age were included: 15 with cardioembolic stroke, 32 with cryptogenic stroke with PFO and 45 with cryptogenic stroke without PFO. Diffusion-weighted imaging of brain MRI was performed by a radiologist blinded to clinical data. Univariate, Fischer's exact test for qualitative data and non-parametric Wilcoxon test for quantitative data were used. Results: There was no statistically significant difference found between MRI features of patients with PFO and those with cardioembolic stroke (p < .05). Patients without PFO present more corticosubcortical single lesions (p < .05) than patients with PFO. Patients with PFO have more often subcortical single lesions larger than 15 mm, involvement of posterior cerebral arterial territory and intracranial occlusion (p < .05) than patients with cryptogenic stroke without PFO. Conclusion: Our study suggests a cardioembolic mechanism in ischemic stroke with PFO.

  19. Effects of peripubertal gonadotropin-releasing hormone agonist on brain development in sheep--a magnetic resonance imaging study.

    Science.gov (United States)

    Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold

    2013-10-01

    In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Early Magnetic Resonance Detection of Natalizumab-Related Progressive Multifocal Leukoencephalopathy in a Patient with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Guglielmo Manenti

    2013-01-01

    Full Text Available Diagnosis of progressive multifocal leukoencephalopathy is usually based on the clinical presentation, on the demonstration of the brain lesions at the magnetic resonance imaging examination, and on the detection of the JC virus DNA in the cerebrospinal fluid with high sensitive polymerase chain reaction. The role of magnetic resonance imaging specifically in natalizumab-associated progressive multifocal leukoencephalopathy is strengthening, and it is gaining importance not only as an irreplaceable diagnostic tool but also as a surveillance and risk stratifying tool in treated patients. While other imaging techniques such as computed tomography lack sensitivity and specificity, magnetic resonance performed with morphological and functional sequences offers clinicians the possibility to early identify the stage of the disease and the emergence of an immune reconstitution inflammatory syndrome after natalizumab blood removal plasmapheresis.

  1. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  2. Cerebral magnetic resonance in-patient with metallic staple, yasargil type for hemostasia of intracranial aneurysm

    International Nuclear Information System (INIS)

    Morillo, Anibal

    1993-01-01

    Report of a case of magnetic resonance (MR) of the brain; done without complications in a patient with a yasargil intracranial aneurysm clip. The risks and precautions necessary for the performance of MR examinations in this type of patients are discussed

  3. The application of functional magnetic resonance imaging to neuropharmacology.

    Science.gov (United States)

    Shah, Yasmene B; Marsden, Charles A

    2004-10-01

    The technique of functional magnetic resonance imaging (fMRI) has the capacity to acquire data with spatial and temporal resolution that far exceeds other currently available methods of non-invasive investigation of brain function. This coupled with its ability for serial studies makes it an attractive prospect for investigating the effects of pharmacological agents in the brain. Recent advances in fMRI have been made in the areas of reward and dependence, brain trauma and injury, psychotropic drugs and pain using small animals. Although the use of fMRI in pharmacological studies is becoming popular, there are various associated complications, such as the possible interference of drugs with the mechanisms that give rise to the pharmacological fMRI signal, and local or global cardiovascular changes that might produce functional responses unrelated to neural activity. Consideration of these concerns, coupled with careful attention to experimental detail and verification procedures, promises to make pharmacological fMRI use a valuable tool for understanding the actions of drugs in the brain.

  4. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  5. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  6. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  7. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  8. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    International Nuclear Information System (INIS)

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-01

    Research highlights: → The effect of MRI on the developing brain is a matter of debate. → Repeated exposure to MRI did not affect neurogenesis. → Memory function was not affected by repeated MRI during development. → Neither late gestation nor young postnatal brains were affected by MRI. → Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 o C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  9. The importance of preoperative magnetic resonance imaging in valve surgery for active infective endocarditis

    International Nuclear Information System (INIS)

    Takagi, Yasushi; Higuchi, Yoshiro; Kondo, Hiroshi; Akita, Kiyotoshi; Ishida, Michiko; Kaneko, Kan; Hoshino, Ryo; Sato, Masato; Ando, Motomi

