On the Connection Coefficients of the Chebyshev-Boubaker Polynomials
Paul Barry
2013-01-01
Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Amlouk, A. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Bouhafs, M. [Unite de Recherche MA2I, Ecole Nationale d' Ingenieurs de Tunis, B.P. 37 Le Belvedere, 1002 Tunis (Tunisia)
2009-10-19
In this work, ZnO thin films have been grown on glass substrates by using a solution of propanol (C{sub 3}H{sub 8}O), water (H{sub 2}O) and zinc acetate (Z{sub n}(CH{sub 3}CO{sub 2}){sub 2}) in acidified medium (pH 5). The obtained films were n doped with ytterbium (Yb) at the rates of 100, 200 and 300 ppm. The structural features of the doped films were investigated using XRD, atomic force microscopy and scanning electronic microscopy techniques. XRD analysis shows a strong (0 0 2) X-ray diffraction line for increasing Yb-doping amounts. This c-axis preferential orientation of ZnO crystallites is naturally required to use this oxide as transparent conductor in optoelectronic applications. Atomic force microscopy (AFM) analysis shows an enhancement in the surface roughness of the doped ZnO:Yb thin films. Optical measurements were performed in 300-1800 nm domain via transmittance T(lambda) and reflectance R(lambda) spectra. Conjoint optical and thermal properties were deduced from the optical measurements in reference to the Amlouk-Boubaker opto-thermal expansivity psi{sub AB}. Optically relevant ytterbium doping effects have been discussed. Finally, mechanical measurements have been carried out using Vickers standard disposal. The results confirmed the structural and functional changes that several recent studies attributed to ytterbium doping.
Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)
2010-02-04
In this study, SnO{sub 2} thin films have been grown using spray pyrolysis technique on glass substrates under a substrate temperature (T{sub s} = 440 {sup o}C). The precursors were methanol CH{sub 4}O and anhydrous tin tetrachloride. XRD analyses yielded strong (1 1 0)-(1 0 1)-(2 0 0) X-ray diffraction peaks which are characteristics to tetragonal crystals. Atomic Force Microscopy (AFM) analyses showed the existence of clusters with particular pyramidal shapes. The main part of this study concerns the optical measurements of transmittance T({lambda}) and reflectance R({lambda}) spectra inside 250-1800 nm domain. Conjoint optical and thermal properties were deduced using the Amlouk-Boubaker Opto-Thermal Expansivity {psi}{sub AB}. The obtained value: {psi}{sub AB} {approx} 23.4 m{sup 3} s{sup -1} helped situating the performance of the as-grown SnO{sub 2} compound among most known PV-T oxides like ZnO and TiO{sub 2}.
Diffusion tensor image registration using polynomial expansion
In this paper, we present a deformable registration framework for the diffusion tensor image (DTI) using polynomial expansion. The use of polynomial expansion in image registration has previously been shown to be beneficial due to fast convergence and high accuracy. However, earlier work was developed only for 3D scalar medical image registration. In this work, it is shown how polynomial expansion can be applied to DTI registration. A new measurement is proposed for DTI registration evaluation, which seems to be robust and sensitive in evaluating the result of DTI registration. We present the algorithms for DTI registration using polynomial expansion by the fractional anisotropy image, and an explicit tensor reorientation strategy is inherent to the registration process. Analytic transforms with high accuracy are derived from polynomial expansion and used for transforming the tensor's orientation. Three measurements for DTI registration evaluation are presented and compared in experimental results. The experiments for algorithm validation are designed from simple affine deformation to nonlinear deformation cases, and the algorithms using polynomial expansion give a good performance in both cases. Inter-subject DTI registration results are presented showing the utility of the proposed method. (paper)
ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS
ZHU Xiao-feng; LI Xiu-chun
2006-01-01
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds are discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)
2009-08-12
In this study, ZnO thin films have been grown using spray pyrolysis technique on glass substrates under various substrate temperature (400, 420, 440, 460, 480 and 500 deg. C). The Precursors were Propan-2-ol C{sub 3}H{sub 8}O and zinc acetate zinc Zn(CH{sub 3}CO{sub 2}){sub 2} in acidified medium (acetic acid CH{sub 3}CO{sub 2}H, pH = 5). XRD analyses yielded a strong (0 0 2) X-ray diffraction line for low substrate temperatures (400-420 deg. C). This c-axis preferential orientation was not observed for substrate temperature beyond 440 deg. C. Atomic Force Microscopy (AFM) analyses monitored clusters with variable shapes (pyramidal for high temperatures and rounded concentrated ones for temperatures below 440 deg. C). Finally, the optical measurements were carried out via transmittance T(lambda) and reflectance R(lambda) spectra inside 250-2500 nm domain. Thanks to optical measurements, the conjoint optical and thermal properties were deduced using the Amlouk-Boubaker opto-thermal expansively psi{sub AB}.
Polynomial chaos expansion with random and fuzzy variables
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
A GLOBALLY UNIFORM ASYMPTOTIC EXPANSION OF THE HERMITE POLYNOMIALS
Shi Wei
2008-01-01
In this article, the author extends the validity of a uniform asymptotic ex-pansion of the Hermite polynomials HN(√2n+1α) to include all positive values of a.His method makes use of the rational functions introduced by Olde Daalhuis and Temme (SIAM J. Math. Anal., (1994), 25: 304-321). A new estimate for the remainder is given.
Enhancing Sparsity of Hermite Polynomial Expansions by Iterative Rotations
Yang, Xiu; Lei, Huan; Baker, Nathan A.; Lin, Guang
2016-02-15
Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.
On Continued Fraction Expansion of Real Roots of Polynomial Systems
Mantzaflaris, Angelos; Mourrain, Bernard; Tsigaridas, Elias
2011-01-01
feasible over unbounded regions. Then, we study an algorithm to split this representation and obtain a subdivision scheme for the domain of multivariate polynomial functions. This implies a new algorithm for real root isolation, MCF, that generalizes the Continued Fraction (CF) algorithm of univariate......, corresponding to the first terms of the continued fraction expansion of the real roots. Finally, we present new complexity bounds for a simplified version of the algorithm in the bit complexity model, and also bounds in the real RAM model for a family of subdivision algorithms in terms of the real condition...... number of the system. Examples computed with our C++ implementation illustrate the practical aspects of our method....
Explicit energy expansion for general odd-degree polynomial potentials
Nanayakkara, Asiri; Mathanaranjan, Thilagarajah
2013-11-01
In this paper we derive an almost explicit analytic formula for asymptotic eigenenergy expansion of arbitrary odd-degree polynomial potentials of the form V (x) = (ix)2N+1 + β1x2N + β2x2N-1 + ··· + β2Nx, where β‧k are real or complex for 1 ⩽ k ⩽ 2N. The formula can be used to find semiclassical analytic expressions for eigenenergies up to any order, very efficiently. Each term of the expansion is given explicitly as a multinomial of the parameters β1,β2… and β2N of the potential. Unlike in the even-degree polynomial case, the highest-order term in the potential is pure imaginary and hence the system is non-Hermitian. Therefore all the integrations have been carried out along a contour enclosing two complex branch points, which lies within a wedge in the complex plane. With the help of some examples we demonstrate the accuracy of the method for both real and complex eigenspectra.
Explicit energy expansion for general odd-degree polynomial potentials
In this paper we derive an almost explicit analytic formula for asymptotic eigenenergy expansion of arbitrary odd-degree polynomial potentials of the form V (x) = (ix)2N+1 + β1x2N + β2x2N−1 + ··· + β2Nx, where β′k are real or complex for 1 ⩽ k ⩽ 2N. The formula can be used to find semiclassical analytic expressions for eigenenergies up to any order, very efficiently. Each term of the expansion is given explicitly as a multinomial of the parameters β1,β2… and β2N of the potential. Unlike in the even-degree polynomial case, the highest-order term in the potential is pure imaginary and hence the system is non-Hermitian. Therefore all the integrations have been carried out along a contour enclosing two complex branch points, which lies within a wedge in the complex plane. With the help of some examples we demonstrate the accuracy of the method for both real and complex eigenspectra. (paper)
Polynomial Chaos Expansion Approach to Interest Rate Models
Luca Di Persio
2015-01-01
Full Text Available The Polynomial Chaos Expansion (PCE technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version.
Uncertainty Quantification for Airfoil Icing using Polynomial Chaos Expansions
DeGennaro, Anthony M; Martinelli, Luigi
2014-01-01
The formation and accretion of ice on the leading edge of a wing can be detrimental to airplane performance. Complicating this reality is the fact that even a small amount of uncertainty in the shape of the accreted ice may result in a large amount of uncertainty in aerodynamic performance metrics (e.g., stall angle of attack). The main focus of this work concerns using the techniques of Polynomial Chaos Expansions (PCE) to quantify icing uncertainty much more quickly than traditional methods (e.g., Monte Carlo). First, we present a brief survey of the literature concerning the physics of wing icing, with the intention of giving a certain amount of intuition for the physical process. Next, we give a brief overview of the background theory of PCE. Finally, we compare the results of Monte Carlo simulations to PCE-based uncertainty quantification for several different airfoil icing scenarios. The results are in good agreement and confirm that PCE methods are much more efficient for the canonical airfoil icing un...
A Polynomial Expansion Method and New General Solitary Wave Solutions to KS Equation
PENG Yan-Ze
2003-01-01
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
Closed Form Solution to an Optimal Control Problem by Orthogonal Polynomial Expansion
Mohammad A. Tavallaei
2008-01-01
Full Text Available In this study the use of orthogonal polynomials for obtaining a close form solution to optimal control problems with a weighed quadratic cost function, is proposed. The method consists of using the Orthogonal Polynomials for the expansion of the state variables and the control signal. This expansion results in a set of linear equations, from which the closed form solution is obtained. A numerical example is provided to demonstrate the applicability and effectiveness of the proposed method.
Use of analytic functions and polynomials within the framework of nodal expansion method
A method using one-dimensional flux approximation expressed in terms of polynomials and hyperbolic functions was derived and the accuracy of the method was explored. This method called SANEM(Semi-Analytic Nodal Expansion Method) employs the same transverse leakage approximation used in NEM(Nodal Expansion Method) and flux moment balance equations to find coupling coefficients in current continuity equation. An one-dimensional flux approximation is expressed in the second order/the third order/the fourth order polynomials combined with hyperbolic functions for which several weighting functions are applied and the accuracy of methods were compared. This method has advantages of minimizing memory increase and easy implementation to a nodal code based on the conventional NEM. Benchmark calculations for the code were performed using problems such as IAEA 3D problem, NEACRP-L336 problem and EPRI-9R problem. Results show that both reactivity and assembly power density prediction by the SANEM is better than NEM for NEACRP-L336 problem, which uses MOX fuel, EPRI-9R problem, which shows characteristics of assembly in core periphery. A step function weighting applied to the third order polynomial expansion of a one-dimensional flux approximation produced better results than the polynomial weighting applied to the third order polynomial expansion for IAEA 3D problem. Furthermore, Galerkin weighting applied to the fourth order polynomial expansion shows worse results than polynomial weighting applied to the third order polynomial expansion for IAEA 3D, NEACRP-L336 and EPRI-9R problems
Simulation of stochastic systems via polynomial chaos expansions and convex optimization
Fagiano, Lorenzo
2012-01-01
Polynomial Chaos Expansions represent a powerful tool to simulate stochastic models of dynamical systems. Yet, deriving the expansion's coefficients for complex systems might require a significant and non-trivial manipulation of the model, or the computation of large numbers of simulation runs, rendering the approach too time consuming and impracticable for applications with more than a handful of random variables. We introduce a novel computationally tractable technique for computing the coefficients of polynomial chaos expansions. The approach exploits a regularization technique with a particular choice of weighting matrices, which allow to take into account the specific features of Polynomial Chaos expansions. The method, completely based on convex optimization, can be applied to problems with a large number of random variables and uses a modest number of Monte Carlo simulations, while avoiding model manipulations. Additional information on the stochastic process, when available, can be also incorporated i...
Computation of Higher-Order Moments of Generalized Polynomial Chaos Expansions
Faverjon, Béatrice
2016-01-01
Because of the high complexity of steady-state or transient fluid flow solvers, non-intrusive uncertainty quantification techniques have been developed in aerodynamic simulations in order to compute the output quantities of interest that are required to evaluate the objective function of an optimization process, for example. The latter is commonly expressed in terms of moments of the quantities of interest, such as the mean, standard deviation, or even higher-order moments (skewness, kurtosis...). Polynomial surrogate models based on homogeneous chaos expansions have often been implemented in this respect. The original approach of uncertainty quantification using such polynomial expansions is however intrusive. It is based on a Galerkin-type projection formulation of the model equations to derive the governing equations for the polynomial expansion coefficients of the output quantities of interest. Both the intrusive and non-intrusive approaches call for the computation of third-order, even fourth-order momen...
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.
On Some Expansion Theorems Involving Confluent Hypergeometric $_{2}F_{2}(x)$ Polynomial
Vyas, Yashoverdhan; Fatawat, Kalpana
2016-01-01
Recently, Rathie and K{\\i}l{\\i}\\c{c}man (2014) employed Kummer-type transformation for $_{2}F_{2}(a, d+1; b, d; x)$ to develop certain classes of expansions theorems for $_{2}F_{2}(x)$ hypergeometric polynomial. Our aim is to deduce Kummer-type transformation for $_{2}F_{2}(a, d+2; b, d; x)$ and utilize it to develop some new expansion theorems for the confluent hypergeometric $_{2}F_{2}(x)$ polynomial. We also obtain a well-known result given by Kim et al. (Integral Transforms Spec. Funct. 2...
