Bypass transition of the bottom boundary layer under solitary wave
Sadek, Mahmoud; Diamessis, Peter; Parras, Luis; Liu, Philip
2015-11-01
The transition to turbulence in the bottom boundary layer (BBL) flow driven by a soliton-like pressure gradient in an oscillating water tunnel (an approximation for the BBL under solitary waves) is investigated using hydrodynamic linear stability theory and DNS. As observed in the laboratory experiment by Sumer et al. (2010), two possible transition scenarios exist. The first scenario is associated with the classical transition resulting from the breakdown of the exponentially growing 2-D Tollmien-Schlichting waves. The alternative scenario; i.e., bypass transition; takes place through formation of localized turbulent spots. The investigation of the latter transition scenario is performed in two steps. The first step consists of reformulating the linear stability analysis in the non-modal framework for the purpose of finding the optimum disturbance characteristics which lead to the formation of those turbulent spots. In the second step, the computed optimum noise structure is inserted in the 3D DNS in order to induce the formation of the turbulent spots and effectively simulate the bypass transition observed experimentally.
A Note on the bottom shear stress in oscillatory planetary boundary layer flow
Dag Myrhaug
1988-07-01
Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.
A Note on the bottom shear stress in oscillatory planetary boundary layer flow
Dag Myrhaug
1988-01-01
A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974) measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.
PIV measurements of the bottom boundary layer under nonlinear surface waves
Henriquez, M.; Reniers, A. J H M; Ruessink, B. G.; Stive, M. J F
2014-01-01
Sediment in the nearshore is largely mobilized in the wave bottom boundary layer (wbbl) hereby emphasizing the importance of this relatively thin layer to nearshore morphology. This paper presents a laboratory experiment where hydrodynamic properties of the wbbl were quantified by measuring flow vel
Kranenburg, W.M.; Ribberink, J.S.; Uittenbogaard, R.E.; Hulscher, S.J.M.H.
2012-01-01
The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under pr
Schaeffer, A.; Roughan, M.; Wood, J. E.
2014-08-01
Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.
何青; 李九发; 李炎; 金惜三; 车越
2001-01-01
A field observation of the hydrodynamics and the sediment resuspension in a bottom boundary layer was carried out in the Changjiang Estuary, during July-August 1997. Using bottom field research facilities, detailed measurements of near-bottom currents and suspended sediment concentration distribution within 1.0 m above bed have been obtained in the Changjiang Estuary——a high concentration estuary. An Acoustic Suspended Sediment Monitor (ASSM) wasused to observe near bed sediment resuspension processes. In addition, the log-profile method was applied to estimating hydraulic roughness Z0 and bottom shear stress values (or friction velocities u). Further understanding of sediment suspension mechanics and hydrodynamic characteristics will require the long-term measurements of near bed processes.
Henderson, Stephen M.
2016-04-01
Internal seiches, which supply the energy responsible for mixing many lakes, are often modeled as vertically standing waves. However, recent observations of vertical seiche propagation in a small lake are inconsistent with the standard, vertically standing model. To examine the processes responsible for such propagation, drag and turbulent production in the bottom boundary layer of a small lake are related to the energy supplied by a propagating seiche (period 10-24 h). Despite complex and fluctuating stratification, which often inhibited mixing within 0.4 m of the bed, bottom stress was well represented by a simple drag coefficient model (drag coefficient 1.5 × 10-3). The net supply of seiche energy to the boundary layer was estimated by fitting a model for internal wave vertical propagation to velocity profiles measured above the boundary layer (1-4.5 m above lakebed). Fitted reflection coefficients ranged from 0.3 at 1 cycle/d frequency to 0.7 at 2.4 cycles/d (cf. near-unity coefficients of classical seiche theories). The net supply of seiche energy approximately balanced boundary layer turbulent production. Three of four peaks in production and energy flux occurred 0.8-2.2 days after strong oscillating winds, a delay comparable to the time required for seiche energy to propagate to the lakebed. A model based on the estimated drag coefficient predicted the observed frequency dependence of the seiche reflection coefficient. For flat-bed regions in narrow lakes, the model predicts that reflection is controlled by the ratio of water velocity to vertical wave propagation speed, with sufficiently large ratios leading to weak reflection, and clear vertical seiche propagation.
Direct measurement of hairpin-like vortices in the bottom boundary layer of the coastal ocean
Steele, Edward C. C.; Nimmo-Smith, W. Alex M.; Vlasenko, Andrey
2016-02-01
Laboratory measurements and numerical modeling at low Reynolds numbers (Reθocean at higher Reynolds numbers (Reθ = 266,150) show tidal flows also contain packets of large vortices separated by periods of more quiescent conditions. The 1452 vortices recorded within a 20 min period are typically aligned along stream (˜8.0° from the mean flow direction) and inclined to the horizontal (˜27.0° from the seabed), with a mean period of occurrence of 4.3 s. These results lend three-dimensional, in situ support to an interpretation of the coastal ocean bottom boundary layer as comprising coherent packets of hairpin vortices. This demonstrates a direct linkage from low Reynolds number experiments to higher Reynolds number flows, permitting fine-scale details of particle transport and pollutant dispersion to be inferred from lower Reynolds number data.
Modeling turbulent mixing and sand distribution in the bottom boundary layer
Absi, Rafik
2011-01-01
For the calculation of turbulent mixing in the bottom boundary layer, we present simple analytical tools for the mixing velocity wm and the mixing length lm. Based on observations of turbulence intensity measurements, the mixing velocity wm is represented by an exponential function decaying with z. We suggest two theoretical functions for the mixing length, a first lm1 obtained from the k-equation written as a constant modeled fluctuating kinetic energy flux and a second lm2 based on von K\\'arm\\'an's similarity hypothesis. These analytical tools were used in the finite-mixing-length model of Nielsen and Teakle (2004). The modeling of time-mean sediment concentration profiles C(z) over wave ripples shows that at the opposite of the second equation lm2 which increases the upward convexity of C(z), the first equation lm1 increases the upward concavity of C(z) and is able to reproduce the shape of the measured concentrations for coarse sand.
Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA
Bertagnolli, AD
2011-06-21
There have been few studies of the bacterial community within the bottom boundary layer (BBL) the turbulent region of the water column above the benthos in shallow seas. Typically, the BBL has large amounts of particulate organic matter suspended by turbulence, and it is often the first region of the water column to become hypoxic when oxygen declines. Communities at the surface (5 m) and in the BBL (1 to 10 m above the sea floor) were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA gene. Multivariate statistical methods (hierarchical clustering, non-metric multidimensional scaling, and analysis of similarity (ANOSIM)) indicated that the microbial community of the BBL is distinct from the surface community. ANOSIM supported the distinction between surface and BBLs (R values 0.427 and 0.463, based on analysis with restriction enzymes BsuR1 and Hin6I, respectively, p < 0.1%). Six terminal restriction fragments showed an increase in abundance with depth. Cloning, screening and sequencing identified these as a novel environmental clade (Eastern North Pacific Chromatiales (ENPC) clade), the ARTIC96BD-19 clade of Gammaproteobacteria, the 6N14 and Agg8 clades of the phylum Planctomycetes, the OM60/NOR5 clade of Gammaproteobacteria, and uncultivated members of the Roseobacter clade in the MB11C09 and ULA23 subgroups. To the best of our knowledge, this analysis is the first to focus on the unique composition of microbial communities of the BBL in shallow, inner-shelf regions off the coast of Oregon, USA, and the first to report that an uncharacterized clade of Chromatiales is indigenous in this habitat.
Loitsianskii. L. G.
1956-01-01
The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.
Boundary Layer under Oscillatory Wave
Mohammad Bagus Adityawan; Hitoshi Tanaka
2011-01-01
Turbulence due to wave motion and propagation is a very important aspect in sediment transport modeling. The boundary layer characteristic during the process will highly influence the sediment transport mechanism at the bottom. 1D model approach has been widely used to assess the turbulent boundary layer. However, the need for a more detailed model leads to the development of a more sophisticated models. This study presents a 2D turbulent model using k-ω equation to approach the turbulent bou...
Chassagneux, François Xavier; Hurther, David
2014-03-01
The present work investigates the structure of the near-bed flow below irregular surfzone breaking waves inducing light-weight sheet flow particle transport. The experiments are carried out in the LEGI flume under steady equilibrium conditions between the wave forcing and the underlying bed morphology. Synchronized ACVP and video images provide detailed information about the mean wave and current characteristics and the coupled flow regimes across the entire wave breaking region including the outer and the inner surfzones. An analysis of the impact of breaking eddies in the Wave Boundary Layer (WBL) is undertaken at the beginning of the inner surfzone. Subsequently, the intrawave variation of several contributions of the total shearing force per unit area and the net values of the Reynolds stress related to phase-averaged velocities are analyzed. It is found that -ρu˜w˜ is the dominant term. The turbulent Reynolds stress, the low frequency, and the mean terms are at least 1 order of magnitude lower. Due to the irregular wave forcing, the net values are separated into the net wave-by-wave Reynolds stress and the wave Reynolds stress averaged over the entire irregular wave sequence. All these measured bed shear stress terms are then compared to estimations obtained with two different parameterized models in order to evaluate their prediction performances. The values of the model parameters are discussed in comparison to those found in the literature. Finally, the vertical profile of net Reynolds shear stress exhibits a nearly constant value across the sheet-flow layer.
Analysis of turbulent boundary layers
Cebeci, Tuncer
2012-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Diffusive boundary layers over varying topography
Dell, R. W.
2015-03-25
Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate
Modeling the urban boundary layer
Bergstrom, R. W., Jr.
1976-01-01
A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Local boundary layer scales in turbulent Rayleigh-Benard convection
Scheel, Janet D
2014-01-01
We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...
Particle motion inside Ekman and Bödewadt boundary layers
Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan
2014-11-01
We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.
Boundary Layer Heights from CALIOP
Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.
2012-12-01
This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.
Microgravity Effects on Plant Boundary Layers
Stutte, Gary; Monje, Oscar
2005-01-01
The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.
BUBBLE - an urban boundary layer meteorology project
Rotach, M.W.; Vogt, R.; Bernhofer, C.;
2005-01-01
The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...