    2011-01-01

    Valve surgery for active infective endocarditis (IE) can cause fatal brain hemorrhage. Our current study aimed to evaluate the incidence of septic cerebral lesions in active IE patients by performing preoperative magnetic resonance imaging (MRI) including T 2 *-weighted sequences and magnetic resonance angiography (MRA) before urgent valve surgery, and to investigate whether such preoperative evaluation affects postoperative outcomes. Eighteen patients were referred to our department for native valve IE during 2006-2010. Urgent surgery was indicated in cases of hemodynamic failure resulting from valve destruction, refractory sepsis, and mobile vegetations measuring >10 mm. For these patients, we performed preoperative MRI and MRA. Males comprised 67% of the subjects, with average age 53±15 years. No clinical evidence of acute stroke was noted. Of the 18 patients, urgent surgery was indicated in 15; of these, 10 (67%) showed a brain lesion related to IE: 6 patients had acute or subacute brain infarctions, 2 patients had brain infarction with brain abscess, and 2 patients had hemorrhagic brain infarction and so did not undergo urgent surgery. Thus, 13 patients underwent urgent valve surgery. Among the 5 patients who did not undergo urgent surgery, 4 patients later underwent valve surgery for healed IE. No hospital deaths or neurological complications occurred. MRI of patients with active IE revealed a high incidence of cerebral lesions caused by IE. The use of MRI to detect septic embolism and intracerebral hemorrhage may provide important information for better surgical outcomes. (author)

  10. Proton magnetic resonance spectroscopy reflects metabolic decompensation in maple syrup urine disease

    International Nuclear Information System (INIS)

    Heindel, W.; Kugel, H.; Wendel, U.; Roth, B.; Benz-Bohm, G.

    1995-01-01

    Using localized proton magnetic resonance spectroscopy ( 1 H-MRS), accumulation of branchedchain amino acids (BCAA) and their corresponding 2-oxo acids (BCOA) could be non-invasively demonstrated in the brain of a 9-year-old girl suffering from classical maple syrup urine disease. During acute metabolic decompensation, the compounds caused a signal at a chemical shift of 0.9 ppm which was assigned by in vitro experiments. The brain tissue concentration of the sum of BCAA and BCOA could be estimated as 0.9 mmol/l. Localized 1 H-MRS of the brain appears to be suitable for examining patients suffering from maple syrup urine disease in different metabolic states. (orig.)

  11. Magnetic resonance imaging of the brain in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Kazuhiro; Sato, Toshio; Koseki, Keijiro

    1987-09-01

    Cranial magnetic resonance imaging (MRI) was performed in five patients with systemic lupus erythematosus manifested by neurologic symptoms. The results were compared with those of the concurrent X-ray computed tomography (CT). CT scans showed slight cerebral atrophy in four patients, including one with coexisting enlargement of the lateral ventricle. In three of them, MRI scans showed additional abnormal appearance, possibly reflecting cerebral infarction and reversible changes in water content of cerebral tissues. The findings of MRI and CT in a small series of patients was disappointing in the explanation of the occurrence of neurologic symptoms. (Namekawa, K.).

  12. Magnetic resonance imaging of the brain in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Kodama, Kazuhiro; Sato, Toshio; Koseki, Keijiro

    1987-01-01

    Cranial magnetic resonance imaging (MRI) was performed in five patients with systemic lupus erythematosus manifested by neurologic symptoms. The results were compared with those of the concurrent X-ray computed tomography (CT). CT scans showed slight cerebral atrophy in four patients, including one with coexisting enlargement of the lateral ventricle. In three of them, MRI scans showed additional abnormal appearance, possibly reflecting cerebral infarction and reversible changes in water content of cerebral tissues. The findings of MRI and CT in a small series of patients was disappointing in the explanation of the occurrence of neurologic symptoms. (Namekawa, K.)

  13. Incidental extracerebral findings on brain nonenhanced magnetic resonance imaging: frequency, nondetection rate, and clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)

    2017-03-15

    This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)

  14. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  15. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  16. Magnetic resonance annual, 1988

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  17. Measures of Morphological Complexity of Gray Matter on Magnetic Resonance Imaging for Control Age Grouping

    Directory of Open Access Journals (Sweden)

    Tuan D. Pham

    2015-12-01

    Full Text Available Current brain-age prediction methods using magnetic resonance imaging (MRI attempt to estimate the physiological brain age via some kind of machine learning of chronological brain age data to perform the classification task. Such a predictive approach imposes greater risk of either over-estimate or under-estimate, mainly due to limited training data. A new conceptual framework for more reliable MRI-based brain-age prediction is by systematic brain-age grouping via the implementation of the phylogenetic tree reconstruction and measures of information complexity. Experimental results carried out on a public MRI database suggest the feasibility of the proposed concept.