On genus expansion of knot polynomials and hidden structure of Hurwitz tau-functions
In the genus expansion of the HOMFLY polynomials their representation dependence is naturally captured by symmetric group characters. This immediately implies that the Ooguri-Vafa partition function (OVPF) is a Hurwitz tau-function. In the planar limit involving factorizable special polynomials, it is actually a trivial exponential tau-function. In fact, in the double scaling Kashaev limit (the one associated with the volume conjecture) dominant in the genus expansion are terms associated with the symmetric representations and with the integrability preserving Casimir operators, though we stop one step from converting this fact into a clear statement about the OVPF behavior in the vicinity of q=1. Instead, we explain that the genus expansion provides a hierarchical decomposition of the Hurwitz tau-function, similar to the Takasaki-Takebe expansion of the KP tau-functions. This analogy can be helpful to develop a substitute for the universal Grassmannian description in the Hurwitz tau-functions. (orig.)
A K Chattopadhyay; C V S Rao
2003-07-01
Here we describe the superiority of Bessel function as base function for radial expansion over Zernicke polynomial in the tomographic reconstruction technique. The causes for the superiority have been described in detail. The superiority has been shown both with simulated data for Kadomtsev’s model for saw-tooth oscillation and real experimental x-ray data from W7-AS Stellarator.
Zhang, Yan; Sahinidis, Nikolaos V
2013-04-06
In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using a classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.
Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all approximation methods, polynomial chaos expansion is one of the most efficient to calculate variance-based sensitivity indices. Indeed, their computation is analytically derived from the expansion coefficients but without error estimators of the meta-model approximation. In order to evaluate the reliability of these indices, we propose to build confidence intervals by bootstrap re-sampling on the experimental design used to estimate the polynomial chaos approximation. Since the evaluation of the sensitivity indices is obtained with confidence intervals, it is possible to find a design of experiments allowing the computation of sensitivity indices with a given accuracy. - Highlights: • The proposed methodology combines advantages of sparse polynomial chaos expansion with bootstrap re-sampling to compute variance-based sensitivity indices. • A conservative way to choose the number of bootstrap re-sampling is presented. • A method to increase the degree of the polynomial basis, linked to the size of confidence intervals, is proposed. • Comparisons with classical meta-model error estimators reveals the interest of a sensitivity-indices-oriented methodology
Lattice Boltzmann method for bosons and fermions and the fourth order Hermite polynomial expansion
Coelho, Rodrigo C V; Doria, M M; Pereira, R M; Aibe, Valter Yoshihiko
2013-01-01
The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried until the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by J.Y. Yang et al through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded until fourth order in the Hermite polynomials.
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior
The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.)
A reduced polynomial chaos expansion method for the stochastic ﬁnite element analysis
B Pascual; S Adhikari
2012-06-01
The stochastic ﬁnite element analysis of elliptic type partial differential equations is considered. A reduced method of the spectral stochastic ﬁnite element method using polynomial chaos is proposed. The method is based on the spectral decomposition of the deterministic system matrix. The reduction is achieved by retaining only the dominant eigenvalues and eigenvectors. The response of the reduced system is expanded as a series of Hermite polynomials, and a Galerkin error minimization approach is applied to obtain the deterministic coefﬁcients of the expansion. The moments and probability density function of the solution are obtained by a process similar to the classical spectral stochastic ﬁnite element method. The method is illustrated using three carefully selected numerical examples, namely, bending of a stochastic beam, ﬂow through porous media with stochastic permeability and transverse bending of a plate with stochastic properties. The results obtained from the proposed method are compared with classical polynomial chaos and direct Monte Carlo simulation results.
Fast and accurate sensitivity analysis of IMPT treatment plans using Polynomial Chaos Expansion
Perkó, Zoltán; van der Voort, Sebastian R.; van de Water, Steven; Hartman, Charlotte M. H.; Hoogeman, Mischa; Lathouwers, Danny
2016-06-01
The highly conformal planned dose distribution achievable in intensity modulated proton therapy (IMPT) can severely be compromised by uncertainties in patient setup and proton range. While several robust optimization approaches have been presented to address this issue, appropriate methods to accurately estimate the robustness of treatment plans are still lacking. To fill this gap we present Polynomial Chaos Expansion (PCE) techniques which are easily applicable and create a meta-model of the dose engine by approximating the dose in every voxel with multidimensional polynomials. This Polynomial Chaos (PC) model can be built in an automated fashion relatively cheaply and subsequently it can be used to perform comprehensive robustness analysis. We adapted PC to provide among others the expected dose, the dose variance, accurate probability distribution of dose-volume histogram (DVH) metrics (e.g. minimum tumor or maximum organ dose), exact bandwidths of DVHs, and to separate the effects of random and systematic errors. We present the outcome of our verification experiments based on 6 head-and-neck (HN) patients, and exemplify the usefulness of PCE by comparing a robust and a non-robust treatment plan for a selected HN case. The results suggest that PCE is highly valuable for both research and clinical applications.
Efficient linear precoding for massive MIMO systems using truncated polynomial expansion
Müller, Axel
2014-06-01
Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO
Mueller, Axel
2016-02-29
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively “antenna-efficient” regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
Higher order polynomial expansion nodal method for hexagonal core neutronics analysis
A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy
Low order polynomial expansion nodal method for a DeCart axial solution
Cho, Jin-Young; Song, Jae-Seung; Lee, Hyun-Chul, E-mail: jyoung@kaeri.re.k, E-mail: jssong@kaeri.re.k, E-mail: lhc@kaeri.re.k [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of)
2009-07-01
This paper applies a low order polynomial expansion nodal (LPEN) method to the simplified Pn (SPn) transport equation for the DeCART (Deterministic Core Analysis based on Ray Tracing) axial solution. For a performance examination of the implemented LPWN method, the C5G7MOC 3-D benchmark and the C5G7 hexagonal variation problems are solved. LPEN method expands the angular flux moments by using up to the second order Legendre polynomials. In the C5G7MOC 3-D benchmark, DeCART shows less than 40 pcm eigenvalue and less 2 % 3-D pin power distribution errors which are similar as the higher order nodal method such as NEM or SANM. In C5G7 hexagonal variation problem, DeCART shows the similar error level as in the C5G7MOX benchmark. Also LPEN method requires less computing time and less memory size than the higher order nodal methods. Therefore, it is concluded that the LPEN method is more applicable to the DeCART cell based axial solver than the higher order nodal methods in aspects of accuracy and performance. (author)
Low order polynomial expansion nodal method for a DeCart axial solution
This paper applies a low order polynomial expansion nodal (LPEN) method to the simplified Pn (SPn) transport equation for the DeCART (Deterministic Core Analysis based on Ray Tracing) axial solution. For a performance examination of the implemented LPWN method, the C5G7MOC 3-D benchmark and the C5G7 hexagonal variation problems are solved. LPEN method expands the angular flux moments by using up to the second order Legendre polynomials. In the C5G7MOC 3-D benchmark, DeCART shows less than 40 pcm eigenvalue and less 2 % 3-D pin power distribution errors which are similar as the higher order nodal method such as NEM or SANM. In C5G7 hexagonal variation problem, DeCART shows the similar error level as in the C5G7MOX benchmark. Also LPEN method requires less computing time and less memory size than the higher order nodal methods. Therefore, it is concluded that the LPEN method is more applicable to the DeCART cell based axial solver than the higher order nodal methods in aspects of accuracy and performance. (author)
Bazargan, Hamid; Christie, Mike; Elsheikh, Ahmed H.; Ahmadi, Mohammad
2015-12-01
Markov Chain Monte Carlo (MCMC) methods are often used to probe the posterior probability distribution in inverse problems. This allows for computation of estimates of uncertain system responses conditioned on given observational data by means of approximate integration. However, MCMC methods suffer from the computational complexities in the case of expensive models as in the case of subsurface flow models. Hence, it is of great interest to develop alterative efficient methods utilizing emulators, that are cheap to evaluate, in order to replace the full physics simulator. In the current work, we develop a technique based on sparse response surfaces to represent the flow response within a subsurface reservoir and thus enable efficient exploration of the posterior probability density function and the conditional expectations given the data. Polynomial Chaos Expansion (PCE) is a powerful tool to quantify uncertainty in dynamical systems when there is probabilistic uncertainty in the system parameters. In the context of subsurface flow model, it has been shown to be more accurate and efficient compared with traditional experimental design (ED). PCEs have a significant advantage over other response surfaces as the convergence to the true probability distribution when the order of the PCE is increased can be proved for the random variables with finite variances. However, the major drawback of PCE is related to the curse of dimensionality as the number of terms to be estimated grows drastically with the number of the input random variables. This renders the computational cost of classical PCE schemes unaffordable for reservoir simulation purposes when the deterministic finite element model is expensive to evaluate. To address this issue, we propose the reduced-terms polynomial chaos representation which uses an impact factor to only retain the most relevant terms of the PCE decomposition. Accordingly, the reduced-terms polynomial chaos proxy can be used as the pseudo
On polynomial chaos expansion via gradient-enhanced ℓ1-minimization
Peng, Ji; Hampton, Jerrad; Doostan, Alireza
2016-04-01
Gradient-enhanced Uncertainty Quantification (UQ) has received recent attention, in which the derivatives of a Quantity of Interest (QoI) with respect to the uncertain parameters are utilized to improve the surrogate approximation. Polynomial chaos expansions (PCEs) are often employed in UQ, and when the QoI can be represented by a sparse PCE, ℓ1-minimization can identify the PCE coefficients with a relatively small number of samples. In this work, we investigate a gradient-enhanced ℓ1-minimization, where derivative information is computed to accelerate the identification of the PCE coefficients. For this approach, stability and convergence analysis are lacking, and thus we address these here with a probabilistic result. In particular, with an appropriate normalization, we show the inclusion of derivative information will almost-surely lead to improved conditions, e.g. related to the null-space and coherence of the measurement matrix, for a successful solution recovery. Further, we demonstrate our analysis empirically via three numerical examples: a manufactured PCE, an elliptic partial differential equation with random inputs, and a plane Poiseuille flow with random boundaries. These examples all suggest that including derivative information admits solution recovery at reduced computational cost.
Edee, K; Plumey, J P
2015-03-01
The modal method based on Gegenbauer polynomials (MMGE) is extended to the case of bidimensional binary gratings. A new concept of modified polynomials is introduced in order to take into account boundary conditions and also to make the method more flexible in use. In the previous versions of MMGE, an undersized matrix relation is obtained by solving Maxwell's equations, and the boundary conditions complement this undersized system. In the current work, contrary to this previous version of the MMGE, boundary conditions are incorporated into the definition of a new basis of polynomial functions, which are adapted to the boundary value problem of interest. Results are successfully compared for both metallic and dielectric structures to those obtained from the modal method based on Fourier expansion (MMFE) and MMFE with adaptative spatial resolution. PMID:26366651
Kersaudy, Pierric, E-mail: pierric.kersaudy@orange.com [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée (France); Sudret, Bruno [ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, Stefano-Franscini-Platz 5, 8093 Zürich (Switzerland); Varsier, Nadège [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Picon, Odile [ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée (France); Wiart, Joe [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France)
2015-04-01
In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem.
In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem
Dolgov, S.
2015-03-11
We apply the Tensor Train (TT) decomposition to construct the tensor product Polynomial Chaos Expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format, but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. Besides, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its post-processing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
Dolgov, Sergey
2015-11-03
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
A critical neutron transport problem with random material properties is introduced. The total cross section and the average neutron multiplicity are assumed to be uncertain, characterized by the mean and variance with a log-normal distribution. The average neutron multiplicity and the total cross section are assumed to be uncorrected and the material properties for differing materials are also assumed to be uncorrected. The principal component analysis method is used to decompose the covariance matrix into eigenvalues and eigenvectors and then 'realizations' of the material properties can be computed. A simple Monte Carlo brute force sampling of the decomposed covariance matrix is employed to obtain a benchmark result for each test problem. In order to save computational time and to characterize the moments and probability density function of the multiplication factor the polynomial chaos expansion method is employed along with the stochastic collocation method. A Gauss-Hermite quadrature set is convolved into a multidimensional tensor product quadrature set and is successfully used to compute the polynomial chaos expansion coefficients of the multiplication factor. Finally, for a particular critical fuel pin assembly the appropriate number of random variables and polynomial expansion order are investigated. (authors)
Interbasis expansions for the isotropic 3D harmonic oscillator and bivariate Krawtchouk polynomials
An explicit expression for the general bivariate Krawtchouk polynomials is obtained in terms of the standard Krawtchouk and dual Hahn polynomials. The bivariate Krawtchouk polynomials occur as matrix elements of the unitary reducible representations of SO(3) on the energy eigenspaces of the three-dimensional isotropic harmonic oscillator and the explicit formula is obtained from the decomposition of these representations into their irreducible components. The decomposition entails expanding the Cartesian basis states in the spherical bases that span irreducible SO(3) representations. The overlap coefficients are obtained from the Clebsch–Gordan problem for the su(1,1) Lie algebra. (paper)
Mason, JC
2002-01-01
Chebyshev polynomials crop up in virtually every area of numerical analysis, and they hold particular importance in recent advances in subjects such as orthogonal polynomials, polynomial approximation, numerical integration, and spectral methods. Yet no book dedicated to Chebyshev polynomials has been published since 1990, and even that work focused primarily on the theoretical aspects. A broad, up-to-date treatment is long overdue.Providing highly readable exposition on the subject''s state of the art, Chebyshev Polynomials is just such a treatment. It includes rigorous yet down-to-earth coverage of the theory along with an in-depth look at the properties of all four kinds of Chebyshev polynomials-properties that lead to a range of results in areas such as approximation, series expansions, interpolation, quadrature, and integral equations. Problems in each chapter, ranging in difficulty from elementary to quite advanced, reinforce the concepts and methods presented.Far from being an esoteric subject, Chebysh...
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions
Butler, T.
2011-01-01
We develop computable a posteriori error estimates for linear functionals of a solution to a general nonlinear stochastic differential equation with random model/source parameters. These error estimates are based on a variational analysis applied to stochastic Galerkin methods for forward and adjoint problems. The result is a representation for the error estimate as a polynomial in the random model/source parameter. The advantage of this method is that we use polynomial chaos representations for the forward and adjoint systems to cheaply produce error estimates by simple evaluation of a polynomial. By comparison, the typical method of producing such estimates requires repeated forward/adjoint solves for each new choice of random parameter. We present numerical examples showing that there is excellent agreement between these methods. © 2011 Society for Industrial and Applied Mathematics.