Cyclone separator having boundary layer turbulence control
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator
Experimental investigation of wave boundary layer
Sumer, B. Mutlu
2003-01-01
A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank with an ...
Magnetohydrodynamic cross-field boundary layer flow
D. B. Ingham
1982-01-01
Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R.; Milau, Julius S.
1985-01-01
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
Construction of a Non-Equilibrium Thermal Boundary Layer Facility
Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher
2015-11-01
A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.
LDV measurements of turbulent baroclinic boundary layers
Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)
1993-07-01
Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.
Plasma boundary layer and magnetopause layer of the earth's magnetosphere
IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary
Boundary-layer linear stability theory
Mack, L. M.
1984-06-01
Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer
Boundary-layer linear stability theory
Mack, L. M.
1984-01-01
Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer
The inner core thermodynamics of the tropical cyclone boundary layer
Williams, Gabriel J.
2016-02-01
Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ ), specific humidity (q), and reversible equivalent potential temperature (θ _e ) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.
Linear waves in two-layer fluids over periodic bottoms
Yu, Jie; Maas, Leo
2015-11-01
A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and generalized wavenumber (Floquet exponent), and for the waveforms of free wave modes. The dispersion relation is the analogue of the classical Lamb's equation for a two-layer fluid over a flat bottom. For internal modes the interfacial wave shows rapid modulation at the scale of its own wavelength that is comparable to bottom wavelength, whereas for surface modes it becomes a long wave carrier for modulating short waves of bottom wavelength. The approximation using a rigid-lid is given. Sample calculations are shown, including the frequencies that are Bragg resonant. Supports to JY by US National Science Foundation (Grant CBET-0845957) and a visitor's grant of the Netherlands Organisation for Scientific Research (NWO) during the period of this work, are gratefully acknowledged.
Boundary layer physics over snow and ice
P. S. Anderson
2008-07-01
Full Text Available Observations of the unique chemical environment over snow and ice in recent decades, particularly in the polar regions, have stimulated increasing interest in the boundary layer processes that mediate exchanges between the ice/snow interface and the atmosphere. This paper provides a review of the underlying concepts and examples from recent field studies in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP that focus on processes linking halogens to the depletion of boundary layer ozone in coastal environments, mercury transport and deposition, snow photochemistry, and related snow physics. In this context, observational approaches, stable boundary layer behavior, the effects of a weak or absent diurnal cycle, and transport and mixing over the heterogeneous surfaces characteristic of coastal ocean environments are of particular relevance.
Benthic boundary layer. IOS observational and modelling programme
Near bottom currents, measured at three sites in the N.E. Atlantic, reveal the eddying characteristics of the flow. Eddies develop, migrate and decay in ways best revealed by numerical modelling simulations. Eddies control the thickness of the bottom mixed layer by accumulating and thickening or spreading and thinning the bottom waters. At the boundaries of eddies benthic fronts form providing a path for upward displacement of the bottom water. An experiment designed to estimate vertical diffusivity is performed. The flux of heat into the bottom of the Iberian basin through Discovery Gap is deduced from year long current measurements. The flux is supposed balanced by geothermal heating through the sea floor and diapycnal diffusion in the water. A diffusivity of 1.5 to 4 cm2 s-1 is derived for the bottom few hundred meters of the deep ocean. Experiments to estimate horizontal diffusivity are described. If a tracer is discharged from the sea bed the volume of sea water in which it is found increases with time and after 20 years will fill an ocean basin of side 1000 km to a depth of only 1 to 2 km. (author)
Characterization of internal boundary layer capacitors
Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis
Modeling the summertime Arctic cloudy boundary layer
Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)
1996-04-01
Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2012-01-01
simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...
Problems of matter-antimatter boundary layers
This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x0 approximately 10/BT0sup(1/4) meters, where B is the magnetic field strength in MKS units and T0 the characteristic temperature of the low-energy components in the layer. (Auth.)
Boundary layer physics over snow and ice
P. S. Anderson
2007-06-01
Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.
This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.
Boundary layer heights derived from velocity spectra
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
Self-similar magnetohydrodynamic boundary layers
Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2010-10-15
The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.
Boundary-layer theory for blast waves
Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.
1975-01-01
It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.
Thick diffusion limit boundary layer test problems
We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)
DYNAMICS OF A BOUNDARY LAYER SEPARATION
Uruba, Václav; Knob, Martin
2009-01-01
Roč. 16, č. 1 (2009), s. 29-38. ISSN 1802-1484 R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * triple-deck theory * Time-Resolved PIV Subject RIV: BK - Fluid Dynamics
Analysis of Laminar Boundary Layer Equations
R. Yesman
2012-01-01
Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices.
Evaluation of the heat flux on the bottom boundary in shallow waters
Debolskaya, Elena; Ivanov, Alexandre
2014-05-01
is so small compared to the turbulent one) at different wind velocities W , will in any case not too low values of depths where the influence of the upper boundary condition is essential. It is easy to calculate that the effect of diurnal variations of temperature at the upper boundary depends on the wind velocity as follows: at W=0.5m/s K0=10-5m2/s, H=1.6 m; at W=1 m/s K0=2.6•10-4 m2/s, H=5m; at W=5 m/s K0=3•10-3 m2/s, H=16m. Further we can estimate the ability of the soil to respond to water temperature changes and to effect on the heat content of the overlying column of fluid, i.e., to serve as a source of stored heat. We consider a set of factors, that support such accumulation, namely, the shallow water with strong winds and calculate the relation of the temperature on the surface of the reservoir with depth H = 0.5 m and on the bottom during the daily fluctuation of temperature and upon the action of the wind with velocity of W = 5m / s. We obtain T(H,t)=0.95 T0, i.e. almost the whole water column warmed uniformly. Let us consider now the soil layer, on the surface of which there is a periodic variation of temperature of the overlying water with amplitude T(H,t)=0.95 T0. This problem is also described by the one-dimensional heat conduction equation with periodic boundary conditions at the upper boundary. The coefficient of thermal diffusivity of the soil at least one order of magnitude less than that of water. Let us find the value of soil depth (distance from the boundary "bottom -water"), where decrease in the amplitude of heat exposure is 10 times at daily fluctuations. We use the expression obtained above for water column and at the value of thermal diffusivity 10-7 m2/s and daily temperature variations with 86400 s, we obtain H = 0.12m. Below this depth the temperature remains relatively constant and heat flux is absent. Thus, the daily fluctuations of temperature, even for very small and well-mixed reservoir, can not propagate in depth of sediments to
Wave boundary layer over a stone-covered bed
Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;
2008-01-01
This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... ping-pong ball experiments to study the influence of packing pattern, packing density, number of layers and surface roughness of the roughness elements. The results show that the friction factor seems to be not extremely sensitive to these factors. The results also show that the friction factor for...... extremely sensitive to the packing pattern, the packing density, the number of layers and the surface roughness of the roughness elements. There exists a steady streaming near the bed in the direction of wave propagation, in agreement with the existing work. The present data indicate that the steady...
Global stability analysis of axisymmetric boundary layers
Vinod, N
2016-01-01
This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...
Active control of ionized boundary layers
Mendes, R V
1997-01-01
The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.
Magnetic activity in accretion disc boundary layers
Armitage, Philip J.
2002-03-01
We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle, the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.
Analytic prediction for planar turbulent boundary layers
Chen, Xi
2016-01-01
Analytic predictions of mean velocity profile (MVP) and streamwise ($x$) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions are the friction velocity $u_\\tau$: ${ U_e/u_\\tau }\\approx 2.22\\ln Re_x+2.86-3.83\\ln(\\ln Re_x)$; the boundary layer thickness $\\delta_e$: $x/\\delta_e \\approx 7.27\\ln Re_x-5.18-12.52\\ln(\\ln Re_x)$; the momentum thickness Reynolds number: $Re_x/Re_\\theta=4.94[{(\\ln {{\\mathop{\\rm Re}\
DYNAMICS OF A BOUNDARY LAYER SEPARATION
Uruba, Václav
Budapest : University of Technology and Economics , 2009, s. 268-275. ISBN 978-963-420-985-0. [Conference on Modelling Fluid Flow CMFF'09. Budapest (HU), 09.09.2009-12.09.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * dynamics * separation * POPs Subject RIV: BK - Fluid Dynamics
Numerical Simulation of the Atmospheric Boundary Layer
Bauer, Petr
Praha : Česká technika - nakladatelství ČVUT, 2006 - (Ambrož, P.; Masáková, Z.), s. 11-18 [Doktorandské dny 2006. Katedra matematiky FJFI ČVUT, Praha (CZ), 10.11.2006-24.11.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * numerical simulation * finite element method Subject RIV: DI - Air Pollution ; Quality
Instabilities and transition in boundary layers
N Vinod; Rama Govindarajan
2005-03-01
Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.
Dynamical analysis of separated boundary layer flow
Uruba, Václav
Berlin : Technische Universität Berlin, 2009. s. 1-2 ISBN N. [Nonlinear Normal Modes, Dimension Reduction and Localization in Vibrating Systems. 27.09.2009-02.10.2009, Frascati (Rome)] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * dynamics Subject RIV: BK - Fluid Dynamics
Submarine design optimization using boundary layer control
Christopher L Warren
1997-01-01
Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...
Coupled wake boundary layer model of windfarms
Stevens, Richard; Gayme, Dennice; Meneveau, Charles
2014-11-01
We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.
Numerical study of different bottom boundary conditions on water flow in lysimeters
Groh, Jannis; Vanderborght, Jan; Pütz, Thomas; Vereecken, Harry
2015-04-01
The separation of the bottom of the lysimeter from its surroundings in the field introduces an artificial boundary that may impact the water balance of lysimeters. The use of tension controlled lysimeter (TCL) prevents an artificial boundary at the end of the lysimeter. Water flow across the lysimeter bottom can be controlled by the adjustment of matric potentials at the lower end of the lysimeter to measured field conditions in the close vicinity of the facility. However lysimeters are often transferred from the place where the soil monoliths were sampled to another location for practical reasons or to study the effect of climate change (e.g. SOILCan). The water flux across the bottom boundary of translocated TCL can be affected if climatic conditions, soil properties and the hydrogeological setting in the field differ from the place where the lysimeter was taken from. To assess the potential impact of different bottom boundary conditions on the water balance of translocated TCL a numerical study in virtual soils was conducted. We present a comparison of different approaches using water balance simulations. Results shows that water balance components of translocated TCL are sensitive towards the soil hydraulic parameters and hydrogeological setting in the field. The change in field conditions can impact the water flux dynamic across the lysimeter bottom, change the evaporation and the plant water uptake and release. A shift in the climate regime (translocation) will modify the depth and dynamics of the water table and impact the water balance of lysimeters.
