Optimization of multi-layered metallic shield
Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.
Optical properties of metallic multi-layer films
Optical properties of multi-layer films consisting of alternating layers of two different metals are studied on the basis of the Maxwell equations and the Boltzmann transport theory. The influence of free-electron scattering at the film external surface and at the interfaces is taken into account and considered as a function of the electromagnetic field frequency and the structure modulation wavelength. Derived formulas for optical coefficients are valid at low frequencies, where the skin effect is nearly classical, as well as in the near-infrared, visible and ultraviolet spectral ranges, where the skin effect has the anomalous nature. It is shown that the obtained results are apparently dependent on the values of the scattering parameters. What is more, the oscillatory nature of analyzed spectra is observed, where the two oscillation periods may appear on certain conditions. The oscillations result from the electron surface and interface scattering and their amplitudes and periods depend on the boundary conditions for free-electron scattering. Finally, the application of the interference phenomenon in dielectric layers is proposed to obtain the enhancement of the non distinct details which can appear in optical spectra of metallic films. (author). 31 refs, 6 figs
Wenjiong Chen
2016-01-01
Full Text Available We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap on sound absorption performance. The sound absorption coefficient of multi-layered PFMs is calculated using impedance translation theorem. To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single-layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface porosity of the multi-layered fibrous.
Blood-Flow Modelling Along and Trough a Braided Multi-Layer Metallic Stent
Milisic, Vuk
2009-01-01
In this work we study the hemodynamics in a stented artery connected either to a collateral artery or to an aneurysmal sac. The blood flow is driven by the pressure drop. Our aim is to characterize the flow-rate and the pressure in the contiguous zone to the main artery: using boundary layer theory we construct a homogenized first order approximation with respect to epsilon, the size of the stent's wires. This provides an explicit expression of the velocity profile through and along the stent. The profile depends only on the input/output pressure data of the problem and some homogenized constant quantities: it is explicit. In the collateral artery this gives the flow-rate. In the case of the aneurysm, it shows that : (i) the zeroth order term of the pressure in the sac equals the averaged pressure along the stent in the main artery, (ii) the presence of the stent inverses the rotation of the vortex. Extending the tools set up in [Bonnetier et al, Adv. Math. Fluids, 2009, Milisic, Meth. Apl. Ann., 2009] we pro...
Effect of Liquid Media on the Formation of Multi-Layer Graphene-Synthesized Metal Particles.
Lee, Jung Woo; Kim, Tae-Yoo; Cho, Young Lae; Na, Young Il; Kim, Yoon Sik; Song, Young Il; Suh, Su Jeong
2015-11-01
We report a simple approach for the production of copper nanoparticles by a wire explosion process that creates different structures in deionized (DI) water versus isopropyl alcohol (IPA) liquid media. In DI water, copper nanoparticles (CNs) are formed, while multi-layer graphene-synthesized copper nanoparticles (MGCNs) with a high degree of graphitization are formed in the IPA liquid media. The nanoparticles have an average diameter ranging from 10 nm to 300 nm and a quasi-spherical morphology. The morphologies and sizes of nanoparticles formed via this method were characterized by high-resolution transmission electron microscopy (HRTEM), field-emission scattering electron microscopy (FESEM), and analysis of dynamic light scattering (DLS). The microstructures and chemical bonding of the nanoparticles were studied by X-ray diffraction (XRD), Raman spectra measurement, and X-ray photoelectron spectroscopy (XPS). This results show an easily reproducible way to synthesize metal-core nanoparticles with multi-layer graphene shells based onto the liquid media used during synthesis. These materials can be used in the field of energy storage and as additives in the near future. PMID:26726634
Design improvement of three-surface-multi-layered channel by reinforcing inner metal layer
The three-surface-multi-layered channel has been proposed to reduce magnetohydrodynamic (MHD) pressure drop in a liquid lithium blanket for a future fusion reactor. The channel has three inner side coated with an insulating layer other than the first wall side. Furthermore, a thin vanadium alloy layer is placed on the insulating layer. Our previous study showed that the thin metal layer having a thickness less than 0.02 mm, which is too small to insure its structural integrity, is needed for the reduction of MHD pressure drop. In this study, therefore, we propose a new design for the channel, in which the thin vanadium alloy layer is partially reinforced by attaching reinforcing structure such as wires or columns on the insulating-layer side. As a first step, we conduct a three-dimensional MHD flow analysis by taking interval and length of the reinforcing structure as parameters. The results show that MHD pressure drop induced by the reinforcing structures does not show simple correlation with averaged electric conductance of thin metal layer with the reinforcing structures. Furthermore, a high velocity region appears in region of the first wall's side by changing the length of reinforcing structures. (author)
S. Griner
2007-01-01
Full Text Available Purpose: In the work, influence of chemical composition, as well as magnetic and electric properties on abilityof metallic glass screens for shielding of not ionizing electromagnetic fields were analyzed.Design/methodology/approach: The groups of amorphous metallic alloys with iron, iron and nickel and cobaltmatrix were selected for research. Samples of afore-mentioned metallic glasses were examined from the pointof view of structure, magnetic, electric and mechanical properties.Findings: There is possibility of utilization of metallic amorphous materials for screens of not ionizing,electromagnetic fields especially in range of broad-band multi-layers screens with high efficiency of shieldingin wide range of frequencies.Research limitations/implications: Very good magnetic properties and parallel low electric conductivity ofmetallic glasses are not enough for construction of multi-layer broadband screen. Therefore for constructingbroadband screen, which would attenuate much better in wider range of frequencies, we should seek solutionsin multi-layers systems consisting of metallic glass fabrics, layers of large conductivity materials and nonmagneticisolating layers. Problems of determining the number of layers, individual thickness of layer, materialsin relation to optimum costs of the multi-layers screen metallic glasses are unsolved.Practical implications: Attenuation of metallic glass screens show very high possibilities of metallic glasses insolution of problem of shielding electromagnetic fields.Originality/value: There are two general direction of improvement of suppression efficiency of electromagneticfields screens: research of new constructions of elastic screens, and investigation of new materials for screens joinhigher magnetic properties at high conductivity. In this second area, any possibilities exist in metallic nanomaterialsin form of tapes and nanocomposites consisting magnetic powders with amorphous and nanocrystalline
The Deformation of the Multi-Layered Panel of Sheet Metals Under Elevated Temperatures
Lee, Sang-Wook; Woo, Dong-Uk
A Molten Carbonate Fuel Cell (MCFC) stack consists of several layered unit cells. In each unit cell, the stiff structure of the separator plate contains the softer components, such as electrodes. When surface pressure acts on the stack over an extended period of time at elevated temperatures, the stiffness of the separator plate tends to degrade. Moreover, the demands for large electrode area (to increase the electric capacity of a unit cell) and thinner separator plates (to reduce weight) complicate the design of a separator plate with high stiffness. To evaluate the stiffness of the separator plate at elevated temperatures, we design and test a tiny, multi-layered separator plate specimen using a three-point bending tool. To determine the optimal structure of the separator plate, we investigate three design factors: angle, pitch and height. We adopt the Taguchi method to evaluate the experiments, and use finite element analysis to examine the experimental results. Based on these results, pitch is the most effective of these factors. As the pitch narrows, the stiffness of the separator plate increases. Therefore, we propose the pitch factor as a design criterion for the separator plate of the MCFC stack.
张佼; 孙宝德; 夏振海
2004-01-01
Systematical experiments were done at five temperature levels: 500 ℃, 630 ℃, 900 ℃, 1 000 ℃ and 1 100 ℃ to illuminate the layer structure of the multi-layered metal-intermetallic composites of Ni-Al system that were fabricated by a previously reported simple and cost-effective method. The analysis of back scattering photos and XRD examination of specimens reveal that the look like single compound layer is composed of several different components. The primary phase produced during reaction is Ni2 Al3 and there exists a like two-phase field between NiAl3 and Ni2 Al3. The high temperature phases like NiAl and Ni3 Al are also found at low temperature. The results indicate that the key driving force of in-situ reaction is not temperature, but the atom concentration.
Zamani, N.; Keshavarz, A.; Nadgaran, H.
2016-06-01
In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.
This study investigates the preparation of Ge/TiO2 multi-layer films using a differential-pumping co-sputtering system (DPCS). This system has two chambers with different atmospheres, pure Ar for the Ge target and 0.5%O2 in Ar for the TiO2 ceramic target. The optical absorption spectra of the multi-layer films obviously shift to visible and near-infrared regions with increasing Ge layer thickness, while keeping O/Ti composition ratios of 2.3 ± 0.1 in TiO2. X-ray diffraction results indicate that the TiO2 layer forms a single-phase anatase structure in the multi-layer films. X-ray photoelectron spectroscopy also indicates that metallic Ge is dominant in the multi-layer film with negligible Ge-oxide. Therefore, DPCS provides a multi-layer film with a single-phase anatase structure in the TiO2 layer and a dominant metallic element in the Ge layer. - Highlights: • Single-phase anatase structure and dominant metallic Ge in Ge/TiO2 multi-layer films are prepared. • We employ a differential pumping co-sputtering system. • The optical absorption spectra shift to visible and near-infrared regions with increasing Ge layer thickness. • X-ray diffraction results indicate that the TiO2 layer forms a single-phase anatase structure. • X-ray photoelectron spectroscopy also indicates that metallic Ge is dominant in the Ge layer
叠层金属薄板材料的冲裁特性研究%Research on the Characteristics of Multi-layer Sheet Metal Blanking
槐建明; 樊瑜瑾; 郭波江
2012-01-01
There are lots of differences between single-layer metal plate and multi-layer sheet metal in blanking. By comparing those differences, this paper analyzed the stress-strain state of the element found in the deformation region of blanking, and then pointed out that the middle layers of multi-layer sheet are in the three-stress state, showing great plasticity. According to the characteristics an experiment has proposed, through decreasing the clearance between punch and die reasonably, the hydrostatic pressure can be improved in the deforming zone and the cracks can be restrained, so the blanking is deformed in the plastic shear, in order to improve the blanking quality. Further, taking the multi-layer bus punching experiment to confirm the theory, we get the consistent conclusion that multi-layer sheet metal blanking is required smaller clearance than the same thickness of single-layer metal plate. In order to get better blanking quality, a correction factor about 0. 4 should multiply the formula of blanking clearance to determine the multi-layer sheet metal blanking clearance.%在冲裁分离过程中,单层与叠层金属板材存在很大的差异.通过对比2者的不同特点,选取并分析微元体的应力应变状态,发现在叠层冲裁过程中,变形区内中间层的材料处在3向压应力状态,表现出很强的可塑性.分析冲裁中各因素对应力状态的影响发现,合理地减小凸模与凹模的间隙可以提高变形区的静水压,抑制裂纹的产生,使冲裁过程控制在塑剪变形阶段.以叠层母线冲孔为例来验证理论分析,试验结果与分析一致,叠层冲裁比同厚度单层冲裁所要求的模具间隙更小,其值取在普通冲裁间隙经验公式的基础上乘以0.4左右的修正系数为宜.
Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang
2016-06-01
The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.
GaN metal-semiconductor-metal UV sensor with multi-layer graphene as Schottky electrodes
Lee, Chang-Ju; Kang, Sang-Bum; Cha, Hyeon-Gu; Won, Chul-Ho; Hong, Seul-Ki; Cho, Byung-Jin; Park, Hongsik; Lee, Jung-Hee; Hahm, Sung-Ho
2015-06-01
We fabricated a GaN-based metal-semiconductor-metal (MSM)-type UV sensor using a multilayer graphene as transparent Schottky electrodes. The fabricated GaN MSM UV sensor showed a high photo-to-dark current contrast ratio of 3.9 × 105 and a UV-to-visible rejection ratio of 1.8 × 103 at 7 V. The as-fabricated GaN MSM UV sensor with graphene electrodes has a low bias dependence of maximum photoresponsivity and a noise-like response at a visible wavelength in the 500 nm region. These problems were successfully solved by treatment with a buffered oxide etcher (BOE), and the photoresponse characteristics of the fabricated GaN MSM UV sensor after the treatment were better than those before the treatment.
Bökstedt, Marcel
2016-01-01
We study a novel type of braid groups on a closed orientable surface $\\Sigma$. These are fundamental groups of certain manifolds that are hybrids between symmetric products and configuration spaces of points on $\\Sigma$; a class of examples arises naturally in gauge theory, as moduli spaces of vortices in toric fibre bundles over $\\Sigma$. The elements of these braid groups, which we call divisor braids, have coloured strands that are allowed to intersect according to rules specified by a graph $\\Gamma$. In situations where there is more than one strand of each colour, we show that the corresponding braid group admits a metabelian presentation as a central extension of the free Abelian group $H_1(\\Sigma;\\mathbb{Z})^{\\oplus r}$, where $r$ is the number of colours, and describe its Abelian commutator. This computation relies crucially on producing a link invariant (of closed divisor braids) in the three-manifold $S^1 \\times \\Sigma $ for each graph $\\Gamma$. We also describe the von Neumann algebras associated t...
Braided Clifford algebras as braided quantum groups
Durdevic, M
1995-01-01
The paper deals with braided Clifford algebras, understood as Chevalley-Kahler deformations of braided exterior algebras. It is shown that Clifford algebras based on involutive braids can be naturally endowed with a braided quantum group structure. Basic group entities are constructed explicitly.
Hideo Honma
2012-10-01
Full Text Available (1 The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonylcatechol (NBOC or 4-(6-nitroveratryloxycarbonylcatechol (NVOC was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2 Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.
Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose
Wincheski, Buzz; Simpson, John; Hall, George
2008-01-01
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
EDDY CURRENT SYSTEM FOR DETECTION OF CRACKING BENEATH BRAIDING IN CORRUGATED METAL HOSE
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
2002-01-01
On October 13, 2000, the Expedition 3 crew of the International Space Station, high over Tibet, took this interesting photo of the Brahmaputra River. This mighty Asian river carves a narrow west-east valley between the Tibetan Plateau to the north and the Himalaya Mountains to the south, as it rushes eastward for more than 1500 km in southwestern China. This 15-km stretch is situated about 35 km south of the ancient Tibetan capital of Lhasa where the river flow becomes intricately braided as it works and reworks its way through extensive deposits of erosional material. This pattern is indicative of a combination heavy sediment discharge from tributaries and reduction of the river's flow from either a change in gradient or perhaps even climate conditions over the watershed. The light color of the deposits and the milky color of the water is attributed to presence of glacial 'flour,' the fine material created by erosion from glaciers. Besides erosion by water and ice, this scene also depicts features created by wind. Note the delicate field of dunes on the alluvial fan toward the right edge of the image. The riverbed here is at an elevation of over 3,500 m, and with the long west-east extent of this barren valley, strong, persistent westerly winds also move and shape these deposits. Photos such as this one bring immediate visual understanding and appreciation of natural processes in some of the most remote locations on Earth. Image ISS003-E-6632, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
Multi-Layer E-Textile Circuits
Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory
2012-01-01
Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.
Borisova, A.; Bondar, B.; Machulyansky, A.; Rodionov, M.; Yakimenko, Y.; Bovtun, Viktor; Kempa, Martin
New York: IEEE, 2014, s. 164-167. ISBN 978-1-4799-4581-8. [IEEE 34th International Scientific Conference on Electronics and Nanotechnology (ELNANO 2014). Kyiv (UA), 15.04.2014-18.04.2014] R&D Projects: GA ČR GAP204/12/0232 Institutional support: RVO:68378271 Keywords : metal-dielectric composites * conductivity * microwave absorption * reflection and transmission coefficients * electrodynamic simulation Subject RIV: BM - Solid Matter Physics ; Magnetism
Hamilton, Linus
2014-01-01
Braid is a 2008 puzzle game centered around the ability to reverse time. We show that Braid can simulate an arbitrary computation. Our construction makes no use of Braid's unique time mechanics, and therefore may apply to many other video games. We also show that a plausible "bounded" variant of Braid lies within 2-EXPSPACE. Our proof relies on a technical lemma about Turing machines which may be of independent interest. Namely, define a braidlike Turing machine to be a Turing machine that, w...
van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.
2015-09-01
Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.
Roy, Sutanu
2016-01-01
We propose a general theory of braided quantum groups in the C*-algebraic framework. More precisely, we construct braided quantum groups using manageable braided multiplicative unitaries over a regular C*-quantum group. We show that braided C*-quantum groups are equivalent to C*-quantum groups with projection.
Reverse engineering of multi-layer films
Effendi Widjaja
2011-03-01
Full Text Available This contribution introduces the combined application of Raman microscopy and band-target entropy minimization (BTEM in order to successfully reverse-engineer a multi-layer packaging material. Three layers are identified, namely, polyethylene, a paper and talc layer (with two distinct cellulose forms, and a poly-styrene co-polymer composite containing anatase and calcite. This rapid and non-destructive approach provides a unique opportunity for the assessment of multi-layer composites, including the constitution of the additives present.