  18. Magnetic Resonance Imaging Study Using True versus Sham Acupuncture

    Directory of Open Access Journals (Sweden)

    Chunxiao Wu

    2014-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3 acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF and regional homogeneity (ReHo was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function.

  19. Magnetic resonance angiography

    Science.gov (United States)

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  20. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    OpenAIRE

    Chico-Ponce de León, Fernando; Platas-Neri, Diana; Muñoz-Delgado, Jairo; Santillán-Doherty, Ana María; Arenas-Rosas, Rita; Trejo, David; Conde, Rubén; Ojeda-Flores, Rafael; Campos-Romo, Aurelio; Castro-Sierra, Eduardo; Cervantes, Juan José; Braun, Marc

    2009-01-01

    The objective of the present qualitative study was to analyze the morphological aspects of the inner cerebral anatomy of two species of primates, using magnetic resonance images (MRI): spider monkey (A. geoffroyi) and human (H. sapiens), on the basis of a comparative study of the cerebral structures of the two species, focusing upon the brain of the spider monkey and, primarily, its limbic system. In spite of being an endemic Western hemisphere species, a fact which is by its own right intere...

  1. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  2. Magnetic resonance imaging for Human T-cell lymphotropic virus type 1 (HTLV1- associated myelopathy/tropical spastic paraparesis patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Fariba Zemorshidi

    2015-06-01

    Full Text Available Introduction: Human T-cell lymphotropic virus type 1 (HTLV-1 associated myelopathy/tropical spastic paraparesis is a chronic progressive neurologic disease which might be associated by brain and spinal cord atrophy and lesions. Here we systematically reviewed the brain and spinal cord abnormalities reported by using magnetic resonance imaging modality on HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Methods: PubMed was searched for all the relevant articles which used magnetic resonance imaging for patients with human HTLV-1 associated myelopathy/tropical spastic paraparesis disease. Included criteria were all the cohort and case series on with at least 10 patients. We had no time limitation for searched articles, but only English language articles were included in our systematic review. Exclusion criteria were none-English articles, case reports, articles with less than 10 patients, spastic paraparesis patients with unknown etiology, and patients with HTLVII. Results: Total of 14 relevant articles were extracted after studying title, abstracts, and full text of the irrelevant articles. Only 2/14 articles, reported brain atrophy incidence. 5/14 articles studied the brain lesions prevalence. Spinal cord atrophy and lesions, each were studied in 6/14 articles.Discussion: According to the extracted data, brain atrophy does not seem to happen frequently in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis. None-specific brain lesions identified in articles are indicative of low specificity of magnetic resonance imaging technique despite its high sensitivity. Conclusion: Prevalence of spinal cord lesions and atrophy in these patients might be due to the degenerative processes associated with aging phenomenon. Further larger studies in endemic areas can more accurately reveal the specificity of magnetic resonance imaging for these patients.

  3. Value of computed tomography and magnetic resonance imaging in diagnosis of central nervous system

    International Nuclear Information System (INIS)

    Walecka, I.; Sicinska, J.; Szymanska, E.; Rudnicka, L.; Furmanek, M.; Walecki, J.; Olszewska, M.; Rudnicka, L.; Walecki, J.

    2006-01-01

    Systemic sclerosis is an autoimmune connective tissue disease characterized by vascular abnormalities and fibrotic changes in skin and internal organs. The aim of the study was to investigate involvement of the central nervous system in systemic sclerosis and the value of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluation of central nervous system involvement in systemic sclerosis. 26 patients with neuropsychiatric symptoms in the course of systemic sclerosis were investigated for central nervous system abnormalities by computed tomography (CT) and magnetic resonance imaging (MRI). Among these 26 symptomatic patients lesions in brain MRI and CT examinations were present in 54% and in 50% patients respectively. Most common findings (in 46% of all patients), were symptoms of cortical and subcortical atrophy, seen in both, MRI and CT. Single and multiple focal lesions, predominantly in the white matter, were detected by MRI significantly more frequently as compared to CT (62% and 15% patients respectively). These data indicate that brain involvement is common in patients with severe systemic sclerosis. MRI shows significantly higher than CT sensitivity in detection focal brain lesions in these patients. (author)

  4. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    Science.gov (United States)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  5. Magnetic resonance imaging of multiple sclerosis brain lesions: A semeiologic study by multiple spin-echo sequences

    International Nuclear Information System (INIS)

    Caires, M.C.; Scheiber, C.; Rumbach, L.; Gounot, D.; Dumitresco, B.; Warter, J.M.; Collard, M.; Chambron, J.