A global boundary-layer height climatology
Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)
1997-10-01
In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)
Modelling turbulent spots in swept boundary layers
Highlights: • A linear perturbation method can capture the important flow features within a turbulent spot. • The horseshoe vortex in the perturbed velocity field is the dominant flow feature. • Sweep leads to skewing of the turbulent spot and calmed region. • The effects of pressure gradient are generally reduced by sweep. -- Abstract: A computational technique is presented for determining the fully 3-d viscid unsteady perturbation to a non-developing laminar swept boundary layer. For zero pressure gradient, unswept boundary layers, the perturbation method reveals a strongly three dimensional flow within the turbulent spot and its associated calmed region which is very similar to that observed in experiments and full DNS calculations. The perturbation method cannot predict turbulent motion but nevertheless provides a simple yet accurate means of studying and understanding the development of turbulent spot geometry. The most influential flow feature is the horseshoe vortex observed in the fluctuation velocity field, which is responsible for delivering the fluid found in the calmed region between its trailing legs. The upwards flow around the outer periphery of the vortex is also responsible for delivering low momentum fluid to the spot, but additional high momentum fluid also enters the spot from its rear through the downward sweeping motion of fluid between the vortex legs. The effect of an adverse streamwise pressure gradient is to increase the size of the spot and calmed region whereas a favourable pressure gradient has the opposite effect. When sweep is introduced to the boundary layer the spot is skewed for all non-zero pressure gradients, but the changes in size of the spot and calmed region due to pressure gradient are reduced. For favourable pressure gradients the skew increases monotonically with sweep, but this is not the case for adverse pressure gradients where the effect of sweep is more complex
Two Dimensional Boundary Layer Growth with Suction
Krishna Lal
1970-07-01
Full Text Available The boundary layer equations for the unsteady fluid flow with constant suction velocity have been worked out for the impulsive motion of a circular cylinder in the form V(t=A exp (Ct where A and C are certain constants. The stream function has been expanded in terms of some functions X/sub 0/(s where s is a function of y coordinate. The phase angles for various terms have been calculated, and variations shown graphically for large and small frequency of oscillations, where the oscillatory motion is obtained on replacing C by iw.
Cebeci, Tuncer
2005-01-01
This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.
Modelling of the Evolving Stable Boundary Layer
Sorbjan, Zbigniew
2014-06-01
A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.
Atmospheric boundary layer over steep surface waves
Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej
2014-08-01
Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.
Geometric invariance of compressible turbulent boundary layers
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Three dimensional analysis of boundary layers in magnetohydrodynamic open channel flow
The pumping of liquid metals through open channels by MHD effects can be applied to slag separation or continuous casting processes by the metallurgy industry. This study involves the analysis of the boundary layer structure of non-uniform open channel flow in a rectangular channel, with perfectly conducting sidewalls, an insulating bottom and a uniform magnetic field applied perpendicular to the bottom, the plane of which is sloped with respect to the horizontal. To supply the non-trivial three-dimensional sidewall boundary layer structure a boundary value problem is posed and reduced to two integral equations coupled in two unknowns. The twenty-four point Gauss-Legendre quadrature scheme used to represent the integrals, leads to a set of forty-eight simultaneous equations which is solved numerically for the unknowns. Once obtained, these unknowns are used in the numerical calculation of sample velocity profiles which illustrate and contrast MHD effects in open channel and closed duct flows
Climatic impacts of the boundary layer circulation over Antarctica
Prolonged periods of strong radiational cooling over the sloping ice fields of Antarctica produce cold, negatively buoyant air in the lowest layers of the atmosphere. This cooling generates a continental-scale, near-surface wind-field which is highly irregular. Cold air in the interior is channeled into narrow zones that enable the downstream coastal katabatic winds to become anomalously strong and persistent. This probably means that the boundary layer transport of air across the Antarctic coastline is concentrated in a small number of narrow regions, and that previous quantitative evaluations of the importance of this boundary layer circulation are likely to be substantially in error. From continuity considerations, the time-averaged outflow of cold surface air must be compensated by inflow aloft and sinking over the continent. This time-averaged meridional mass circulation plays a dominant role in the heat budget of the Antarctic atmosphere by adiabatic compression in the statically stable atmosphere. The tropospheric convergence and sinking motion also generate cyclonic vorticity which is comparable in magnitude to that arising from the temperature contrast between the ice sheet and the surrounding ocean. That is, the circumpolar vortex is centered over the East Antarctic ice sheet in pan because of the tropospheric mass convergence. The concentration of cold surface air transport from the ice sheet into narrow coastal zones has important consequences for sea ice formation and cyclonic development. Katabatic jets can force coastal polynyas where very active sea ice formation and associated brine rejection produce saline shelf water. This water mass is a component of Antarctic Bottom Water. Such water mass formation provides a way to couple climatic variations over the ice sheet to the deep ocean on relatively short time scales
Yuan, Jing
2016-04-01
A full-scale experimental study of turbulent boundary layer flows under irregular waves and currents is conducted with the primary objective to investigate the equivalent-wave concept by Madsen (1994). Irregular oscillatory flows following the bottom-velocity spectrum under realistic surface irregular waves are produced over two fixed rough bottoms in an oscillatory water tunnel, and flow velocities are measured using a Particle Image Velocimetry. The root-mean-square (RMS) value and representative phase lead of wave velocities have vertical variations very similar to those of the first-harmonic velocity of periodic wave boundary layers, e.g., the RMS wave velocity follows a logarithmic distribution controlled by the physical bottom roughness in the very near-bottom region. The RMS wave bottom shear stress and the associated representative phase lead can be accurately predicted using the equivalent-wave approach. The spectra of wave bottom shear stress and boundary layer velocity are found to be proportional to the spectrum of free-stream velocity. Currents in the presence of irregular waves exhibit the classic two-log-profile structure with the lower log-profile controlled by the physical bottom roughness and the upper log-profile controlled by a much larger apparent roughness. Replacing the irregular waves by their equivalent sinusoidal waves virtually makes no difference for the coexisting currents. These observations, together with the excellent agreement between measurements and model predictions, suggest that the equivalent-wave representation adequately characterizes the basic wave-current interaction under irregular waves.
A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer
Weyburne, David
2016-01-01
Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.
The Boundary Layer Interaction with Shock Wave and Expansion Fan
MaratA.Goldfeld; RomanV.Nestoulia; 等
2000-01-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.
Simulation of Wind turbines in the atmospheric boundary layer
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... in the boundary layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary...... based on the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [2] while having the advantage of resolving the wall layer with a coarser grid than a typical required grid size for such problems. LES simulations are...
Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary
魏奉思; 刘睿; 范全林; 冯学尚
2003-01-01
Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.
Green House Gases Flux Model in Boundary Layer
Nurgaliev, Ildus
Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.
High frequency ground temperature fluctuation in a Convective Boundary Layer
Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.
2012-01-01
To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J
Boundary Layer to a System of Viscous Hyperbolic Conservation Laws
2008-01-01
In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.
Numerical simulation of tsunami-scale wave boundary layers
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
, boundary layer thickness, turbulence, and bed shear stresses induced are systematically monitored and parameterised, under both hydraulically smooth and roughbed conditions. The results generally support a notion that the boundary layers induced by tsunami-scalewaves are both current-like, due...... layer properties beneath wind-waves maintain reasonable accuracy when extrapolated to full tsunami scales. Boundary layers driven by actual field-measured tsunami signals are likewise simulated, stemming from both the 2004 Indian Ocean as well as the 2011 Tohoku events. These results are reconciled...
Role of boundary layer processes on the mixed layer CO2-budget
D. Pino; Vilà-Guerau de Arellano, J.
2010-01-01
The diurnal and vertical variability of temperature, humidity and specially CO2 in the atmospheric boundary layer is studied by combining detailed observations taken at Cabauw (The Netherlands), Large-Eddy simulations (LES) and mixed layer theory. The research focus on the role played by the entrainment and other boundary layer driven processes on the distribution and diurnal evolution of CO2 in the boundary layer. The relative importance of this entrained air to ventilate CO2 will be analyze...
Role of residual layer and large-scale phenomena on the evolution of the boundary layer
Blay, E.; D. Pino; Vilà-Guerau de Arellano, J.; Boer; Coster, van, R.; I. Faloona; Garrouste, O.; Hartogensis, O. K.
2012-01-01
Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the verti...
A K Gupta; R G Shandil
2011-11-01
We utilize the reformulated equations of the classical theory, as derived by Banerjee et al.(J. Math. Anal. Appl. 175 (1993) 458), to establish mathematically, the existence of hydrodynamic instability in single diffusive bottom heavy systems, when considered in the more general framework of the boundary conditions of the type specified by Beavers and Joseph (J. Fluid Mech. 30 (1967) 197), in the parameter regime $T_0_2>1$, where $T_0$ and 2 being some properly chosen mean temperature and coefficient of specific heat (at constant volume) variation due to temperature variation respectively.
Boundary-layer control by electric fields: A feasibility study
Mendes, R. Vilela; Dente, J. A.
1997-01-01
A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boun...
Characterization of the Martian Convective Boundary Layer
Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis
2009-01-01
The authors have carried out an extensive characterization of the Martian mixed layer formed under convective conditions. The values of the mixed layer height, convective velocity scale, convective temperature scale, mean temperature standard deviation, mean horizontal and vertical velocity standard deviations, and mean turbulent viscous dissipation rate have been obtained during the strongest convective hours for the mixed layer. In addition, the existing database of the surface layer has be...
Near continuum boundary layer flows at a flat plate
Chunpei Cai
2015-05-01
Full Text Available The problem of boundary layer flows at a flat plate surface with velocity-slip and temperature-jump boundary conditions is analyzed. With the velocity slip conditions, there are multiple physical factors lumped together, and the boundary layer solutions significantly change their behaviors. The self-similarity in the solutions degenerates, however, the problem is still an ordinary differential equation which can be solved. Shooting methods are applied to solve the flowfield. The results include velocity and temperature for both the surface and flowfield. Unlike the traditional Blasius flat plate boundary layer solutions which are self-similar through all the plate boundary layer, the new solutions indicate that the front tip is actually a singularity point, especially at locations within one mean free path from the leading edge.