A transport method was developed in view of benchmark calculations of the eigenvalues and flux distributions for monoenergetic neutrons anisotropically colliding in a critical cylinder of finite radius and half-height. For the kernels appearing in the system of integral equations for spherical harmonic moments of the angular flux we proposed a factorized form that accounted for the anisotropy of scattering and worked in the original Euclidean space, extending to cylinder geometry, of interest for pratical reactor calculations, a technique previously adopted for the simpler parallelepiped geometry. This treatment of the two-dimensional kernels allows representations typical in one dimensional problems for the matrix formulation to which the problem reduces by the introduction of a corresponding projectional technique. Optimal in view of an appropriate matrix formulation appears also the representation of the unknown spherical harmonics moments in terms of special jacobi polynomials, coinciding with a Legrendre polynomials expansion for the total flux in the case of isotropic scattering. The high accuracy of the results obtained in this case for both eigenvalues and fluxes is finally tested by internal convergence studies and heights as well as for the limiting cases or ratios of radius to height going to zero or to infinity
Kang, Chunghyuk
2014-01-01
It is very fundamental to study irreducible plane curve singularities in algebraic geometry. The contents of the paper consist of three parts, called Part[A], Part[B] and Part[C] with Good Appendix. Our aim is to prove by Part[B] and Part[C] that a complete irreducibility algorithm for the Weierstrass polynomial of two complex variables and the Puiseux expansions in Part[A] can be explicitly and rigorously computable in an elementary way, as follows. For brevity, Weierstrass polynomials may b...
Polynomial functors and polynomial monads
Gambino, Nicola
2009-01-01
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
Jack polynomials in superspace
Desrosiers, P; Mathieu, P
2003-01-01
This work initiates the study of {\\it orthogonal} symmetric polynomials in superspace. Here we present two approaches leading to a family of orthogonal polynomials in superspace that generalize the Jack polynomials. The first approach relies on previous work by the authors in which eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland Hamiltonian were constructed. Orthogonal eigenfunctions are now obtained by diagonalizing the first nontrivial element of a bosonic tower of commuting conserved charges not containing this Hamiltonian. Quite remarkably, the expansion coefficients of these orthogonal eigenfunctions in the supermonomial basis are stable with respect to the number of variables. The second and more direct approach amounts to symmetrize products of non-symmetric Jack polynomials with monomials in the fermionic variables. This time, the orthogonality is inherited from the orthogonality of the non-symmetric Jack polynomials, and the value of the norm is given exp...
Freud, Géza
1971-01-01
Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc
Reliable Computational Predictions by Modeling Uncertainties Using Arbitrary Polynomial Chaos
Witteveen, J.A.S.; Bijl, H
2006-01-01
Inherent physical uncertainties can have a significant influence on computational predictions. It is therefore important to take physical uncertainties into account to obtain more reliable computational predictions. The Galerkin polynomial chaos method is a commonly applied uncertainty quantification method. However, the polynomial chaos expansion has some limitations. Firstly, the polynomial chaos expansion based on classical polynomials can achieve exponential convergence for a limited set ...
Large degree asymptotics of generalized Bessel polynomials
López, J.L.; Temme, N.M.
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in t
Polynomially Bounded Sequences and Polynomial Sequences
Okazaki Hiroyuki
2015-09-01
Full Text Available In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].
Assaf, Sami; Searles, Dominic
2016-01-01
We introduce two new bases for polynomials that lift monomial and fundamental quasisymmetric functions to the full polynomial ring. By defining a new condition on pipe dreams, called quasi-Yamanouchi, we give a positive combinatorial rule for expanding Schubert polynomials into these new bases that parallels the expansion of Schur functions into fundamental quasisymmetric functions. As a result, we obtain a refinement of the stable limits of Schubert polynomials to Stanley symmetric functions...
In many applications involving gaseous media at high temperature, accurate but computationally efficient models are required for the radiative properties of gases. The aim of the present work is to show how, by combining results from Polynomial Chaos framework and Devyatov's Method Of Moments, one can provide simple estimates of the transmission functions of gases both in uniform and non-uniform media. The proposed model only involves polynomials. It is probably one of the simplest in terms of mathematical formulation but also one of the most sophisticated, considering the concepts that it involves. It can be applied in uniform and non-uniform media, where it is shown to be equivalent, in terms of accuracy, to usual C–k models. - Highlights: • The CDPC approach is introduced. • It uses polynomial chaos and generalized moments to approximate narrow band gas transmissivities. • The approach provides result as accurate as usual C–k models (uniform and non-uniform media). • The approach is less computationally expensive than usual C–k models in uniform media
Haglund's conjecture on 3-column Macdonald polynomials
Blasiak, Jonah
2014-01-01
We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund. The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam's algebra of ribbon Schur operators. Combining this result with the expression of Haglund, Haiman, and Loehr for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Mac...
Large Degree Asymptotics of Generalized Bessel Polynomials
López, J. L.; Temme, Nico
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the $z-$plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points $z=\\pm i/n$ are derived, and a new expansion in terms of modified Bessel fu...
The Gibbs Phenomenon for Series of Orthogonal Polynomials
Fay, T. H.; Kloppers, P. Hendrik
2006-01-01
This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…
Factoring multivariate integral polynomials.
Lenstra, A.K.
1983-01-01
An algorithm is presented to factorize polynomials in several variables with integral coefficients that is polynomial-time in the degrees of the polynomial to be factored, for any fixed number of variables. The algorithm generalizes the algorithm presented by A. K. Lenstra et al. to factorize integral polynomials in one variable.
New classes of test polynomials of polynomial algebras
冯克勤; 余解台
1999-01-01
A polynomial p in a polynomial algebra over a field is called a test polynomial if any endomorphism of the polynomial algebra that fixes p is an automorphism. some classes of new test polynomials recognizing nonlinear automorphisms of polynomial algebras are given. In the odd prime characteristic case, test polynomials recognizing non-semisimple automorphisms are also constructed.
Approximation for Transient of Nonlinear Circuits Using RHPM and BPES Methods
H. Vazquez-Leal
2013-01-01
Full Text Available The microelectronics area constantly demands better and improved circuit simulation tools. Therefore, in this paper, rational homotopy perturbation method and Boubaker Polynomials Expansion Scheme are applied to a differential equation from a nonlinear circuit. Comparing the results obtained by both techniques revealed that they are effective and convenient.
Polynomial Subtraction Method for Disconnected Quark Loops
Liu, Quan; Morgan, Ron
2014-01-01
The polynomial subtraction method, a new numerical approach for reducing the noise variance of Lattice QCD disconnected matrix elements calculation, is introduced in this paper. We use the MinRes polynomial expansion of the QCD matrix as the approximation to the matrix inverse and get a significant reduction in the variance calculation. We compare our results with that of the perturbative subtraction and find that the new strategy yields a faster decrease in variance which increases with quark mass.
Generalized bivariate Fibonacci polynomials
Catalani, Mario
2002-01-01
We define generalized bivariate polynomials, from which upon specification of initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results.
Factoring Polynomials and Fibonacci.
Schwartzman, Steven
1986-01-01
Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)
Branched polynomial covering maps
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Branched polynomial covering maps
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....
Asymptotic expansions of Jacobi functions
The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)
Bernstein polynomials on Simplex
Bayad, A.; Kim, T.; Rim, S. -H.
2011-01-01
We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex
Coherent orthogonal polynomials
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L2 functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L2 and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the
Generalized Fibonacci-Lucas Polynomials
Mamta Singh
2013-12-01
Full Text Available Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a century. The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In this paper, Generalized Fibonacci-Lucas Polynomials are introduced and defined by the recurrence relation with and . Some basic identities of Generalized Fibonacci-Lucas Polynomials are obtained by method of generating function. Keywords: Fibonacci polynomials, Lucas polynomials, Generalized Fibonacci polynomials, Generalized Fibonacci-Lucas polynomials.
Extended Fibonacci numbers and polynomials with probability applications
Demetrios L. Antzoulakos
2004-10-01
Full Text Available The extended Fibonacci sequence of numbers and polynomials is introduced and studied. The generating function, recurrence relations, an expansion in terms of multinomial coefficients, and several properties of the extended Fibonacci numbers and polynomials are obtained. Interesting relations between them and probability problems which take into account lengths of success and failure runs are also established.
Weierstrass polynomials for links
Hansen, Vagn Lundsgaard
1997-01-01
There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from that for...... links in 3-space. This paper initiates a study of the connections between polynomial covering spaces over the circle and links in 3-space....
A Bivariate Analogue to the Composed Product of Polynomials
Donald Mills; Kent M. Neuerburg
2003-01-01
The concept of a composed product for univariate polynomials has been explored extensively by Brawley, Brown, Carlitz, Gao,Mills, et al. Starting with these fundamental ideas andutilizing fractional power series representation(in particular, the Puiseux expansion) of bivariate polynomials, we generalize the univariate results. We define a bivariate composed sum,composed multiplication,and composed product (based on function composition). Further, we investigate the algebraic structure of certain classes of bivariate polynomials under these operations. We also generalize a result of Brawley and Carlitz concerningthe decomposition of polynomials into irreducibles.
Quantum Grothendieck polynomials
Kirillov, Anatol N.
1996-01-01
We study the algebraic aspects of (small) quantum equivariant $K$-theory of flag manifold. Lascoux-Sch\\"utzenberger's type formula for quantum double and quantum double dual Grothendieck polynomials and the quantum Cauchy identity for quantum Grothendieck polynomials are obtained.
Marichal, Jean-Luc
2007-01-01
We define the concept of weighted lattice polynomial functions as lattice polynomial functions constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a median based decomposition formula.
Bogner, Christian; Weinzierl, Stefan
The integrand of any multiloop integral is characterized after Feynman parametrization by two polynomials. In this review we summarize the properties of these polynomials. Topics covered in this paper include among others: spanning trees and spanning forests, the all-minors matrix-tree theorem, recursion relations due to contraction and deletion of edges, Dodgson's identity and matroids.
Nonnegativity of uncertain polynomials
iljak Dragoslav D.
1998-01-01
Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.
Polynomial chaos functions and stochastic differential equations
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Mironov, A; Morozov, A
2015-01-01
We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representation. Properties of universal polynomials and applications of these results are discussed.
Charles, Denis; Lauter, Kristin
2004-01-01
We present a new probabilistic algorithm to compute modular polynomials modulo a prime. Modular polynomials parameterize pairs of isogenous elliptic curves and are useful in many aspects of computational number theory and cryptography. Our algorithm has the distinguishing feature that it does not involve the computation of Fourier coefficients of modular forms. We avoid computing the exponentially large integral coefficients by working directly modulo a prime and computing isogenies between e...
On genus expansion of superpolynomials
Mironov, Andrei; Morozov, Alexei; Sleptsov, Alexei; Smirnov, Andrey(ITEP, Moscow, 117218, Russia)
2013-01-01
Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do ...
Fuzzy Morphological Polynomial Image Representation
Chin-Pan Huang
2010-01-01
Full Text Available A novel signal representation using fuzzy mathematical morphology is developed. We take advantage of the optimum fuzzy fitting and the efficient implementation of morphological operators to extract geometric information from signals. The new representation provides results analogous to those given by the polynomial transform. Geometrical decomposition of a signal is achieved by windowing and applying sequentially fuzzy morphological opening with structuring functions. The resulting representation is made to resemble an orthogonal expansion by constraining the results of opening to equate adapted structuring functions. Properties of the geometric decomposition are considered and used to calculate the adaptation parameters. Our procedure provides an efficient and flexible representation which can be efficiently implemented in parallel. The application of the representation is illustrated in data compression and fractal dimension estimation temporal signals and images.
Asymptotic analysis of the Nörlund and Stirling polynomials
Mark Daniel Ward
2012-04-01
Full Text Available We provide a full asymptotic analysis of the N{\\"o}rlund polynomials and Stirling polynomials. We give a general asymptotic expansion---to any desired degree of accuracy---when the parameter is not an integer. We use singularity analysis, Hankel contours, and transfer theory. This investigation was motivated by a need for such a complete asymptotic description, with parameter 1/2, during this author's recent solution of Wilf's 3rd (previously Unsolved Problem.
Strong and ratio asymptotics for Laguerre polynomials revisited
Deaño, Alfredo; Huertas, Edmundo J.; Marcellán, Francisco
2013-01-01
In this paper we consider the strong asymptotic behavior of Laguerre polynomials in the complex plane. The leading behavior is well known from Perron and Mehler-Heine formulas, but higher order coefficients, which are important in the context of Krall-Laguerre or Laguerre-Sobolev-type orthogonal polynomials, are notoriously difficult to compute. In this paper, we propose the use of an alternative expansion, due to Buchholz, in terms of Bessel functions of the first kind. The coefficients in t...
Additive and polynomial representations
Krantz, David H; Suppes, Patrick
1971-01-01
Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz
STABILITY OF SWITCHED POLYNOMIAL SYSTEMS
Zhiqiang LI; Yupeng QIAO; Hongsheng QI; Daizhan CHENG
2008-01-01
This paper investigates the stability of (switched) polynomial systems. Using semi-tensor product of matrices, the paper develops two tools for testing the stability of a (switched) polynomial system. One is to convert a product of multi-variable polynomials into a canonical form, and the other is an easily verifiable sufficient condition to justify whether a multi-variable polynomial is positive definite. Using these two tools, the authors construct a polynomial function as a candidate Lyapunov function and via testing its derivative the authors provide some sufficient conditions for the global stability of polynomial systems.