    1986-01-01

    Nuclear magnetic resonance imaging (MRI) if the brain is now known as a very sensitive tool for clearly revealing lesions in white matter, and has thus become important in the study of multiple sclerosis (MS). Since 1981, others have shown the best of MRI: we can see 6 x more lesions than CT. MRI contrast bases mainly on the spatial heterogeneity of the relaxation time of different tissues. The sensitivity depends on the longer T1 and/or T2 of the pathological tissues compared to those of normal tissues. In our series, the authors use mainly T2 weighted MR images and they evaluate their interest for the diagnosis of MS. They study the frequency of the abnormalities and their semeiology in a small number of transversal sections imaged at the level of the lateral ventricles. The authors' aim is to describe the NMR-derived morphological signs of MS and to prospect its interest in the physiopathological studies of this disease

  6. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  7. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  8. Presurgical functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Stippich, C.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.) [de

  9. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  10. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Science.gov (United States)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  11. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen Zhijian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s) -1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  12. Magnetic resonance imaging of hypophysis

    International Nuclear Information System (INIS)

    Malla Huesh, I. V.

    2016-01-01

    Hypothalamic-pituitary diseases represent with wide variety of symptoms in regard with changes in the endocrine function. Magnetic resonance imaging has a crucial role in detecting the morphologic appearance in physiologic conditions, malformative diseases and acquired pathologies. The MR-imaging is established as the method of choice in assessing the changes in the hypothalamic-pituitary axis. The pituitary gland is a complex structure with an important role in the homeostasis of the organism even though it is so small? It is surrounded by bony structures, vessels, nerves and the brain parenchyma. It consists of three parts - anterior called - adenohypophysis, posterior - neurohypophysis and pituitary stalk. The anterior part comprises about 75% of the gland. Computed tomography (CT) has a limited role in detecting the pituitary gland. It is mainly used in cases of elevated intracranial pressure due to suspected apoplexy. The gland's small size, relation to other structures and its soft tissue characteristic make it an accessible region of interest for detecting with MR-imaging. The lack of ionizing energy and the technical advances in the MR-methods are responsible for the creating images with better spatial resolution and signal to noise ratio. The examination is carried out on a standard protocol. It is important that thin slices are executed in sagittal and coronal planes. Performing a sequence, regarding the brain parenchyma is essential, since many malformations of the pituitary gland are associated with other congenital conditions. The examination starts with a T1W sequence to assess the normal anatomic condition of the gland. The intensity of the adenohypophysis is compared to the one in the pons. It is hypointense, whereas the neurohypophysis is hyperintense, due to the lipid neurosecretory granules transported along the hypothalamic-pituitary axis. T2W-images in coronal plane are used to evaluate the hypothalamus, pituitary stalk, optic chiasm, olfactory

  13. Magnetic resonance spectroscopy in schizophrenia. Possibilities and limitations

    International Nuclear Information System (INIS)

    Wobrock, T.; Scherk, H.; Falkai, P.

    2005-01-01

    Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton ( 1 H-MRS) and phosphorus ( 31 P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for 1 H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations ( 31 P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio ( 1 H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia. (orig.) [de

  14. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  15. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  16. Paramagnetic contrast media for magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Presently, a variety of radiofrequency (RF) and magnetic field gradient pulse sequences is used to manipulate magnetic resonance (MR) image contrast. Such manipulation may be performed by altering the RF pulse sequence repetition time (TR), the spin-echo delay time (TE), the inversion-delay time (TI), and the flip angle. The detection and characterization of a lesion or structure may thus be optimized. Although such contrast manipulation is noninvasive, magnetic resonance imaging (MRI) still suffers somewhat from lack of specificity. Also, the use of multiple imaging sequences to locate and characterize a lesion may prolong the imaging time and, thus, might place an economic burden on the system. Paramagnetic pharmaceuticals offer promise in this regard. They shorten tissue relaxation times, thus permitting the use of shorter imaging parameters, and in some circumstances, may obviate additional and more time-consuming pulse sequences. Paramagnetics could expand the sensitivity and specificity of MRI and provide functional information with regard to tissue perfusion, tissue viability, and blood-brain barrier integrity

  17. Diffusion-Weighted Magnetic Resonance Imaging in Rhombencephalitis due to Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hatipoglu, H.G.; Onbasioglu Gurbuz, M.; Sakman, B.; Yuksel, E. [Dept. of Radiology, Ankara Numune Education and Research Hospital, Ankara (Turkey)

    2007-04-15

    We present diffusion-weighted imaging findings of a case of rhombencephalitis due to Listeria monocytogenes. It is a rare, life-threatening disorder. The diagnosis is difficult by clinical findings only. In this report, we aim to draw attention to the role of conventional and diffusion-weighted magnetic resonance imaging findings. To our knowledge, this is the first case report in the literature with apparent diffusion coefficient values of diseased brain parenchyma.