Crosshatch roughness distortions on a hypersonic turbulent boundary layer
Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.
2016-04-01
The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.
Bristled shark skin: a microgeometry for boundary layer control?
Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu
2008-12-01
There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.
Size distributions of boundary-layer clouds
Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)
1996-04-01
Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.
Stable Boundary Layer Education (STABLE) Final Campaign Summary
Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-03-01
The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.
Linear Stability of the boundary layer under a solitary wave
Verschaeve, Joris C. G.; Pedersen, Geir K.
2013-01-01
A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of ...
Coupled wake boundary layer model of wind-farms
Stevens, Richard J. A. M.; Gayme, Dennice F.; Meneveau, Charles
2014-01-01
We present and test the coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake model approach with a "top-down" model for the overall wind-farm boundary layer structure. This wake model captures the effect of turbine positioning, while the "top-down" portion of the model adds the interactions between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the mode...
Reactive boundary layers in metallic rolling contacts
thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the
Reactive boundary layers in metallic rolling contacts
Burbank, John
2016-05-01
more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates
Coherent structures in wave boundary layers. Part 1. Oscillatory motion
Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen
2010-01-01
This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...
On Cauchy conditions for asymmetric mixed convection boundary layer flows
Amaouche, Mustapha [Laboratoire de Physique Theorique, Universite de Bejaia (Algeria); Kessal, Mohand [Departement Transport et Equipement Petrolier, Faculte des Hydrocarbures et de la Chimie, Universite de Boumerdes, 35000, Boumerdes (Algeria)
2003-06-01
The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman-Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream-upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr{yields}0 and Pr{yields}{infinity}. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory. (authors)
Change of Surface Roughness and Planetary Boundary Layer
Jensen, Niels Otto
1978-01-01
The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...
Numerical simulation of turbulent atmospheric boundary layer flows
Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre
2001-07-01
The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)
Theoretical investigation on shocklets in compressible boundary layers
袁湘江; 刘智勇; 沈洁; 李国良
2014-01-01
By the shock relationships, the wavy characteristics and the forming condi-tions of a shock wave are analyzed. The wavy characteristics of an Euler system are stud-ied theoretically. The present research focuses on the wavy characteristics of Tollmien-Schlichting (T-S) waves, the excitation conditions of shocklets in compressible boundary layers, and the viscous effect on shock. The possibility of existence of shocklets in the compressible boundary layer and the physical mechanism of formation are theoretically interpreted.
Tropical boundary layer equilibrium in the last ice age
Betts, Alan K.; Ridgway, W.
1992-01-01
A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.
Dynamic Boundary Layer Properties in Turbulent Thermal Convection
Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao
2004-11-01
We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.
Structure and Growth of the Marine Boundary Layer
Mccumber, M.
1984-01-01
LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.
Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation
Reichenbach, H.; Neuwald, P. [Ernst-Mach-Institut, Freiburg (DE); Kuhl, A.L. [R and D Associates, Los Angeles, CA (United States)
1992-11-01
This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.
Boundary Layer Flow Over a Moving Wavy Surface
Hendin, Gali; Toledo, Yaron
2016-04-01
Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a
Numerical Study on Mechanism of Small Vortex Generation in Boundary Layer Transition
Lu, Ping
2014-01-01
The small vortex generation is a key issue of the mechanism for late flow transition and turbulence generation. It was widely accepted that small length vortices were generated by large vortex breakdown. According to our recent DNS, we find that the hairpin vortex structure is very stable and never breaks down to small pieces. On the other hand, we recognize that there are strong positive spikes besides the ring neck in the spanwise direction. The strongly positive spikes are caused by second sweeps which are generated by perfectly circular and perpendicularly standing vortex rings. The second sweep brings energy from the invisid region downdraft to the bottom of the boundary layers, which generates high shear layers around the positive spikes.Since the high shear layer is not stable, all small length scales (turbulence) are generated around high shear layers especially near the wall surface (bottom of boundary layers). This happens near the ring neck in the streamwise direction and besides the original vorte...
Plasma boundary layer and magnetopause layer of the earth's magnetosphere
Eastman, T.E.
1979-06-01
IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.
Beta limitation of matter-antimatter boundary layers
A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10-4 to 102 seconds for boundary layers at ambiplasma particle densities in the range from 104 to 10-2 m-3, respectively. (author)
Boundary-layer control by electric fields A feasibility study
Mendes, R V
1998-01-01
A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.
Response of neutral boundary-layers to changes of roughness
Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling;
1990-01-01
stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described. Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model......When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium...... boundary layer where again the drag laws can be used to estimate the surface wind. To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral...
Vortex Generators to Control Boundary Layer Interactions
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
Nature, theory and modelling of geophysical convective planetary boundary layers
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
Stabilization of boundary layer streaks by plasma actuators
A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)
Highly buoyant bent-over plumes in a boundary layer
Tohidi, Ali; Kaye, Nigel B.
2016-04-01
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Turbulent boundary-layer structure of flows over freshwater biofilms
Walker, J. M.; Sargison, J. E.; Henderson, A. D.
2013-12-01
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.
Breaking the boundary layer symmetry in turbulent convection using wall geometry
Toppaladoddi, Srikanth; Wettlaufer, John S
2014-01-01
We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...
Coupled vs. decoupled boundary layers in VOCALS-REx
C. R. Jones
2011-07-01
Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.
We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.
In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.
Flow visualization and critical heat flux measurement of a boundary layer pool boiling process
As part of the effort to evaluate the concept of external passive cooling of core melt by cavity flooding under severe accident conditions, a subscale boundary layer boiling (SBLB) facility, consisting of a pressurized water tank with a condenser unit, a heated hemispherical test vessel, and a data acquisition/photographic system, was developed to simulate the boiling process on the external bottom surface of a fully submerged reactor vessel. Transient quenching and steady-state boiling experiments were conducted in the facility to measure the local critical heat flux (CHF) and observe the underlying mechanisms under well controlled saturated and subcooled conditions. Large elongated vapor slugs were observed in the bottom region of the vessel which gave rise to strong upstream influences in the resulting two-phase liquid-vapor boundary layer flow along the vessel outer surface. The local CHF values deduced from the transient quenching data appeared to be very close to those obtained in the steady-state boiling experiments. Comparison of the SBLB data was made with available 2-D full-scale data and the differences were found to be rather small except in a region near the bottom center of the vessel. The angular position of the vessel outer surface and the degree of subcooling of water had dominant effects on the local critical heat flux. They totally dwarfed the effect of the physical dimensions of the test vessels. (author)
Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers
Kiger, K.
2013-05-01
Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and
Behaviour of tracer diffusion in simple atmospheric boundary layer models
P. S. Anderson
2007-10-01
Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with boundary layer measurements of polar NO_{x}. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The simple model presented captures the essence of the evolution of a trace gas released at the surface, and thereby provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.
Theoretical skin-friction law in a turbulent boundary layer
We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of cfmax=0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers
Large Eddy Simulation of the ventilated wave boundary layer
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu; Christensen, Erik Damgaard
2006-01-01
A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... overall (local) grid size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings....... Injection generally slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean...
Localized travelling waves in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M
2016-01-01
We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.
Bypass transition and spot nucleation in boundary layers
Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno
2016-01-01
The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
Boundary layer for non-newtonian fluids on curved surfaces
By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author)
Wind Tunnel Simulation of the Atmospheric Boundary Layer
Hohman, Tristen; Smits, Alexander; Martinelli, Luigi
2013-11-01
To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.
Coupled vs. decoupled boundary layers in VOCALS-REx
C. R. Jones
2011-03-01
Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.
We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the “well-mixed cloud thickness”, defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling. In the deeper boundary layers observed well offshore, there was frequently nearly 100% boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.
Numerical Modeling of the Evolving Stable Boundary Layer
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
2015-01-01
This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers. .
Lagrangian analysis of the laminar flat plate boundary layer
Gabr, Mohammad
2016-01-01
The leading edge flow properties has been a singularity to the Blasius laminar boundary layer equations, by applying the Lagrangian approach the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.
The turning of the wind in the atmospheric boundary layer
Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph
2014-01-01
periods of analysis, that under both barotropic and baroclinic conditions, the model predicts the gradient and geostrophic wind well, explaining for a particular case an 'unusual' backing of the wind. The observed conditions at the surface, on the other hand, explain the differences in wind veering. The......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... simulated winds underpredict the turning of the wind and the boundary-layer winds in general....
Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report
Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory
2015-11-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Oscillations of the Boundary Layer and High-frequency QPOs
Blinova A. A.
2014-01-01
Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.
DNS Study on Physics of Late Boundary Layer Transition
Liu, Chaoqun
2014-01-01
This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...
Interaction between surface and atmosphere in a convective boundary layer /
Garai, Anirban
2013-01-01
Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on t...
Yoichi Kinoue; Toshiaki Setoguchi; Kenji Kaneko; Mamun Mohammad; Masahiro Inoue
2003-01-01
An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.
Clear-air radar observations of the atmospheric boundary layer
Ince, Turker
2001-10-01
This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation
Assimilation of Thermodynamic and Dynamic Boundary Layer Profiler Data
Crowell, S.; Turner, D. D.; Otkin, J.