Complexity of Ising Polynomials
Kotek, Tomer
2011-01-01
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field. One may consider such an Ising system as a simple graph together with vertex and edge weight values. When these weights are considered indeterminates, the partition function for the constant case is a trivariate polynomial Z(G;x,y,z). This polynomial was studied with respect to its approximability by L. A. Goldberg, M. Jerrum and M. Patersonin 2003. Z(G;x,y,z) generalizes a bivariate polynomial Z(G;t,y), which was studied in by D. Andr\\'{e}n and K. Markstr\\"{o}m in 2009. We consider the complexity of Z(G;t,y) and Z(G;x,y,z) in comparison to that of the Tutte polynomial, which is well-known to be closely related to the Potts model in the absence of an external field. We show that Z(G;\\x,\\y,\\z) is #P-hard to evaluate at all points in $mathbb{Q}^3$, except those in ...
Densification via polynomial extensions
Galatos, N.; Horčík, Rostislav
Vienna: Vienna University of Technology, 2014 - (Baaz, M.; Ciabattoni, A.; Hetzl, S.). s. 179-182 [LATD 2014. Logic, Algebra and Truth Degrees. 16.07.2014-19.07.2014, Vienna] Institutional support: RVO:67985807 Keywords : densification * commutative ordered monoid * commutative residuated chain * idempotent semiring * polynomial extension Subject RIV: BA - General Mathematics
Nonconventional Polynomial CLT
Hafouta, Y.; Kifer, Y.
2015-01-01
We obtain a functional central limit theorem (CLT) for sums of the form $\\xi_N(t)=\\frac1{\\sqrt N}\\sum_{n=1}^{[Nt]}\\big(F(X(q_1(n)),...,X(q_\\ell(n)))-\\bar F\\big)$ where $q_1,...,q_\\ell$ are polynomials.
Kreso, Dijana; Tichy, Robert F.
2015-01-01
Starting from Ritt's classical theorems, we give a survey of results in functional decomposition of polynomials and of applications in Diophantine equations. This includes sufficient conditions for the indecomposability of polynomials, the study of decompositions of lacunary polynomials and the finiteness criterion for the equations of type f(x) = g(y).
Computing the Alexander Polynomial Numerically
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Chromatic polynomials for simplicial complexes
Møller, Jesper Michael; Nord, Gesche
2016-01-01
In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r r is the n...
R.J. Stroeker (Roel)
2002-01-01
textabstractA Q-derived polynomial is a univariate polynomial, defined over the rationals, with the property that its zeros, and those of all its derivatives are rational numbers. There is a conjecture that says that Q-derived polynomials of degree 4 with distinct roots for themselves and all their
Complex Polynomial Vector Fields
Dias, Kealey
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields....
Oblivious Polynomial Evaluation
Hong-Da Li; Dong-Yao Ji; Deng-Guo Feng; Bao Li
2004-01-01
The problem of two-party oblivious polynomial evaluation(OPE)is studied,where one party(Alice)has a polynomial P(x)and the other party(Bob)with an input x wants to learn P(x)in such an oblivious way that Bob obtains P(x)without learning any additional information about P except what is implied by P(x)and Alice does not know Bob's input x.The former OPE protocols are based on an intractability assumption except for OT protocols.In fact,evaluating P(x)is equivalent to computing the product of the coefficient vectors(a0,...,an)and(1,...,xn).Using this idea,an efficient scale product protocol of two vectors is proposed first and then two OPE protocols are presented which do not need any other cryptographic assumption except for OT protocol.Compared with the existing OPE protocol,another characteristic of the proposed protocols is the degree of the polynomial is private.Another OPE protocol works in case of existence of untrusted third party.
Polynomial Learning of Distribution Families
Belkin, Mikhail
2010-01-01
The question of polynomial learnability of probability distributions, particularly Gaussian mixture distributions, has recently received significant attention in theoretical computer science and machine learning. However, despite major progress, the general question of polynomial learnability of Gaussian mixture distributions still remained open. The current work resolves the question of polynomial learnability for Gaussian mixtures in high dimension with an arbitrary fixed number of components. The result on learning Gaussian mixtures relies on an analysis of distributions belonging to what we call "polynomial families" in low dimension. These families are characterized by their moments being polynomial in parameters and include almost all common probability distributions as well as their mixtures and products. Using tools from real algebraic geometry, we show that parameters of any distribution belonging to such a family can be learned in polynomial time and using a polynomial number of sample points. The r...
Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers
R. Kannan; Lenstra, Arjen K.; Lovasz, L.
1988-01-01
It is shown that the binary expansions of algebraic numbers do not form secure pseudorandom sequences, given sufficiently many initial bits of an algebraic number, its minimal polynomial can be reconstructed, and therefore the further bits of the algebraic number can be computed. This also enables the authors to devise a simple algorithm to factorise polynomials with rational coefficients. All algorithms work in polynomial time
The Kauffman bracket and the Jones polynomial in quantum gravity
In the loop representation the quantum states of gravity are given by knot invariants. From general arguments concerning the loop transform of the exponential of the Chern-Simons form, a certain expansion of the Kauffman bracket knot polynomial can be formally viewed as a solution of the Hamiltonian constraint with a cosmological constant in the loop representation. The Kauffman bracket is closely related to the Jones polynomial. In this paper the operation of the Hamiltonian on the power expansions of the Kauffman bracket and Jones polynomials is analyzed. It is explicitly shown that the Kauffman bracket is a formal solution of the Hamiltonian constraint to third order in the cosmological constant. We make use of the extended loop representation of quantum gravity where the analytic calculation can be thoroughly accomplished. Some peculiarities of the extended loop calculus are considered and the significance of the results to the case of the conventional loop representation is discussed. (orig.)
Schur Coefficients of the Integral Form Macdonald Polynomials
Yoo, Meesue
2015-01-01
In this paper, we consider the combinatorial formula for the Schur coefficients of the integral form of the Macdonald polynomials. As an attempt to prove Haglund's conjecture that $\\Biggl \\in \\mathbb{N}[q]$, we have found explicit combinatorial formulas for the Schur coefficients in one row case, two column case and certain hook shape cases [Yoo12]. A result of Egge-Loehr-Warrington [ELW] gives a combinatorial way of getting Schur expansion of symmetric functions when the expansion of the fun...
Symmetric functions and Hall polynomials
MacDonald, Ian Grant
1998-01-01
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...
Polynomial Regression on Riemannian Manifolds
Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang
2012-01-01
In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.
Deformed Mittag-Leffler Polynomials
Miomir S. Stankovic; Marinkovic, Sladjana D.; Rajkovic, Predrag M.
2010-01-01
The starting point of this paper are the Mittag-Leffler polynomials introduced by H. Bateman [1]. Based on generalized integer powers of real numbers and deformed exponential function, we introduce deformed Mittag-Leffler polynomials defined by appropriate generating function. We investigate their recurrence relations, differential properties and orthogonality. Since they have all zeros on imaginary axes, we also consider real polynomials with real zeros associated to them.
Witt Rings and Permutation Polynomials
Qifan Zhang
2005-01-01
Let p be a prime number. In this paper, the author sets up a canonical correspondence between polynomial functions over Z/p2Z and 3-tuples of polynomial functions over Z/pZ. Based on this correspondence, he proves and reproves some fundamental results on permutation polynomials mod pl. The main new result is the characterization of strong orthogonal systems over Z/p1Z.
Chaves, Rafael
2016-01-01
It is a recent realization that many of the concepts and tools of causal discovery in machine learning are highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial ingredient in the connection between both fields is the mathematical theory of causality, allowing for the representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic causation. Indeed, Bell's theorem concerns a very particular kind of causal structure and Bell inequalities are a special case of linear constraints following from such models. It is thus natural to look for generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such generalized scenarios are characterized by polynomial Bell inequalities and no current method is available to derive them beyond very simple cases. In this work, we make a significant step in that direction, providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.
Moraes, P H R S; Correa, R A C
2016-01-01
In this work we present cosmological solutions from the simplest non-trivial $T$-dependence in $f(R,T)$ theory of gravity, with $R$ and $T$ standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Although such an approach yields a highly non-linear differential equation for the scale factor, we show that it is possible to obtain analytical solutions for the cosmological parameters. For some values of the free parameters, the model is able to predict a transition from a decelerated to an accelerated expansion of the universe.
On genus expansion of superpolynomials
Mironov, A; Sleptsov, A; Smirnov, A
2013-01-01
Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis:the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is rather straightforward only for the thin knots. Beyond this family additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpol...
Digital terrain modeling with the Chebyshev polynomials
Florinsky, I V
2015-01-01
Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejer summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 $\\times$ 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives ...
Complex Polynomial Vector Fields
Dias, Kealey
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or...... meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...
Factorization of colored knot polynomials at roots of unity
Ya. Kononov
2015-07-01
Full Text Available HOMFLY polynomials are the Wilson-loop averages in Chern–Simons theory and depend on four variables: the closed line (knot in 3d space–time, representation R of the gauge group SU(N and exponentiated coupling constant q. From analysis of a big variety of different knots we conclude that at q, which is a 2m-th root of unity, q2m=1, HOMFLY polynomials in symmetric representations [r] satisfy recursion identity: Hr+m=Hr⋅Hm for any A=qN, which is a generalization of the property Hr=H1r for special polynomials at m=1. We conjecture a further generalization to arbitrary representation R, which, however, is checked only for torus knots. Next, Kashaev polynomial, which arises from HR at q2=e2πi/|R|, turns equal to the special polynomial with A substituted by A|R|, provided R is a single-hook representations (including arbitrary symmetric – what provides a q−A dual to the similar property of Alexander polynomial. All this implies non-trivial relations for the coefficients of the differential expansions, which are believed to provide reasonable coordinates in the space of knots – existence of such universal relations means that these variables are still not unconstrained.
Factorization of colored knot polynomials at roots of unity
Kononov, Ya.; Morozov, A.
2015-07-01
HOMFLY polynomials are the Wilson-loop averages in Chern-Simons theory and depend on four variables: the closed line (knot) in 3d space-time, representation R of the gauge group SU (N) and exponentiated coupling constant q. From analysis of a big variety of different knots we conclude that at q, which is a 2m-th root of unity, q2m = 1, HOMFLY polynomials in symmetric representations [ r ] satisfy recursion identity: Hr+m =Hr ṡHm for any A =qN, which is a generalization of the property Hr = H1r for special polynomials at m = 1. We conjecture a further generalization to arbitrary representation R, which, however, is checked only for torus knots. Next, Kashaev polynomial, which arises from HR at q2 = e 2 πi / | R |, turns equal to the special polynomial with A substituted by A| R |, provided R is a single-hook representations (including arbitrary symmetric) - what provides a q - A dual to the similar property of Alexander polynomial. All this implies non-trivial relations for the coefficients of the differential expansions, which are believed to provide reasonable coordinates in the space of knots - existence of such universal relations means that these variables are still not unconstrained.
Polynomial weights and code constructions
Massey, J; Costello, D; Justesen, Jørn
1973-01-01
For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...
Parallel Construction of Irreducible Polynomials
Frandsen, Gudmund Skovbjerg
Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...
Cyclotomy and permutation polynomials of large indices
WANG Qiang
2012-01-01
We use cyclotomy to design new classes of permutation polynomials over finite fields. This allows us to generate many classes of permutation polynomials in an algorithmic way. Many of them are permutation polynomials of large indices.
On the Action of Steenrod Operations on Polynomial Algebras
KARACA, İsmet
1998-01-01
Let \\( \\bba \\) be the mod-\\( p \\) Steenrod Algebra. Let \\( p \\) be an odd prime number and \\( Zp = Z/pZ \\). Let \\( Ps = Zp [x1,x2,\\ldots,xs]. \\) A polynomial \\( N \\in Ps \\) is said to be hit if it is in the image of the action \\( A \\otimes Ps \\ra Ps. \\) In [10] for \\( p=2, \\) Wood showed that if \\( \\a(d+s) > s \\) then every polynomial of degree \\( d \\) in \\( Ps \\) is hit where \\( \\a(d+s) \\) denotes the number of ones in the binary expansion of \\( d+s \\). Latter in [6] Monks extended a resu...
Difference equations of q-Appell polynomials
Mahmudov, Nazim I.
2014-01-01
In this paper, we study some properties of the q-Appell polynomials, including the recurrence relations and the q-difference equations which extend some known calssical (q=1) results. We also provide the recurrence relations and the q-difference equations for q-Bernoulli polynomials, q-Euler polynomials, q-Genocchi polynomials and for newly defined q-Hermite polynomials, as special cases of q-Appell polynomials
Complex Roots of Quaternion Polynomials
Dospra, Petroula; Poulakis, Dimitrios
2015-01-01
The polynomials with quaternion coefficients have two kind of roots: isolated and spherical. A spherical root generates a class of roots which contains only one complex number $z$ and its conjugate $\\bar{z}$, and this class can be determined by $z$. In this paper, we deal with the complex roots of quaternion polynomials. More precisely, using B\\'{e}zout matrices, we give necessary and sufficient conditions, for a quaternion polynomial to have a complex root, a spherical root, and a complex is...
Orthogonal polynomials and deformed oscillators
Borzov, V. V.; Damaskinsky, E. V.
2015-10-01
In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.
Polynomials Associated with Dihedral Groups
Charles F. Dunkl
2007-03-01
Full Text Available There is a commutative algebra of differential-difference operators, with two parameters, associated to any dihedral group with an even number of reflections. The intertwining operator relates this algebra to the algebra of partial derivatives. This paper presents an explicit form of the action of the intertwining operator on polynomials by use of harmonic and Jacobi polynomials. The last section of the paper deals with parameter values for which the formulae have singularities.