  18. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    International Nuclear Information System (INIS)

    Hughes, David G.; Jackson, Alan; Mason, Damon L.; Berry, Elizabeth; Hollis, Sally; Yates, David W.

    2004-01-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  19. Magnetic Resonance Imaging. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  20. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified.

  1. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  2. Principles of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mlynarik, V.; Tkac, I.; Srbecky, M.

    1995-01-01

    The aim of this review is to describe and explain the basic principles of magnetic resonance imaging. The first part of the text is devoted to the phenomenon of magnetic resonance (the interaction of RF magnetic field with the set of magnetic moments in the homogeneous magnetic field) and to relaxation processes. Then, the creation of MR image is described (slice selection, phase and frequency encoding of spatial information). The basic and the most frequently used techniques are explained (spin echo, gradient echo). The way the repetition and echo times influence the image quality and contrast (T1 or T2 weighing) is described. The part with the technical description of the MR equipment is included in the review. The MR imagination examination are compared with X-ray computer tomography technique

  3. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  4. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  5. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging

    NARCIS (Netherlands)

    T.J.H. White (Tonya); R.L. Muetzel (Ryan); M. Schmidt (Marcus); S.J.E. Langeslag (Sandra); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); V.D. Calhoun Vince D. (V.); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2014-01-01

    textabstractResting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps

  6. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  7. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  8. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  9. Nonhemorrhagic brain lesions detected by magnetic resonance imaging in closed head injured patients

    International Nuclear Information System (INIS)

    Kinoshita, Yoshihiro; Hiraide, Atsushi; Yoshioka, Toshiji; Sugimoto, Tadashi; Ichimura, Teruhisa; Saito, Akira; Ohno, Yoshioki.

    1990-01-01

    This study evaluated the diagnostic usefulness of magnetic resonance imaging (MRI) in 83 closed head injured patients in whom CT failed to detect focal intra or extraaxial hematoma and/or apparent brain contusion. The patients were divided into three groups on the basis of unconsciousness duration: Group 1 comprised 50 patients diagnosed as having classical cerebral concussion; group 2 comprised 19 patients who presented to the hospital with 6-hr unconsciousness and was recovered within a week; and group 3 comprised 14 patients whose unconsciousness persisted for a week or more. There was no CT evidence of abnormal findings for group 1; and intraventricular hemorrhage and subarachnoid hemorrhage were visualized on CT in 26% and 16%, respectively, for group 2 and 71% and 14% for group 3. Intraaxial nonhemorrhagic lesions were detected on T2-weighted MRI. According to high signal intensity, diffuse axonal injury and cortical contusion could be distinguished; i.e., in the former the corpus callosum, basal ganglia, or brain stem showed a high signal intensity, and in the latter the frontal, temporal, or parietal lobe adjacent to the skull showed a low signal intensity. T2-weighted MRI revealed cortical contusion in 6% for group 1, 37% for group 2, and 14% for group 3; and diffuse axonal injury in 42% for group 2 and 79% for group 3. For 62 patients with normal CT findings, diffuse axonal injury was detected in 88%. There was a good correlation between intraventricular hemorrhage on CT and diffuse axonal injury on MRI. In conclusion, T2-weighted MRI was significantly superior to CT in detecting nonhemorrhagic lesions, and it was of great help for predicting neurologic recovery in closed head injured patients without apparent focal lesions on CT. (N.K.)

  10. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    Science.gov (United States)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  11. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging.