2012-12-01
In 2009, the National Research Council issued a report stating that a fundamental limitation to our understanding of mesoscale meteorological phenomena is the absence of adequate observations in the atmospheric boundary layer. In Otkin et al (2011) and Hartung et al (2011), an Observing Systems Simulation Experiment was described that concluded that the inclusion of thermodynamic retrievals from instruments like the Atmospheric Emitted Radiance Interferometer, together with wind observations from a Doppler lidar, could improve precipitation forecast skill scores using an ensemble Kalman filter (DART) together with the Weather Research and Forecasting Model (WRF). Here we discuss a second set of experiments in which the density of the proposed profiler network was doubled. Surprisingly, the results were only marginally better, and in some cases were degraded. This can be seen to be an effect of decreasing spread in the location of the strongest atmospheric gradients. An alternate set of experiments was performed with the 3D Variational framework, with the background error correlation length scales being tuned to match the EnKF localization as closely as possible. Interestingly, the 3DVar solutions exhibit qualitatively different responses to the assimilation of the observations than the EnKF solutions, with the placement and magnitude of the precipitation being improved, as determined by examining model precipitation on transects passing orthogonal to the front. A second case study will also be presented, in which we explore the relative importance of model error and observations for a springtime convective cased modeled on the May 24, 2011 tornado outbreak that passed through Texas, Oklahoma and Kansas. The sensitivity of convective processes to subgrid physics parameterizations can be seen to be a challenging problem for a data assimilation system, regardless of the quality of the observations being assimilated. Rather than using precipitation as the metric for
Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone
无
2006-01-01
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
A parametric study of adverse pressure gradient turbulent boundary layers
There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.
Full-Scale Spectrum of Boundary-Layer Winds
Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik
2016-01-01
Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used t...
Boundary Layer on a Moving Wall with Suction and Injection
Anuar Ishak; Roslinda Nazar; Ioan Pop
2007-01-01
@@ We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.
DNS of compressible turbulent boundary layer around a sharp cone
2008-01-01
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.
DNS of compressible turbulent boundary layer around a sharp cone
LI XinLiang; FU DeXun; MA YanWen
2008-01-01
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.
On the growth of turbulent regions in laminar boundary layers
Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.
1981-01-01
Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.
On the Effects of Surface Roughness on Boundary Layer Transition
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
CISM Course on Recent Advances in Boundary Layer Theory
1998-01-01
Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.
The collapse of turbulence in the atmospheric boundary layer
Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)
2011-12-22
A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.
Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl
Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed
2013-06-01
Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.
Linear Stability of the boundary layer under a solitary wave
Verschaeve, Joris C G
2013-01-01
A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of stability for this otherwise unsteady flow. For the linear stability the Orr-Sommerfeld equation and the parabolic stability equation were used. The results are compared to key results of inviscid stability theory and validated by means of a direct numerical simulation using a Legendre-Galerkin spectral ele- ment Navier-Stokes solver. Special care has been taken to ensure that the numerical results are valid. Linear stability predicts that the boundary layer flow is unstable for the entire parameter range considered, conf...
Boundary Layer Flows in Porous Media with Lateral Mass Flux
Nemati, H; H, Bararnia; Noori, F;
2015-01-01
Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...
Analysis of diabatic flow modification in the internal boundary layer
Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo;
2011-01-01
Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer is...
Vortex Generator Induced Flow in a High Re Boundary Layer
Velte, Clara Marika; Braud, C.; Coudert, S.;
2012-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Vortex Generator Induced Flow in a High Re Boundary Layer
Velte, Clara Marika; Braud, C.; Coudert, S.;
2014-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Turbulent spots detection during boundary layer by-pass transition
Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.
-, č. 80 (2009), s. 16-19. ISSN N R&D Projects: GA AV ČR(CZ) IAA200760614; GA MŠk MEB050810 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * boundary layer * by-pass transition * turbulent spot detection Subject RIV: BK - Fluid Dynamics
Spatially developing turbulent boundary layer on a flat plate
Lee, J H; Hutchins, N; Monty, J P
2012-01-01
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...
Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits
Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques
2015-11-01
Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.
The height of the atmospheric boundary layer during unstable conditions
Gryning, S.E.
2005-11-01
The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer
Tetervin, Neal; Lin, Chia Chiao
1951-01-01
A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.
Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks
This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Studies of stability of blade cascade suction surface boundary layer
DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin
2007-01-01
Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.
Two-phase boundary layer prediction in upward boiling flow
In the present work, the numerical modelling of the two-phase turbulent boundary layer in upward boiling flow was investigated. First, non-dimensional liquid velocity and temperature profiles in the two-phase boundary layer were validated on the one-dimensional section of a pipe with prescribed radial void fraction profiles. Simulations were performed on a fine grid with a commercial code CFX-5 using the k-ω turbulence model. A significant deviation of results from the analytical single-phase and two-phase wall functions from the literature was observed. Second, a wall boiling model in a vertical heated pipe was simulated (CFX-5) on the coarse grid. Here the prediction of the two-phase thermal boudary layer was compared to the experimental data, k-ω calculation on the fine grid and against the singlephase analytical wall function. Again a major deviation against single-phase temperature wall function was obtained. Presented analyses suggest that the existing analytical velocity and temperature wall functions cannot be valid for the boiling boundary layer with the high void fraction on the wall. (author)
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
Highlights: • Optimizations were performed for double-layered heat sink. • Objective function was bottom wall temperature change and/or thermal resistance. • Performance was improved significantly by single- or multi-objective optimization. - Abstract: In this paper, a three-dimensional solid–fluid conjugate model coupled with a simplified conjugate-gradient method was employed to optimize the performance of double-layered microchannel heat sinks. Channel number, channel width, bottom channel height, and bottom coolant inlet velocity were selected as search variables to achieve the optimal heat sink performance. Firstly, two single-objective optimizations based on different objective functions (one is the maximum temperature change on the bottom wall ΔTw,b and the other is the overall thermal resistance R) were performed at a constant pumping power. Subsequently, the effects of total pumping power on the optimal ΔTw,b and R were analyzed, and the optimal search variables at various pumping powers were obtained. For single-objective optimization with the objective function of ΔTw,b, ΔTw,b is respectively decreased by 6.01, 5.29, and 2.99 K when compared with three original designs. For the objective function of R, however, R is respectively decreased by 36.51%, 15.10%, and 16.67%. The results also indicate that R and ΔTw,b cannot achieve their optimal values simultaneously by the two single-objective optimizations. Thus, a multi-objective optimization was carried out, which demonstrates that when a set of desirable values of ΔTw,b and R is required by designers, the present multi-objective optimization could meet this requirement
A Thermal Plume Model for the Martian Convective Boundary Layer
Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn
2013-01-01
The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...
A scaling analysis of the turbulent boundary-layer in a shallow urban lake
Mezemate, Yacine; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bonhomme, Céline; Soulignac, Frédéric; Lemaire, Bruno; Vinçon Leite, Brigitte
2014-05-01
The turbulent boundary-layer (TBL) has been the focus of countless experimental and numerical studies. Due to its complex nature the dynamics of the TBL are still far from being understood. Thus, to study, in particular the scaling properties of a TBL, we use a three-dimensional velocity time-series measured from an Acoustic Doppler Current Profiler(ADCP). The ADCP is particularly useful for analysing the TBL as it is able to measure the 3D velocity in the vertical, 127 cells over 3 meters. The ADCP is positioned next to a storm water discharge point at the bottom of a shallow urban lake in Créteil, a region in Paris. The positioning of the ADCP, in a stable, stratified lake, with a strong turbulent flow occurring close to the surface has given us a unique situation in which a turbulent bounded-layer can be analysed. Vertical profiles measured in the atmospheric boundary-layer are typically intrusive due to the requirement of masts and other complex measuring structures. Moreover atmospheric profilers are normally coarsely spaced in the vertical. In order to analyse the scaling properties of the velocity we compute its energy spectrum. In a log- log plot, if the velocity is scaling, the spectral exponent is its slope. It frequently that in the presence of a boundary-layer, a -1 spectral exponent is observed. Dimensional arguments suggest a -1 spectral exponent when the energy flux becomes dependent on the friction velocity instead of the length-scale. Due to the fine vertical spacing of the measurements we are not only able to observe a -1 spectral exponent, but observe a smooth transition from a free-stream turbulent regime (spectral exponent close to -5/3) to a boundary-layer -1 exponent. Because the transition shows such a strong a depth dependence we are able to propose a general model based on dynamical equations for the scaling exponent as a function of height. This generalised scaling boundary-layer model allows one to easily reproduce the turbulent
Direct numerical simulation of supersonic turbulent boundary layers
Guarini, Stephen
The objectives of this research were to develop a method by which the spatially developing compressible turbulent boundary layer could be simulated using a temporally developing numerical simulation and to study the physics of the compressible turbulent boundary layer. We take advantage of the technique developed by Spalart (1987, 1988) for the incompressible case. In this technique, it is recognized that the boundary layer exhibits slow growth in the streamwise direction, so the turbulence can be treated as approximately homogeneous in this direction. The slow growth is accounted for with a coordinate transformation and a multiple scale analysis. The result is a modified system of equations (Navier-Stokes plus some extra terms, which we call "slow growth terms") that are homogeneous in both the streamwise and spanwise directions and represent the state of the boundary layer at a given streamwise location (or, equivalently, a given thickness). The compressible Navier-Stokes equations are solved using a mixed Fourier and B-spline "spectral" method. The dependent variables are expanded in terms of a Fourier representation in the horizontal directions and a B-spline representation in the wall-normal direction. In the wall-normal direction non-reflecting boundary conditions are used at the freestream boundary, and zero-heat-flux no-slip boundary conditions are used at the wall. This combination of splines and Fourier methods produces a very accurate numerical method. Mixed implicit/explicit time discretization is used. Results are presented for a case with a Mach number of 2.5, and a Reynolds number, based on momentum integral thickness and wall viscosity, of Rsb{thetasp'} = 840. The results show that the van Driest transformed velocity satisfies the incompressible scalings and a narrow logarithmic region is obtained. The results for the turbulence intensities compare well with the incompressible simulations of Spalart. Pressure fluctuations are found to be higher than
Infrared propagation in the air-sea boundary layer
Larsen, R.; Preedy, K. A.; Drake, G.
1990-03-01
Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.
Bandgap tunability at single-layer molybdenum disulphide grain boundaries
Huang, Yu Li
2015-02-17
Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
Koblitz, Tilman
For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the...... atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented into...
An algorithm for detecting layer boundaries in sediments
K. Bube
2006-01-01
Full Text Available In this paper we present an algorithm based on wavelet multiscale decomposition, designed to detect lines of maximal gradients in horizontal direction within two-dimensional data sets. The algorithm is capable of identifying layer boundaries within sediment profiles, as demonstrated for artificial as well as two field data sets. Layers are detected with a good resolution within (i digital images of a deep sea sediment core (IODP-expedition 301, core 15H and (ii chemical concentration patterns of recent tidal sediments (North Sea.