Preparation of multi-layer laser targets
The author describes the preparation of copper- or gold-Formvar-aluminum-Formvar multi-layer laser targets. First, copper or gold is deposited on a piece of glass, then it is covered with the Formvar film. After the copper or gold layer, together with the Formvar film, is stripped off and fitted in, aluminum is deposited. Because the Formvar is vaporized in the vaporizing chamber only once, the obtained multi-layer target is of high quality and meets the requirements for practical use
Multi-layered breathing architectural envelope
Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund
2014-01-01
A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...
Decoupling braided tensor factors
It is shown that the braided tensor product algebra of two module algebras A1, A2 of a quasitriangular Hopf algebra is equal to the ordinary tensor product algebra of A1 with a subalgebra isomorphic to A2 and commuting with A1. As applications of the theorem the braided tensor product algebras of two or more quantum group covariant quantum space or deformed Heisenberg algebras are considered
Network Composition from Multi-layer Data
Lerman, Kristina; Yan, Xiaoran
2016-01-01
It is common for people to access multiple social networks, for example, using phone, email, and social media. Together, the multi-layer social interactions form a "integrated social network." How can we extend well developed knowledge about single-layer networks, including vertex centrality and community structure, to such heterogeneous structures? In this paper, we approach these challenges by proposing a principled framework of network composition based on a unified dynamical process. Mathematically, we consider the following abstract problem: Given multi-layer network data and additional parameters for intra and inter-layer dynamics, construct a (single) weighted network that best integrates the joint process. We use transformations of dynamics to unify heterogeneous layers under a common dynamics. For inter-layer compositions, we will consider several cases as the inter-layer dynamics plays different roles in various social or technological networks. Empirically, we provide examples to highlight the usef...
Mathematical Formulation of Multi-Layer Networks
De Domenico, Manlio; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A; Gòmez, Sergio; Arenas, Alex
2013-01-01
A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems is very rich. Achieving a deep understanding of such systems necessitates generalizing "traditional" network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multi-layer complex systems. In this paper, we introduce a tensorial framework to study multi-layer networks, and we discuss the generalization of several important network descriptors and dynamical processes ---including degree centr...
Analysis of multi-layer polymer films
Paulette Guillory
2009-04-01
Full Text Available Polymer multi-layer films are used in a variety of industries. It is important both to the manufacturers of polymer films and to the industries using these films that the quality and composition be strictly controlled. The confocal analysis and high spatial resolution of Raman microscopy make this technique ideal for identifying the source and identity of defects and inclusions in polymer films.
Silicon-on-Insulating Multi-Layers for Total-Dose Irradiation Hardness
ZHANG En-Xia; YI Wan-Bing; LIU Xiang-Hua; CHEN Meng; LIU Zhong-Li; Wang Xi
2004-01-01
@@ Silicon-on-insulating multi-layer (SOIM) materials were fabricated by co-implantation of oxygen and nitrogen ions with different energies and doses. The multilayer microstructure was investigated by cross-sectional transmission electron microscopy. P-channel metal-oxide-semiconductor (PMOS) transistors and metal-semiconductorinsulator-semiconductor (MSIS) capacitors were produced by these materials.
Temperature distribution in laser-clad multi-layers
Results of temperature distribution modeling for multi-layer structures prepared by direct laser remelting of metal powders in an Ar environment were numerically obtained and compared with experimental data. Powders of bronze B10 and stellite SF6 alloys and also base plates of S235JR steel were taken as sample materials. In the experiment a 1.5 kW cw CO2 laser, equipped with a multi-stream nozzle capable of delivering metal powder at a rate of up to 0.2 g/s coaxially with the laser beam, was used. Dimensions of the melted zone and its position relative to the base were obtained from calculation and agreed with the microstructure observation of the sample cross-sections. The model revealed that isotherms at 1020 and 1350 deg. C penetrate the interfaces to a depth of about 5-10% of the individual layer height for B10 and SF6, respectively. This was confirmed by inspection in a scanning electron microscope (SEM) and also by a depth-dependent X-ray energy-dispersive spectroscopy (XEDS) measurement of the main chemical components of multi-layers, i.e. Fe, Co, Ni (SF6) and Fe, Cu, Sn (B10). Also the cooling rates indicated agreement between modeling and experiment. This allows us to conclude that the model can be applied for preselecting the process parameters
Multi-Layered Neural Networks Infer Fundamental Stellar Parameters
Verma, Kuldeep; Bhattacharya, Jishnu; Antia, H M; Krishnamurthy, Ganapathy
2016-01-01
The advent of space-based observatories such as CoRoT and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial Helium abundance, initial metallicity, mixing-length (assumed to be constant over time) and the age to which the star must be evolved. These parameters are also very useful in characterizing the associated planets and in studying galactic archaeology. How to obtain the parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using multi-layered neural networks, is successful in determining the evolutionary parameters based on spect...
Analysis of multi-layer ERBS spectra
Marmitt, G.G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Rosa, L.F.S. [Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Nandi, S.K. [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh); Vos, M., E-mail: maarten.vos@anu.edu.au [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia)
2015-07-15
Highlights: • Electron Rutherford backscattering (ERBS) spectra are presented. • The spectra are fitted based on physical meaningful quantities. • Very consistent results are obtained for spectra taken under different conditions. • This establishes that ERBS can be used to measure film thicknesses. - Abstract: A systematic way of analysis of multi-layer electron Rutherford backscattering spectra is described. The approach uses fitting in terms of physical meaningful parameters. Simultaneous analysis then becomes possible for spectra taken at different incoming energies and measurement geometries. Examples are given to demonstrate the level of detail that can be resolved by this technique.
MULTI-LAYER GRID REFINEMENT METHOD
TSUN-ZEE MAI
2012-07-01
Full Text Available The uniform grid scheme has been widely used to solve a partial differential equation. Due to the extreme large linear systems generated by the uniform grid scheme, a lot of computation time is required. To improve the efficiency of the uniform grid scheme, a more economical method is desirable. In this paper, we propose a multi-layer grid refinement method for solving a partial different equation over a rectangular domain with Dirichlet boundary conditions. Numerical experiments demonstrate that the efficiency has been improved significantly, and the accuracy is satisfactory.
Design for reliability of multi-layer stretchable interconnects
In this investigation, the electrical performance and reliability of multi-layer stretchable metal interconnects are evaluated using numerical simulations and experimental analysis. The numerical results show that the bi-layer design of stretchable interconnects have similar mechanics when compared to single layer interconnect structures. In contrast, interconnects configured in an in-plane stacked arrangement exhibit increased equivalent plastic strain during elongation, and consequently support less stretching. Our experimental results support these numerical findings. Maximum stretchability approaches ∼150% elongation for single layer and bi-layer interconnects. In addition, fatigue experiments at 60% elongation show that the bi-layer design of stretchable interconnects have life cycles three orders of magnitude higher than the in-plane stacked arrangement of stretchable interconnects. (paper)
Process Issues for a Multi-Layer Microelectrofluidic Platform
Ng, S -H; Tjeung, R -T; De Rooij, N
2007-01-01
We report on the development of some process capabilities for a polymer-based, multi-layer microelectrofluidic platform, namely: the hot embossing process, metallization on polymer and polymer bonding. Hot embossing experiments were conducted to look at the effects of load applied, embossing temperature and embossing time on the fidelity of line arrays representing micro channels. The results revealed that the embossing temperature is a more sensitive parameter than the others due to its large effect on the polymer material's viscoelastic properties. Dynamic mechanical analysis (DMA) on polymethyl methacrylate (PMMA) revealed a steep glass transition over a 20 oC range, with the material losing more than 95 % of its storage modulus. The data explained the hot embossing results which showed large change in the embossed channel dimensions when the temperature is within the glass transition range. It was demonstrated that the micro-printing of silver epoxy is a possible low-cost technique in the mass production ...
Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings
Single and multi-layer Cr/Cr2O3 coatings were deposited by reactive magnetron sputtering with the total thickness of 7 μm on steel substrates. X-ray diffraction analysis showed that single and multi-layer Cr/Cr2O3 coatings have different preferred crystal orientations. Columnar microstructure was detected by transmission electron microscopy both in metal chromium and ceramic chromium oxide layers. Grain size increased with the coating thickness. The value of single and multi-layer coating's fracture toughness is between 4 and 6 MPa.m1/2 measured with the Berkovich tip indentation, and it is between 2.8 and 3.9 MPa.m1/2 when measured with the Vickers indenter. The adhesion is about 192.1 and 246.7 J/m2 for single and multi-layer coatings, respectively
Free braided differential calculus, braided binomial theorem and the braided exponential map
Majid, S
1993-01-01
Braided differential operators $\\del^i$ are obtained by differentiating the addition law on the braided covector spaces introduced previously (such as the braided addition law on the quantum plane). These are affiliated to a Yang-Baxter matrix $R$. The quantum eigenfunctions $\\exp_R(\\vecx|\\vecv)$ of the $\\del^i$ (braided-plane waves) are introduced in the free case where the position components $x_i$ are totally non-commuting. We prove a braided $R$-binomial theorem and a braided-Taylors theorem $\\exp_R(\\veca|\\del)f(\\vecx)=f(\\veca+\\vecx)$. These various results precisely generalise to a generic $R$-matrix (and hence to $n$-dimensions) the well-known properties of the usual 1-dimensional $q$-differential and $q$-exponential. As a related application, we show that the q-Heisenberg algebra $px-qxp=1$ is a braided semidirect product $\\C[x]\\cocross \\C[p]$ of the braided line acting on itself (a braided Weyl algebra). Similarly for its generalization to an arbitrary $R$-matrix.
Gonzalez-Meneses, Juan
2010-01-01
These are Lecture Notes of a course given by the author at the French-Spanish School "Tresses in Pau", held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin's presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.
Multi-layer switched reluctance motor to reduce torque ripple
A new multi-layer switched reluctance motor (MSRM) having a high starting torque capability with reduced torque ripple and acoustic noise is presented. Measured data and the results of numerical analysis are given to evaluate the motor structure. In the numerical analysis, due to the highly nonlinear nature of the motor, finite element analysis (FEA) is employed. A prototype multi-layer SRM is built and tested in the experimental studies. The obtained test and simulation results show that the multi-layer motor structure has a smooth torque profile with high starting torque and less acoustic noise
Optical Properties of Multi-Layered Insulation
Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin
2007-01-01
Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms
Multi-layer Far-Infrared Component Technology Project
National Aeronautics and Space Administration — This Phase I SBIR will demonstrate the feasibility of a process to create multi-layer thin-film optics for the far-infrared/sub-millimeter wave spectral region. The...
Radio-transparent multi-layer insulation for radiowave receivers
In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is
Radio-transparent multi-layer insulation for radiowave receivers
Choi, J.; Ishitsuka, H.; Mima, S.; Oguri, S.; Takahashi, K.; Tajima, O.
2013-11-01
In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is
Reducible braids and Garside theory
Gonzalez-Meneses, Juan
2010-01-01
We show that reducible braids which are, in a Garside-theoretical sense, as simple as possible within their conjugacy class, are also as simple as possible in a geometric sense. More precisely, if a braid belongs to a certain subset of its conjugacy class which we call the stabilized set of sliding circuits, and if it is reducible, then its reducibility is geometrically obvious: it has a round or almost round reducing curve. Moreover, for any given braid, an element of its stabilized set of sliding circuits can be found using the well-known cyclic sliding operation. This leads to a polynomial time algorithm for deciding the Nielsen-Thurston type of any braid, modulo one well-known conjecture on the speed of convergence of the cyclic sliding operation.
Cable Braid Electromagnetic Penetration Model.
Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-06-01
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Presentations of Graph Braid Groups
Farley, Daniel; Sabalka, Lucas
2009-01-01
Let G be a graph. The (unlabeled) configuration space of n points on G is the space of all n-element subsets of G. The fundamental group of such a configuration space is called a graph braid group. We use a version of discrete Morse theory to compute presentations of all graph braid groups, for all finite connected graphs G and all natural numbers n.
Duality principle and braided geometry
Majid, S
1994-01-01
We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semiclassical level of Poisson-Lie groups and at the level of braided groups and braided geometry.
Optical Properties of Multi-Layered Insulation
Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.
Multi-layer insulation (MLI) is a material used on rocket bodies and satellites primarily for thermal insulation. MLI is comprised of a variety of materials, layer numbers, and dimensions to satisfy specific design requirements. Typically, it is a sandwich of outward facing copper-colored Kapton layers with inward facing aluminized backing. The inner layers consist of alternating DACRON or Nomex netting and aluminized Mylar. From an orbital mechanics perspective, if this material becomes separated from a spacecraft or rocket body, its orbit will vary greatly in eccentricity due to both its high area-to-mass ratio (A/m) and its susceptibility to solar radiation pressure perturbations. Recently, a debris population was found with high A/m which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI are presented in an effort to ascertain the characteristics of MLI light curves and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the aforementioned common MLI. Using a robotic arm, the piece was rotated from 0-360 degrees in 10? increments along the objects longest axis. Laboratory photometric data was recorded with a CCD camera and a 300 W Xenon arc light source selected to approximate the solar spectrum. The measurements were taken in white light and using various filters (Johnson Blue (B), Visible (V), and Bessell Red (R)), all taken at an 18 degree (light-object-camera) phase angle selected to closely match typical GEO observations which follow the anti-solar point. As expected, the MLI pieces exhibited characteristics similar to a bimodal magnitude plot of a flat plate, but with photometric features dependent upon the layer composition. To minimize highlight saturation (and consequent loss of intensity information), exposure times were selected empirically based on layer type and filter. In addition to photometric laboratory measurements, laboratory
Enhanced Multi-Layer Fatigue-Analysis Approach for Unbonded Flexible Risers
杨和振; 姜豪; 杨启
2014-01-01
This paper proposes an enhanced approach for evaluating the fatigue life of each metallic layer of unbonded flexible risers. Owing to the complex structure of unbonded flexible risers and the nonlinearity of the system, particularly in the critical touchdown zone, the traditional method is insufficient for accurately evaluating the fatigue life of these risers. The main challenge lies in the transposition from global to local analyses, which is a key stage for the fatigue analysis of flexible pipes owing to their complex structure. The new enhanced approach derives a multi-layer stress-decomposition method to meet this challenge. In this study, a numerical model validated experimentally is used to demonstrate the accuracy of the stress-decomposition method. And a numerical case is studied to validate the proposed approach. The results demonstrate that the multi-layer stress-decomposition method is accurate, and the fatigue lives of the metallic layers predicted by the enhanced multi-layer analysis approach are rational. The proposed fatigue-analysis approach provides a practical and reasonable method for predicting fatigue life in the design of unbonded flexible risers.
Mechanical properties of braided commingled glass/polypropylene composites
Fibre reinforced plastics (Fr) are now widely used due to improved specific properties compared to more conventional materials. In particular the automotive and aerospace industries are turning towards these materials for weight reduction. Moreover the anti corrosion properties of FRP are also of interest to manufacturers as an alternative to metallic materials. The reinforcing fibres used in the composite materials can be assembled using a variety of textile processing techniques. Of these, 2-D braiding is particularly attractive for hollow components or sandwich laminates. In this study flat plaques were produced by braiding commingled yam at various angles on a cylindrical mandrel, after which the braids were slit and consolidated by non-isothermal compression moulding. Mechanical properties of the composites were measured and the results are discussed with reference to the arising fibre architecture and microstructure. The results obtained illustrate that there is a major influence of the fibre orientation on the final properties of the composite. (author)
Ariza, E.; Rocha, L. A.
2005-01-01
Practical applications of metal/ceramic joints can be found in the biomedical field regarding the encapsulation of implantable telemetric devices, the fabrication of crowns and bridges for dental restoration, or in the production of drug delivery systems, biomedical sensors and electrodes. Most of metal/ceramic joints are produced by the active metal brazing technique, which originates a multi-layered interface which should be able of accommodating the abrupt electronic, crystallographic, ...
Braided Field Quantization from Quantum Poincare Covariance
Lukierski, Jerzy
2012-01-01
We demonstrate that the covariance of the algebra of quantum NC fields under quantum-deformed Poincare symmetries implies the appearence of braided algebra of fields and the notion of braided locality in NC QFT. We briefly recall the historical development of NC QFT which was firstly formulated in the framework using classical relativistic symmetries but further it was described as generated by the quantum-deformed symmetries. We argue that consistent covariant quantum-deformed formalism requires "braiding all the way", in particular braided commutator of deformed field oscillators as well as the braid between the field oscillators and noncommutative Fourier exponentials. As example of braided quantum-deformed NC QFT we describe the NC scalar free fields on noncommutative canonical (Moyal-Weyl) space-time with braided c-number field commutator which implies braided locality.
Medical Image Retrieval Based on Multi-Layer Resampling Template
WANG Xin-rui; YANG Yun-feng
2014-01-01
Medical image application in clinical diagnosis and treatment is becoming more and more widely, How to use a large number of images in the image management system and it is a very important issue how to assist doctors to analyze and diagnose. This paper studies the medical image retrieval based on multi-layer resampling template under the thought of the wavelet decomposition, the image retrieval method consists of two retrieval process which is coarse and fine retrieval. Coarse retrieval process is the medical image retrieval process based on the image contour features. Fine retrieval process is the medical image retrieval process based on multi-layer resampling template, a multi-layer sampling operator is employed to extract image resampling images each layer, then these resampling images are retrieved step by step to finish the process from coarse to fine retrieval.
Multi-layer boron thin-film detectors for neutrons
Intrinsic efficiencies of multi-layer boron-10 thin-film detectors were studied theoretically and experimentally. For multi-layer schemes based on an optimized single-layer film thickness, the practical efficiency is limited to about 42% for thermal neutrons. This is about half the efficiency of a moderated 3He detectors in commercial use for portal monitoring. The efficiency limitation is due to charged particle loss in the boron layers and substrates. The same loss mechanism will prevent all substrate-based boron detectors from ever reaching the intrinsic efficiencies of high-pressure 3He tubes, independent of substrate geometry and material composition. Experimental data also indicate that the multi-layer detector configuration can have an efficiency approaching the theoretical limit. Excellent n/γ discrimination has also been achieved using an ionization chamber.
Multi-layer surface profiling using gated wavefront sensing
Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen
2015-01-01
Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.
Tensile properties of braided composite rods
Pereira, Cristiana Gonilho; Fangueiro, Raúl; Jalali, Said; Araújo, Mário Duarte de; Marques, P
2008-01-01
The current work is concerning the development of braided reinforced composite rods for civil engineering applications, namely for concrete internal reinforcement. The research study aims to understand the mechanical behaviour of braided reinforced composite rods produced from an innovative technique. Seven types of braided reinforced composite rods were produced, varying the type of fibres used as a core reinforcement of a polyester braided fabric. E-glass, carbon, HT polyethylene fibres ...
Mosaic Face Image Recognition on Multi-Layer Neural Network
Yamamori, Kuhihito; Nogawa, Reo; Yoshihara, Ikuo
2003-01-01
Face image recognition is an impotant technology for security,communication area,etc.. In this reserch,###we try to show the optimal parameters in multi-layer neural network for mosaic face image recognition.###By using of mosaic face images,the amount of image dara can be reduced,and it can also avoid###the affect of noise.Through our experiments,a multi-layer neural network showed 98.7% of recognition###on 8 x 8 mosaic images.
Braided Composite Technologies for Rotorcraft Structures
Jessie, Nathan
2015-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Problematic of fracture toughness estimation of multi-layer pipes
Nezbedová, E.; Vlach, B.; Knésl, Zdeněk; Šestáková, Lucie
Budapest : Plastics Pipe Institute, 2008, s. 1-9. [ Plastics Pipes XIV. Budapest (HU), 22.09.2008-24.09.2008] R&D Projects: GA ČR GA106/07/1284 Institutional research plan: CEZ:AV0Z20410507 Keywords : life-time * multi-layer pipes * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics
Multi-layer thermoplastic composites manufacturing processes: simulations and experiments
Thije, ten René; Haanappel, Sebastiaan
2011-01-01
Press forming of multi-layer thermoplastic composite laminates is a fast and cost-effective method to produce thin shelled products. This paper shows that virtual forming provides designers with a tool to determine and to optimize the formability of these composite products. Forming simulations iden
Simple braids for surface homeomorphisms
Parwani, Kamlesh
2005-01-01
Let S be a compact, oriented surface with negative Euler characteristic and let f be a homeomorphism of S that is isotopic to the identity. If there exists a periodic orbit with a non-zero rotation vector, then there exists a simple braid with the same rotation vector.
Permutation Analysis of Track and Column Braiding
李毓陵; 丁辛; 胡良剑
2004-01-01
The positions of braiding carrier in track and column braiding are represented by a diagrammatic braiding plan and a corresponding lattice-array is defined. A set is then formed so that the permutation analysis can be performed to represent the movement of carriers in a braiding process. The process of 4-step braiding is analyzed as an example to describe the application of the proposed method by expressing a braiding cycle as a product of disjoint cycles. As a result, a mapping relation between the disjoint cycles and the movement of carriers is deduced. Following the same analysis principles, a process of 8-step braiding and the corresponding initial state of the lattice-array is developed. A successful permutation analysis to the process manifests the general suitability of the proposed method.
Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites
Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.
2003-01-01
In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700h436 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 degrees plus or minus 60 degrees, and 0 degrees plus or minus 45 degrees) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bow-tie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/O degrees plus or minus 45 degrees configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 degrees plus or minus 60 degrees configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.
The Picard crossed module of a braided tensor category
Davydov, Alexei; Nikshych, Dmitri
2012-01-01
For a finite braided tensor category we introduce its Picard crossed module consisting of the group of invertible module categories and the group of braided tensor autoequivalences. We describe the Picard crossed module in terms of braided autoequivalences of the Drinfeld center of the braided tensor category. As an illustration, we compute the Picard crossed module of a braided pointed fusion category.
Spectroscopic characterization of ion-irradiated multi-layer graphenes
Tsukagoshi, Akira [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Honda, Shin-ichi, E-mail: s-honda@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Osugi, Ryo [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Okada, Hiraku [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Niibe, Masahito [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205 (Japan); Terasawa, Mititaka [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Hirase, Ryuji; Izumi, Hirokazu; Yoshioka, Hideki [Hyogo Prefectural Institute of Technology, Kobe 654-0037 (Japan); Niwase, Keisuke [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Taguchi, Eiji [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Lee, Kuei-Yi [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Oura, Masaki [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan)
2013-11-15
Low-energy Ar ions (0.5–2 keV) were irradiated to multi-layer graphenes and the damage process, the local electronic states, and the degree of alignment of the basal plane, and the oxidation process upon ion irradiation were investigated by Raman spectroscopy, soft X-ray absorption spectroscopy (XAS) and in situ X-ray photoelectron spectroscopy (XPS). By Raman spectroscopy, we observed two stages similar to the case of irradiated graphite, which should relate to the accumulations of vacancies and turbulence of the basal plane, respectively. XAS analysis indicated that the number of sp{sup 2}-hybridized carbon (sp{sup 2}-C) atoms decreased after ion irradiation. Angle-resolved XAS revealed that the orientation parameter (OP) decreased with increasing ion energy and fluence, reflecting the turbulence of the basal plane under irradiation. In situ XPS shows the oxidation of the irradiated multi-layer graphenes after air exposure.
A multi-layer flood safety approach towards resilient cities
Leskens, Johannes; Boomgaard, Marcel; Zuijlen, van, M.C.A.; Hollanders, Peter; Butler, D.; Djordjevic, S; Hammond, M.J.
2013-01-01
The multi-layer safety approach focuses on flood risk reduction through three types of measures: (1) prevention through dikes, levees and dams , (2) a flood resilient spatial planning and (3) an adequate crisis management. Whereas the official Dutch policy propagates the multi-level safety approach, the current Dutch water safety policy is still focused on prevention only (layer 1). The integration with the two other layers (i.e. a flood resilient spatial planning and an adequate disaster man...
Guided waves in a multi-layered optical structure
Torres, Pedro J.
2006-09-01
Motivated by the study of the propagation of electromagnetic waves through a multi-layered optical medium, we prove the existence of two different kinds of homoclinic solutions to the origin in a Schrödinger equation with a nonlinear term. We use a Krasnoselskii fixed point theorem together with a compactness criterion due to Zima. The main results are illustrated with concrete examples of practical interest such as self-focusing nonlinearities of Kerr and non-Kerr type.
Multi-layer model predictive control of complex water systems
Sun, Congcong
2015-01-01
This thesis is devoted to design a multi-layer MPC controller applied to the complex water network taking into account that the different layers with different time scales and control objectives have their own controller. A two-layer temporal hierarchy coordinating scheme has been applied to coordinate the MPC controllers for the supply and transportation layers. An integrated real-time simulation-optimization approach which contributes to consider the effect of more complex dynamics, better ...
Acoustic performance analysis of bionic coupling multi-layer structure
Wang, Y. H.; Zhang, C. C.; Ren, L.Q.; Ichchou, Mohamed; Galland, Marie-Annick; Bareille, Olivier
2014-01-01
The interest of this paper lies in the proposition of using bionic method to develop a new sound absorption structure. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The impedance transfer method is applied to calculate the absorption coefficients...
Efficient analytical solutions for heated, pressurized multi-layered cylinders
2013-01-01
Two independent sets of analytical solutions, one based on matrix inversion and one based on iteration, are derived for the displacement field and corresponding stress state in multi-layer cylinders subjected to pressure and thermal loading. Solutions are developed for cylinders that are axially free with no friction between layers (plane stress), for cylinders that are fully restrained axially (plane strain) and for axially loaded and spring-mounted cylinders, assuming that the combined two-...
Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing
Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi [Intelligent System and Robotic Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yusof, J M; Chu, B W, E-mail: ngsokchoo@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)
2011-02-15
Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.
Braided nodal lines in wave superpositions
Dennis, M R
2003-01-01
Nodal lines (phase singularities, optical vortices) are the generic interference fringes of complex scalar waves. Here, an exact complex solution of the time independent wave equation (Helmholtz equation) is considered, possessing nodal lines which are braided in the form of a borromean, or pig-tail braid. The braid field is a superposition of counterpropagating, counterrotating, non-coaxial order 3 Bessel beams, and a plane wave whose propagation is perpendicular to that of the beams. The construction is structurally stable, and can be generalized to a limited class of other braids.
Nanosecond and sub-nanosecond pulsed laser ablation of thin single and multi-layer packaging films
Translating single and multi-layer packaging films are exposed to 0.5–0.8 ns laser pulses of wavelength 1064 nm and 10–12.5 ns laser pulses of wavelength 515 nm. Ablation depths and threshold fluences are reported for single-layer polyethylene (PE), polypropylene (PP) and aluminium of thickness 20–50 μm. Interaction and cut widths are reported for the same single-layer films and for four multi-layer films comprising aluminium-polypropylene and aluminium-paper. Ablation of the PE and PP films is only possible in the tested parameter range with 0.5 ns, 1064 nm pulses. Though a one order of magnitude reduction in the ablation threshold of aluminium is observed with 0.5–0.8 ns, 1064 nm pulses, the efficiency of material removal for fluences >8 J cm−2 is superior with 10–12.5 ns, 515 nm pulses. Multi-layer film response is found to be heavily dictated by the thickness of metallic layers. For multi-layer films with aluminium layers of thickness 7–9 μm, adjacent layers are removed by inter-layer heat conduction from the aluminium layer, in some cases leading to very large cut widths. For multi-layer films with aluminium layers of thickness <0.1 μm, direct ablation of all layers must take place for complete film penetration. The study provides quantitative results regarding process efficiency and quality for application of pulsed laser sources within the packaging industry.
Ding, J.; Colegrove, Paul A.; Mehnen, Jorn; Ganguly, Supriyo; Sequeira Almeida, P. M.; Wang, F.; Williams, Stewart W.
2011-01-01
Wire and Arc Additive Layer Manufacturing (WAALM) is gaining increasing popularity as the process allows the production of large custom-made metal workpieces with high deposition rates. The high power input of the welding process, causes significant residual stress and distortion of the workpiece. This paper describes the thermo-mechanical behaviour of the multi-layer wall structure made by the WAALM process. A 3D thermo-elastic–plastic transient model and a model based on a...
Microfabrication of multi-layered electrodes for dielectrophoresis-based field flow fractionation
Mathew, Bobby; Alazzam, Anas; Khashan, Saud A.
2015-06-01
This article details the process layout required for realizing a three-dimensional arrangement of electrodes in a microfluidic device for field flow fractionation based on dielectrophoresis. The metal electrodes are placed horizontally, in a stair-case arrangement, and pass through the bulk of the fluid. Several standard microfabrication processes are employed, in realizing this microdevice, including multi-layer photolithography, casting and plasma bonding. Thus the process layout is repeatable and reproducible. The feasibility of this process layout is demonstrated using three electrodes arranged in aforementioned manner; nevertheless, this process can be extended to as many electrodes as desired in the horizontal direction. This process layout can will make applications possible that were not possible till date due to the inability in microfabricating three-dimensional horizontal metal electrodes that run through the entire width of the microchannel.
APT analyses of deuterium-loaded Fe/V multi-layered films
Gemma, R.
2009-04-01
Interaction of hydrogen with metallic multi-layered thin films remains as a hot topic in recent days Detailed knowledge on such chemically modulated systems is required if they are desired for application in hydrogen energy system as storage media. In this study, the deuterium concentration profile of Fe/V multi-layer was investigated by atom probe tomography (APT) at 60 and 30 K. It is firstly shown that deuterium-loaded sample can easily react with oxygen at the Pd capping layer on Fe/V and therefore, it is highly desired to avoid any oxygen exposure after D(2) loading before APT analysis. The analysis temperature also has an impact on D concentration profile. The result taken at 60 K shows clear traces of surface segregation of D atoms towards analysis surface. The observed diffusion profile of D allows us to estimate an apparent diffusion coefficient D. The calculated D at 60 K is in the order of 10(-17) cm(2)/s, deviating 6 orders of magnitude from an extrapolated value. This was interpreted with alloying, D-trapping at defects and effects of the large extension to which the extrapolation was done. A D concentration profile taken at 30 K shows nosegregation anymore and a homogeneous distribution at C(D) = 0.05(2) D/Me, which is in good accordance with that measured in the corresponding pressure-composition isotherm. (C) 2008 Elsevier B.V. All rights reserved.
Majorana Braiding with Thermal Noise
Pedrocchi, Fabio L.; DiVincenzo, David P.
2015-09-01
We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.
Research on Multi-Layer Distributed HF Radio Network Structure
Hui Dai; Chun-Jiang Wang; Quan Yu
2008-01-01
High frequency (HF) transmission is an important communication techniques. However, conventional point-to-point transmission can be easily destroyed, which limits its utilization in practice. HF networking communication has the capability against demolishment. The network structure is one of the key factors for HF networking communication. In this paper, a novel analysis method of the network connectedness based on the eigenvalue is derived, and a multi-layer distributed HF radio network structure is proposed. Both the theore tical analysis and the computer simulation results verify that the application of the proposed network structure in the HF radio communication can improve the anti demolishment ability of the HF network efficiently.
Self-organized percolation in multi-layered structures
We present a self-organized model for the growth of two- and three-dimensional percolation clusters in multi-layered structures. Anisotropy in the medium is modeled by randomly allocating layers of different physical properties. A controlling mechanism for the growing aggregate perimeter is introduced in such a manner that the system self-tunes to a stationary regime that corresponds to the percolation threshold. The critical probability for infinite growth is studied as a function of the anisotropy of the medium
Emergent Braided Matter of Quantum Geometry
Sundance Bilson-Thompson
2012-03-01
Full Text Available We review and present a few new results of the program of emergent matter as braid excitations of quantum geometry that is represented by braided ribbon networks. These networks are a generalisation of the spin networks proposed by Penrose and those in models of background independent quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent schemes. The former studies the braids on trivalent braided ribbon networks, while the latter investigates the braids on tetravalent braided ribbon networks. Both schemes have been fruitful. The trivalent scheme has been quite successful at establishing a correspondence between braids and Standard Model particles, whereas the tetravalent scheme has naturally substantiated a rich, dynamical theory of interactions and propagation of braids, which is ruled by topological conservation laws. Some recent advances in the program indicate that the two schemes may converge to yield a fundamental theory of matter in quantum spacetime.
Competitive dynamics of lexical innovations in multi-layer networks
Javarone, Marco Alberto
2013-01-01
We study the introduction of lexical innovations in a community of language users. Lexical innovations, i.e., new terms added in the people's vocabulary, have an important role in the process of language evolution. Nowadays, the information spreading takes place over different networks, as online/offline social networks, the World Wide Web and other information networks. The whole system, composed by networks of different nature, can be represented as a multi-layer network. In this context, the spreading of lexical innovations has a peculiar behavior. In particular, a lexical innovation can generate incomprehensions when used without providing its meaning and, in this case, more than one meaning can emerge in the population. Therefore, lexical innovations cannot be considered as simple informations. We develop a model to analyze this scenario by using a multi-layer network composed of a social network and a media network. This latter represents the set of all information systems of a society, e.g., television...
Numerical simulation of multi-layered textile composite reinforcement forming
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.
Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets
Rong Ming Lin
2015-04-01
Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.
Vulnerability of multi-layer networks under malware spreading
Vida, Rafael; Cuenda, Sara
2013-01-01
Computer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of the malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use multi-layer networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on a multi-layer network where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We show that the interplay between the layers leads to a non-trivial dynamics, with an epidemic onset that may trigger before it triggers in each isolated network. We apply this study to the case of a real two-layer network: a Spanish scientific community of Statistical Physics, formed by a social network of scient...
Spectroscopic study of atomic beams generated by laser ablation of multi-layer targets
An experiment is described where Li- and Al-beams were generated by ablation of thin, multi-layer targets using a Q-Switched ruby laser with a total energy density up to 30 Jcm-2. Measurements using laser induced fluorescence and mass spectroscopy were combined to analyse the energy- and density distribution and the temporal structure of the beams. The maximum energy turned out to be several eV for Li and several 10 eV for Al with a peak density in the range of 1010 cm-3 for both Li and Al. The targets were analysed by optical microscopy and secondary ion mass spectroscopy providing information about the size of the spots and the structure of the metal film before and after the ablation experiment. (orig.)
Systematically generated two-qubit anyon braids
Carnahan, Caitlin; Zeuch, Daniel; Bonesteel, N. E.
2016-05-01
Fibonacci anyons are non-Abelian particles for which braiding is universal for quantum computation. Reichardt has shown how to systematically generate nontrivial braids for three Fibonacci anyons which yield unitary operations with off-diagonal matrix elements that can be made arbitrarily small in a particular natural basis through a simple and efficient iterative procedure. This procedure does not require brute force search, the Solovay-Kitaev method, or any other numerical technique, but the phases of the resulting diagonal matrix elements cannot be directly controlled. We show that despite this lack of control the resulting braids can be used to systematically construct entangling gates for two qubits encoded by Fibonacci anyons.
Enhance Production Rate of Braiding Machine Using Speed Reduction Technique
Manoj A. Kumbhalkar; Sachin V. Mate; Sushama Dhote; Mudra Gondane
2013-01-01
Textile designing is a technical process which includes different methods for production of textile, surface design and structural design of a textile. Braid is the textile product having various types like round and flat braid made by using textile threads or wires which are alternatively interwoven in braiding machine. A small scale industry in Nagpur produces each type of cotton braids using 16 spindle braiding machines on the single line shaft acquired power from 0.50 HP motor runs at 144...
Detecting coherent structures using braids
Allshouse, Michael R
2011-01-01
The detection of coherent structures is an important problem in fluid dynamics, particularly in geophysical applications. For instance, knowledge of how regions of fluid are isolated from each other allows prediction of the ultimate fate of oil spills. Existing methods detect Lagrangian coherent structures, which are barriers to transport, by examining the stretching field as given by finite-time Lyapunov exponents. These methods are very effective when the velocity field is well-determined, but in many applications only a small number of flow trajectories are known, for example when dealing with oceanic float data. We introduce a topological method for detecting invariant regions based on a small set of trajectories. In the method we regard the two-dimensional trajectory data as a braid in three dimensions, with time being the third coordinate. Invariant regions then correspond to trajectories that travel together and do not entangle other trajectories. We detect these regions by examining the growth of hypo...
Optimization of multi-layer front-contact grid patterns for solar cells
Flat, A.; Milnes, A. G.
1979-01-01
In a front-contact grid pattern for a solar cell there is a trade-off necessary between shadowing loss and excessive power loss due to voltage drop in the metalization itself. If the metalization is too little there may be excessive contact resistance to the underlying semiconductor and insufficient coverage to control losses in the thin front-surface layer of the solar cell. Optimization of grid pattern area and geometry is considered analytically to minimize total losses. Worthwhile performance advantages are shown to be possible, particularly in concentrator systems, if multi-layer grid patterns are used. The current carrying fingers should be approximately square in metal cross section and the main current feedout bars should not only be wider but also thicker than the primary collecting fingers. This is termed multi-level metalization. Effective use of multi-level grid metalization allows much greater concentration-to-loss ratio for a cell of large area and permits good performance from cells of high front-layer sheet resistance.
Multi- Layer Tree Hierarchical Architecture Based on Web Service
TONG Hengjian; LI Deren; ZHU Xinyan; SHAO Zhenfeng
2006-01-01
To solve the problem of the information share and services integration in population information system, we propose a multi-layer tree hierarchical architecture. The com mand (Web Service Call) is recursively multicast from top layer of tree to bottom layer of tree and statistical data are gathered from bottom layer to top layer. We implemented the architecture by using Web Services technology. In our implementation, client program is the requestor of Web Services,and all leaf nodes of the last layer are only the provider of Web Services. For those nodes of intermediate layers, every node is not only the provider of Web Services, but also the dispatcher of Web Services. We take population census as an example to describe the working flow of the architecture.
Simulations of a multi-layer extended gating grid
Mulligan, J D
2016-01-01
A novel idea to control ion back-flow in time projection chambers is to use a multi-layer extended gating grid to capture back-flowing ions at the expense of live time and electron transparency. In this initial study, I perform simulations of a four-layer grid for the ALICE and STAR time projection chambers, using $\\text{Ne}-\\text{CO}_{2}\\;(90-10)$ and $\\text{Ar}-\\text{CH}_{4}\\;(90-10)$ gas mixtures, respectively. I report the live time and electron transparency for both 90% and 99% ion back-flow suppression. Additionally, for the ALICE configuration I study several effects: using a mesh vs. wire-plane grid, including a magnetic field, and varying the over-voltage distribution in the gating region. For 90% ion back-flow suppression, I achieve 75% live time with 86% electron transparency for ALICE, and 95% live time with 83% electron transparency for STAR.
Radio-transparent multi-layer insulation for radiowave receiver
Choi, J; Mima, S; Oguri, S; Takahashi, K; Tajima, O
2013-01-01
In the field of radiowave detection, enhancement of the amount of detected light is essential for greater scientific achievements. A large aperture system is a promising way to increase the number of photons that are received at the detectors. One challenge in the application of radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. For shielding from thermal radiation, the general strategy involves installation of thermal filters in the light path between the aperture and the detectors. However, enlargement of the aperture gives rise to a new difficulty: warming of the filter. A thermal radiation shielding technology that does not warm the associated filter while allowing enlargement of the aperture is long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI), which comprises a set of stacked insulator layers that are transparent in the radiowave frequency range. The basic idea...
Investigation of multi-layer thin films for energy storage.
Renk, Timothy Jerome; Monson, Todd
2009-01-01
We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.
Numerical Analysis of Deflections of Multi-Layered Beams
Biliński Tadeusz
2015-03-01
Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.
A Multi-Layered Image Cache for Scientific Visualization
LaMar, E C
2003-06-26
We introduce a multi-layered image cache system that is designed to work with a pool of rendering engines to facilitate an interactive, frameless, asynchronous rendering environment. Our system decouples the rendering from the display of imagery. Therefore, it decouples render frequency and resolution from display frequency and resolution, and allows asynchronous transmission of imagery instead of the compute/send cycle of standard parallel systems. It also allows local, incremental refinement of imagery without requiring all imagery to be re-rendered. Images are placed in fixed position in camera (vs. world) space to eliminate occlusion artifacts. Display quality is improved by increasing the number of images. Interactivity is improved by decreasing the number of images.
Pareto distance for multi-layer network analysis
Magnani, Matteo; Rossi, Luca
2013-01-01
on the nature of the connections required by the Pareto distance may in theory result in a large number of potential shortest paths between pairs of nodes. However, an experimental computation of distances on multi-layer networks of increasing size shows an interesting and non-trivial stable behavior.......Social Network Analysis has been historically applied to single networks, e.g., interaction networks between co-workers. However, the advent of on-line social network sites has emphasized the stratified structure of our social experience. Individuals usually spread their identities over multiple...... services, e.g., Facebook, Twitter, LinkedIn and Foursquare. As a result, the analysis of on-line social networks requires a wider scope and, more technically speaking, models for the representation of this fragmented scenario. The recent introduction of more realistic layered models has however determined...
Handwritten Arabic Numeral Recognition using a Multi Layer Perceptron
Das, Nibaran; Saha, Sudip; Haque, Syed Sahidul
2010-01-01
Handwritten numeral recognition is in general a benchmark problem of Pattern Recognition and Artificial Intelligence. Compared to the problem of printed numeral recognition, the problem of handwritten numeral recognition is compounded due to variations in shapes and sizes of handwritten characters. Considering all these, the problem of handwritten numeral recognition is addressed under the present work in respect to handwritten Arabic numerals. Arabic is spoken throughout the Arab World and the fifth most popular language in the world slightly before Portuguese and Bengali. For the present work, we have developed a feature set of 88 features is designed to represent samples of handwritten Arabic numerals for this work. It includes 72 shadow and 16 octant features. A Multi Layer Perceptron (MLP) based classifier is used here for recognition handwritten Arabic digits represented with the said feature set. On experimentation with a database of 3000 samples, the technique yields an average recognition rate of 94....
Polymer Nanocomposite Based Multi-layer Neutron Shields
It is important to shield radiations generated from the various radiation sources including nuclear reactors, transportation and storage systems for the radioactive wastes, accelerator, hospital, and defense systems etc. In this regard, development of efficient, light and durable radiation shielding materials has been an issue for many years. High energy neutrons (fast neutrons) can be thermalized by colliding with the light elements such as hydrogen, and thermalized neutrons can be efficiently captured by neutron absorbers such as boron, lithium, or gadolinium, etc. To shield neutrons, it is common to use hydrogen rich polymer based shields containing thermal neutron absorbers. It is also necessary to shield secondary gamma radiations produced from nuclear reaction of neutrons with various materials. Hence, high density elements such as Fe, Pb, or W might be dispersed in the polymer base as well as with neutron absorbers at the same time. However, the particle sizes of these elements are in the range of several tens and hundreds micrometers causing possible leakage of radiation. To enhance radiation shielding efficiency, it is useful to use ultrafine particles to increase collision probability of radiation with the particles. Furthermore, it is theoretically possible to enhance radiation shielding efficiency by using the multi-layer structured shields whose constituents are different for each layer depending upon the shielding purpose under the same overall density. Also, material properties of the nanocomposites can be enhanced compared to the normal composites. This investigation is focused on characterization of the nanocomposite based multi-layer structured radiation shields compared to the conventional radiation shields
Experimental analysis on stress wave in inhomogeneous multi-layered structures
The guided wave propagation in inhomogeneous multi-layered structures is experimentally explored based on theoretical dispersion curves. It turns out that proper selection of incident angle and frequency is critical for guided wave generation in multi-layered structures. Theoretical dispersion curves greatly depend on adhesive zone thickness, layer thickness and material properties. It was possible to determine the adhesive zone thickness of an inhomogeneous multi-layered structure by monitoring experimentally the change of dispersion curves.
Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
HUANGTian-min; PEIZheng
2003-01-01
The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed,and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be imple-ment by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.
Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves
Kostson, E.; Fromme, P.
2009-01-01
This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure....
Comparative Proteome Analysis of Multi-Layer Cocoon of the Silkworm, Bombyx mori
Zhang, Yan; ZHAO, PING; Dong, Zhaoming; Wang, Dandan; Guo, Pengchao; Guo, Xiaomeng; Song, Qianru; Zhang, Weiwei; Xia, Qingyou
2015-01-01
Bombyx mori cocoon has a multi-layer structure that provides optimal protection for silkworm pupa. Research on the mechanical properties of the multi-layer structure revealed structure-property relationships of the cocoon. Here, we investigated the protein components of the B. mori cocoon in terms of its multi-layer structure. Liquid chromatography-tandem mass spectrometry identified 286 proteins from the multiple cocoon layers. In addition to fibroins and sericins, we identified abundant pro...
Symmetric centres of braided monoidal categories
无
2000-01-01
This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.
Infinitesimal 2-braidings and differential crossed modules
Cirio, Lucio S
2013-01-01
We categorify the notion of an infinitesimal braiding in a linear strict symmetric monoidal category, leading to the notion of a (strict) infinitesimal 2-braiding in a linear symmetric strict monoidal 2-category. We describe the associated categorification of the 4-term relation, leading to six categorified relations. We prove that any infinitesimal 2-braiding gives rise to a flat and fake flat 2-connection in the configuration space of $n$ undistinguishable particles in the complex plane, hence to a categorification of the Knizhnik-Zamolodchikov connection. We discuss infinitesimal 2-braidings in a category naturally assigned to every differential crossed module, leading to the notion of a quasi-invariant tensor in a differential crossed module. Finally we prove that quasi-invariant tensors exist in the differential crossed module associated to the string Lie-2-algebra.
Modelling planform changes of braided rivers
Jagers, Hendrik Reinhard Albert
2003-01-01
This study has focused on modelling techniques to predict planform changes of braided rivers and their relation with state-of-the-art knowledge on the physical processes and the availability of model input data
Braided magnetic fields: equilibria, relaxation and heating
Pontin, D I; Russell, A J B; Hornig, G
2015-01-01
We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling. The key results obtained from recent modelling efforts are summarised, in the context of testable predictions for the laboratory. We discuss the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We discuss the properties of this relaxation, and in particular the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypo...
Braided magnetic fields: equilibria, relaxation and heating
Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.
2016-05-01
We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.
Diagrammatics of braided group gauge theory
Majid, S
1996-01-01
We develop a gauge theory or theory of bundles and connections on them at the level of braids and tangles. Extending recent algebraic work, we provide now a fully diagrammatic treatment of principal bundles, a theory of global gauge transformations, associated braided fiber bundles and covariant derivatives on them. We describe the local structure for a concrete Z_3-graded or `anyonic' realization of the theory.
Self-diagnosing braided composite rod
Fangueiro, Raúl; Zdraveva, E.; Pereira, Cristiana Gonilho; Ferreira, A.; Lanceros-Méndez, S.
2010-01-01
This paper presents the development of a braided reinforced composite rod (BCR) able to both reinforce and monitor the stress state of concrete structures. Carbon fibers have been used as sensing and reinforcing materials along with glass fiber. Various composites rods have been produced using an author patented technique based on a modified conventional braiding machine. The materials investigated were prepared with different carbon fiber content as follows: BCR2 (77% glass/23...
Concrete reinforced by braided fibre composite rods
Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Soutinho, Hélder Filipe Cunha; Jalali, Said; Araújo, Mário Duarte de
2005-01-01
One of the most serious problems affecting concrete is corrosion of the steel reinforcement. Corrosion may occur due to reaction of lime present in hydrated cement with carbon dioxide or to the action of chlorides. The braiding technique is probably the most ancient production process for textile structures. Normally used for ropes and cables, braided fabrics are also very interesting for composite reinforcements due to their characteristics: in-plane multiaxial ...
On braided Poisson and quantum inhomogeneous groups
Zakrzewski, S.
1997-01-01
The well known incompatibility between inhomogeneous quantum groups and the standard q-deformation is shown to disappear (at least in certain cases) when admitting the quantum group to be braided. Braided quantum ISO(p,N-p) containing SO_q(p,N-p) with |q|=1 are constructed for N=2p, 2p+1, 2p+2. Their Poisson analogues (obtained first) are presented as an introduction to the quantum case.
Fan deltas and braid deltas: conceptual problems
McPherson, J.G.; Shanmugam, G.; Moiola, R.J.
1986-05-01
The concept of fan deltas has been widely misinterpreted in the geologic literature. A true fan delta is defined as an alluvial fan deposited into a standing body of water. Such sequences are of limited areal extent and are, as expected, uncommon in the rock record. By contrast, braid deltas (herein defined), formed by progradation of a braided fluvial system into a standing body of water, are a common geomorphic feature in many modern settings, and their deposits are common in the geologic record. Braid-delta sequences are often identified as fan deltas, on the false premise that coarse-grained deposits in a deltaic setting are always part of an alluvial fan complex. The authors find that most published examples of so called fan deltas contain no direct evidence for the presence of an alluvial fan. Even in examples where an alluvial fan could be documented, the authors found that, in many cases, the alluvial fan complex was far removed from the shoreline, separated by an extensive braid plain. The authors suggest that such systems are better classified as braid deltas. They consider that it is essential to distinguish the environmental setting of true fan deltas from that of braid deltas. Misclassification will lead to incorrect interpretations of expected facies, sandstone geometry, reservoir quality, and tectonic settings. Criteria based on geometry, vertical and lateral lithofacies associations, and paleocurrent patterns should be used to correctly identify and distinguish these depositional systems.
In Vitro Degradation of Polyglycolide/Chitosan Hybrid Braids
YUAN Xiaoyan; ZHANG Qingwei; WANG Yonglin; YAO Kangde
2005-01-01
Hybrid braids of polyglycolide (PGA) and chitosan were prepared by the three-yarn braiding method from PGA and chitosan fiber bundles. These braids were in vitro degraded by incubating them in phosphate buffered saline (PBS) at pH 7.4 and 37 ℃ for 5 weeks. Results suggested that PGA/chitosan hybrid braids degraded significantly. Scanning electron micrographs showed that chitosan fibers in the PGA/chitosan hybrid braid with about 750% PGA in weight (PGA75/chitosan) were shaped into gel-like after 5 weeks, but those in the hybrid braid with about 250% PGA in weight (PGA25/chitosan) did not change. After 5 weeks, the ultimate tensile loads of PGA and PGA75/chitosan braids lost almost completely, but those of chitosan and PGA25/chitosan braids remained around 14 N. The PGA/chitosan hybrid braids with higher initial ultimate tensile load would have potential applications in tendon/ligament tissue reconstruction.
MUPLEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris
Kearsley, A T; Graham, G A; Burchell, M J; Taylor, E A; Drolshagen, G; Chater, R J; McPhail, D
2004-10-04
Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit. We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimized for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminum casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilizing buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimeter dimensions. Penetrations of the top foil are easily recognized, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.
Сomputer Simulation of Heating Processes in Multi-Layer Composite Structures
R. I. Yesman
2006-01-01
Full Text Available The paper contains solution of the problem concerning heating of multi-layer materials. Method of finite elements has been used to solve the problem.On the basis of numerical experiments plots of temperature fields have been constructed and optimum operating conditions of heating processes of multi-layer structures of materials having special properties have been determined.
Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purification
Schmidt, Cristine Grings; Ippolito, Davide; Bentzen, Janet Jonna; Andersen, Kjeld Bøhm; Kaiser, Andreas; Kammer Hansen, Kent
2013-01-01
Multi-layered ceramics for electrochemical flue gas purification were fabricated by tape casting and lamination or by multi-layer tape casting. The sintered bodies were studied by scanning electron microscopy and electrochemical impedance spectroscopy. It was shown that the samples made by multi...
Geometrical deployment for braided stent.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes
2016-05-01
The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065
Zhu, H. L.; Yao, C.; Li, Y.; Pan, H. L.
2016-05-01
Future space missions require efficient delivery of large payloads over great distances, necessitating the use of high-energy cryogenic propellant. Therefore, reliable compound multi-layer insulation on cryogenic tank is a crucial part of future space exploration. Compound multi-layer insulation is composed of double-aluminized radiation shielding and separated by a combination of netting and bumper strips, with a foam substrate. Considering conduction, convection, and radiation in heat transfer, the thermal field of multi-layer insulation is analysis by theoretical analysis with different thickness of foam substrate and MLI. Based on the formerly theoretical analysis, the heat flux and apparent thermal conductivity are discussed under the different thickness of foam substrate and MLI. Finally, the optimum design of multi-layer thermal insulation is present in consideration of the thickness and insulation performance of multi-layer insulation.
A multi-layer network approach to MEG connectivity analysis.
Brookes, Matthew J; Tewarie, Prejaas K; Hunt, Benjamin A E; Robson, Sian E; Gascoyne, Lauren E; Liddle, Elizabeth B; Liddle, Peter F; Morris, Peter G
2016-05-15
Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia. PMID:26908313
Addressing stress corrosion cracking on multi layer pipeline coating systems
Hardy, Scott B.; Marr, James E. [Tuboscope Pipeline Services, Houston, TX (United States); Willmot, Martyn [Jotun Group (Norway); Norman, David [David Norman Corrosion Control, Cornwall (United Kingdom); Khera, Ashish [Allied Engineering, Portland, ME (United States)
2005-07-01
Stress corrosion cracking (SCC) is now recognized by operators worldwide as a significant threat to the safe operation of their pipeline systems. Gas, oil, and refined products lines have all been susceptible to this form of environmentally assisted cracking. As a result, operators and regulators have been incorporating data related to the development and prevalence of SCC into their risk management systems in order that they may effectively address this time-dependant threat. The National Association of Corrosion Engineers (NACE) published the first structured methodology for stress corrosion cracking direct assessment (SCCDA) in 2004 (RP0204-2004). Operators are now beginning to apply the methods outlined in the standard to assess their systems. Research and industry experience have shown that various pipeline coating systems can be more or less effective in preventing the formation and growth of SCC. Newer pipeline coatings, such as multi layer epoxy/extruded polyolefin systems have been widely regarded as effective coating systems to address the threat posed by SCC when they are properly applied. New field studies performed on a pipeline coated with a three layer epoxy/polyethylene system have raised the possibility that operators utilizing these types of coatings may need to reassess how they manage the SCC threat. (author)
Geometrical nonlinear free vibration of multi-layered graphene sheets
Wang Jinbao [School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316000 (China); He Xiaoqiao; Kitipornchai, S [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Zhang Hongwu, E-mail: bcxqhe@cityu.edu.hk [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)
2011-04-06
A nonlinear continuum model is developed for the nonlinear vibration analysis of multi-layered graphene sheets (MLGSs), in which the nonlinear van der Waals (vdW) interaction between any two layers is formulated explicitly. The nonlinear equations of motion are studied by the harmonic-balance methods. Based on the present model, the nonlinear stiffened amplitude-frequency relations of double-layered graphene sheets (DLGSs) are investigated in the spectral neighbourhood of lower frequencies. The influence of the vdW interaction on the vibration properties of DLGSs is well illustrated by plotting the resulting modes' shapes, in which in-phase and anti-phase vibrations of DLGSs are studied. In particular, the large-amplitude vibration which associates with the anti-phase resonant frequencies, separating DLGS into single-layered GSs, is a promising application that needs to be explored further. In contrast, the vibration modes that are associated with the resonant frequencies are nonidentical and give various vibration patterns, which indicates that MLGSs are highly suited to being used as high-frequency resonators.
Geometrical nonlinear free vibration of multi-layered graphene sheets
A nonlinear continuum model is developed for the nonlinear vibration analysis of multi-layered graphene sheets (MLGSs), in which the nonlinear van der Waals (vdW) interaction between any two layers is formulated explicitly. The nonlinear equations of motion are studied by the harmonic-balance methods. Based on the present model, the nonlinear stiffened amplitude-frequency relations of double-layered graphene sheets (DLGSs) are investigated in the spectral neighbourhood of lower frequencies. The influence of the vdW interaction on the vibration properties of DLGSs is well illustrated by plotting the resulting modes' shapes, in which in-phase and anti-phase vibrations of DLGSs are studied. In particular, the large-amplitude vibration which associates with the anti-phase resonant frequencies, separating DLGS into single-layered GSs, is a promising application that needs to be explored further. In contrast, the vibration modes that are associated with the resonant frequencies are nonidentical and give various vibration patterns, which indicates that MLGSs are highly suited to being used as high-frequency resonators.
CASCADE - a multi-layer Boron-10 neutron detection system
Köhli, M; Allmendinger, F; Perrevoort, A -K; Schröder, T; Martin, N; Schmidt, C J; Schmidt, U
2016-01-01
The globally increased demand for helium-3 along with the limited availability of this gas calls for the development of alternative technologies for the large ESS instrumentation pool. We report on the CASCADE Project - a novel detection system, which has been developed for the purposes of neutron spin echo spectroscopy. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid boron-10 coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard Argon-CO2 counting gas environment. This multi-layer setup efficiently increases the detection efficiency and serves as a helium-3 alternative. It has furthermore been possible to extract the signal of the charge traversing the stack to identify the very thin conversion layer of about 1 micrometer. This allows the precise determination of the time-of-flight, necessary for the application in MIEZE spin echo...
Equilibrium theory for braided elastic filaments
van der Heijden, Gert
Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.
Braid My Hair - Randy Owen sings out for sick children
... Bar Home Current Issue Past Issues Braid My Hair - Randy Owen sings out for sick children Past ... debut performance of his latest song, "Braid My Hair," was the highlight during this year's Songwriter's Dinner ...
A Secure Key Agreement Protocol Using Braid Groups
Atul Chaturvedi; Shyam Sundar
2010-01-01
This paper presents an authenticated key agreement protocol based on a braid group. It is proved that the proposed protocol meets several security attributes under the assumption that the Root Problem (RP) in braid group is a hard problem.
Energy management and multi-layer control of networked microgrids
Zamora, Ramon
Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.
Improved SVR Model for Multi-Layer Buildup Factor Calculation
The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined
Multi-Layer and Recursive Neural Networks for Metagenomic Classification.
Ditzler, Gregory; Polikar, Robi; Rosen, Gail
2015-09-01
Recent advances in machine learning, specifically in deep learning with neural networks, has made a profound impact on fields such as natural language processing, image classification, and language modeling; however, feasibility and potential benefits of the approaches to metagenomic data analysis has been largely under-explored. Deep learning exploits many layers of learning nonlinear feature representations, typically in an unsupervised fashion, and recent results have shown outstanding generalization performance on previously unseen data. Furthermore, some deep learning methods can also represent the structure in a data set. Consequently, deep learning and neural networks may prove to be an appropriate approach for metagenomic data. To determine whether such approaches are indeed appropriate for metagenomics, we experiment with two deep learning methods: i) a deep belief network, and ii) a recursive neural network, the latter of which provides a tree representing the structure of the data. We compare these approaches to the standard multi-layer perceptron, which has been well-established in the machine learning community as a powerful prediction algorithm, though its presence is largely missing in metagenomics literature. We find that traditional neural networks can be quite powerful classifiers on metagenomic data compared to baseline methods, such as random forests. On the other hand, while the deep learning approaches did not result in improvements to the classification accuracy, they do provide the ability to learn hierarchical representations of a data set that standard classification methods do not allow. Our goal in this effort is not to determine the best algorithm in terms accuracy-as that depends on the specific application-but rather to highlight the benefits and drawbacks of each of the approach we discuss and provide insight on how they can be improved for predictive metagenomic analysis. PMID:26316190
Tensile performance of braided composite rods for concrete reinforcement
Pereira, Cristiana Gonilho; Fangueiro, Raúl; Jalali, Said; Araújo, Mário Duarte de; Marques, P.
2008-01-01
The current work is concerned with the development of braided composite rods for civil engineering applications, namely for concrete internal reinforcement, as a steel substitute. The research study aims at understanding the tensile behaviour of composite rods reinforced by a textile structure – braided structure with core reinforcement. Seven types of braided composite rods were produced, varying the type of fibres used as a core reinforcement of a polyester braided structure. Eglass, car...
Braided composite rods to reinforce concrete subjected to aggressive environments
Pereira, Cristiana Gonilho; Fangueiro, Raúl; Jalali, Said; Marques, P.; Araújo, Mário Duarte de
2008-01-01
The current work is concerned with the development of braided composite rods for civil engineering applications, namely for concrete internal reinforcement, as a steel substitute. The research study aims at understanding the tensile behaviour of composite rods reinforced by a textile structure – braided structure with core reinforcement. Seven types of braided composite rods were produced, varying the type of fibres used as a core reinforcement of a polyester braided structure. E-glass, ca...
Diffusive evolution of experimental braided rivers
Reitz, Meredith D.; Jerolmack, Douglas J.; Lajeunesse, Eric; Limare, Angela; Devauchelle, Olivier; Métivier, François
2014-05-01
Water flowing over a loose granular bed organizes into a braided river, a network of ephemeral and interacting channels. The temporal and spatial evolution of this network of braided channels is not yet quantitatively understood. In ˜1 m-scale experiments, we found that individual channels exhibit a self-similar geometry and near-threshold transport conditions. Measurements of the rate of growth of topographic correlation length scales, the time scale of system-slope establishment, and the random spatial decorrelation of channel locations indicate together that the evolution of the braided river system may be diffusive in nature. This diffusion is due to the separation of scales between channel formation and network evolution, and the random motion of interacting channels when viewed at a coarse-grained scale.
Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding
Gao, Yan Tao; Ko, Frank K.; Hu, Hong
2013-12-01
This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.
Effect of braiding process on the damage tolerance of 3-D braided graphite/epoxy composites
El-Shiekh, Aly; Li, Wei; Hammad, Mohamed
1989-01-01
One of the key advantages of three-dimensional braided composite materials is their high impact damage tolerance comparing with laminated composites, due to their fully integrated fibrous substrates. In this paper, the effect of different processing methods on the impact damage tolerance of braided graphite/epoxy composite is experimentally assessed. The test specimens are prepared using both of the two existing three-dimensional braiding techniques (the 4-step and the 2-step processes). After the specimens are impacted under controlled impact energy, the damage introduced is studied. Then a compression test is conducted to evaluate the compression strength of the specimens after impact.
Positive braid knots of maximal topological 4-genus
Liechti, Livio
2015-01-01
We show that a positive braid knot has maximal topological 4-genus exactly if it has maximal signature invariant. As an application, we determine all positive braid knots with maximal topological 4-genus and compute the topological 4-genus for all positive braid knots with up to 12 crossings.
Braiding operator via quantum cluster algebra
We construct a braiding operator in terms of the quantum dilogarithm function based on the quantum cluster algebra. We show that it is a q-deformation of the R-operator for which hyperbolic octahedron is assigned. Also shown is that, by taking q to be a root of unity, our braiding operator reduces to the Kashaev RK-matrix up to a simple gauge-transformation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Flexible organic light-emitting diodes with ITO/Ag/ITO multi-layers as anodes
LI Yang; WANG Liduo; CHANG Chun; DUAN Lian; QIU Yong
2004-01-01
The transparent ITO/Ag/ITO multi-layers are developed as anodes on flexible PET (poly(ethylene terephthalate)) substrates. The influence of these anodes on FOLED (Flexible Organic Light-emitting Diodes) is investigated. From the results of research, it can be seen that the multi-layer anode has optimum characteristics, whose sheet resistance is 11 Ω and optical transmittance is about 80%,when the thickness of Ag sandwiched by two ITO layers is in the range of 14-18 nm. It is demonstrated that the OLED devices with multi-layer anodes give better luminescence and higher efficiency compared with those with single ITO an odes.
A generalized combination equation derived from a multi-layer micrometeorological model
Lhomme, Jean-Paul
1988-10-01
The discrete multi-layer model originally devised by Waggoner and Reifsnyder (1968) is used as a theoretical basis to describe the vegetation-atmosphere interaction. Mathematical development of the basic equations yields Ohm's law-type formulae for sensible and latent heat fluxes from which it is possible to derive a combination equation very close in form to Penman-Monteith's equation. A bulk aerodynamic resistance and a bulk stomatal resistance can be defined and expressed in terms of the elementary resistances of the multi-layer model. This new combination equation offers an alternative to the attempts undertaken by Shuttleworth (1976) to unify multi-layer and single-layer approaches.
Statistical Model of the 3-D Braided Composites Strength
XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun
2007-01-01
Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.
Experimental study of damage and destroy of X-ray multi-layer reflector
The plasma environment which creates X-ray laser brings the difficulty to the application of X-ray multi-layer reflector. The most difficult is that the X-ray emitted by the plasma destroys and damages the multi-layer reflector. It is shown by the simulated test that the damaged threshold of Mo/Si multilayer reflector made in china is less than 0.10 J/cm2. With the exposure the radiation dose the rood-mean square roughness of multi-layer apparently increases and the reflectivity almost drops to zero. According to these results, the article state some ideas for preventing damages of the multi-layer reflector
Exploring multi-layer flow network of international trade based on flow distances
Shen, Bin; Zheng, Qiuhua
2015-01-01
Based on the approach of flow distances, the international trade flow system is studied from the perspective of multi-layer flow network. A model of multi-layer flow network is proposed for modelling and analyzing multiple types of flows in flow systems. Then, flow distances are introduced, and symmetric minimum flow distance is presented. Subsequently, we discuss the establishment of the multi-layer flow networks of international trade from two coupled viewpoints, i.e., the viewpoint of commodity flow and that of money flow. Thus, the multi-layer flow networks of international trade is explored. First, trading "trophic levels" are adopted to depict positions that economies occupied in the flow network. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodity, and there are some regularities between money flow network and commodity flow network. Second, we find that active and competitive countries trade a wide spectrum of products, while ...
Load-Bearing Tank-Applied Multi-Layer Insulation Project
National Aeronautics and Space Administration — The proposed load-bearing, tank-applied, multi-layer insulation system consists of a set of highly reflective radiation shields made from 1 mil thick aluminized...
Synthesis and characterization of carbon/silica superhydrophobic multi-layer films
C/SiO2 multi-layer films (3-layer films and 5-layer films) were obtained by sol-gel method and physical deposition on glass plates, and then heated at 500 oC for 1 h under a nitrogen atmosphere. The mechanical adhesive force with the substrate of the multi-layer films was sharply enhanced compared to the as-deposited amorphous carbon film. An absorption layer was formed on heat treated C/SiO2 multi-layer films by modification of the surface with trimethylchlorosilane, and the wettability of the films changed from hydrophilic to super-hydrophobic. The structures of the physically deposited carbon and the multi-layer films were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The experimental results showed that the 5-layer films had a concentric ring structure that caused the film to be superhydrophobic.
Ferrofluids, complex particle dynamics and braid description
Finely divided magnetic matter is important in many areas of science and technology. A special sub-class of systems are made up of freely moving particles suspended in a carrier liquid where the magnetic interactions play an important role in the actual structure formation and dynamical behaviour. These include ferrofluids, which are colloids of magnetic particles dispersed in carrier fluids, magnetic micro-beads, which are micrometer sized plastic beads loaded with iron oxide, and nonmagnetic particles dispersed in ferrofluids, forming the so-called 'magnetic holes'. How, in a simple and forceful way, is it possible to characterise the dynamics of systems with several moving components like dispersed magnetic particles subjected to external magnetic fields? The methods based on the theory of braids may provide the answer. Braid theory is a sub-field of mathematics known as topology. It involves classifying different ways of tracing curves in space. The topological description of braids thus provides a simple and concise language for describing the dynamics of a system of moving particles as if they perform a complicated dance as they move about one another, and the braid encodes the choreography of this dance
Ferrofluids, complex particle dynamics and braid description
Skjeltorp, Arne T.; Clausen, Sigmund; Helgesen, Geir
2001-05-01
Finely divided magnetic matter is important in many areas of science and technology. A special sub-class of systems are made up of freely moving particles suspended in a carrier liquid where the magnetic interactions play an important role in the actual structure formation and dynamical behaviour. These include ferrofluids, which are colloids of magnetic particles dispersed in carrier fluids, magnetic micro-beads, which are micrometer sized plastic beads loaded with iron oxide, and nonmagnetic particles dispersed in ferrofluids, forming the so-called "magnetic holes". How, in a simple and forceful way, is it possible to characterise the dynamics of systems with several moving components like dispersed magnetic particles subjected to external magnetic fields? The methods based on the theory of braids may provide the answer. Braid theory is a sub-field of mathematics known as topology. It involves classifying different ways of tracing curves in space. The topological description of braids thus provides a simple and concise language for describing the dynamics of a system of moving particles as if they perform a complicated dance as they move about one another, and the braid encodes the choreography of this dance.