    Science.gov (United States)

    Moriguchi, Yoshiya; Noda, Takamasa; Nakayashiki, Kosei; Takata, Yohei; Setoyama, Shiori; Kawasaki, Shingo; Kunisato, Yoshihiko; Mishima, Kazuo; Nakagome, Kazuyuki; Hanakawa, Takashi

    2017-10-01

    Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  13. Proton magnetic resonance spectroscopy reflects metabolic decompensation in maple syrup urine disease

    Energy Technology Data Exchange (ETDEWEB)

    Heindel, W. [Dept. of Diagnostic Radiology, Univ. Koeln (Germany); Kugel, H. [Dept. of Diagnostic Radiology, Univ. Koeln (Germany); Wendel, U. [Children`s Hospital, Univ. Duesseldorf (Germany); Roth, B. [Children`s Hospital, Univ. Koeln (Germany); Benz-Bohm, G. [Dept. of Diagnostic Radiology, Univ. Koeln (Germany)

    1995-06-01

    Using localized proton magnetic resonance spectroscopy ({sup 1}H-MRS), accumulation of branchedchain amino acids (BCAA) and their corresponding 2-oxo acids (BCOA) could be non-invasively demonstrated in the brain of a 9-year-old girl suffering from classical maple syrup urine disease. During acute metabolic decompensation, the compounds caused a signal at a chemical shift of 0.9 ppm which was assigned by in vitro experiments. The brain tissue concentration of the sum of BCAA and BCOA could be estimated as 0.9 mmol/l. Localized {sup 1}H-MRS of the brain appears to be suitable for examining patients suffering from maple syrup urine disease in different metabolic states. (orig.)

  14. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy.

    Science.gov (United States)

    Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin

    2015-11-01

    Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Quantitative T2* magnetic resonance imaging for evaluation of iron deposition in the brain of β-thalassemia patients.

    Science.gov (United States)

    Akhlaghpoor, S; Ghahari, A; Morteza, A; Khalilzadeh, O; Shakourirad, A; Alinaghizadeh, M R

    2012-09-01

    Iron overload is a common clinical problem in patients with β-thalassemia major. The purpose of this study was to assess the presence of excess iron in certain areas of the brain (thalamus, midbrain, adenohypophysis and basal ganglia) in patients with β-thalassemia major and evaluate the association with serum ferritin and liver iron content. A cross-sectional study on 53 patients with β-thalassemia major and 40 healthy controls was carried out. All patients and healthy controls underwent magnetic resonance imaging (MRI) examinations of the brain and liver. Multiecho fast gradient echo sequence was used and T2* values were calculated based on the Brompton protocol. Correlations between T2* values in the brain with T2* values in the liver as well as serum ferritin levels were investigated. There were no significant differences between patients and healthy controls with respect to age and sex. Patients had significantly lower T2* values in basal ganglia (striatum), thalamus and adenohypophysis compared to controls while there were no differences in the midbrain (red nucleus). There were no significant correlations between liver T2* values or serum ferritin with T2* values of basal ganglia (striatum), thalamus and adenohypophysis in patients or healthy controls. There were no significant correlations between T2* values of adenohypophysis and thalamus or basal ganglia (striatum) while these variables were significantly correlated in healthy controls. Serum ferritin and liver iron content may not be good indicators of brain iron deposition in patients with β thalassemia major. Nevertheless, the quantitative T2* MRI technique is useful for evaluation of brain iron overload in β thalassemia major patients.

  16. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  17. Magnetic resonance imaging of living systems by remote detection

    Science.gov (United States)

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  18. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Hammel, P.C.; Wigen, P.E.

    1996-01-01

    We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics

  19. Lesion evolution after gamma knife irradiation observed by magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Jirák, D.; Náměstková, K.; Herynek, V.; Liščák, R.; Vymazal, J.; Mareš, Vladislav; Syková, Eva; Hájek, M.

    2007-01-01

    Roč. 83, č. 4 (2007), s. 237-244 ISSN 0955-3002 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Grant - others:EU(DE) 512146 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : Gamma knife * Rat brain * Magnetic resonance imaging Subject RIV: FH - Neurology Impact factor: 1.468, year: 2007

  20. Malnutrition and Risk of Structural Brain Changes Seen on Magnetic Resonance Imaging in Older Adults.

    Science.gov (United States)

    de van der Schueren, Marian A E; Lonterman-Monasch, Sabine; van der Flier, Wiesje M; Kramer, Mark H; Maier, Andrea B; Muller, Majon