Boundary Layer Turbulence Index: Progress and Recent Developments
Pryor, Kenneth L
2008-01-01
A boundary layer turbulence index (TIBL) product has been developed to assess the potential for turbulence in the lower troposphere, generated using RUC-2 numerical model data. The index algorithm approximates boundary layer turbulent kinetic energy by parameterizing vertical wind shear, responsible for mechanical production of TKE, and kinematic heat flux, parameterized by the vertical temperature lapse rate and responsible for buoyant production of TKE. Validation for the TIBL product has been conducted for selected nonconvective wind events during the 2008 winter season over the Idaho National Laboratory mesonet domain. This paper presents studies of four significant wind events between December 2007 and February 2008 over southeastern Idaho. Based on the favorable results highlighted from validation statistics and in the case studies, the RUC TIBL product has demonstrated operational utility in assessing turbulence hazards to low-flying aircraft and ground transportation, and in the assessment of wildfire...
Behaviour of tracer diffusion in simple atmospheric boundary layer models
P. S. Anderson
2006-12-01
Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with measurements of polar photogenic NO and NO_{2}. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The relatively simple model provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.
Stereoscopic PIV measurement of boundary layer affected by DBD actuator
Procházka Pavel
2016-01-01
Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.
Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool
Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.
2016-01-01
Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.
Works on theory of flapping wing. [considering boundary layer
Golubev, V. V.
1980-01-01
It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.
Electrical properties of boundary layers of fatty acids
Deryagin, B. V.; Snitkovskii, M. M.
1992-05-01
Nonlinear current-voltage and coulomb-voltage characteristics with a hysteresis loop, which is peculiar to ferroelectrics, were observed in the boundary layers of individual saturated organic acids and oleic acid which have a domain structure and also an anomalously high conductivity which corresponds, in its order of magnitude, to the lower conductivity limit for metals. These effects are related with the formation of a volume space charge and by the cording of the current (formation of conductivity channels). The electrical properties of the boundary layers change in relation to the thickness: for subcritical thicknesses Ohm's Law is obeyed but for larger thicknesses strong field effects are observed. The thickness at which the system changes into the nonconducting stage has meaning as a physical characteristic of the system.
Leading-edge effects on boundary-layer receptivity
Gatski, Thomas B.; Kerschen, Edward J.
1990-01-01
Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.
Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels
Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru
2008-01-01
The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...
Simulation of aerosol substance transfer in the atmospheric boundary layer
Lezhenin, A. A.; Raputa, V. F.; Shlychkov, V. Ð. ń.
2014-11-01
A model for the reconstruction of the surface concentration of a heavy non-homogeneous substance transfered in the atmosphere is proposed. The model is used to simulate the snow surface contamination by benzo(a)pyren in the vicinity of Power Station-3 in the city of Barnaul. The effects of wind rotation in the atmospheric boundary layer on the field of long-term aerosol substance are assessed.
Pressure gradient effect in natural convection boundary layers
Higuera Antón, Francisco; Liñán Martínez, Amable
1993-01-01
The high Grashof number laminar natural convection flow around the lower stagnation point of a symmetric bowl- shaped heated body is analyzed. A region is identified where the direct effect on the flow of the component of the buoyancy force tangential to the body surface is comparable to the indirect effect of the component normal to the surface, which acts through the gradient of the nonuniform pressure that it induces in the boundary layer. Analysis of this region provides a description ...
Numerical studies on laminar-turbulent transition in boundary layers
Laminar-turbulent transition in flat-plate boundary layers is investigated by direct numerical solution of the full Navier-Stokes equations. Both forced transition (in parallel Blasius flow excited by a vibrating ribbon) and natural transition (in a decelerating boundary layer) are studied. In both cases, an initial state containing random noise is employed to eliminate bias in selecting unstable waves. In the simulations of ribbon-induced transition, close agreement with experiments (Saric et al. (1984)) is obtained for low-amplitude two-dimensional Tollmien-Schlichting waves-producing subharmonic breakdown (C- or H-type). For high amplitudes, a mixture of subharmonic and fundamental structures is observed. Clear-cut fundamental breakdown (K-type) is never obtained. In the simulation of the early stages of natural transition in a decelerating boundary layer, two-dimensional and/or slightly oblique waves initially grow due to the inflectional instability. When they become strong enough, they initiate a secondary instability leading to three dimensional distortion and Λ vortices, in good agreement with experiments (Gad-el-Hak et al. (1984)). The tips of the Λ vortices are rarely aligned with the flow direction, and that they appear locally in apace. A simple wave-interference model accounting for these features of natural transition has been developed. It suggests that multiple waves are active in the secondary instability, and that they are determined by unpredictable initial disturbances. The later stages of transition in a decelerating boundary layer were also studied with higher numerical resolution. The naturally-born Λ vortices undergo breakdown processes similar to those of ribbon-induced Λ vortices. Conversely, this justifies the conventional approach to study laminar-turbulent transition-the vibrating-ribbon technique
Iodine monoxide in the Western Pacific marine boundary layer
K. Großmann
2012-10-01
Full Text Available A latitudinal cross-section and vertical profiles of iodine monoxide (IO are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E through the Western Pacific to Townsville, Australia (19° S, 146° E in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S, IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH_{3}I, CH_{2}I_{2}, CH_{2}ClI, CH_{2}BrI are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I_{2} is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
Computation of 2D stratified flows in atmospheric boundary layer
Tauer, M.; Šimonek, J.; Kozel, Karel; Jaňour, Zbyněk
Praha : Ústav termomechaniky AV ČR, v. v. i., 2009 - (Jonáš, P.; Uruba, V.), s. 47-48 ISBN 978-80-87012-21-5. [Colloquium Fluid Dynamics 2009. Praha (CZ), 21.10.2009-23.10.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : computation stratified flows * Navier-Stokes equations * atmospheric boundary layer Subject RIV: DG - Athmosphere Sciences, Meteorology
Numerical solution of 2D flows in atmospheric boundary layer
Šimonek, J.; Tauer, J.; Kozel, K.; Jaňour, Zbyněk; Příhoda, Jaromír
Praha : Ústav termomechaniky AV ČR, v. v. i., 2008 - (Jonáš, P.; Uruba, V.), s. 51-52 ISBN 978-80-87012-14-7. [Colloquium FLUID DYNAMICS 2008. Praha (CZ), 22.10.2008-24.10.2008] R&D Projects: GA AV ČR 1ET400760405 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * atmospheric boundary layer * stratified flow Subject RIV: BK - Fluid Dynamics
Flat Plate Boundary Layer Under Negative Pressure Gradient
Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Skála, Vladislav
Pretoria, South Africa: HEFAT, 2015 - (Meyer, J.), s. 251-253 ISBN 978-1-77592-108-0. [International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics : HEFAT 2015 /11./. SKUKUZA (ZA), 20.07.2015-23.07.2015] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : boundary layer in decelerating flow * adverse pressure gradient * hot-wire anemometry Subject RIV: BK - Fluid Dynamics
Ozone in the Atlantic Ocean marine boundary layer
Patrick Boylan; Detlev Helmig; Samuel Oltmans
2015-01-01
Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...
Grey zone simulations of the morning convective boundary layer development
Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.
2016-05-01
Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.
Aerodynamic Optimization and Boundary Layer Control On Sailplane Wing Sections
Popelka, Lukáš; Matějka, Milan; Součková, Natálie
Berlin: CEAS Council of European Aerospace Societies, 2007, s. 1763-1767. ISSN 0070-4083. [CEAS European Air and Space Conference /1./. Berlin (DE), 10.09.2007-13.09.2007] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer control * sailplane wing section Subject RIV: BK - Fluid Dynamics
Defects and boundary layers in non-Euclidean plates
Gemmer, John
2012-01-01
We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. We also investigate the scaling with thickness of boundary layers where the stretching energy is concentrated with decreasing thickness.
Glyoxal observations in the global marine boundary layer
Mahajan, Anoop S.; Prados-Roman, Cristina; Hay, Timothy D.; Lampel, Johannes; Pöhler, Denis; Groβmann, Katja; Tschritter, Jens; Frieß, Udo; Platt, Ulrich; Johnston, Paul; Kreher, Karin; Wittrock, Folkard; Burrows, John P; Plane, John M. C.; Saiz-Lopez, Alfonso
2014-01-01
Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal f...
Vortical Structures in a Boundary Layer Separation Region
Uruba, Václav; Sedlák, K.
Plzeň : ZČU Plzeň, 2009 - (Žitek, P.; Milčák, P.; Krivánka, D.), s. 209-214 ISBN 978-80-7043-804-9. [Conference on Power System Engineering /8./. Plzeň (CZ), 18.06.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : vortex * boundary layer * separation Subject RIV: BK - Fluid Dynamics
Sensitivity of African easterly waves to boundary layer conditions
A. Lenouo; Mkankam Kamga, F.
2008-01-01
A linearized version of the quasi-geostrophic model (QGM) with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ), is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW) can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical g...
Ouwersloot, H.G.; Arellano, de J.V.G.
2013-01-01
In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab mo
Plasma boundary layer with active surface. Pt. 1
The space-charge boundary layer between plasma and wall which is normally (almost) homogeneous may become instable and may decay into largely independent spots of plasma-induced unipolar-like discharges. In Tokamaks the existence of such highly inhomogeneous boundary plasmas often has been found by observation of arc tracks and of ''hot spots'' a.s.o. In this way wall erosion and production rates of plasma impurities will be enhanced, and several special phenomena of intense wall erosion (like ''carbon blooming'') may be traced back to such effects. In this paper the influence of electron emission from the wall (i.e. of an ''active'' surface) on the parameter of the space charge sheath is investigated, applying simple balance equations, as a first step towards an explanation of the transition from a homogeneous into an inhomogeneous boundary layer. Several variations of such models are calculated, using typical plasma parameters. Essential result is the dependence of the sheath potential and of the surface power density on the emission yield and on the net current density. Irrespective of the chosen constants the potential drop between plasma and wall turns out to become the higher the lower is the electron emission and the higher is the net current. Opposite is the dependence of the energy flux to the wall which, however, passes a minimum and increases rapidly again near the maximum net current jmax (with jmax∼jis(γ-1), where jis=ion saturation current, and γ=emission yield per ion). As a consequence, the wall loading is strongly enhanced as well in case of high negative net currents and intense electron emission, as near the maximum net current. This will be infavour of an instability of the boundary layer, resulting - with high probability - in the decay of the layer into plasma-induced arc spots. As a next step in this investigation of such plasma boundary layers a careful analysis of this transition is provided for, taking the specified conditions of the
Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors
Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.;
2007-01-01
In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....