Quantum Lorentz and braided Poincare groups
Zakrzewski, S.
1997-01-01
Quantum Lorentz groups H admitting quantum Minkowski space V are selected. Natural structure of a quantum space G = V x H is introduced, defining a quantum group structure on G only for triangular H (q=1). We show that it defines a braided quantum group structure on G for |q|=1.
Andersen, Thomas Lykke; Skals, Kasper; Burcharth, Hans F.
2008-01-01
The paper deals with homogeneous and multi-layer berm breakwaters designed to maximize the utilization of the quarry material. Two wide stone classes are typically used for berm breakwaters with a homogeneous berm.......The paper deals with homogeneous and multi-layer berm breakwaters designed to maximize the utilization of the quarry material. Two wide stone classes are typically used for berm breakwaters with a homogeneous berm....
A simple multi-layer finite volume solver for density-driven shallow water flows.
Benkhaldoun, F.; Sari, S.; Seaid, M.
2014-01-01
A simple solver is proposed for the numerical solution of density-driven multi-layer shallow water flows. The governing equations consist on coupling the multi-layer shallow water equations for the hydraulic variables with suspended sediment transport equations for the concentration variables. The layers can be formed in the shallow water model based on the variation of water density which may depend on the water temperature and salinity. At each time step, the method consists of two stages t...
Damage effects on multi-layer graphene from femtosecond laser interaction
We present a study on the damage effects of femtosecond laser interaction on exfoliated multi-layer graphene using the techniques of optical microscopy, atomic force microscopy, and Raman spectroscopy. Various effects of the interaction were observed. The ablation threshold was found to be ∼4 mJ cm−2, and was slightly higher in transmission mode than in reflection mode. This work also demonstrates the feasibility of ultrafast laser patterning of exfoliated multi-layer graphene. (paper)
Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle
Jingyi Nie; Wentao Lu; Jianjun Ma; Ling Yang; Zhengke Wang; An Qin; Qiaoling Hu
2015-01-01
Hydrogels with organized structure have attracted remarkable attentions for bio-related applications. Among the preparation of hierarchical hydrogel materials, fabrication of hydrogel with multi-layers is an important branch. Although the generation mechanism of layers had been fully discussed, sub-layer structure was not sufficiently studied. In this research, multi-layered chitosan hydrogel with oriented structure was constructed, and the formation mechanism of orientation was proposed, bas...
Null Models and Modularity Based Community Detection in Multi-Layer Networks
Paul, Subhadeep
2016-01-01
Multi-layer networks are networks on a set of entities (nodes) with multiple types of relations (edges) among them where each type of relation/interaction is represented as a network layer. As with single layer networks, community detection is an important task in multi-layer networks. A large group of popular community detection methods in networks are based on optimizing a quality function known as the modularity score, which is a measure of presence of modules or communities in networks. Hence a first step in community detection is defining a suitable modularity score that is appropriate for the network in question. Here we introduce several multi-layer network modularity measures under different null models of the network, motivated by empirical observations in networks from a diverse field of applications. In particular we define the multi-layer configuration model, the multi-layer expected degree model and their various modifications as null models for multi-layer networks to derive different modulariti...
Corrosion protected, multi-layer fuel cell interface
A fuel cell stack is described comprising stacked elements, including at least one corrosion resistant, electrically conductive, fluid impervious interface arranged between two of the elements which are not adjacent to one another. The interface consists of a non-cupreous metal coating formed on at least one of the elements and a conductive layer bonded to at least the metal-coated element by a hot-pressed resin. The resin substantially fills any pores in the conductive layer
A Fully Self-consistent Multi-layered Model of Jupiter
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-08-01
We construct a three-dimensional, fully self-consistent, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region, and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. We also assume that the location of the molecular-metallic interface is characterized by its equatorial radius {{HR}}e, where R e is the equatorial radius of Jupiter at the 1 bar pressure level and H is treated as a parameter of the model. We solve the relevant mathematical problem via a perturbation approach. The leading-order problem determines the density, size, and shape of the inner core, the irregular shape of the 1 bar pressure level, and the internal structure of Jupiter that accounts for the full effect of rotational distortion, but without the influence of the zonal winds; the next-order problem determines the variation of the gravitational field solely caused by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. The leading-order solution produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J 2 of Jupiter within their error bars; it also yields the coefficients J 4 and J 6 within about 5% accuracy, the core equatorial radius 0.09{R}e and the core density {ρ }c=2.0× {10}4 {{kg}} {{{m}}}-3 corresponding to 3.73 Earth masses; the next-order solution yields the wind-induced variation of the zonal gravitational coefficients of Jupiter.
MultiLayer solid electrolyte for lithium thin film batteries
Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping
2015-07-28
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
Burst Testing of Triaxial Braided Composite Tubes
Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.
2014-01-01
Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-01
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.
Braid group representation on quantum computation
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state
Braid group representation on quantum computation
Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
MULTI-LAYER PIEZOELECTRIC ACTUATOR AND ITS APPLICATION IN CONTROLLABLE CONSTRAINED DAMPING TREATMENT
ZHANG Xinong; XIE Shilin; ZHANG Yahong
2007-01-01
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid Vibration control. The governing equation of the System is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid Vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal Vibration of the experimental thin-plate structure.
Geometric representations of the braid groups
Castel, Fabrice
2011-01-01
We show that the morphisms from the braid group with n strands in the mapping class group of a surface with a possible non empty boundary, assuming that its genus is smaller or equal to n/2 are either cyclic morphisms (their images are cyclic groups), or transvections of monodromy morphisms (up to multiplication by an element in the centralizer of the image, the image of a standard generator of the braid group is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists along two curves intersecting in one point). As a corollary, we determine the endomorphisms, the injective endomorphisms, the automorphisms and the outer automorphism group of the following groups: the braid group with n strands where n is greater than or equal to 6, and the mapping class group of any surface of genus greater or equal than 2. For each statement involving the mapping class group, we study both cases: when the boundary is fixed pointwise, and when each boundary component is fixed setwise. We will al...
Imperfect dark energy from kinetic gravity braiding
We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime
This research thesis reports the characterization of anti-corrosion titanium and aluminium coatings deposited on a 35CD4 steel under the form of mono-metallic layers or alternated Ti/Al multi-layers, and obtained by a multibeam PVD technique. The influence of different parameters is studied: single-layer thickness (5, 15 or 30 micro-metres), multi-layer distribution (5 to 6) and substrate (smooth or threaded). Layer nature and microstructure are studied by optical microscopy and scanning electron microscopy (SEM), as well as corrosion toughness in aqueous saline environments. Coated threaded samples have been studied after tightening tests. It appears that titanium layers are denser and more uniform than aluminium layers, and that multi-layer coatings provide a better protection than single-layer coatings. The best behaviour is obtained when titanium is in contact with steel, and aluminium is the outer layer in contact with the corroding environment
Teleportation, Braid Group and Temperley--Lieb Algebra
Zhang, Yong
2006-01-01
We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum mea...
CAD/CAM of braided preforms for advanced composites
Yang, Gui; Pastore, Christopher; Tsai, Yung Jia; Soebroto, Heru; Ko, Frank
A CAD/CAM system for braiding to produce preforms for advanced textile structural composites is presented in this paper. The CAD and CAM systems are illustrated in detail. The CAD system identifies the fiber placement and orientation needed to fabricate a braided structure over a mandrel, for subsequent composite formation. The CAM system uses the design parameters generated by the CAD system to control the braiding machine. Experimental evidence demonstrating the success of combining these two technologies to form a unified CAD/CAM system for the manufacture of braided fabric preforms with complex structural shapes is presented.
Self-organized braiding in solar coronal loops
Berger, M. A.; Asgari-Targhi, M.; Deluca, E. E.
2015-08-01
In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to x-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.
A new algebra which transmutes to the braided algebra
Yildiz, A
1999-01-01
We find a new braided Hopf structure for the algebra satisfied by the entries of the braided matrix $BSL_q(2)$. A new nonbraided algebra whose coalgebra structure is the same as the braided one is found to be a two parameter deformed algebra. It is found that this algebra is not a comodule algebra under adjoint coaction. However, it is shown that for a certain value of one of the deformation parameters the braided algebra becomes a comodule algebra under the coaction of this nonbraided algebr...
Braiding in Conformal Field Theory and Solvable Lattice Models
Gepner, D; Gepner, Doron; Fuchs, Jurgen
1994-01-01
Braiding matrices in rational conformal field theory are considered. The braiding matrices for any two block four point function are computed, in general, using the holomorphic properties of the blocks and the holomorphic properties of rational conformal field theory. The braidings of $SU(N)_k$ with the fundamental are evaluated and are used as examples. Solvable interaction round the face lattice models are constructed from these braiding matrices, and their Boltzmann weights are given. This allows, in particular, for the derivation of the Boltzmann weights of such solvable height models.
Xianghua LI; Xiaohui LIU; Shenfang YUAN
2008-01-01
The experimental characterization of three-dimensional (3-D) braided composites is extremely important for their design and analysis. Because of their desirable attributes and outstanding performance, optical fiber sensors (OFSs) can be embedded to mon-itor mechanical properties of textile composites. This paper discusses two techniques to incorporate different OFSs into 3-D braided composite preforms. The oper-ating principle of various sensor systems is first con-ducted. Experiments using Michelson interferometers, FBG sensors, and micro-bend sensors are performed to verify the concept of the proposed method. Strain curves of various OFSs tests are finally compared, and they all exhibit good linearity.
Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein
Barbosa, J. S.; Costa, R. R.; Testera, A. M.; Alonso, M.; Rodríguez-Cabello, J. C.; Mano, J. F.
2009-10-01
Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area.
Stresses in heated pressurized multi-layer cylinders in generalized plane strain conditions
An analytical solution for the displacement field and corresponding stress state in multi-layer cylinders subjected to pressure and thermal loading is developed. Solutions are developed for axially loaded and spring-mounted cylinders, assuming that the combined multi-layer cross-section remains plane after deformation (generalized plane strain). The analytical solutions are verified by means of detailed three-dimensional finite element analyses. The solutions are easily implemented in, and suitable for, engineering applications. - Highlights: • An analytical solution for heated pressurized multi-layer cylinders is developed. • The solution is easily implemented and computationally efficient. • The solution highlights application to coated pipelines. • The analytical solution is verified numerically by finite element analyses
Can we neglect the multi-layer structure of functional networks?
Zanin, Massimiliano
2015-01-01
Functional networks, i.e. networks representing dynamic relationships between the components of a complex system, have been instrumental for our understanding of, among others, the human brain. Due to limited data availability, the multi-layer nature of numerous functional networks has hitherto been neglected, and nodes are endowed with a single type of links even when multiple relationships coexist at different physical levels. A relevant problem is the assessment of the benefits yielded by studying a multi-layer functional network, against the simplicity guaranteed by the reconstruction and use of the corresponding single layer projection. Here, I tackle this issue by using as a test case, the functional network representing the dynamics of delay propagation through European airports. Neglecting the multi-layer structure of a functional network has dramatic consequences on our understanding of the underlying system, a fact to be taken into account when a projection is the only available information.
Reed, Heather; Hoppe, Wally
2016-02-01
Thermographic NDE approaches to detect subsurface corrosion defects of multi-layered structures with composite top layers have proven difficult due to the fact that the thermal conductivity of composite materials is larger in lateral directions (the plane parallel to the surface) than in the through-thickness directions. This causes heat to dissipate faster laterally than through the thickness when a heat source is applied to the surface of the structure, making it difficult for subsurface damage effects to manifest on the surface, where the heat source and inspection typically occur. To address this, a heat induction approach is presented that excites the damaged, metallic bottom layer directly by Joule heating, resulting in more observable damage effects on the surface than what could be expected for traditional thermographic methods on this type of structure. To characterize the subsurface damage parameters (defect location, diameter, and depth), Bayesian inversion of numerically-simulated noisy data, using a high-fidelity, coupled electromagnetic-heat transfer model is employed. Stochastic estimation methods such as Markov chain Monte Carlo (MCMC) allow for quantification of uncertainty surrounding the damage parameters, which is important as this directly translates into uncertainty surrounding the component reliability. However, because thousands of high-fidelity finite element models are computationally costly to evaluate, as is typical in most MCMC methods, the use of Bayesian inversion is rarely feasible in real-time. To address this, a projection-based reduced order modeling (ROM) tracking and interpolation scheme is formulated within the MCMC sampling method for the multi-physics problem, resulting in significant speedup of solution time with little loss of accuracy, enabling near-real time stochastic estimation of damage.
Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon
Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation
Vokkarane, Vinod [University of Massachusetts
2013-09-01
We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).
A study on elastic guided wave propagation in multi-layered structures
In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The correlation between attenuation and out of plane displacement is also explored. It Is shown that to improve understanding on guided wave modal characteristics is possible by evaluating corresponding wave structures. Though this study, the concept to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.
Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures
Lehman, Tom [USC; Ghani, Nasir [UNM; Boyd, Eric [UCAID
2010-08-31
At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.
Discussion on in-situ leach mining of multi-layer deposit
Along with increasing of multi-layer uranium sandstone deposits, investigation and test of mining technology have been seriously regarded, particular for separated mining at different stages. Although the mining is influenced by resources distribution in layers and mine capacity, relationship between aquifer and ore layer, mining sequence among layers, life of drilling hole etc., the mining for multi-layer sandstone deposits, no matter upper layer or lower layer is firstly mined, can be realized by use of PVC separator for well construction. (authors)
Failure of multi-layer graphene coatings in acidic media
Yu, Feng; Stoot, Adam Carsten; Bøggild, Peter;
2016-01-01
Being impermeable to all gases, graphene has been proposed as an effective ultrathin barrier film and protective coating. However, here it is shown how the gastight property of graphene-based coatings may indirectly lead to their catastrophic failure under certain conditions. When nickel coated...... with thick, high-quality chemical vapor deposited multilayered graphene is exposed to acidic solutions, a dramatic evolution of gas is observed at the coating–substrate interface. The gas bubbles grow and merge, eventually rupturing and delaminating the coating. This behavior, attributed to cathodic...... hydrogen evolution, can also occur spontaneously on a range of other technologically important metals and alloys based on iron, zinc, aluminum and manganese; this makes these findings relevant for practical applications of graphene-based coatings.Being impermeable to all gases, graphene has been proposed...
Nondestructive testing of multi-layer tubes during fabrication
Design of multilayer steel tubes for gas pipelines and technology of their fabrication are described in brief. Testing of the ground metal and welded joints of tubes used in their fabrication are considered. These methods comprise ultrasonic (US) testing of band, US testing and vacuum-bubble testing (VBT) of inner lap joints of shells X-ray TV control (XTVC) of ring welds, US testing of edge sections of shells with a continuous wall. Equipment applied in testing is described. XTVC is exercised by means of the RUP-150/300-10 X-ray apparatus, RI-60TEh introscope, sensitivity of testing is not worse than 4%, the rate equals 1-2 m/min
A study of mixing in coherent vortices using braiding factors
This paper studies the use of braiding fluid particles to quantify the amount of mixing within a fluid flow. We analyze the pros and cons of braid methods by considering the motion of three or more fluid particles in a coherent vortex structure. The relative motions of the particles, as seen in a space-time diagram, produce a braid pattern, which is correlated with mixing and measured by the braiding factor. The flow we consider is a Gaussian vortex within a rotating strain field that generates cat's eyes in the vortex. We also consider a modified version of this strain field that contains a resonance frequency effect that produces multiple sets of cat's eyes at different radii. As the thickness of the cat's eyes increases, they interact with one another and produce complex Lagrangian motion in the flow that increases the braiding of particles, hence implying more mixing within the vortex. It is found that calculating the braiding factor using only three fluid particles gives useful information about the flow, but only if all three particles lie in the same region of the flow, i.e. this gives good local information. We find that we only require one of the three particles to trace a chaotic path to give an exponentially growing braiding factor. i.e. a non-zero 'braiding exponent'. A modified braiding exponent is also introduced which removes the spurious effects caused by the rotation of the fluid. This analysis is extended to a more global approach by using multiple fluid particles that span larger regions of the fluid. Using these global results, we compare the braiding within a viscously spreading Gaussian vortex in the above strain fields, where the flow is determined both kinematically and dynamically. We show that the dynamic feedback of the strain field onto the flow field reduces the overall amount of braiding of the fluid particles.
Design of bending multi-layer electroactive polymer actuators
Balakrisnan, Bavani; Nacev, Alek; Smela, Elisabeth
2015-04-01
The effects of layer thickness and stiffness on multilayer bending actuator performance were investigated with an analytical mechanical model. Performance was evaluated in terms of curvature, blocked force, and work. Multilayer device designs corresponding to dielectric elastomer actuator, ionic polymer metal composite, and conjugated polymer structures were examined. Normalized plots of the performance metrics as functions of relative layer thickness and stiffness are presented that should allow initial, starting-point estimates for designs for particular applications. The results show that to achieve high curvature, layer thickness and stiffness may need to be set above or below particular bounds, or varied together, depending on the device configuration; often there is a broad plateau of combinations that work equally well. There is a conflict between achieving high bending and high force: the former requires the device to behave as much as possible like a simple bilayer with optimal ratios of thickness and modulus, while the latter requires thicker layers and shows little dependence on their moduli. Finally, to maximize work there are areas in the thickness-modulus plane that should be avoided, these areas varying with the configuration in sometimes surprising ways.
Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood
Arnott, Luke
2012-01-01
"Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…
Sharing the Arts of the Blue Ridge Mountains. Rug Braiding.
Holman, Martha; Gailey, Lamar
This module on rug braiding is one of eight modules designed to provide instruction on authentic Blue Ridge Mountain crafts to adult basic education students at low cost. Contents include notes on the history of rug braiding; process used, including equipment and materials, as well as method described narratively and graphically; and the followup,…
Martínez, Ricardo; Casellas, Ramon; Muñoz, Raül
2013-03-11
We present the implementation of the GMPLS control plane functions and path computation algorithm deployed within the CTTC ADRENALINE testbed for the dynamic integrated restoration in multi-layer (MPLS-TP over WSON) networks. The experimental assessment is conducted in terms of the blocking probability, path computation time, restorability and restoration time. PMID:23482119
Diatoms have delicate porous structures which are very beneficial in improving the absorbing ability in the bio-detection field. In this study, multi-layered hierarchical arrays were fabricated by packing Nitzschia soratensis (N. soratensis) frustules into Cosinodiscus argus (C. argus) frustules to achieve advanced sensitivity in bio-detection chips. Photolithographic patterning was used to obtain N. soratensis frustule arrays, and the floating behavior of C. argus frustules was employed to control their postures for packing N. soratensis frustule array spots. The morphology of the multi-layer C. argus–N. soratensis package array was investigated by scanning electron microscopy, demonstrating that the overall and sub-structures of the diatom frustules were retained. The signal enhancing effect of multi-layer C. argus–N. soratensis packages was demonstrated by fluorescent antibody test results. The mechanism of the enhancement was also analyzed, indicating that both complex hierarchical frustule structures and optimized posture of C. argus frustules were important for improving bio-detection sensitivities. The technique for fabricating multi-layer diatom frustules arrays is also useful for making multi-functional biochips and controllable drug delivery systems. (paper)
Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection
A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10−7 Ω·m and 1.39 × 10−7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry
Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf
2016-02-01
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.
Evaluation of Multi Layers Web-based GIS Approach in Retrieving Tourist Related Information
Rosilawati Zainol
2014-02-01
Full Text Available Geo-based information is getting greater importance among tourists. However, retrieving this information on the web depends heavily on the methods of dissemination. Therefore, this study intends to evaluate methods used in disseminating tourist related geo-based information on the web using partial match query, firstly, in default system which is a single layer approach and secondly, using multi layer web-based Geographic Information System (GIS approaches. Shah Alam tourist related data are used as a test collection and are stored in a map server. Query keyword is tested using both default and multi layer systems and results are evaluated using experiments on sample data. Precision and recall are the performance measurement technique used. Findings show that multi layer web-based GIS provide enhanced capability in retrieving tourist related information as compared to default system. Therefore, in the future, web-based GIS development should utilize multi layers approach instead of the single layer method in disseminating geo-based information to users.
Demonstrating multi-layered MAS in control of offshore oil and gas production
Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.;
2013-01-01
From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in a...
Multi-layered satisficing decision making in oil and gas production platforms
Lindegaard Mikkelsen, Lars; Demazeau, Yves; Jørgensen, B. N.
2013-01-01
From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we show how a multi-layered multi-agent system can be used to...
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials. (paper)
A novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells
Highlights: • A multi-layer manifold microchannel cooling system was fabricated for CPV cells. • The unique multi-layer design can result in the higher heat transfer coefficient. • A higher net output power for CPV cell was achieved. - Abstract: Using concentrating photovoltaic (CPV) cells is an effective method for the low-cost photovoltaic conversion. However, higher temperature and non-uniform surface temperature distribution will result in the electrical output decline of CPV cells and shorten their life time. To obtain higher net output power of CPV cells and prolong their life time, we designed a novel multi-layer manifold microchannel cooling system to effectively lower the cell surface temperature and improve the uniformity of surface temperature distribution. Thermal image analysis indicated that the surface temperature difference of the CPV cells was below 6.3 °C. The multi-layer manifold microchannel had a heat transfer coefficient of 8235.84 W/m2 K and its pressure drop was lower than 3 kPa. The results show that the hybrid CPV cells have a satisfactory net output power due to their lower pumping power and the higher electrical output of CPV cells
Zheng-gang XIAO; San-jiu YING; Fu-ming XU
2014-01-01
Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN) (TEGDN propellants) to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances are tested by the materials test machine, interrupted burning set-up and closed vessel, respectively. The static compression strength of consolidated propellants deterred by multi-layer coating increases significantly to 18 MPa, indicating that they can be applied in most circumstances of charge service. And the samples are easy to deconsolidate in the interrupted burning test. Furthermore, the closed bomb burning curves of the samples indicate a two-stage combustion phenomenon under the condition of certain thickness of coated multi-layers. After the outer deterred multi-layer coating of consolidated samples is finished burning, the inner consolidated propellants continue to burn and breakup into aggregates and grains. The high burning progressivity can be carefully obtained by the smart control of deconsolidation process and duration of consolidated propellants. The preliminary results of consolidated propellants show that a rapid deconsolidation process at higher deconsolidation pressure is presented in the dynamic vivacity curves of closed bomb test. Higher density and higher macro progressivity of consolidated propellants can be obtained by the techniques in this paper.
Application of Multi-Layered Polyurethane Foams for Flat-Walled Anechoic Linings
Xu, J. F.; Buchholz, Jörg; Fricke, Fergus R.
2006-01-01
application of multi-layered polyurethane foams as the flat-walled anechoic lining. The investigation includes aspects such as the efficacy of a single layer of material, the minimum number of layers of linings to achieve the minimum overall thickness for low (100Hz), mid (250Hz) and high (500Hz) cut...
Energy efficiency of the Rural Wall multi-layer structure in low-rise building design
T.A. Golova
2014-12-01
Full Text Available This paper presents the study on energy efficiency of various wall design solutions and a new multi-layer wall design for low-rise construction as well as the results of television studies on multi-layer and single-layer envelopes. Indoor climate parameters for various wall design solutions are determined. The study reveals the optimal wall design solutions and specifies the theoretical assessment of their energy efficiency in compliance with Russia's national building code 23-02-2003. The paper presents calculations of building heat loss through the exterior building envelope, reduced resistance to heat transfer of walls and total heat loss of the building with the selected outer wall design during the heating season. Recommendations on the application of the new multi-layer wall design using local wall materials in the construction of energy-efficient low-rise buildings are developed. The recommendations include requirements for wall materials, thermal calculations, production guidelines, properties of layers in a multi-layer walls and physical and mechanical properties of wall layers.
Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori.
Zhang, Yan; Zhao, Ping; Dong, Zhaoming; Wang, Dandan; Guo, Pengchao; Guo, Xiaomeng; Song, Qianru; Zhang, Weiwei; Xia, Qingyou
2015-01-01
Bombyx mori cocoon has a multi-layer structure that provides optimal protection for silkworm pupa. Research on the mechanical properties of the multi-layer structure revealed structure-property relationships of the cocoon. Here, we investigated the protein components of the B. mori cocoon in terms of its multi-layer structure. Liquid chromatography-tandem mass spectrometry identified 286 proteins from the multiple cocoon layers. In addition to fibroins and sericins, we identified abundant protease inhibitors, seroins and proteins of unknown function. By comparing protein abundance across layers, we found that the outermost layer contained more sericin1 and protease inhibitors and the innermost layer had more seroin1. As many as 36 protease inhibitors were identified in cocoons, showing efficient inhibitory activities against a fungal protease. Thus, we propose that more abundant protease inhibitors in the outer cocoon layers may provide better protection for the cocoon. This study increases our understanding of the multi-layer mechanism of cocoons, and helps clarify the biological characteristics of cocoons. The data have been deposited to the ProteomeXchange with identifier PXD001469. PMID:25860555
SAPIR - Executing complex similarity queries over multi layer P2P search structures
Falchi, Fabrizio; Batko, Michal
2009-01-01
This deliverable reports the activities conducted within Task 5.4 "Executing complex similarity queries over multi layer P2P search structures" of the SAPIR project. In particular the deliverable discusses complex similarity queries issues and the implementation of the query processing over the P2P indexing. The document is accompanied by a zip file containing the javadoc for MUFIN.
Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures
Summerhill, Richard
2009-08-14
There were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, o Heterogeneous DataPlane Testing, o Simulation, o Project Publications, Reports, and Presentations.
Road and Obstacle Detection Based on Multi-layer Laser Radar in Driverless Car
Duan, Jianmin; ZHENG Kaihua; SHI Lixiao
2015-01-01
To make a driverless car with better environment awareness, multi-layer laser radar was applied to detect roads and obstacles. Firstly the road edge data set was extracted from numerous laser radar data based on characteristics of the road edge data, and the cluster analysis of the data sets was done with the improved COBWEB algorithm based on Euclidean distance.
Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection
Zheng, Gao-Feng; Pei, Yan-Bo; Wang, Xiang; Zheng, Jian-Yi; Sun, Dao-Heng
2014-06-01
A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω·m and 1.39 × 10-7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry.
Braids as a representation space of SU(5)
Cartin, Daniel
2015-01-01
The Standard Model of particle physics provides very accurate predictions of phenomena occurring at the sub-atomic level, but the reason for the choice of symmetry group and the large number of particles considered elementary, is still unknown. Along the lines of previous preon models positing a substructure to explain these aspects, Bilson-Thompson showed how the first family of elementary particles is realized as the crossings of braids made of three strands, with charges resulting from twists of those strands with certain conditions; in this topological model, there are only two distinct neutrino states. Modeling the particles as braids implies these braids must be the representation space of a Lie algebra, giving the symmetries of the Standard Model. In this paper, this representation is made explicit, obtaining the raising operators associated with the Lie algebra of $SU(5)$, one of the earliest grand unified theories. Because the braids form a group, the action of these operators are braids themselves, ...
Approaches for Tensile Testing of Braided Composites
Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.
2011-01-01
For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower
The braidings of mapping class groups and loop spaces
Song, Yongjin
2000-01-01
The disjoint union of mapping class groups forms a braided monoidal category. We give an explicit expression of braidings in terms of both their actions on the fundamental group of the surface and the standard Dehn twists. This braided monoidal category gives rise to a double loop space. We prove that the action of little 2-cube operad does not extend to the action of little 3-cube operad by showing that the Browder operation induced by 2-cube operad action is nontrivial. A rather simple expr...
Braiding surface links which are coverings over the standard torus
NAKAMURA, Inasa
2009-01-01
We consider a surface link in the 4-space which can be presented by a simple branched covering over the standard torus, which we call a torus-covering link. Torus-covering links include spun $T^2$-knots and turned spun $T^2$-knots. In this paper we braid a torus-covering link over the standard 2-sphere. This gives an upper estimate of the braid index of a torus-covering link. In particular we show that the turned spun $T^2$-knot of the torus $(2,\\,p)$-knot has the braid index four.
Quilts central extensions, braid actions, and finite groups
2000-01-01
Quilts are 2-complexes used to analyze actions and subgroups of the 3-string braid group and similar groups. This monograph establishes the fundamentals of quilts and discusses connections with central extensions, braid actions, and finite groups. Most results have not previously appeared in a widely available form, and many results appear in print for the first time. This monograph is accessible to graduate students, as a substantial amount of background material is included. The methods and results may be relevant to researchers interested in infinite groups, moonshine, central extensions, triangle groups, dessins d'enfants, and monodromy actions of braid groups.
Core reilforced braided composite armour as a substitute to steel in concrete reinforcement
Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Araújo, Mário Duarte de; Pereira, C. Gonilho; Jalali, Said
2006-01-01
This paper presents the work that is being done at the University of Minho concerning the development of brainded rods concrete reinforcement. Several samples of core reinforced braided fabrics have been produced varying the type of braided fabric (core reinforced and hybrid), the linear density of the core reinforcing yarns and the type of braiding structure (with or without ribs). The tensile properties of braided fabrics has also been analysed. Core reinforced braided composites rods were ...
Plane strain deformation of a multi-layered poroelastic half-space by surface loads
Sarva Jit Singh; Sunita Rani
2006-12-01
The Biot linearized quasi-static theory of ﬂuid-inﬁltrated porous materials is used to formulate the problem of the two-dimensional plane strain deformation of a multi-layered poroelastic half-space by surface loads. The Fourier–Laplace transforms of the stresses, displacements, pore pressure and ﬂuid ﬂux in each homogeneous layer of the multi-layered half-space are expressed in terms of six arbitrary constants. Generalized Thomson–Haskell matrix method is used to obtain the deformation ﬁeld. Simpliﬁed explicit expressions for the elements of the 6 × 6 propagator matrix for the poroelastic medium are obtained. As an example of the possible applications of the analytical formulation developed, formal solution is given for normal strip loading, normal line loading and shear line loading.
Numerical simulation of core convection by a multi-layer semi-implicit spherical spectral method
Cai, Tao; Chan, Kwing L.; Deng, Licai
2011-10-01
A semi-implicit multi-layer spherical spectral method for simulating stellar core convection is described. The fully compressible three-dimensional hydrodynamic equations with rotation and energy generation are solved. Prognostic variables are expressed as finite sums of spherical harmonics in the horizontal directions and handled by the finite difference method in the radial direction. The stratified approximation is used to simplify the nonlinearity to quadratic. A multi-layer scheme is employed to overcome the time step problem arising from shrinking grid sizes in the physical space near the center of the star. Despite of the different spectral truncations in different layers, round-off conservation of the total mass and total angular momentum of the whole domain can be maintained, and were confirmed numerically. The code is parallelized; with 12 processors the speedup factor is about 9. The solutions of model core convection with and without rotation are discussed.
Proposal of a multi-layer network architecture for OBS/GMPLS network interworking
Guo, Hongxiang; Tsuritani, Takehiro; Yin, Yawei; Otani, Tomohiro; Wu, Jian
2007-11-01
In order to enable the existing optical circuit switching (OCS) network to support both wavelength and subwavelength granularities, this paper proposes overlay-based multi-layer network architecture for interworking the generalized multi-protocol label switching (GMPLS) controlled OCS network with optical burst switching (OBS) networks. A dedicated GMPLS border controller with necessary GMPLS extensions, including group label switching path (LSP) provisioning, node capability advertisement, and standard wavelength label as well as wavelength availability advertisement, is introduced in this multi-layer network to enable a simple but flexible interworking operation. The feasibility of this proposal is experimentally confirmed by demonstrating an OBS/GMPLS testbed, in which the extended node capability advertisement and group LSP functions successfully enabled the burst header packet (BHP) and data burst (DB) to transmit over a GMPLS-controlled transparent OCS network.
Incorporation of multi-layer option into QAD-CGGP code
In order to improve the results of the QAD-CGGP gamma dose rate calculation we have incorporated multi-layer (two-layer) shield option and a new buildup factor formula, published recently, into the code. Modified QAD has been tested by comparison to the published results. The improved version of the code has been used to calculate gamma dose rate of a planar source and a two-layer shield and the results have been compared with the SAS4 (Monte Carlo method). Also, the improved version of the code has been used to calculate dose rate of the RADLOK-55 low and intermediate waste drum placed inside the NPP Krsko transport (lead-iron) shield. The results of the calculation were compared with the standard QAD-CGGP results. Incorporation of the two-layer (multi-layer) option into QAD-CGGP point-kernel code seems to be justified, resulting in higher accuracy.(author)
PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE
CHANG-SU SHIM
2013-06-01
Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.
High temperature and current density induced degradation of multi-layer graphene
Wang, Baoming; Haque, M. A., E-mail: mah37@psu.edu [Mechanical and Nuclear Engineering, The Pennsylvania State University, 314, Leonhard Building, University Park, Pennsylvania 16802 (United States); Mag-isa, Alexander E.; Kim, Jae-Hyun [Korea Institute of Machinery and Materials, 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Lee, Hak-Joo [Korea Institute of Machinery and Materials, 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Center for Advanced Meta-Materials (CAMM), 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)
2015-10-19
We present evidence of moderate current density, when accompanied with high temperature, promoting migration of foreign atoms on the surface of multi-layer graphene. Our in situ transmission electron microscope experiments show migration of silicon atoms at temperatures above 800 °C and current density around 4.2 × 10{sup 7} A/cm{sup 2}. Originating from the micro-machined silicon structures that clamp the freestanding specimen, the atoms are observed to react with the carbon atoms in the multi-layer graphene to produce silicon carbide at temperatures of 900–1000 °C. In the absence of electrical current, there is no migration of silicon and only pyrolysis of polymeric residue is observed.
New multi layer data correlation algorithm for multi passive sensor location system
Zhou Li; Li Lingyun; He You
2007-01-01
Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective.
WANG Xin-yun; WU You-sheng; XIA Ju-chen; HU Guo-an
2005-01-01
The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method,which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design of control chamber to divide metal flow. So, the design method of FCF was analyzed and two type of control chamber were put forward. According to divisional principle, calculation model of forming force and approximate formula were given. Then forming process of aluminum alloy multi-layer cylinder parts was simulated. The effect of friction factor, die radius and punch velocity on metal flow and forming force was obtained. Finally, the experiment was preformed under the direction of theory and finite element(FE) simulation results. And the qualified parts were manufactured. The simulation data and experimental results show that the forming sequence of inner wall and outer wall, and then the force step, can be controlled by adjusting the process parameters. And the FCF technology proposed has very important application value in precision forging.
A Mixture Model for Robust Point Matching under Multi-Layer Motion
Jiayi Ma; Jun De Chen; Delie Ming; Jinwen Tian
2014-01-01
This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers). Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimati...
AN EXACT ANALYSIS OF FORCED THICKNESS-TWIST VIBRATIONS OF MULTI-LAYERED PIEZOELECTRIC PLATES
无
2007-01-01
This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equations of linear piezoelectricity. The solution is useful to the understanding and design of composite piezoelectric devices. A piezoelectric resonator, a piezoelectric transformer, and a piezoelectric generator are analyzed as examples.
Multi-layer Ti-based Coating Obtained by Arc PVD Method
Pavlov, Konstantin; Gorchakov, Konstantin; Gorchakova, Svetlana; Salojoki, Kari; Barchenko, Vladimir; Sokolov, Aleksandr
2013-01-01
We report the obtaining and primary studies of ~ 250microns thick multi-layer Ti-based protective coating deposited at high cooling rate from substance generated by cathode arc discharge in vacuum. High adhesion to steel substrate was attained through prior Arc plasma generator cleaning and successive Ion Bombardment method. All three arc-generated fractions including mainly droplet, vapour and ions have been utilised to form the coating. Obtained coating features pore-free, least defects and...
A multi-layer model for turbulent kinetic energy in pipe flows
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2011-01-01
A multi-layer model of an energy length function is developed by employing recent results of the authors. The theory predicts the complete, mean streamwise turbulent kinetic-energy profile (MKP), in good agreement with empirical data for a wide range of Reynolds numbers (Re). In particular, a critical $Re_\\tau$ is predicted, beyond which a scaling anomaly appears and MKP develops a second peak.
Rodriguez Florez, Sergio Alberto; Fremont, Vincent; Bonnifait, Philippe
2008-01-01
In this paper, we present an extensive study about the influence and the behavior of the intrinsic camera calibration imprecisions and their propagation into the extrinsic calibration between a camera and a multi-layer lidar. Usually, the extrinsic calibration process involves the pose estimation of a reference object in the Cartesian frame of each sensor. From this fact, it is necessary to know the camera intrinsic parameters for estimating the position of an object on an image. Therefore, t...
Kyoung Hwan Kim; MinHo Yang; Kyeong Min Cho; Young-Si Jun; Sang Bok Lee; Hee-Tae Jung
2013-01-01
We present a simple and up-scalable method to produce highly repaired graphene oxide with a large surface area, by introducing spherical multi-layered graphene balls with empty interiors. These graphene balls are prepared via chemical vapor deposition (CVD) of Ni particles on the surface of the graphene oxides (GO). Transmission electron microscopy and Raman spectroscopy results reveal that defects in the GO surfaces are well repaired during the CVD process, with the help of nickel nanopartic...
Infinite elements for soil-structure interaction analysis in multi-layered halfspaces
Yun, Chung Bang; Kim, Jae Min [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Yang, Shin Chu [Korea High Speed Rail Construction Authority, Seoul (Korea, Republic of)
1994-07-01
This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements.
Numerical modelling of crack shielding and deflection in a multi-layered material system
Joyce, M R; Reed, P.A.S.; Syngellakis, S.
2003-01-01
Finite element analysis has been used to investigate the fatigue behaviour observed in testing a layered structure (representative of an automotive journal bearing). The aim of the analysis was to explain the deflection or bifurcation observed as a fatigue crack propagates through the multi-layered structure of a bearing. A fracture mechanics approach was adopted using detailed evaluations of the J-integral to assess and monitor both crack tip driving force and directional propensity with cra...
Siamese Multi-layer Perceptrons for Dimensionality Reduction and Face Identification
Zheng, Lilei; Duffner, Stefan; Idrissi, Khalid; Garcia, Christophe; Baskurt, Atilla
2015-01-01
This paper presents a framework using siamese Multi-layer Percep-trons (MLP) for supervised dimensionality reduction and face identification. Compared with the classical MLP that trains on fully labeled data, the siamese MLP learns on side information only, i.e., how similar of data examples are to each other. In this study, we compare it with the classical MLP on the problem of face identification. Experimental results on the Extended Yale B database demonstrate that the siamese MLP training...
Zheng-gang Xiao
2014-06-01
Full Text Available Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN (TEGDN propellants to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances are tested by the materials test machine, interrupted burning set-up and closed vessel, respectively. The static compression strength of consolidated propellants deterred by multi-layer coating increases significantly to 18 MPa, indicating that they can be applied in most circumstances of charge service. And the samples are easy to deconsolidate in the interrupted burning test. Furthermore, the closed bomb burning curves of the samples indicate a two-stage combustion phenomenon under the condition of certain thickness of coated multi-layers. After the outer deterred multi-layer coating of consolidated samples is finished burning, the inner consolidated propellants continue to burn and breakup into aggregates and grains. The high burning progressivity can be carefully obtained by the smart control of deconsolidation process and duration of consolidated propellants. The preliminary results of consolidated propellants show that a rapid deconsolidation process at higher deconsolidation pressure is presented in the dynamic vivacity curves of closed bomb test. Higher density and higher macro progressivity of consolidated propellants can be obtained by the techniques in this paper.
Carbon nano-onions (multi-layer fullerenes): chemistry and applications
Juergen Bartelmess; Silvia Giordani
2014-01-01
This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs). First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible appli...
Matrix solution to longitudinal impedance of multi-layer circular structures
Hahn,H.
2008-10-01
A matrix method in which radial wave propagation is treated in analogy to longitudinal transmission lines is presented and applied to finding the longitudinal coupling impedance of axially symmetric multi-layer beam tubes. The method is demonstrated in the case of a Higher Order Mode ferrite absorber with an inserted coated ceramic beam tube. The screening of the ferrite damping properties by the dielectric beam tube is discussed.
Zheng-gang Xiao; San-jiu Ying; Fu-ming Xu
2014-01-01
Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN) (TEGDN propellants) to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances...
Fatigue crack monitoring in multi-layered aircraft structures using guided ultrasonic waves
Koston, E.
2010-01-01
The detection of fatigue cracks at fasteners in the sub layers of multi-layered aircraft structures can be problematic using conventional nondestructive testing methods. In this thesis the sensitivity of low frequency guided ultrasonic waves to detect these defects is studied. Guided ultrasonic waves typically have energy distributed through the thickness of such structures and allow for defect detection in all sub-layers, but have wavelengths larger than commonly used in bulk wave ...
In this paper, the OTTANNO version of four -quadrant CMOS analog multiplier circuit for artificial neural networks multi layer perception operation will be proposed. The proposed multiplier can be divided into two or three parts, which will be in the input, synapse and neuron. The percentage of silicon area saving is 95% with respect to that multiplier presented in (Chible,1997). A comparison between OTANNO and OTANPS is also presented. (author)
Highly Accurate Multi-layer Perceptron Neural Network for Air Data System
H. S. Krishna
2009-01-01
The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05) accuracy, hith...
Multi-particle modelling for the prediction of delamination in multi-layered materials
CARON, JF; DIAZ DIAZ, A; CARREIRA, RP; CHABOT, A; EHRLACHER, A
2005-01-01
To approach the three-dimensional stress state in multi-layered composites, a laminate theory which considers a kinematic field per layer (particle) is used. Thus, interlaminar stresses are naturally introduced to carry out the equilibrium conditions of the plies. These stresses have a physical meaning and represent the exact out-of-plane 3D stresses calculated at the interface between two layers. These simplified models are able to provide finite interfacial stresses, even at the free edge o...
MUSIC imaging method for low-high frequency inspection of composite multi-layers
Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique
2014-01-01
International audience Non-destructive Testing-Evaluation (NdT-E) of damaged multi-layer structures like fiber-made composite materials involved in aeronautic and automotive industries is a topic of great interest to solve problems of viability and security. From eddy currents to test graphite-based materials to microwaves and beyond to test glass-based composite structures, one aims to obtain images of the possibly damaged parts with robust, fast inversion algorithms. In this contribution...
Low-high frequency inspection of composite multi-layers and MUSIC-type electromagnetic imaging
Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique
2014-01-01
International audience Non Destructive Testing-Evaluation (NdT-E) of complex multi-layer composite panels for problems of quality, viability, safety and availability of complex systems involving manufactured parts (in aeronautics and in automotive industry, as a good example) is becoming an interesting and challenging task nowadays. From eddy-currents to microwaves, there is the need to make available modeling and imaging procedures that will be robust, fast, accurate and useful to potenti...
Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks
Casimer DeCusatis
2015-01-01
As cloud computing data centers grow larger and networking devices proliferate; many complex issues arise in the network management architecture. We propose a framework for multi-layer; multi-vendor optical network management using open standards-based software defined networking (SDN). Experimental results are demonstrated in a test bed consisting of three data centers interconnected by a 125 km metropolitan area network; running OpenStack with KVM and VMW are components. Use cases include i...
Unified Multi-Layer among Software Defined Multi-Domain Optical Networks (Invited)
Hui Yang; Yadi Cui; Jie Zhang
2015-01-01
The software defined networking (SDN) enabled by OpenFlow protocol has gained popularity which can enable the network to be programmable and accommodate both fixed and flexible bandwidth services. In this paper, we present a unified multi-layer (UML) architecture with multiple controllers and a dynamic orchestra plane (DOP) for software defined multi-domain optical networks. The proposed architecture can shield the differences among various optical devices from multi-vendors and the details o...
Evaluation of Multi Layers Web-based GIS Approach in Retrieving Tourist Related Information
Rosilawati Zainol; Zainab Abu Bakar
2014-01-01
Geo-based information is getting greater importance among tourists. However, retrieving this information on the web depends heavily on the methods of dissemination. Therefore, this study intends to evaluate methods used in disseminating tourist related geo-based information on the web using partial match query, firstly, in default system which is a single layer approach and secondly, using multi layer web-based Geographic Information System (GIS) approaches. Shah Alam tourist related data are...
Winner, Taryn L; Lanzarotta, Adam; Sommer, André J
2016-06-01
An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm. PMID:27068491
He, Xin
2012-01-01
This dissertation addresses cooperative communications and proposes multi-layer solu- tions for wireless local area networks, focusing on cooperative MAC design. The coop- erative MAC design starts from CSMA/CA based wireless networks. Three key issues of cooperation from the MAC layer are dealt with: i.e., when to cooperate (opportunistic cooperation), whom to cooperate with (relay selection), and how to protect cooperative transmissions (message procedure design). In addition...
Multi-layer Architecture For Storing Visual Data Based on WCF and Microsoft SQL Server Database
Grycuk, Rafal; Gabryel, Marcin; Scherer, Rafal; Voloshynovskiy, Sviatoslav
2015-01-01
In this paper we present a novel architecture for storing visual data. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as SQL database management systems and service-oriented frameworks. The proposed solution is based on a multi-layer architecture, which allows to replace any component without recompilation of other component...
Femtosecond laser induced periodic surface structures on multi-layer graphene
Beltaos, Angela, E-mail: abeltaos@ualberta.ca; Kovačević, Aleksander G.; Matković, Aleksandar; Ralević, Uroš; Savić-Šević, Svetlana; Jovanović, Djordje; Jelenković, Branislav M.; Gajić, Radoš [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)
2014-11-28
In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength λ of 840 nm, pulse duration τ of ∼150 fs, and a fluence F of ∼4.3–4.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular to the laser polarization and had dimensions of width w of ∼30–40 nm and length l of ∼0.5–1.5 μm, and spatial periods Λ of ∼70–100 nm (∼λ/8–λ/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.
Modeling of Multi-Layered Protection Systems for Chloride Penetration in Concrete Bridge Decks
Harajli, Ali A.
Modeling of Multi-Layered Protection Systems for Chloride Penetration in Concrete Bridge Decks. This paper covers the development of a new methodology for predicting the chloride concentration and corrosion initiation times for a multi-layer protection overlay system. The first topic will be presenting an innovative method to predict the chloride concentrations using different diffusion coefficients for each protective layer. The new method covers the cases where the applied surface chloride concentrations are either a constant or linear functions with time. The second topic will implement the results from field data about the chloride variations due to the presence of applied topical layers for comparison with the theoretical models. This section will also apply damage factors that are time-dependent to simulate external factors such as traffic loading or vibrations. The third topic will investigate the sensitivity of the single and multi-layer systems due to diffusivity parameter changes. The fourth topic will analyze the random variation of the diffusivity values to predict the mean and standard deviation of chloride concentrations. The diffusivity values are selected from published values by NIST and are based on certain water cement (w/c) ratios.
Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D
2015-02-01
Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications. PMID:25501324
We investigate the effect of coupling (intensity and nature), applied field, and anisotropy on the spin dynamics of a multi-layer system composed of a hard magnetic layer coupled to a soft magnetic layer through a nonmagnetic spacer. The soft layer is modeled as a stack of several atomic planes while the hard layer, of a different material, is either considered as a pinned macroscopic magnetic moment or again as a stack of atomic planes. We compute the magnetization profile and hysteresis loop of the whole multi-layer system by solving the Landau–Lifshitz equations for the net magnetic moment of each (atomic) plane. We study the competition between the intra-layer anisotropy and exchange interaction, applied magnetic field, and the interface exchange, dipolar or Dzyalozhinski–Moriya interaction. Compared with the exchange coupling, the latter two couplings present peculiar features in the magnetization profile and hysteresis loop that may help identify the nature of the interface coupling in multi-layer magnetic systems. (paper)
Development of planar CT system for multi-layer PCB inspection
X-ray defect inspection apparatus can be used in the production line to inspect the PCB. However, a simple X-ray radiography cannot discriminate defects from the multi-layer PCBs because the layers of them overlays the defects. To complement this issue, computed tomography (CT) technology is applied to the NDT system which can offer 3-dimensional information of object. However, CT requires hundreds of projection images to examine a single PCB, hence real-time inspection is nearly impossible. In this study, we develop a planar computed tomography (pCT) system appropriate for the multi-layer PCB inspection. For the image reconstruction of planar cross-section images, we use the digital tomosynthesis (DTS) concept in association with the limited angle scanning. and performance characterization of the pCT system for the PCB inspection. The 3-d Fourier characteristics and more quantitative performance, such as contrast, uniformity, depth resolution will be presented. The cross-sectional images of multi-layer PCBs will also be demonstrated
Femtosecond laser induced periodic surface structures on multi-layer graphene
In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength λ of 840 nm, pulse duration τ of ∼150 fs, and a fluence F of ∼4.3–4.4 mJ/cm2. The observed LIPSS were perpendicular to the laser polarization and had dimensions of width w of ∼30–40 nm and length l of ∼0.5–1.5 μm, and spatial periods Λ of ∼70–100 nm (∼λ/8–λ/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications
Experimental observation of multi-layer excitation structure in capacitively coupled SF6 plasmas
Liu, Yong-Xin; Gao, Fei; Song, Yuan-Hong; Li, Xue-Chun; Wang, You-Nian
2015-09-01
Electron excitation dynamics in capacitively coupled SF6 plasmas driven at 9 MHz ~ 16 MHz are studied by using phase resolved optical emission spectroscopy (PROES) of trace rare gas. Multi-layer excitation structure inside the bulk plasma of capacitive discharges operating in SF6 is experimentally observed for the first time. Experimental results show that with the decrease of the rf power and/or the increase of the pressure, the multi-layer excitation structure becomes noticeable while the gap between two adjacent layers is almost kept constant. By increasing the driving frequency with a constant electrode gap, however, the number of layers increases while the layer gap decreases. The layer structure disappears at the driving frequency larger than 16 MHz. The electrode gap is found to have a negligible effect on the gap between two adjacent excitation layers, nevertheless only the number of excitation layers is increased when enlarging the electrode gap. The multi-layer formation may be due to a large modulation of the F- negative-ion density throughout the bulk plasma, and is more pronounced at intermediate and low frequencies, since F- negative ions do not respond to the time-varying electric field at high frequencies (>16 MHz). This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11335004) and (Grant No.11405018), and the International Science & Technology Cooperation Program of China (Grant No. 2012DFG02150).