    2016-12-01

    To study the associations between protein energy malnutrition, micronutrient malnutrition, brain atrophy, and cerebrovascular lesions. Cross-sectional. Geriatric outpatient clinic. Older adults (N = 475; mean age 80 ± 7). Nutritional status was assessed using the Mini Nutritional Assessment (MNA) and according to serum micronutrient levels (vitamins B1, B6, B12, D; folic acid). White matter hyperintensities (WMHs), global cortical brain atrophy, and medial temporal lobe atrophy on magnetic resonance imaging (MRI) were rated using visual rating scales. Logistic regression analyses were performed to assess associations between the three MNA categories (malnutrition (MNA = 17-23.5). Participants at risk of malnutrition (odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.01-3.71) or who were malnourished (OR = 2.80, 95% CI = 1.19-6.60) had a greater probability of having severe WMHs independent of age and sex than those with adequate nutritional status. Results remained significant after further adjustments for cognitive function, depressive symptoms, cardiovascular risk factors, history of cardiovascular disease, smoking and alcohol use, and micronutrient levels. Lower vitamin B1 (OR = 1.51, 95% CI = 1.11-2.08) and B12 (OR = 1.45, 95% CI = 1.02-2.04) levels were also related to greater risk of severe WMHs, independent of age and sex. Results remained significant after additional adjustments. MNA and vitamin levels were not associated with measures of brain atrophy. Malnutrition and lower vitamin B1 and B12 levels were independently associated with greater risk of WMHs. Underlying mechanisms need to be further clarified, and whether nutritional interventions can modify these findings also needs to be studied. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  1. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    Science.gov (United States)

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  2. Measurements using 7.0 T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age.

    Science.gov (United States)

    Lin, Xiangtao; Zhang, Zhonghe; Teng, Gaojun; Meng, Haiwei; Yu, Taifei; Hou, Zhongyu; Fang, Fang; Zang, Fengchao; Liu, Shuwei

    2011-12-01

    In this study, scalar values for the fetal brain from 12 to 20 weeks gestational age were obtained. Fifty-two fetal specimens of 12-20 weeks gestational age with an anatomically normal and developmentally appropriate central nervous system (CNS) were scanned using a 7.0 T magnetic resonance imaging (MRI) scanner. The linear biometric measurements of the brain were then determined. All the measurements (except for the interhemispheric distance) were found to increase linearly with gestational age, although each increased at a different growth rates. The 95% confidence interval for each value was obtained. These data may be considered to be a valuable reference for the assessment of normal fetal brain development in clinical settings and as a supplement to post-mortem MRI or anatomical investigations. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  4. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  5. 1H magnetic resonance spectroscopy of the brain in paediatrics: The diagnosis of creatine deficiencies

    NARCIS (Netherlands)

    Sijens, P.E.; Oudkerk, M.

    2005-01-01

    The diagnosis of creatine deficiencies, a paediatric application of magnetic resonance spectroscopy that has already become a diagnostic tool in clinical practice, is reviewed and illustrated with results from recent examinations

  6. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  7. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Science.gov (United States)

    2011-09-20

    ...] Magnetic Resonance Imaging Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging...

  8. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  9. Functional magnetic resonance imaging for neurosurgical planning in neurooncology

    International Nuclear Information System (INIS)

    Vlieger, Erik-Jan; Majoie, Charles B.; Heeten, Gerard J. den; Leenstra, Sieger

    2004-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that is widely available and can be used to determine the spatial relationships between tumor tissue and eloquent brain areas. Within certain limits, this functional information can be applied in the field of neurosurgery as a pre-operative mapping tool to minimize damage to eloquent brain areas. In this article, we review the literature on the use of fMRI for neurosurgical planning. The issues addressed are: (1) stimulation paradigms, (2) the influence of tumors on the blood oxygenation level-dependent (BOLD) signal, (3) post-processing the fMRI time course, (4) integration of fMRI results into neuronavigation systems, (5) the accuracy of fMRI and (6) fMRI compared to intra-operative mapping (IOM). (orig.)

  10. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    Science.gov (United States)

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  11. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J

    2016-02-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.

  12. Functional magnetic resonance imaging (FMRI) and expert testimony.

    Science.gov (United States)

    Kulich, Ronald; Maciewicz, Raymond; Scrivani, Steven J

    2009-03-01

    Medical experts frequently use imaging studies to illustrate points in their court testimony. This article reviews how these studies impact the credibility of expert testimony with judges and juries. The apparent "objective" evidence provided by such imaging studies can lend strong credence to a judge's or jury's appraisal of medical expert's testimony. However, as the court usually has no specialized scientific expertise, the use of complex images as part of courtroom testimony also has the potential to mislead or at least inappropriately bias the weight given to expert evidence. Recent advances in brain imaging may profoundly impact forensic expert testimony. Functional magnetic resonance imaging and other physiologic imaging techniques currently allow visualization of the activation pattern of brain regions associated with a wide variety of cognitive and behavioral tasks, and more recently, pain. While functional imaging technology has a valuable role in brain research and clinical investigation, it is important to emphasize that the use of imaging studies in forensic matters requires a careful scientific foundation and a rigorous legal assessment.