Using UAV's to Measure the Urban Boundary Layer
Jacob, R. L.; Sankaran, R.; Beckman, P. H.
2015-12-01
The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.
Turbulent Boundary Layers in the Vicinity of Separation
Indinger, Thomas; Buschmann, Matthias H.; Gad-El-Hak, Mohamed
2004-11-01
There has been some controversy regarding the behavior of the mean velocity profile of turbulent boundary layers approaching separation. While a number of experiments show that the logarithmic law is sustained even under strong adverse-pressure-gradient and non-equilibrium conditions, other experiments and DNS results reveal that the mean velocity profile breaks down in the vicinity of separation. Measurements at TU Dresden of a decelerated, fully developed turbulent boundary layer over a smooth flat plate in a closed water channel show that the classical log law no longer describes the mean velocity in the overlap region after a certain fraction of the flow travels in the upstream direction. This finding is consistent with the physical explanation advanced by Dengel & Fernholz (J. Fluid Mech. 212, 1990) that the log law failure is caused by the first occurrence of reverse flow. Analyzing adverse-pressure-gradient turbulent boundary layer data from three independent groups, we demonstrate that the log law can be restored by replacing y^+ with a new variable depending both on the wall-normal coordinate and the reverse-flow parameter \\chi_w. This finding is of importance in cases where other complexities such as surface roughness or structured walls (riblets, dimples, etc.) are involved and a universal profile in inner variables is desired.
Coupled wake boundary layer model of wind-farms
Stevens, Richard J A M; Meneveau, Charles
2014-01-01
We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...
New insights into adverse pressure gradient boundary layers
George, William K.; Stanislas, Michel; Laval, Jean-Philippe
2010-11-01
In a recent paper Shah et al. 2010 (Proc. of the WALLTURB Meeting, 2009), Lille, FR, Springer, in press) documented a number of adverse pressure gradient flows (APG's), with and without wall curvature, where the turbulence intensity peak moved quite sharply away from the wall with increasing distance. They further suggested that this peak was triggered by the adverse pressure gradient and had its origin in an instability hidden in the turbulent boundary layer, developing soon after the change of sign of the pressure gradient. They then offered that this may explain the difficulties encountered up to now in finding a universal scaling for turbulent boundary layers. We build on these observations, and show that in fact there is clear evidence in the literature (in most experiments, both old and new) for such a development downstream of the imposition of an adverse pressure gradient. The exact nature of the evolution and the distance over which it occurs depends on the upstream boundary layer and the manner in which the APG is imposed. But far enough downstream the mean velocity profile in all cases becomes an inflectional point profile with the location of the inflection point corresponding quite closely to the observed peak in the streamwise turbulence intensity. This does not seem to have been previously noticed.
Manipulation of Turbulent Boundary Layers Using Synthetic Jets
Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath
2015-11-01
This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.
Turbulent thermal boundary layers subjected to severe acceleration
Araya, Guillermo; Castillo, Luciano
2013-11-01
Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.
Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS
Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.
2014-09-23
The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.
Pitcher, G. C.; Probyn, T. A.
2015-08-01
The considerable impact of oxygen deficient waters on marine resources in St Helena Bay has generated interest in exploring the vulnerability of South Africa's largest and most productive bay to further deoxygenation in response to climate change. Seasonal, sub-seasonal and spatial fluctuations in bottom dissolved oxygen (DO) are examined in St Helena Bay to facilitate better interpretation of historical data. DO measurements in relation to physical, chemical and biological variables were made between November 2013 and November 2014. Alongshore bay characteristics were assessed through comparison of variables along the 50 m depth contour. A mean coefficient of variation of 0.35 provided a measure of the relative variability of near-bottom DO concentrations along this contour. Across-shelf transects captured the seasonal development of hypoxia in relation to the distribution of phytoplankton biomass. DO was lowest in autumn in the south of the bay prior to winter ventilation of the bottom waters. Exceptional dinoflagellate blooms forming extensive subsurface thin layers preceded the autumn DO minima. The development of hypoxia at inner and central stations prior to expansion beyond the boundaries of the bay provided evidence of local drawdown. Coincident with the seasonal decline of DO within the bay was an increase in macronutrient concentrations which tended to mirror DO concentrations. Indication of denitrification in the suboxic waters in the south of the bay was provided through evidence of a nitrate deficit in autumn supported by elevated nitrite concentrations. Superimposed on the seasonal decline of DO concentrations in the bottom waters were sub-seasonal events of hypoxia and anoxia linked to episodic deposition of organic matter as indicated by increases in bottom Chl a concentrations.
WANG Dongxiao; LIU Xiongbin; WANG Wenzhi; DU Yan; ZHOU Weidong
2004-01-01
The large-scale upper circulations and meridional overturning in the upper layer of the South China Sea (SCS) with idealized bottom topography in winter and summer are investigated. Simulations with the GFDL general circulation model are carried out under the conditions of open or enclosed boundary regarding transport in the Luzon Strait. The intrusion area of Kuroshio, its impact on the meridional overturning in the upper layer of the SCS and seasonal characteristic of this impact are explored, respectively. The model is forced by climatological wind stress and relaxed to monthly mean climatological temperature and salinity. The resultant meridional overturning is non-enclosed, with transporting from north to south in the surface and returning to north at the depth of about 500 m in winter, about 200 m in summer, with amplitudes of 105 m3/s. It shows the transporting path of intermediate water of the SCS and offers an idealized reference for further study on dynamics of wind-driven and thermohaline circulation of the SCS.
Grain-boundary layering transitions and phonon engineering
Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2016-09-01
We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.
M. Jähn
2015-08-01
Full Text Available Large eddy simulations (LES are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ~ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the formation of the daytime convective plume and the mean vertical wind structure.
Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers
Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.
2010-12-01
The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.
On the partially reacted boundary layer in rate sticks
Partom, Y.
2014-05-01
Using our temperature dependent reactive flow model (TDRR) to simulate detonation in a rate stick, we observe that a partially reacted layer (PRL) is formed near the boundary. We are not aware that such a PRL has been observed in tests, and this is why we regarded it in the past as a numerical artifact. Assuming that such an artefact may be caused by the finite rise time of the detonation shock, we showed in [1] how it can be eliminated by delaying the outward boundary motion for a length of time comparable with the shock rise time. Here we revisit the PRL problem. We first show that it is not a numerical artifact but a real phenomenon. We do this by repeating the reactive flow run with a finer mesh. By looking at the PRL structure, we see that doubling the resolution affects the PRL only slightly. We then conjecture that the PRL formation has to do with the finite duration of the reaction process (or the finite extent of the reaction zone). By the time the boundary rarefaction reaches a cell near the boundary, it may be only partially reacted, and its reaction may therefore be cut off. To establish our conjecture we show how the PRL structure changes with the reaction duration.
The Jovian boundary layer as formed by magnetic-anomaly effects
Dessler, A. J.
1979-01-01
A model is presented in which a plasma boundary layer of Jupiter is formed from plasma of internal origin. It is proposed that, unlike the Earth's boundary layer, which is thought to consist principally of solar wind plasma, Jupiter's boundary layer consists principally of sulphur and oxygen from the Io plasma torus, plus a small component of hydrogen from Jupiter's ionosphere. Fresh plasma is supplied to the boundary layer once each planetary rotation period by a convection pattern that rotates with Jupiter.
Radiative instabilities of atmospheric jets and boundary layers
Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)
Large Eddy Simulation and Study of the Urban Boundary Layer
苗世光; 蒋维楣
2004-01-01
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
A thermal plume model for the Martian convective boundary layer
Colaïtis, A.; Spiga, A.; Hourdin, F.; Rio, C.; Forget, F.; Millour, E.
2013-07-01
The Martian planetary boundary layer (PBL) is a crucial component of the Martian climate system. Global climate models (GCMs) and mesoscale models (MMs) lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in large-eddy simulations (LESs). We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first-order estimation of key turbulent quantities (e.g., PBL height and convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.
Turbulent thermal boundary layers with temperature-dependent viscosity
Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer
Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.
2013-01-01
Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im
Investigation of turbulent spot production rate in boundary layer
Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.
Žilina : Žilinská univerzita, 2010, s. 1-6. ISBN 978-80-554-0189-8. [Aplikácia experimentálnych a numerických metód v mechanike tekutín a energetike. Bojnice (SK), 28.04.2010-30.04.2010] R&D Projects: GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * by- pas boundary layer transition * transitional intermittency * wavelet analysis Subject RIV: BK - Fluid Dynamics
Laboratory simulation of rotating atmospheric boundary layer flows over obstacles
The present study fits in the frame of a research program concerning in general the dynamics of airflow in the atmospheric boundary layer and in particular the influence of terrestrial rotation on the movements of air masses interacting with natural extended obstacles (mountains). The experiment has been performed by the method of hydraulic simulation, using schematic models at reduced scale in a channel placed on a rotating platform. Only the case of a neutral atmosphere was considered; the wake of an obstacle with semi-circular section and the reciprocal interaction of two obstacles of this kind placed perpendicular to the flow were studied
Experiments on the active control of transitional boundary layers
Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.
Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.
On Hairpin Vortices in a Transitional Boundary Layer
Hladík, Ondřej; Jonáš, Pavel; Uruba, Václav
Liberec : Technical University of Liberec, 2011 - (Vít, T.; Dančová, P.; Novotný, P.), s. 163-170 ISBN 978-80-7372-784-0. - (Vol. 2). [Experimental Fluid Mechanics 2011. Jičín (CZ), 22.11.2011-25.11.2011] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence transition * boundary layer * hairpin vortex Subject RIV: BK - Fluid Dynamics http:// orion .kez.tul.cz/efm/
Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method
MatthiasBuschmann
1999-01-01
This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.