An introduction to orthogonal polynomials
Chihara, Theodore S
2011-01-01
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some
Evaluations of topological Tutte polynomials
Ellis-Monaghan, Joanna A
2011-01-01
We find a number of new combinatorial identities for, and interpretations of evaluations of, the topological Tutte polynomials of Las Vergnas, $L(G)$, and of and Bollob\\'as and Riordan, $R(G)$, as well as for the classical Tutte polynomial $T(G)$. For example, we express $R(G)$ and $T(G)$ as a sum of chromatic polynomials, show that $R(G)$ counts non-crossing graph states and $k$-valuations, and reformulate the Four Colour Theorem in terms of $R(G)$. Our main approach is to apply identities for the topological transition polynomial, one involving twisted duals, and one involving doubling the edges of a graph. These identities for the transition polynomial allow us to show that the Penrose polynomial $P(G)$ can be recovered from $R(G)$, a fact that we use to obtain identities and interpretations for $R(G)$. We also consider enumeration of circuits in medial graphs and use this to relate $R(G)$ and $L(G)$ for graphs embedded in low genus surfaces.
Colored graphs, Gaussian integrals and stable graph polynomials
Artamkin, I V
2010-01-01
Asymptotic expansions of Gaussian integrals may often be interpreted as generating functions for certain combinatorial objects (graphs with additional data). In this article we discuss a general approach to all such cases using colored graphs. We prove that the generating power series for such graphs satisfy the same system of partial differential equations as the Gaussian integral and the formal power series solution of this system is unique. The solution is obtained as the genus expansion of the generating power series. The initial term of this expansion is the corresponding generating function for trees. The consequence equations for this term turns to be equivalent to the inversion problem for the gradient mapping defined by the initial condition. The equations for the higher terms of the genus expansion are linear. The solutions of these equations can be expressed explicitly by substitution of the initial conditions and the initial term (the tree expansion) into some universal polynomials (for g>1) which...
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Uniqueness and Zeros of -Shift Difference Polynomials
Kai Liu; Xin-Ling Liu; Ting-Bin Cao
2011-08-01
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift difference polynomials that share a common value.
On the Irreducibility of Some Composite Polynomials
M. Alizadeh
2012-06-01
Full Text Available . In this paper we study the irreducibility of some composite polynomials, constructed by a polynomial composition method over finite fields. Finally, a recurrent method for constructing families of irreducible polynomials of higher degree from given irreducible polynomials over finite fields is given
Bannai-Ito polynomials and dressing chains
Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.
Differentiation by integration with Jacobi polynomials
Liu, Da-Yan; Perruquetti, Wilfrid
2010-01-01
In this paper, the numerical differentiation by integration method based on Jacobi polynomials originally introduced by Mboup, Fliess and Join is revisited in the central case where the used integration window is centered. Such method based on Jacobi polynomials was introduced through an algebraic approach and extends the numerical differentiation by integration method introduced by Lanczos. The here proposed method is used to estimate the $n^{th}$ ($n \\in \\mathbb{N}$) order derivative from noisy data of a smooth function belonging to at least $C^{n+1+q}$ $(q \\in \\mathbb{N})$. In the recent paper of Mboup, Fliess and Join, where the causal and anti-causal case were investigated, the mismodelling due to the truncation of the Taylor expansion was investigated and improved allowing a small time-delay in the derivative estimation. Here, for the central case, we show that the bias error is $O(h^{q+2})$ where $h$ is the integration window length for $f\\in C^{n+q+2}$ in the noise free case and the corresponding conv...
Sparse polynomial surrogates for aerodynamic computations with random inputs
Savin, Eric; Peter, Jacques
2015-01-01
This paper deals with some of the methodologies used to construct polynomial surrogate models based on generalized polynomial chaos (gPC) expansions for applications to uncertainty quantification (UQ) in aerodynamic computations. A core ingredient in gPC expansions is the choice of a dedicated sampling strategy, so as to define the most significant scenarios to be considered for the construction of such metamodels. A desirable feature of the proposed rules shall be their ability to handle several random inputs simultaneously. Methods to identify the relative "importance" of those variables or uncertain data shall be ideally considered as well. The present work is more particularly dedicated to the development of sampling strategies based on sparsity principles. Sparse multi-dimensional cubature rules based on general one-dimensional Gauss-Jacobi-type quadratures are first addressed. These sets are non nested, but they are well adapted to the probability density functions with compact support for the random in...
From Jack to double Jack polynomials via the supersymmetric bridge
Lapointe, L
2015-01-01
The Calogero-Sutherland (CS) model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of the CS model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable properties as their non-supersymmetric versions. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transform...
Ehrhart polynomials of matroid polytopes and polymatroids
De Loera, Jesús A.; Haws, David C.; Köppe, Matthias
2007-01-01
We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss two conjectures about the h^*-vector and the coefficients of Ehrhart polynomials of matroid polytop...
A $q$-multinomial expansion of LLT coefficients and plethysm multiplicities
Iijima, Kazuto
2011-01-01
Lascoux, Leclerc and Thibon\\cite{LLT} introduced a family of symmetric polynomials, called LLT polynomials. We prove a $q$-multinomial expansion of the coefficients of LLT polynomials in the case where $ \\boldsymbol{\\mu} = \\underbrace{(\\mu,...,\\mu)}_{n}$ and define a $q$-analog of a sum of the plethysm multiplicities.
On genus expansion of superpolynomials
Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)
2014-12-15
Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.
On genus expansion of superpolynomials
Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots
Differential cross section analysis in kaon photoproduction using associated legendre polynomials
Hutauruk, P T P; Rosner, G
2009-01-01
Angular distributions of differential cross sections from the latest CLAS data sets \\cite{bradford}, for the reaction ${\\gamma}+p {\\to} K^{+} + {\\Lambda}$ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. \\cite{fasano} where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We then compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.
q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials
Kim, T.
2010-01-01
In this paper, we give new identities involving Phillips q-Bernstein polynomials and we derive some interesting properties of q-Berstein polynomials associated with q-Stirling numbers and q-Bernoulli polynomials.
Modular forms and period polynomials
Pasol, Vicentiu
2012-01-01
We study the space of period polynomials associated with modular forms for finite index subgroups of the modular group. For the full modular group, this space is endowed with a pairing, corresponding to the Petersson inner product on modular forms via a formula of Haberland, and with an action of Hecke operators, defined algebraically by Zagier. We extend Haberland's formula to arbitrary modular forms for finite index subgroups of the modular group, and we show that it conceals two stronger formulas. We extend the action of Hecke operators to \\Gamma_0(N) and \\Gamma_1(N), and we prove algebraically that the pairing on period polynomials appearing in Haberland's formula is Hecke equivariant. Two indefinite theta series identities follow from this proof. We give two ways of determining the extra relations satisfied by the even and odd parts of period polynomials associated with cusp forms, which are independent of the period relations.
Plain Polynomial Arithmetic on GPU
As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast and plain algorithms. Those are employed for data of large and small size, respectively. Parallelizing both types of algorithms is required in order to achieve peak performances. In this paper, we show that the plain dense polynomial multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly optimized) FFT-based multiplication up to degree 212 while on CPU the same threshold is usually at 26. We also report on a GPU implementation of the Euclidean Algorithm which is both work-efficient and runs in linear time for input polynomials up to degree 218 thus showing the performance of the GCD algorithm based on systolic arrays.
General linearization formulae for products of continuous hypergeometric-type polynomials
Sánchez-Ruiz, Jorge; López Artés, Pedro; Martínez-Finkelshtein, Andrei; Sánchez Dehesa, Jesús
1999-01-01
The linearization of products of wavefunctions of exactly solvable potentials often reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a continuous variable, which consists of the expansion of the product of two arbitrary HPs in series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of the coefficients of the second-order differential equations satisfied by the involved polynomials. General expressions for the expansi...
Sam, David D.; Onat, E. Turan; Etingof, Pavel I.; Adams, Brent L.
1993-01-01
The crystallite orientation distribution function (CODF) is reviewed in terms of classical spherical function representation and more recent coordinate free tensorial representation (CFTR). A CFTR is a Fourier expansion wherein the coefficients are tensors in the three-dimensional space. The equivalence between homogeneous harmonic polynomials of degree k and symmetric and traceless tensors of rank k allows a realization of these tensors by the method of harmonic polynomials. Such a method pr...
Orthogonal Polynomials and their Applications
Dehesa, Jesús; Marcellan, Francisco; Francia, José; Vinuesa, Jaime
1988-01-01
The Segovia meeting set out to stimulate an intensive exchange of ideas between experts in the area of orthogonal polynomials and its applications, to present recent research results and to reinforce the scientific and human relations among the increasingly international community working in orthogonal polynomials. This volume contains original research papers as well as survey papers about fundamental questions in the field (Nevai, Rakhmanov & López) and its relationship with other fields such as group theory (Koornwinder), Padé approximation (Brezinski), differential equations (Krall, Littlejohn) and numerical methods (Rivlin).
Symbolic computation of Appell polynomials using Maple
H. Alkahby
2001-07-01
Full Text Available This work focuses on the symbolic computation of Appell polynomials using the computer algebra system Maple. After describing the traditional approach of constructing Appell polynomials, the paper examines the operator method of constructing the same Appell polynomials. The operator approach enables us to express the Appell polynomial as Bessel function whose coefficients are Euler and Bernuolli numbers. We have also constructed algorithms using Maple to compute Appell polynomials based on the methods we have described. The achievement is the construction of Appell polynomials for any function of bounded variation.
Two polynomial division inequalities in
Goetgheluck P
1998-01-01
Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.
Entanglement conditions and polynomial identities
We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.
On Modular Counting with Polynomials
Hansen, Kristoffer Arnsfelt
For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...
Sheffer and Non-Sheffer Polynomial Families
G. Dattoli
2012-01-01
Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.
Quantum F-polynomials in Classical Types
Tran, Thao
2009-01-01
In their "Cluster Algebras IV" paper, Fomin and Zelevinsky defined F-polynomials and g-vectors, and they showed that the cluster variables in any cluster algebra can be expressed in a formula involving the appropriate F-polynomial and g-vector. In "F-polynomials in Quantum Cluster Algebras," the predecessor to this paper, we defined and proved the existence of quantum F-polynomials, which are analogs of F-polynomials in quantum cluster algebras in the sense that cluster variables in any quantum cluster algebra can be expressed in a similar formula in terms of quantum F-polynomials and g-vectors. In this paper, we give formulas for both F-polynomials and quantum F-polynomials for cluster algebras of classical type when the initial exchange matrix is acyclic.
Solutions of differential equations in a Bernstein polynomial basis
Idrees Bhatti, M.; Bracken, P.
2007-08-01
An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.
Application of Chebyshev Polynomial to simulated modeling
CHI Hai-hong; LI Dian-pu
2006-01-01
Chebyshev polynomial is widely used in many fields, and used usually as function approximation in numerical calculation. In this paper, Chebyshev polynomial expression of the propeller properties across four quadrants is given at first, then the expression of Chebyshev polynomial is transformed to ordinary polynomial for the need of simulation of propeller dynamics. On the basis of it,the dynamical models of propeller across four quadrants are given. The simulation results show the efficiency of mathematical model.
An Improved Volumetric Estimation Using Polynomial Regression
Noraini Abdullah; Amran Ahmed; Zainodin Hj. Jubok
2011-01-01
The polynomial regression (PR) technique is used to estimate the parameters of the dependent variable having a polynomial relationship with the independent variable. Normality and nonlinearity exhibit polynomial characterization of power terms greater than 2. Polynomial Regression models (PRM) with the auxiliary variables are considered up to their third order interactions. Preliminary, multicollinearity between the independent variables is minimized and statistical tests involving the Global...
Computing the zeros of quaternion polynomials
Serôdio, R.; Pereira, E.; Vitória, J.
2001-01-01
A method is developed to compute the zeros of a quaternion polynomial with all terms of the form qkXk. This method is based essentially in Niven's algorithm [1], which consists of dividing the polynomial by a characteristic polynomial associated to a zero. The information about the trace and the norm of the zero is obtained by an original idea which requires the companion matrix associated to the polynomial. The companion matrix is represented by a matrix with complex entries. Three numerical...
A Class of Binomial Permutation Polynomials
Tu, Ziran; Zeng, Xiangyong; Hu, Lei; Li, Chunlei
2013-01-01
In this note, a criterion for a class of binomials to be permutation polynomials is proposed. As a consequence, many classes of binomial permutation polynomials and monomial complete permutation polynomials are obtained. The exponents in these monomials are of Niho type.
Positive trigonometric polynomials and signal processing applications
Dumitrescu, Bogdan
2007-01-01
Presents the results on positive trigonometric polynomials within a unitary framework; the theoretical results obtained partly from the general theory of real polynomials, partly from self-sustained developments. This book provides information on the theory of sum-of-squares trigonometric polynomials in two parts: theory and applications.
s-Numbers sequences for homogeneous polynomials
Caliskan, Erhan; Rueda, Pilar
2015-01-01
We extend the well known theory of $s$-numbers of linear operators to homogeneous polynomials defined between Banach spaces. Approximation, Kolmogorov and Gelfand numbers of polynomials are introduced and some well-known results of the linear and multilinear settings are obtained for homogeneous polynomials.
Graph colorings, flows and arithmetic Tutte polynomial
D'Adderio, Michele; Moci, Luca
2011-01-01
We introduce the notions of arithmetic colorings and arithmetic flows over a graph with labelled edges, which generalize the notions of colorings and flows over a graph. We show that the corresponding arithmetic chromatic polynomial and arithmetic flow polynomial are given by suitable specializations of the associated arithmetic Tutte polynomial, generalizing classical results of Tutte.
Lattice Platonic Solids and their Ehrhart polynomial
E. J. Ionascu
2013-01-01
Full Text Available First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedra and those for regular lattice octahedra. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
Lattice Platonic Solids and their Ehrhart polynomial
Ionascu, Eugen J
2011-01-01
First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
Discriminants of Polynomials Related to Chebyshev Polynomials: The 'Mutt and Jeff' Syndrome
Tran, Khang
2016-01-01
The discriminants of certain polynomials related to Chebyshev polynomials factor into the product of two polynomials, one of which has coefficients that are much larger than the other's. Remarkably, these polynomials of dissimilar size have "almost" the same roots, and their discriminants involve exactly the same prime factors.
Complete Bell polynomials and new generalized identities for polynomials of higher order
Rubinstein, Boris Y
2009-01-01
The relations between the Bernoulli and Eulerian polynomials of higher order and the complete Bell polynomials are found that lead to new identities for the Bernoulli and Eulerian polynomials and numbers of higher order. General form of these identities is considered and generating function for polynomials satisfying this general identity is found.
Normal BGG solutions and polynomials
Cap, A; Hammerl, M
2012-01-01
First BGG operators are a large class of overdetermined linear differential operators intrinsically associated to a parabolic geometry on a manifold. The corresponding equations include those controlling infinitesimal automorphisms, higher symmetries, and many other widely studied PDE of geometric origin. The machinery of BGG sequences also singles out a subclass of solutions called normal solutions. These correspond to parallel tractor fields and hence to (certain) holonomy reductions of the canonical normal Cartan connection. Using the normal Cartan connection, we define a special class of local frames for any natural vector bundle associated to a parabolic geometry. We then prove that the coefficient functions of any normal solution of a first BGG operator with respect to such a frame are polynomials in the normal coordinates of the parabolic geometry. A bound on the degree of these polynomials in terms of representation theory data is derived. For geometries locally isomorphic to the homogeneous model of ...
BSDEs with polynomial growth generators
Philippe Briand
2000-01-01
Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.
Twisted Polynomials and Forgery Attacks on GCM
Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey;
2015-01-01
twisted polynomials from Ore rings as forgery polynomials. We show how to construct sparse forgery polynomials with full control over the sets of roots. We also achieve complete and explicit disjoint coverage of the key space by these polynomials. We furthermore leverage this new construction in an...... improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which is a...
Space complexity in polynomial calculus
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153. ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 2014 http://epubs.siam.org/doi/10.1137/120895950
Simplifying Tensor Polynomials with Indices
Balfagón, A
1998-01-01
We are presenting an algorithm capable of simplifying tensor polynomials with indices when the building tensors have index symmetry properties. These properties include simple symmetry, cyclicity and those due to the presence of partial and covariant derivatives. We are also including some examples using the Riemann tensor as a paradigm. The algorithm is part of a Mathematica package called Tools of Tensor Calculus (TTC) [web address: http//baldufa.upc.es/ttc
Roots of Quaternion Standard Polynomials
Chapman, Adam
2011-01-01
Here we present a reduction of any quaternion standard polynomial equation into an equation with two central variables and quaternion coefficients. If only pure imaginary roots are in demand, then the equation is with one central variable. As a result of this reduction we obtain formulas for the solutions of quadratic equations. Another result is a routine for analytically solving cubic quaternion equations assuming they have at least one pure imaginary root.
A polynomial bracket for the Dubrovin--Zhang hierarchies
Buryak, A; Shadrin, S
2010-01-01
We define a hierarchy of Hamiltonian PDEs associated to an arbitrary tau-function in the semi-simple orbit of the Givental group action on genus expansions of Frobenius manifolds. We prove that the equations, the Hamiltonians, and the bracket are weighted-homogeneous polynomials in the derivatives of the dependent variables with respect to the space variable. In the particular case of a conformal (homogeneous) Frobenius structure, our hierarchy coincides with the Dubrovin-Zhang hierarchy that is canonically associated to the underlying Frobenius structure. Therefore, our approach allows to prove the polynomiality of the equations, Hamiltonians and one of the Poisson brackets of these hierarchies, as conjectured by Dubrovin and Zhang.
Pattern Matching under Polynomial Transformation
Butman, Ayelet; Clifford, Raphael; Jalsenius, Markus; Lewenstein, Noa; Porat, Benny; Porat, Ely; Sach, Benjamin
2011-01-01
We consider a class of pattern matching problems where a polynomial transformation can be applied to the pattern at every alignment. Given a pattern of length m and a longer text of length n where both are assumed to contain integer values only, we show O(n log m) algorithms for pattern matching under linear transformations even when wildcard symbols can occur in the input. We then show how to extend the technique to polynomial transformations of arbitrary degree. Next we consider the problem of finding the minimum Hamming distance under polynomial transformation. We show that, for any epsilon > 0, there cannot exist an O(nm^(1-epsilon)) algorithm for additive and linear transformations conditional on the hardness of the classic 3SUM problem. Finally, we consider a version of the Hamming distance problem under additive transformations with a bound k on the maximum distance that need be reported. We give a deterministic O(nk log k) time solution which we then improve by careful use of randomisation to O(n sqrt...
Polynomial approximation, local polynomial convexity, and degenerate CR singularities -- II
Bharali, Gautam
2010-01-01
We provide some conditions for the graph of a Hoelder-continuous function on \\bar{D}, where \\bar{D} is a closed disc in the complex plane, to be polynomially convex. Almost all sufficient conditions known to date --- provided the function (say F) is smooth --- arise from versions of the Weierstrass Approximation Theorem on \\bar{D}. These conditions often fail to yield any conclusion if rank_R(DF) is not maximal on a sufficiently large subset of \\bar{D}. We bypass this difficulty by introducin...
Projected Hartree Fock Theory as a Polynomial Similarity Transformation Theory of Single Excitations
Qiu, Yiheng; Scuseria, Gustavo E
2016-01-01
Spin-projected Hartree-Fock is introduced as a particle-hole excitation ansatz over a symmetry-adapted reference determinant. Remarkably, this expansion has an analytic expression that we were able to decipher. While the form of the polynomial expansion is universal, the excitation amplitudes need to be optimized. This is equivalent to the optimization of orbitals in the conventional projected Hartree-Fock framework of non-orthogonal determinants. Using the inverse of the particle-hole expansion, we similarity transform the Hamiltonian in a coupled-cluster style theory. The left eigenvector of the non-hermitian Hamiltonian is constructed in a similar particle-hole expansion fashion, and we show that to numerically reproduce variational projected Hartree-Fock results, one needs as many pair excitations in the bra as the number of strongly correlated entangled pairs in the system. This single-excitation polynomial similarity transformation theory is an alternative to our recently presented double excitation the...
Chromatic Polynomials of Mixed Hypercycles
Allagan Julian A.
2014-08-01
Full Text Available We color the vertices of each of the edges of a C-hypergraph (or cohypergraph in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph, we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic or when they are all colored with distinct colors (rainbow. In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles
Zeroes of random Reinhardt polynomials
Karami, Arash
2012-01-01
For a Reinhardt domain $\\Omega$ with the smooth boundary in $\\mathbb{C}^{m+1}$ and a positive smooth measure $\\mu$ on the boundary of $\\Omega$, we consider the ensemble $P_{N}$ of polynomials of degree $N$ with the Gaussian probability measure $\\gamma_{N}$ which is induced by $L^{2}(\\partial\\Omega,d\\mu)$. Our aim is to compute scaling limit distribution function and scaling limit pair correlation function between zeros when $z\\in\\partial\\Omega$. First of all we apply stationary phase method t...
Global Polynomial Kernel Hazard Estimation
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch;
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically...... reduces bias with unchanged variance. A simulation study investigates the finite-sample properties of GPA. The method is tested on local constant and local linear estimators. From the simulation experiment we conclude that the global estimator improves the goodness-of-fit. An especially encouraging result...
Eigenvalues and eigenfunctions for the ground state of polynomial potentials
Analytic approximations for the ground state eigenvalues and eigenfunctions of polynomial potentials are found using an extended two-point quasi-rational approximation technique. In this procedure, the approximants are obtained through the power series and asymptotic expansion of the logarithmic derivative of the ground state eigenfunction, leaving the energy eigenvalue as a free parameter. A first approximation to the energy is obtained by imposing the condition that the rational approximating function must not have defects. Later, an iteration procedure leads to very precise energy eigenvalues. The method is described in detail using several explicit potentials as examples
Nonnegative Polynomials and Sums of Squares
Blekherman, Grigoriy
2010-01-01
In the smallest cases where there exist nonnegative polynomials that are not sums of squares we present a complete classification of the differences between these sets. We show that in these cases the fundamental reason that the set of sums of squares is smaller than the set of nonnegative polynomials is that polynomials of degree d satisfy certain linear relations known as the Cayley-Bacharach relations, which are not satisfied by polynomials of full degree 2d. For any nonnegative polynomial that is not a sum of squares we can write down a linear inequality coming from a Cayley-Bacharach relation that certifies that the polynomial is not a sum of squares. We also present structure results on the strictly positive sums of squares that lie on the boundary of the cone of sums of squares and results on extreme rays of the cone dual to the cone of sums of squares.
An Improved Volumetric Estimation Using Polynomial Regression
Noraini Abdullah
2011-12-01
Full Text Available The polynomial regression (PR technique is used to estimate the parameters of the dependent variable having a polynomial relationship with the independent variable. Normality and nonlinearity exhibit polynomial characterization of power terms greater than 2. Polynomial Regression models (PRM with the auxiliary variables are considered up to their third order interactions. Preliminary, multicollinearity between the independent variables is minimized and statistical tests involving the Global, Correlation Coefficient, Wald, and Goodness-of-Fit tests, are carried out to select significant variables with their possible interactions. Comparisons between the polynomial regression models (PRM are made using the eight selection criteria (8SC. The best regression model is identified based on the minimum value of the eight selection criteria (8SC. The use of an appropriate transformation will increase in the degree of a statistically valid polynomial, hence, providing a better estimation for the model.
Exceptional polynomials and SUSY quantum mechanics
K V S Shiv Chaitanya; S Sree Ranjani; Prasanta K Panigrahi; R Radhakrishnan; V Srinivasan
2015-07-01
We show that for the quantum mechanical problem which admit classical Laguerre/Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the potential. Then, we claim that the existence of these exceptional polynomials leads to the presence of non-trivial supersymmetry.
A new Arnoldi approach for polynomial eigenproblems
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
Landau and Kolmogoroff type polynomial inequalities
Alves Claudia RR; Dimitrov Dimitar K
1999-01-01
Let be integers. Denote by the norm . For various positive values of and we establish Kolmogoroff type inequalities with certain constants , which hold for every ( denotes the space of real algebraic polynomials of degree not exceeding ). For the particular case and , we provide a complete characterisation of the positive constants and , for which the corresponding Landau type polynomial inequalities hold. In each case we determine the corresponding extremal polynomials for which e...
Accelerated graph-based spectral polynomial filters
Knyazev, Andrew; Malyshev, Alexander,
2015-01-01
Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Precond...
Quantum Schubert polynomials and quantum Schur functions
Kirillov, Anatol N.
1997-01-01
We introduce the quantum multi-Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nagelsbach-Kostka and Jacobi-Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove, also, an analog of the Billey-Jockusch-Stanley formula for quantum...
Generalizations of Bernoulli numbers and polynomials
Qiu-Ming Luo; Bai-Ni Guo; Feng Qi; Lokenath Debnath
2003-01-01
The concepts of Bernoulli numbers Bn, Bernoulli polynomials Bn(x), and the generalized Bernoulli numbers Bn(a,b) are generalized to the one Bn(x;a,b,c) which is called the generalized Bernoulli polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between Bn, Bn(x), Bn(a,b), and Bn(x;a,b,c) are established.
About polynomials related to a quadratic equation
Groux, Roland
2011-01-01
We consider here a particular quadratic equation linking two elements of a C-Algebra. By analysing powers of the unknowns, it appears a double sequence of polynomials related to classical Bernoulli polynomials. We get the generating functions, integral forms and explicit formulas for the coefficients involving cosecant and tangent numbers. We also study the use of these polynomials for the calculation of some integral transforms.
Discrete least squares approximation with polynomial vectors
Van Barel, Marc; Bultheel, Adhemar
1993-01-01
We give a solution of a discrete least squares approximation problem in terms of orthogonal polynomial vectors. The degrees of the polynomial elements of these vectors can be different. An algorithm is constructed computing the coefficients of recurrence relations for the orthogonal polynomial vectors. In case the function values are prescribed in points on the real line or on the unit circle variants of the original algorithm can be designed which are an order of magnitude more efficient. Al...
On permutation polynomials over finite fields
C. Small; R. A. Mollin
1987-01-01
A polynomial f over a finite field F is called a permutation polynomial if the mapping FÃ¢Â†Â’F defined by f is one-to-one. In this paper we consider the problem of characterizing permutation polynomials; that is, we seek conditions on the coefficients of a polynomial which are necessary and sufficient for it to represent a permutation. We also give some results bearing on a conjecture of Carlitz which says essentially that for any even integer m, the cardinality of finite fields admitting pe...
The q-Laguerre matrix polynomials.
Salem, Ahmed
2016-01-01
The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749
Control to Facet for Polynomial Systems
Sloth, Christoffer; Wisniewski, Rafael
2014-01-01
This paper presents a solution to the control to facet problem for arbitrary polynomial vector fields defined on simplices. The novelty of the work is to use Bernstein coefficients of polynomials for determining certificates of positivity. Specifically, the constraints that are set up for the...... controller design are solved by searching for polynomials in Bernstein form. This allows the controller design problem to be formulated as a linear programming problem. Examples are provided that demonstrate the efficiency of the method for designing controls for polynomial systems....
Polynomial chaotic inflation in supergravity revisited
Kazunori Nakayama
2014-10-01
Full Text Available We revisit a polynomial chaotic inflation model in supergravity which we proposed soon after the Planck first data release. Recently some issues have been raised in Ref. [12], concerning the validity of our polynomial chaotic inflation model. We study the inflaton dynamics in detail, and confirm that the inflaton potential is very well approximated by a polynomial potential for the parameters of our interest in any practical sense, and in particular, the spectral index and the tensor-to-scalar ratio can be estimated by single-field approximation. This justifies our analysis of the polynomial chaotic inflation in supergravity.
Multi-indexed (q)-Racah Polynomials
Odake, Satoru
2012-01-01
As the second stage of the project $multi-indexed orthogonal polynomials$, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q)-Racah polynomials. They are obtained from the (q)-Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors of type I and II, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\\"odinger equation with negative `eigenvalues', except for one of the two boundary points.
Macdonald Polynomials and Multivariable Basic Hypergeometric Series
Michael J. Schlosser
2007-03-01
Full Text Available We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised ${}_6phi_5$ summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised ${}_8phi_7$ summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.
Ryoo CS
2010-01-01
Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.
Zernike olivary polynomials for applications with olivary pupils.
Zheng, Yi; Sun, Shanshan; Li, Ying
2016-04-20
Orthonormal polynomials have been extensively applied in optical image systems. One important optical pupil, which is widely processed in lateral shearing interferometers (LSI) and subaperture stitch tests (SST), is the overlap region of two circular wavefronts that are displaced from each other. We call it an olivary pupil. In this paper, the normalized process of an olivary pupil in a unit circle is first presented. Then, using a nonrecursive matrix method, Zernike olivary polynomials (ZOPs) are obtained. Previously, Zernike elliptical polynomials (ZEPs) have been considered as an approximation over an olivary pupil. We compare ZOPs with their ZEPs counterparts. Results show that they share the same components but are in different proportions. For some low-order aberrations such as defocus, coma, and spherical, the differences are considerable and may lead to deviations. Using a least-squares method to fit coefficient curves, we present a power-series expansion form for the first 15 ZOPs, which can be used conveniently with less than 0.1% error. The applications of ZOP are demonstrated in wavefront decomposition, LSI interferogram reconstruction, and SST overlap domain evaluation. PMID:27140076
Convergent series for lattice models with polynomial interactions
Ivanov, Aleksandr S
2016-01-01
The standard perturbative weak-coupling expansions in lattice models are asymptotic. The reason for this is hidden in the incorrect interchange of the summation and integration. However, substituting the Gaussian initial approximation of the perturbative expansions by a certain interacting model or regularizing original lattice integrals, one can construct desired convergent series. In this paper we develop methods, which are based on the joint and separate utilization of the regularization and new initial approximation. We prove, that the convergent series exist and can be expressed as the re-summed standard perturbation theory for any model on the finite lattice with the polynomial interaction of even degree. We discuss properties of such series and make them applicable to practical computations. The workability of the methods is demonstrated on the example of the lattice $\\phi^4$-model. We calculate the operator $\\langle\\phi_n^2\\rangle$ using the convergent series, the comparison of the results with the Bo...
Polynomial invariants of quantum codes
Rains, E M
1997-01-01
The weight enumerators (quant-ph/9610040) of a quantum code are quite powerful tools for exploring its structure. As the weight enumerators are quadratic invariants of the code, this suggests the consideration of higher-degree polynomial invariants. We show that the space of degree k invariants of a code of length n is spanned by a set of basic invariants in one-to-one correspondence with S_k^n. We then present a number of equations and inequalities in these invariants; in particular, we give a higher-order generalization of the shadow enumerator of a code, and prove that its coefficients are nonnegative. We also prove that the quartic invariants of a ((4,4,2)) are uniquely determined, an important step in a proof that any ((4,4,2)) is additive ([2]).
Algebras, dialgebras, and polynomial identities
Bremner, Murray R
2012-01-01
This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting operations in algebras into operations in dialgebras; Lie and Jordan triple systems, and the corresponding disystems; and a noncommutative version of Lie triple systems based on the trilinear operation abc-bca. The paper concludes with a conjecture relating the KP and BSO algorithms, and some suggestions for further research. Most of the original results are joint work with Raul Felipe, Luiz A. Peresi, and Juana Sanchez-Ortega.
Elementary combinatorics of the HOMFLYPT polynomial
Chmutov, Sergei; Polyak, Michael
2008-01-01
We explore Jaeger's state model for the HOMFLYPT polynomial. We reformulate this model in the language of Gauss diagrams and use it to obtain Gauss diagram formulas for a two-parameter family of Vassiliev invariants coming from the HOMFLYPT polynomial. These formulas are new already for invariants of degree 3.
Application of polynomial preconditioners to conservation laws
Geurts, Bernard J.; Buuren, van René; Lu, Hao
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of p
An inequality for polynomials with elliptic majorant
Nikolov Geno
1999-01-01
Let be the transformed Chebyshev polynomial of the first kind, where . We show here that has the greatest uniform norm in of its -th derivative among all algebraic polynomials of degree not exceeding , which vanish at and satisfy the inequality at the points .
The Bessel polynomials and their differential operators
Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs
Sums of Powers of Fibonacci Polynomials
Helmut Prodinger
2009-11-01
Using the explicit (Binet) formula for the Fibonacci polynomials, a summation formula for powers of Fibonacci polynomials is derived straightforwardly, which generalizes a recent result for squares that appeared in Proc. Ind. Acad. Sci. (Math. Sci.) 118 (2008) 27--41.
The weighted lattice polynomials as aggregation functions
Marichal, Jean-Luc
2006-01-01
We define the concept of weighted lattice polynomials as lattice polynomials constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a remarkable median based decomposition formula.
A Note on Solvable Polynomial Algebras
Huishi Li
2014-03-01
Full Text Available In terms of their defining relations, solvable polynomial algebras introduced by Kandri-Rody and Weispfenning [J. Symbolic Comput., 9(1990] are characterized by employing Gr\\"obner bases of ideals in free algebras, thereby solvable polynomial algebras are completely determinable and constructible in a computational way.
V K Jain
2009-02-01
For a polynomial of degree , we have obtained an upper bound involving coefficients of the polynomial, for moduli of its zeros of smallest moduli, and then a refinement of the well-known Eneström–Kakeya theorem (under certain conditions).
A generalization of the Bernoulli polynomials
Pierpaolo Natalini; Angela Bernardini
2003-01-01
A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951).
A generalization of the Bernoulli polynomials
Pierpaolo Natalini
2003-01-01
Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.
Quantum Search for Zeros of Polynomials
Weigert, S
2003-01-01
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.
A quantum search for zeros of polynomials
Weigert, Stefan [HuMP-Hull Mathematical Physics, Department of Mathematics, University of Hull, Hull HU6 7RX (United Kingdom)
2003-12-01
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.
Point vortex equilibria related to Bessel polynomials
O'Neil, Kevin A.
2016-05-01
The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.
A $(p,q)$-Analogue of Poly-Euler Polynomials and Some Related Polynomials
Komatsu, Takao; Ramírez, José L.; Sirvent, Víctor F.
2016-01-01
In the present article, we introduce a $(p,q)$-analogue of the poly-Euler polynomials and numbers by using the $(p,q)$-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give several combinatorial identities and properties of these new polynomials. Moreover, we show some relations with the $(p,q)$-poly-Bernoulli polynomials and $(p,q)$-poly-Cauchy polynomials. The $(p,q)$-analogues generalize the well-known concept of the $q$-analogue.
Sobolev orthogonal polynomials on a simplex
Aktas, Rabia
2011-01-01
The Jacobi polynomials on the simplex are orthogonal polynomials with respect to the weight function $W_\\bg(x) = x_1^{\\g_1} ... x_d^{\\g_d} (1- |x|)^{\\g_{d+1}}$ when all $\\g_i > -1$ and they are eigenfunctions of a second order partial differential operator $L_\\bg$. The singular cases that some, or all, $\\g_1,...,\\g_{d+1}$ are -1 are studied in this paper. Firstly a complete basis of polynomials that are eigenfunctions of $L_\\bg$ in each singular case is found. Secondly, these polynomials are shown to be orthogonal with respect to an inner product which is explicitly determined. This inner product involves derivatives of the functions, hence the name Sobolev orthogonal polynomials.
Orthogonal Polynomials from Hermitian Matrices II
Odake, Satoru
2016-01-01
This is the second part of the project `unified theory of classical orthogonal polynomials of a discrete variable derived from the eigenvalue problems of hermitian matrices.' In a previous paper, orthogonal polynomials having Jackson integral measures were not included, since such measures cannot be obtained from single infinite dimensional hermitian matrices. Here we show that Jackson integral measures for the polynomials of the big $q$-Jacobi family are the consequence of the recovery of self-adjointness of the unbounded Jacobi matrices governing the difference equations of these polynomials. The recovery of self-adjointness is achieved in an extended $\\ell^2$ Hilbert space on which a direct sum of two unbounded Jacobi matrices acts as a Hamiltonian or a difference Schr\\"odinger operator for an infinite dimensional eigenvalue problem. The polynomial appearing in the upper/lower end of Jackson integral constitutes the eigenvector of each of the two unbounded Jacobi matrix of the direct sum. We also point out...
Matrix product formula for Macdonald polynomials
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)
Tutte polynomial in functional magnetic resonance imaging
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
On some properties on bivariate Fibonacci and Lucas polynomials
Belbachir, Hacéne; Bencherif, Farid
2007-01-01
In this paper we generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations.
Bernoulli-like polynomials associated with Stirling Numbers
Bender, Carl M; Brody, Dorje C.; BERNHARD K. MEISTER
2005-01-01
The Stirling numbers of the first kind can be represented in terms of a new class of polynomials that are closely related to the Bernoulli polynomials. Recursion relations for these polynomials are given.
Polynomial Interpolation in the Elliptic Curve Cryptosystem
Liew K. Jie
2011-01-01
Full Text Available Problem statement: In this research, we incorporate the polynomial interpolation method in the discrete logarithm problem based cryptosystem which is the elliptic curve cryptosystem. Approach: In this study, the polynomial interpolation method to be focused is the Lagrange polynomial interpolation which is the simplest polynomial interpolation method. This method will be incorporated in the encryption algorithm of the elliptic curve ElGamal cryptosystem. Results: The scheme modifies the elliptic curve ElGamal cryptosystem by adding few steps in the encryption algorithm. Two polynomials are constructed based on the encrypted points using Lagrange polynomial interpolation and encrypted for the second time using the proposed encryption method. We believe it is safe from the theoretical side as it still relies on the discrete logarithm problem of the elliptic curve. Conclusion/Recommendations: The modified scheme is expected to be more secure than the existing scheme as it offers double encryption techniques. On top of the existing encryption algorithm, we managed to encrypt one more time using the polynomial interpolation method. We also have provided detail examples based on the described algorithm.
Tree based functional expansions for Feynman--Kac particle models
Del Moral, Pierre; Patras, Frédéric; Rubenthaler, Sylvain
2009-01-01
We design exact polynomial expansions of a class of Feynman–Kac particle distributions. These expansions are finite and are parametrized by coalescent trees and other related combinatorial quantities. The accuracy of the expansions at any order is related naturally to the number of coalescences of the trees. Our results include an extension of the Wick product formula to interacting particle systems. They also provide refined nonasymptotic propagation of chaos-type properties, as well as shar...
On the defect and stability of differential expansion
Kononov, Ya
2015-01-01
Empirical analysis of many colored knot polynomials, made possible by recent computational advances in Chern-Simons theory, reveals their stability: for any given negative N and any given knot the set of coefficients of the polynomial in r-th symmetric representation does not change with r, if it is large enough. This fact reflects the non-trivial and previously unknown properties of the differential expansion, and it turns out that from this point of view there are universality classes of knots, characterized by a single integer, which we call defect, and which is in fact related to the power of Alexander polynomial.
More on rotations as spin matrix polynomials
Curtright, Thomas L. [Department of Physics, University of Miami, Coral Gables, Florida 33124-8046 (United States)
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
Cycles are determined by their domination polynomials
Akbari, Saieed; Oboudi, Mohammad Reza
2009-01-01
Let $G$ be a simple graph of order $n$. A dominating set of $G$ is a set $S$ of vertices of $G$ so that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. The domination polynomial of $G$ is the polynomial $D(G,x)=\\sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. In this paper we show that cycles are determined by their domination polynomials.
On function compositions that are polynomials
Aichinger, Erhard
2015-01-01
For a polynomial map $\\tupBold{f} : k^n \\to k^m$ ($k$ a field), we investigate those polynomials $g \\in k[t_1,\\ldots, t_n]$ that can be written as a composition $g = h \\circ \\tupBold{f}$, where $h: k^m \\to k$ is an arbitrary function. In the case that $k$ is algebraically closed of characteristic~$0$ and $\\tupBold{f}$ is surjective, we will show that $g = h \\circ \\tupBold{f}$ implies that $h$ is a polynomial.
On Combinatorial Formulas for Macdonald Polynomials
Lenart, Cristian
2008-01-01
A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, w...
On Calculation of Adomian Polynomials by MATLAB
Hossein ABOLGHASEMI
2011-01-01
Full Text Available Adomian Decomposition Method (ADM is an elegant technique to handle an extensive class of linear or nonlinear differential and integral equations. However, in case of nonlinear equations, ADM demands a special representation of each nonlinear term, namely, Adomian polynomials. The present paper introduces a novel MATLAB code which computes Adomian polynomials associated with several types of nonlinearities. The code exploits symbolic programming incorporated with a recently proposed alternative scheme to be straightforward and fast. For the sake of exemplification, Adomian polynomials of famous nonlinear operators, computed by the code, are given.
Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)
Tutte Polynomial of Scale-Free Networks
Chen, Hanlin; Deng, Hanyuan
2016-05-01
The Tutte polynomial of a graph, or equivalently the q-state Potts model partition function, is a two-variable polynomial graph invariant of considerable importance in both statistical physics and combinatorics. The computation of this invariant for a graph is NP-hard in general. In this paper, we focus on two iteratively growing scale-free networks, which are ubiquitous in real-life systems. Based on their self-similar structures, we mainly obtain recursive formulas for the Tutte polynomials of two scale-free networks (lattices), one is fractal and "large world", while the other is non-fractal but possess the small-world property. Furthermore, we give some exact analytical expressions of the Tutte polynomial for several special points at ( x, y)-plane, such as, the number of spanning trees, the number of acyclic orientations, etc.
Transversals of Complex Polynomial Vector Fields
Dias, Kealey
Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field....... Given a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are...
Characteristic Polynomials of Sample Covariance Matrices
Kösters, Holger
2009-01-01
We investigate the second-order correlation function of the characteristic polynomial of a sample covariance matrix. Starting from an explicit formula for the generating function, we re-obtain several well-known kernels from random matrix theory.
Thermodynamic characterization of networks using graph polynomials
Ye, Cheng; Peron, Thomas K DM; Silva, Filipi N; Rodrigues, Francisco A; Costa, Luciano da F; Torsello, Andrea; Hancock, Edwin R
2015-01-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the...
Solving Bivariate Polynomial Systems on a GPU
We present a CUDA implementation of dense multivariate polynomial arithmetic based on Fast Fourier Transforms over finite fields. Our core routine computes on the device (GPU) the subresultant chain of two polynomials with respect to a given variable. This subresultant chain is encoded by values on a FFT grid and is manipulated from the host (CPU) in higher-level procedures. We have realized a bivariate polynomial system solver supported by our GPU code. Our experimental results (including detailed profiling information and benchmarks against a serial polynomial system solver implementing the same algorithm) demonstrate that our strategy is well suited for GPU implementation and provides large speedup factors with respect to pure CPU code.
Superconformal minimal models and admissible Jack polynomials
Blondeau-Fournier, Olivier; Ridout, David; Wood, Simon
2016-01-01
We give new proofs of the rationality of the N=1 superconformal minimal model vertex operator superalgebras and of the classification of their modules in both the Neveu-Schwarz and Ramond sectors. For this, we combine the standard free field realisation with the theory of Jack symmetric functions. A key role is played by Jack symmetric polynomials with a certain negative parameter that are labelled by admissible partitions. These polynomials are shown to describe free fermion correlators, suitably dressed by a symmetrising factor. The classification proofs concentrate on explicitly identifying Zhu's algebra and its twisted analogue. Interestingly, these identifications do not use an explicit expression for the non-trivial vacuum singular vector. While the latter is known to be expressible in terms of an Uglov symmetric polynomial or a linear combination of Jack superpolynomials, it turns out that standard Jack polynomials (and functions) suffice to prove the classification.
Inequalities for a polynomial and its derivative
Chanam, Barchand; Dewan, K. K.
2007-12-01
Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z0, then for 0Yadav and Pukhta [K.K. Dewan, R.S. Yadav, M.S. Pukhta, Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 2 (2) (1999) 203-205] proved Equality holds for the polynomial where n is a multiple of [mu]E In this paper, we obtain an improvement of the above inequality by involving some of the coefficients. As an application of our result, we further improve upon a result recently proved by Aziz and Shah [A. Aziz, W.M. Shah, Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 7 (3) (2004) 379-391].
Bergman orthogonal polynomials and the Grunsky matrix
Beckermann, Bernhard; Stylianopoulos, Nikos
2016-01-01
By exploiting a link between Bergman orthogonal polynomials and the Grunsky matrix, probably first observed by Kühnau in 1985, we improve some recent results on strong asymptotics of Bergman polynomials outside the domain G of orthogonality, and on entries of the Bergman shift operator. In our proofs we suggest a new matrix approach involving the Grunsky matrix, and use well-established results in the literature relating properties of the Grunsky matrix to the regularity of the boundary of G,...
Equivalence of polynomial conjectures in additive combinatorics
Lovett, Shachar
2010-01-01
We study two conjectures in additive combinatorics. The first is the polynomial Freiman-Ruzsa conjecture, which relates to the structure of sets with small doubling. The second is the inverse Gowers conjecture for $U^3$, which relates to functions which locally look like quadratics. In both cases a weak form, with exponential decay of parameters is known, and a strong form with only a polynomial loss of parameters is conjectured. Our main result is that the two conjectures are in fact equivalent.
Stochastic processes with orthogonal polynomial eigenfunctions
Griffiths, Bob
2009-12-01
Markov processes which are reversible with either Gamma, Normal, Poisson or Negative Binomial stationary distributions in the Meixner class and have orthogonal polynomial eigenfunctions are characterized as being processes subordinated to well-known diffusion processes for the Gamma and Normal, and birth and death processes for the Poisson and Negative Binomial. A characterization of Markov processes with Beta stationary distributions and Jacobi polynomial eigenvalues is also discussed.
Ferrers Matrices Characterized by the Rook Polynomials
MAHai-cheng; HUSheng-biao
2003-01-01
In this paper,we show that there exist precisely W(A) Ferrers matrices F(C1,C2,…,cm)such that the rook polynomials is equal to the rook polynomial of Ferrers matrix F(b1,b2,…,bm), where A={b1,b2-1,…,bm-m+1} is a repeated set,W(A) is weight of A.
Quantum group invariants and link polynomials
A general method is developed for constructing quantum group invariants and determining their eigenvalues. Applied to the universal R-matrix this method leads to the construction of a closed formula for link polynomials. To illustrate the application of this formula, the quantum groups Uq(E8), Uq(so(2m+1)) and Uq(gl(m)) are considered as examples, and corresponding link polynomials are obtained. (orig.)
On Sharing, Memoization, and Polynomial Time
Avanzini, Martin; Dal Lago, Ugo
2015-01-01
We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.
Laguerre polynomials method in the valon model
Boroun, G R
2014-01-01
We used the Laguerre polynomials method for determination of the proton structure function in the valon model. We have examined the applicability of the valon model with respect to a very elegant method, where the structure of the proton is determined by expanding valon distributions and valon structure functions on Laguerre polynomials. We compared our results with the experimental data, GJR parameterization and DL model. Having checked, this method gives a good description for the proton structure function in valon model.
Positive maps, positive polynomials and entanglement witnesses
We link the study of positive quantum maps, block positive operators and entanglement witnesses with problems related to multivariate polynomials. For instance, we show how indecomposable block positive operators relate to biquadratic forms that are not sums of squares. Although the general problem of describing the set of positive maps remains open, in some particular cases we solve the corresponding polynomial inequalities and obtain explicit conditions for positivity.
A Polynomial Preconditioner for the CMRH Algorithm
Shiji Xu; Jiangzhou Lai; Linzhang Lu
2011-01-01
Many large and sparse linear systems can be solved efficiently by restarted GMRES and CMRH methods Sadok 1999. The CMRH(m) method is less expensive and requires slightly less storage than GMRES(m). But like GMRES, the restarted CMRH method may not converge. In order to remedy this defect, this paper presents a polynomial preconditioner for CMRH-based algorithm. Numerical experiments are given to show that the polynomial preconditioner is quite simple and easily constructed and the preconditio...
Blind Signature Scheme Based on Chebyshev Polynomials
Maheswara Rao Valluri
2011-12-01
Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.
Nonsymmetric Askey-Wilson polynomials and $Q$-polynomial distance-regular graphs
Lee, Jae-Ho
2015-01-01
In his famous theorem (1982), Douglas Leonard characterized the $q$-Racah polynomials and their relatives in the Askey scheme from the duality property of $Q$-polynomial distance-regular graphs. In this paper we consider a nonsymmetric (or Laurent) version of the $q$-Racah polynomials in the above situation. Let $\\Gamma$ denote a $Q$-polynomial distance-regular graph that contains a Delsarte clique $C$. Assume that $\\Gamma$ has $q$-Racah type. Fix a vertex $x \\in C$. We partition the vertex s...
Vector-Valued Jack Polynomials from Scratch
Jean-Gabriel Luque
2011-03-01
Full Text Available Vector-valued Jack polynomials associated to the symmetric group S_N are polynomials with multiplicities in an irreducible module of S_N and which are simultaneous eigenfunctions of the Cherednik-Dunkl operators with some additional properties concerning the leading monomial. These polynomials were introduced by Griffeth in the general setting of the complex reflections groups G(r,p,N and studied by one of the authors (C. Dunkl in the specialization r=p=1 (i.e. for the symmetric group. By adapting a construction due to Lascoux, we describe an algorithm allowing us to compute explicitly the Jack polynomials following a Yang-Baxter graph. We recover some properties already studied by C. Dunkl and restate them in terms of graphs together with additional new results. In particular, we investigate normalization, symmetrization and antisymmetrization, polynomials with minimal degree, restriction etc. We give also a shifted version of the construction and we discuss vanishing properties of the associated polynomials.
Itoyama, H; Morozov, A; Morozov, An
2012-01-01
Character expansion expresses extended HOMFLY polynomials through traces of products of finite dimensional R- and Racah mixing matrices. We conjecture that the mixing matrices are expressed entirely in terms of the eigenvalues of the corresponding R-matrices. Even a weaker (and, perhaps, more reliable) version of this conjecture is sufficient to explicitly calculate HOMFLY polynomials for all the 3-strand braids in arbitrary (anti)symmetric representations. We list the examples of so obtained polynomials for V=[3] and V=[4], and they are in accordance with the known answers for torus and figure-eight knots, as well as for the colored special and Jones polynomials. This provides an indirect evidence in support of our conjecture.
Cooling, C.M., E-mail: c.cooling10@imperial.ac.uk [Imperial College of Science, Technology and Medicine (United Kingdom); Williams, M.M.R. [Imperial College of Science, Technology and Medicine (United Kingdom); Nygaard, E.T. [Babcock and Wilcox Technical Services Group (TSG) (United States); Eaton, M.D. [Imperial College of Science, Technology and Medicine (United Kingdom)
2013-09-15
Highlights: • A point kinetics model for the Medical Isotope Production Reactor is formulated. • Reactivity insertions are simulated using this model. • Polynomial chaos is used to simulate uncertainty in reactor parameters. • The computational efficiency of polynomial chaos is compared to that of Monte Carlo. -- Abstract: This paper models a conceptual Medical Isotope Production Reactor (MIPR) using a point kinetics model which is used to explore power excursions in the event of a reactivity insertion. The effect of uncertainty of key parameters is modelled using intrusive polynomial chaos. It is found that the system is stable against reactivity insertions and power excursions are all bounded and tend towards a new equilibrium state due to the negative feedbacks inherent in Aqueous Homogeneous Reactors (AHRs). The Polynomial Chaos Expansion (PCE) method is found to be much more computationally efficient than that of Monte Carlo simulation in this application.
Online segmentation of time series based on polynomial least-squares approximations.
Fuchs, Erich; Gruber, Thiemo; Nitschke, Jiri; Sick, Bernhard
2010-12-01
The paper presents SwiftSeg, a novel technique for online time series segmentation and piecewise polynomial representation. The segmentation approach is based on a least-squares approximation of time series in sliding and/or growing time windows utilizing a basis of orthogonal polynomials. This allows the definition of fast update steps for the approximating polynomial, where the computational effort depends only on the degree of the approximating polynomial and not on the length of the time window. The coefficients of the orthogonal expansion of the approximating polynomial-obtained by means of the update steps-can be interpreted as optimal (in the least-squares sense) estimators for average, slope, curvature, change of curvature, etc., of the signal in the time window considered. These coefficients, as well as the approximation error, may be used in a very intuitive way to define segmentation criteria. The properties of SwiftSeg are evaluated by means of some artificial and real benchmark time series. It is compared to three different offline and online techniques to assess its accuracy and runtime. It is shown that SwiftSeg-which is suitable for many data streaming applications-offers high accuracy at very low computational costs. PMID:20975120
Possible quantum algorithms for the Bollobas-Riordan-Tutte polynomial of a ribbon graph
Vélez, Mario; Ospina, Juan
2008-04-01
Three possible quantum algorithms, for the computation of the Bollobás-Riordan-Tutte polynomial of a given ribbon graph, are presented and discussed. The first possible algorithm is based on the spanning quasi-trees expansion for generalized Tutte polynomials of generalized graphs and on a quantum version of the Binary Decision Diagram (BDD) for quasi-trees . The second possible algorithm is based on the relation between the Kauffman bracket and the Tutte polynomial; and with an application of the recently introduced Aharonov-Arad-Eban-Landau quantum algorithm. The third possible algorithm is based on the relation between the HOMFLY polynomial and the Tutte polynomial; and with an application of the Wocjan-Yard quantum algorithm. It is claimed that these possible algorithms may be more efficient that the best known classical algorithms. These three algorithms may have interesting applications in computer science at general or in computational biology and bio-informatics in particular. A line for future research based on the categorification project is mentioned.
Generalized Narayana Polynomials, Riordan Arrays and Lattice Paths
Barry, Paul; Hennessy, Aoife
2012-01-01
We study a family of polynomials in two variables, identifying them as the moments of a two-parameter family of orthogonal polynomials. The coefficient array of these orthogonal polynomials is shown to be an ordinary Riordan array. We express the generating function of the sequence of polynomials under study as a continued fraction, and determine the corresponding Hankel transform. An alternative characterization of the polynomials in terms of a related Riordan array is also given. This Riord...
Wavelet approach to accelerator problems. 1: Polynomial dynamics
This is the first part of a series of talks in which the authors present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In the general case they have the solution as a multiresolution expansion in the base of compactly supported wavelet basis. The solution is parameterized by solutions of two reduced algebraical problems, one is nonlinear and the second is some linear problem, which is obtained from one of the next wavelet constructions: Fast Wavelet Transform, Stationary Subdivision Schemes, the method of Connection Coefficients. In this paper the authors consider the problem of calculation of orbital motion in storage rings. The key point in the solution of this problem is the use of the methods of wavelet analysis, relatively novel set of mathematical methods, which gives one a possibility to work with well-localized bases in functional spaces and with the general type of operators (including pseudodifferential) in such bases
Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions
Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.
2011-01-01
This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.
Solving the Frustrated Spherical Model with q-Polynomials
Cappelli, A P; Cappelli, Andrea; Colomo, Filippo
1998-01-01
We analyse the Spherical Model with frustration induced by an external gauge field. In infinite dimensions, this has been recently mapped onto a problem of q-deformed oscillators, whose real parameter q measures the frustration. We find the analytic solution of this model by suitably representing the q-oscillator algebra with q-Hermite polynomials. We also present a related Matrix Model which possesses the same diagrammatic expansion in the planar approximation. Its interaction potential is oscillating at infinity with period log(q), and may lead to interesting metastability phenomena beyond the planar approximation. The Spherical Model is similarly q-periodic, but does not exhibit such phenomena: actually its low-temperature phase is not glassy and depends smoothly on q.