  13. Magnetic resonance angiography for the head and neck region

    International Nuclear Information System (INIS)

    Aschenbach, R.; Esser, D.

    2004-01-01

    Magnetic resonance angiography is a noninvasive method in vascular imaging using noncontrast- enhanced and contrast-enhanced techniques. The contrast media used in contrast- enhanced magnetic resonance angiography are different from the X-ray contrast media and do not affect the thyroid gland or renal function. In detecting hypervascularized lesions in the head and neck, contrast-enhanced magnetic resonance angiography is the method of choice, which provides an acceptable quality in comparison to digital subtraction angiography. Future developments in magnetic resonance imaging techniques will cause a wider use of magnetic resonance angiography, especially in head and neck imaging. Digital subtraction angiography should therefore only be used in problem cases and for preoperative embolization [de

  14. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  15. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy.

    Science.gov (United States)

    Fiori, Simona; Cioni, Giovanni; Klingels, Katrjin; Ortibus, Els; Van Gestel, Leen; Rose, Stephen; Boyd, Roslyn N; Feys, Hilde; Guzzetta, Andrea

    2014-09-01

    To describe the development of a novel rating scale for classification of brain structural magnetic resonance imaging (MRI) in children with cerebral palsy (CP) and to assess its interrater and intrarater reliability. The scale consists of three sections. Section 1 contains descriptive information about the patient and MRI. Section 2 contains the graphical template of brain hemispheres onto which the lesion is transposed. Section 3 contains the scoring system for the quantitative analysis of the lesion characteristics, grouped into different global scores and subscores that assess separately side, regions, and depth. A larger interrater and intrarater reliability study was performed in 34 children with CP (22 males, 12 females; mean age at scan of 9 y 5 mo [SD 3 y 3 mo], range 4 y-16 y 11 mo; Gross Motor Function Classification System level I, [n=22], II [n=10], and level III [n=2]). Very high interrater and intrarater reliability of the total score was found with indices above 0.87. Reliability coefficients of the lobar and hemispheric subscores ranged between 0.53 and 0.95. Global scores for hemispheres, basal ganglia, brain stem, and corpus callosum showed reliability coefficients above 0.65. This study presents the first visual, semi-quantitative scale for classification of brain structural MRI in children with CP. The high degree of reliability of the scale supports its potential application for investigating the relationship between brain structure and function and examining treatment response according to brain lesion severity in children with CP. © 2014 Mac Keith Press.

  16. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    Science.gov (United States)

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed

  17. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, Lianne; Veltman, Dick J.; Nederveen, Aart; van den Brink, Wim; Goudriaan, Anna E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (H-1 MRS) was used to

  18. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D.J.; Nederveen, A.; van den Brink, W.; Goudriaan, A.E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1 H MRS) was used to

  19. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    Science.gov (United States)

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain. (c) 2005 Wiley-Liss, Inc.

  20. Magnetic resonance imaging in schizophrenia: a morphometric study

    International Nuclear Information System (INIS)

    Castro, Claudio Campi de

    2001-01-01

    Thirty-three patients with chronic schizophrenia and 21 normal subjects were submitted to magnetic resonance imaging studies using a 1.5 T scanner. Axial and coronal T 2-weighted images were obtained. The volumes of the brain, intracranial, supratentorial, infratentorial and the total, ventricular and subarachnoid cerebrospinal fluid volumes were measured using semi-automated morphometric methods. The volumes of the amygdala-hippocampus complex, para hippocampal gyrus cortex, putamen, globus pallidus, temporal lobe, gray and white matter of temporal lobe were also measured. These volumes were normalized using the intracranial volume as reference. The most relevant findings observed were reduced brain volume and increased total, ventricular and subarachnoid cerebrospinal fluid volumes in patients with schizophrenia when compared to the controls. Patients with schizophrenia had also smaller amygdala-hippocampus complexes, temporal lobes and temporal lobe white matter than the controls, as well as increased putamen volumes. (author)