Dynamics of Controlled Boundary Layer Separation on a Circular Cylinder
Uruba, Václav; Matějka, Milan; Procházka, Pavel
Praha : Ústav termomechaniky AV ČR, v. v. i., 2008 - (Jonáš, P.; Uruba, V.), s. 61-62 ISBN 978-80-87012-14-7. [Colloquium FLUID DYNAMICS 2008. Praha (CZ), 22.10.2008-24.10.2008] R&D Projects: GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * control * synthetic jet Subject RIV: BK - Fluid Dynamics www.it.cas.cz/dt
Dynamics of controlled boundary layer separation on a circular cylinder
Uruba, Václav; Matějka, Milan
Ostritz - St.Marienthal : DLR Berlin, 2008 - (Hage, W.; Wassen, E.; Choi, K.), s. 1-2 [European Drag Reduction and Flow Control Meeting 2008. Ostritz - St.Marienthal (DE), 08.09.2008-11.09.2008] R&D Projects: GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * dynamics Subject RIV: BK - Fluid Dynamics http://edrfcm2008.cfd.tu-berlin.de/
Wave phenomena in a high Reynolds number compressible boundary layer
Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.
1987-01-01
The behavior of spatially unstable waves in a high Reynolds number compressible laminar boundary layer is investigated by solution of the laminar two-dimensional compressible Navier-Stokes equations (solved to fourth-order accuracy) over a flat plate with a fluctuating disturbance generated at the inflow. A significant nonlinear distortion is produced, in qualitative agreement with experimental data. It is shown that increasing compressibility can significantly stabilize the flow over a flat plate, and that the mechanism of phase cancellation is a viable mechanism for the control of growing disturbances.
A wavenumber-frequency spectral model for atmospheric boundary layers
Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects
Numerical simulation of 3D flows in atmospheric boundary layer
Šimonek, Jiří; Kozel, K.; Jaňour, Zbyněk
Praha : Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 93-96 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012 . Praha (CZ), 15.02. 2012 -17.02. 2012 ] R&D Projects: GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical solution * atmospheric boundary layer * Navier-Stokes equation s Subject RIV: DG - Athmosphere Sciences, Meteorology
Role of the vertical pressure gradient in wave boundary layers
Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;
2014-01-01
By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....
Transition in Hypersonic Boundary Layers: Role of Dilatational Waves
Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2015-01-01
Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.
Fluid Mechanics and Heat Transfer in Transitional Boundary Layers
Wang, Ting
2007-01-01
Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.
Injection-induced turbulence in stagnation-point boundary layers
Park, C.
1984-02-01
A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.
Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment
G S Bhat; S Ameenulla; M Venkataramana; K Sengupta
2000-06-01
The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.
Interactions between the thermal internal boundary layer and sea breezes
Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)
1997-10-01
In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)
Song, Jiyun; Wang, Zhi-Hua
2016-05-01
Urban land-atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land-atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land-atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.
Wake structures of two side by side spheres in a tripped boundary layer flow
Canli Eyüb
2014-03-01
Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres
Direct numerical simulation of turbulent thermal boundary layers
Kong, Hojin; Choi, Haecheon; Lee, Joon Sik
2000-10-01
In this paper, a method of generating realistic turbulent temperature fluctuations at a computational inlet is proposed and direct numerical simulations of turbulent thermal boundary layers developing on a flat plate with isothermal and isoflux wall boundary conditions are carried out. Governing equations are integrated using a fully implicit fractional-step method with 352×64×128 grids for the Reynolds number of 300, based on the free-stream velocity and the inlet momentum thickness, and the Prandtl number of 0.71. The computed Stanton numbers for the isothermal and isoflux walls are in good agreement with power-law relations without transient region from the inlet. The mean statistical quantities including root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and skewness and flatness of temperature fluctuations agree well with existing experimental and numerical data. A quadrant analysis is performed to investigate the coherence between the velocity and temperature fluctuations. It is shown that the behavior of the wall-normal heat flux is similar to that of the Reynolds shear stress, indicating close correlation between the streamwise velocity and temperature. The effect of different thermal boundary conditions at the wall on the near-wall turbulence statistics is also discussed.
Application of Arnoldi method to boundary layer instability
Zhang, Yong-Ming; Luo, Ji-Sheng
2015-12-01
The Arnoldi method is applied to boundary layer instability, and a finite difference method is employed to avoid the limit of the finite element method. This modus operandi is verified by three comparison cases, i.e., comparison with linear stability theory (LST) for two-dimensional (2D) disturbance on one-dimensional (1D) basic flow, comparison with LST for three-dimensional (3D) disturbance on 1D basic flow, and comparison with Floquet theory for 3D disturbance on 2D basic flow. Then it is applied to secondary instability analysis on the streaky boundary layer under spanwise-localized free-stream turbulence (FST). Three unstable modes are found, i.e., an inner mode at a high-speed center streak, a sinuous type outer mode at a low-speed center streak, and a sinuous type outer mode at low-speed side streaks. All these modes are much more unstable than Tollmien-Schlichting (TS) waves, implying the dominant contribution of secondary instability in bypass transition. The modes at strong center streak are more unstable than those at weak side streaks, so the center streak is ‘dangerous’ in secondary instability. Project supported by the National Natural Science Foundation of China (Grant Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032120007).
Geostrophic convective turbulence: The effect of boundary layers
Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef
2014-01-01
This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...
Characteristics of turbulent boundary layer flow over algal biofilm
Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew
2015-11-01
Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.
Using GPS Radio Occultation to study polar boundary layer properties
Ganeshan, M.; Wu, D. L.
2015-12-01
The sensitivity of GPS RO refractivity to moisture and temperature variations in polar regions is explored using radiosonde observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. A retrieval algorithm for the boundary layer inversion height and surface-based inversion (SBI) frequency is developed for dry atmospheric conditions (total precipitable water < 3.6 mm) that typically exist during polar winter, as well as in high-latitude, elevated regions such as eastern Antarctica and central Greenland. The algorithm is applied to the high-resolution refractivity profiles obtained over the polar Arctic region using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) dataset for the period 2006-2013. The method is found useful for capturing the spatiotemporal variability in Arctic inversion properties. For the Arctic Ocean, the spatial patterns show a minimum inversion height (maximum SBI frequency) over the ice-covered Pacific sector similar to that observed in past studies. Monthly evolution of the inversion characteristics suggests a surface temperature control in the multi-year sea ice region, with the peak in SBI frequency occurring during the transition period from winter to spring. For central Greenland, the seasonal peak in SBI frequency occurs during winter. The diurnal variability in SBI frequency is forced mainly by solar heating, consistent with past observations. Despite some limitations, the RO refractivity profile is found quite useful for monitoring the Arctic boundary layer, and is able to capture the interannual variability of inversion characteristics.
Delaying natural transition of a boundary layer using smooth steps
Xu, Hui; Sherwin, Spencer J
2015-01-01
The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...
Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2016-01-01
The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.
Competing disturbance amplification mechanisms in two-fluid boundary layers
Saha, Sandeep; Page, Jacob; Zaki, Tamer
2015-11-01
The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).
Optimizing EDMF parameterization for stratocumulus-topped boundary layer
Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.
2014-12-01
We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.
On boundary layer modelling using the ASTEC code
The modelling of fluid boundary layers adjacent to non-slip, heated surface using the ASTEC code is described. The pricipal boundary layer characteristics are derived using simple dimensional arguments and these are developed into criteria for optimum placement of the computational mesh to achieve realistic simulation. In particular, the need for externally-imposed drag and heat transfer correlations as a function of the local mesh concentration is discussed in the context of both laminar and turbulent flow conditions. Special emphasis is placed in the latter case on the (k-ε) turbulence model, which is standard in the code. As far as possible, the analyses are pursued from first principles, so that no comprehensive knowledge of the history of the subject is required for the general ASTEC user to derive practical advice from the document. Some attention is paid to the use of heat transfer correlations for internal solid/fluid surfaces, whose treatment is not straightforward in ASTEC. It is shown that three formulations are possible to effect the heat transfer, called Explicit, Jacobian and Implicit. The particular advantages and disadvantages of each are discussed with regard to numerical stability and computational efficiency. (author) 18 figs., 1 tab., 39 refs
Second Law Analysis of the Turbulent Flat Plate Boundary Layer
Dragos Isvoranu
2000-09-01
Full Text Available
Until now the second law analysis of turbulent flow relied only on the irreversibilities performed by the mean velocity and mean temperature gradients. Using the Reynolds decomposition of the volumetric entropy generation rate expression we found that the dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, also represent the irreversibilities of the flow. Applying the above results, the second law analysis of the turbulent boundary layer shows that the maximum values of the "mean motion irreversibilities" (generated by the mean velocity and mean temperature gradient are located at the wall, while the maximum values of the "turbulent irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and fluctuating temperature variance are located in the buffer sublayer. As a consequence, for a given location on the plate, the integral values of the "mean motion irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up with the boundary layer thickness.
Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer
Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.
2007-11-01
The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.
Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer
McClure, Sarah; Lee, Sang-Joon; Zhang, Wei
2015-11-01
Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.
New Findings by High-Order DNS for Late Flow Transition in a Boundary Layer
Chaoqun Liu
2011-01-01
Full Text Available This paper serves as a summary of new discoveries by DNS for late stages of flow transition in a boundary layer. The widely spread concept “vortex breakdown” is found theoretically impossible and never happened in practice. The ring-like vortex is found the only form existing inside the flow field. The ring-like vortex formation is the result of the interaction between two pairs of counter-rotating primary and secondary streamwise vortices. Following the first Helmholtz vortex conservation law, the primary vortex tube rolls up and is stretched due to the velocity gradient. In order to maintain vorticity conservation, a bridge must be formed to link two Λ-vortex legs. The bridge finally develops as a new ring. This process keeps going on to form a multiple ring structure. The U-shaped vortices are not new but existing coherent vortex structure. Actually, the U-shaped vortex, which is a third level vortex, serves as a second neck to supply vorticity to the multiple rings. The small vortices can be found on the bottom of the boundary layer near the wall surface. It is believed that the small vortices, and thus turbulence, are generated by the interaction of positive spikes and other higher level vortices with the solid wall. The mechanism of formation of secondary vortex, second sweep, positive spike, high shear distribution, downdraft and updraft motion, and multiple ring-circle overlapping is also investigated.
FOREWORD: International Conference on Planetary Boundary Layer and Climate Change
Djolov, G.; Esau, I.
2010-05-01
One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities