Spectroscopic Test of Bose-Einstein Statistics for Photons
Using Bose-Einstein-statistics-forbidden two-photon excitation in atomic barium, we have limited the rate of statistics-violating transitions, as a fraction ν of an equivalent statistics-allowed transition rate, to ν-11 at the 90% confidence level. This is an improvement of more than 3 orders of magnitude over the best previous result. Additionally, hyperfine-interaction enabling of the forbidden transition has been observed, to our knowledge, for the first time.
Vacuum quark condensate, chiral Lagrangian, and Bose-Einstein statistics
In a series of articles it was recently claimed that the quantum chromodynamic (QCD) condensates are not the properties of the vacuum but of the hadrons and are confined inside them. We point out that this claim is incompatible with the chiral Lagrangian and Bose-Einstein statistics of the Goldstone bosons (pions) in chiral limit and conclude that the quark condensate must be the property of the QCD vacuum.
Planck, Photon Statistics, and Bose-Einstein Condensation
Greenberger, Daniel M; Scully, Marlan O; Svidzinsky, Anatoly A; Zubairy, M Suhail
2007-01-01
The interplay between optical and statistical physics is a rich and exciting field of study. Black body radiation was the first application of photon statistics, although it was initially treated as a problem of the cavity oscillators in equilibrium with the photon field. However Planck surprisingly resisted the idea that anything physical would be quantized for a long time after he had solved the problem. We trace this development. Then, after the invention of the laser itself, it proved difficult to develop a theory of laser action that could account for photon statistics, i.e. fluctuations near threshold. This was accomplished in 1965. After Bose-Einstein condensation was successfully achieved, the same problem arose in this case. The fluctuation problem had not been treated adequately even for the ideal Bose gas. However this problem has now been solved using the same techniques as in the theory of laser action.
Testing the validity of Bose-Einstein statistics in molecules
Cancio Pastor, P.; Galli, I.; Giusfredi, G.; Mazzotti, D.; De Natale, P.
2015-12-01
The search for small violations of the validity of the symmetrization postulate and of the spin-statistics connection (SSC) has been addressed in the last four decades by experimental tests performed in different physical systems of identical fermions or bosons. In parallel and consequently, theories extending the quantum mechanics to a more general level have been proposed to explain such possible violations. In this paper, we present the most stringent test to a possible violation of the SSC under permutation of the bosonic 16O nuclei in the 12CO162 molecule. An upper limit of 3.8 ×10-12 for an SSC-anomalous CO2 molecule is obtained using saturated-absorption cavity ring-down spectroscopy in the SSC-forbidden (0001 -0000 ) R (25) rovibrational transition of 12CO162 at a 4.25 -μ m wavelength. Quantum mechanics implications of this result are discussed in the frame of the q -mutator theory. Finally, the perspective of stringent experimental tests of the symmetrization postulate in molecules that contain three or more identical nuclei is discussed.
Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser
YU Zhao-Xian; JIAO Zhi-Yong
2001-01-01
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``
Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas
2015-12-01
Increasing experimental evidence shows that humans combine concepts in a way that violates the rules of classical logic and probability theory. On the other hand, mathematical models inspired by the formalism of quantum theory are in accordance with data on concepts and their combinations. In this paper, we investigate a new connection between concepts and quantum entities, namely the way both behave with respect to `identity' and `indistinguishability'. We do this by considering conceptual entities of the type Eleven Animals, were a number is combined with a noun. In the combination Eleven Animals, indeed the `animals' are identical and indistinguishable, and our investigation aims at identifying the nature of this conceptual identity and indistinguishability. We perform experiments on human subjects and find significant evidence of deviation from the predictions of classical statistical theories, more specifically deviations with respect to Maxwell-Boltzmann statistics. This deviation is of the `same type' of the deviation of quantum mechanical from classical mechanical statistics, due to indistinguishability of microscopic quantum particles, i.e we find convincing evidence of the presence of Bose-Einstein statistics. We also present preliminary promising evidence of this phenomenon in a web-based study.
THE GROWTH RATE AND STATISTICAL FLUCTUATION OF BOSE-EINSTEIN CONDENSATE FORMATION
Yan Ke-zhu; Tan Wei-han
2000-01-01
Using the generating function method to solve the master equation ofBose-Einstein condensate and to evaluate the growth rate, statisticalfluctuation of condensate atoms, we find out that there is a plateau inthe growth rate curve and a super-Poisson distribution observed.
Approaching Bose-Einstein Condensation
Ferrari, Loris
2011-01-01
Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…
Bose-Einstein Condensation in Satisfiability Problems
Angione, Claudio; Occhipinti, Annalisa; Stracquadanio, Giovanni; Nicosia, Giuseppe
2013-01-01
This paper is concerned with the complex behavior arising in satisfiability problems. We present a new statistical physics-based characterization of the satisfiability problem. Specifically, we design an algorithm that is able to produce graphs starting from a k-SAT instance, in order to analyze them and show whether a Bose-Einstein condensation occurs. We observe that, analogously to complex networks, the networks of k-SAT instances follow Bose statistics and can undergo Bose-Einstein conden...
Christianto V.
2007-04-01
Full Text Available In the light of some recent hypotheses suggesting plausible unification of thermostatistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special subsets, we consider further plausible extension to include non-integer Hausdorff dimension, which becomes realization of fractal entropy concept. In the subsequent section, we also discuss plausible extension of this unified statistics to include anisotropic effect by using quaternion oscillator, which may be observed in the context of Cosmic Microwave Background Radiation. Further observation is of course recommended in order to refute or verify this proposition.
Kozlov, M G; Budker, D
2009-01-01
Two-photon transitions between atomic states of total electronic angular momentum $J_a=0$ and $J_b=1$ are forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is impossible to construct a total angular momentum $J_{2\\gamma}=1$ quantum-mechanical state of two photons that is permutation symmetric, as required by Bose-Einstein statistics. In atoms with non-zero nuclear spin, the selection rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evaluated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-state sublevels, and off-diagonal mixing of state...
Two quite different but interconnected topics are covered: the Bose-Einstein effect in two-jet events at LEP, i.e. events with a single string structure, and a new test on hydrodynamical models. In this test the interferometrical correlator plays a key role and can be used to bring information on the matter evolution in time and space. A preliminary DELPHI analysis has however shown that the extraction of the two-particle correlation function is contaminated by large systematic uncertainties. Three different analysis, all using standard methods, give inconsistent results. Furthermore the two-particle correlation itself is shown to be due not only to Bose-Einstein correlations but also to the decay of heavy quark resonances, so the determination of the Bose-Einstein effect depends on the modelling of these other sources. This modelling is at the moment not accurate enough. More work is needed to clarify the situation. (author) 25 refs.; 16 figs.; 1 tab
Numerical modelling of Bose-Einstein correlations
Utyuzh, O. V.; Wilk, G.; Wlodarczyk, Z.
2001-01-01
We propose extension of the algorithm for numerical modelling of Bose-Einstein correlations (BEC), which was presented some time ago in the literature. It is formulated on quantum statistical level for a single event and uses the fact that identical particles subjected to Bose statistics do bunch themselves, in a maximal possible way, in the same cells in phase-space. The bunching effect is in our case obtained in novel way allowing for broad applications and fast numerical calculations. Firs...
The notion of Bose-Einstein condensation (BEC) is introduced in the simple case of a perfect gas of bosons. We show the existence of a singularity that was discovered by Einstein and that appears when the density in the phase space is above a critical value. A few years after the discovery of BEC in several gases, it is interesting to look back at some properties of superfluid helium, the author comments shortly on boiling and evaporation, then on the role of rotons and vortices in the existence of a critical velocity in superfluid helium. The author discusses also the existence of a condensate in a liquid with strong interactions and the pressure variation of its superfluid transition temperature. The discovery of BEC in dilute gases of Rb, Na and Li in magnetic traps has stimulated an enormous revival of the interest in macroscopic quantum behavior of dilute gas at low temperature. Experiments with trapped Bose condensed gases have revealed profound condensed matter behavior of these extremely dilute systems. The author describes the key features of this behavior and discusses theoretical approaches that are being used in the field of quantum gases. Methods of production and of detection of a BEC in gaseous phases are presented, the issue of the cooling of fermion gases and of Boson-fermions mixing is discussed. (A.C.)
Bose-Einstein condensates in optical gratings
Full text: Different experiments of atomic physics and quantum optics performed with a Bose Einstein condensate of rubidium atoms are presented. Condensate are dense atomic samples described by a single wave function for the external and internal degrees of freedom. They allow to investigate with high resolution the atomic interaction with electromagnetic fields in different configurations. We have investigated the motion of a condensate within an inhomogeneous magnetic field. If the magnetic field varies slowly enough in space, the effective Hamiltonian governing the dynamics of the slow external variables contains an induced gauge potential, the so-called geometric potential, and in the classical limit geometric forces acting on a neutral particle with a magnetic moment. Our measurements on the motion of a rubidium Bose-Einstein condensate in a time dependent magnetic trap have provided direct evidence for these geometric forces. The properties of Bose-Einstein condensates in lower dimensional trapping potentials have recently attracted increasing interest. 2D condensates can be created in an array of pancake-shaped traps provided by the periodic potential of a 1 D optical lattice. We have investigated Bose-Einstein condensate in an accelerated optical lattice and associated phenomena such as Bloch oscillations and Landau-Zener tunnelling. Furthermore we have investigated the dynamics and phase evolution of Bose-Einstein condensates in 1 D optical lattices. Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Close enough to threshold even the quantum statistics of the products, which are Fermions produced out of quantum degenerate Bosons, may influence the ionization rate itself. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorptions processes has been performed. Losses and the
Numerical modelling of Bose-Einstein correlations
Utyuzh, O V; Wlodarczyk, Z
2001-01-01
We propose extension of the algorithm for numerical modelling of Bose-Einstein correlations (BEC), which was presented some time ago in the literature. It is formulated on quantum statistical level for a single event and uses the fact that identical particles subjected to Bose statistics do bunch themselves, in a maximal possible way, in the same cells in phase-space. The bunching effect is in our case obtained in novel way allowing for broad applications and fast numerical calculations. First comparison with $e^+e^-$ annihilations data performed by using simple cascade hadronization model is very encouraging.
Discrete Bose-Einstein spectra
The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, Aat, in the region of small γ=AatTV1/3. This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)
Chamberlin, Ralph V.; Davis, Bryce F.
2013-10-01
Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 106 particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.
Generalized Bose-Einstein Condensation
Mullin, William J.; Sakhel, Asaad R.
2010-01-01
Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically...
Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles
Idziaszek, Z.; Rzazewski, K.
2003-01-01
We consider two characteristic temperatures for a Bose-Einstein condensate, that are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms, indicating the point of a phase transition.
Generalized Bose-Einstein Condensation
Mullin, William J
2010-01-01
Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We analyze examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap,...
Recent developments in Bose-Einstein condensation
Kalman, G.
1997-09-22
This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.
Bose-Einstein condensation at constant temperature
Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.
2004-09-01
We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.
Bose-Einstein condensation for general dispersion relations
Bose-Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied analytically, at university-level statistical and solid state physics, in any positive dimensionality (d>0) for identical bosons with any positive-exponent (s>0) energy-momentum (i.e. dispersion) relation. Explicit formulae with arbitrary d/s are discussed for: the critical temperature (non-zero only if d/s>1); the condensate fraction; the internal energy; and the constant-volume specific heat (found to possess a jump discontinuity only if d/s>2). Classical results are recovered at sufficiently high temperatures. Applications to 'ordinary' Bose-Einstein condensation, as well as to photons, phonons, ferro- and antiferromagnetic magnons, and (very specially) to Cooper pairs in superconductivity, are mentioned. (author)
Generalized Bose-Einstein Condensation
Mullin, William J.; Sakhel, Asaad R.
2012-02-01
Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.
Kocharovsky, V. V.; Kocharovsky, Vl. V.; Tarasov, S. V.
2016-01-01
The analytical theory of Bose-Einstein condensation of an ideal gas in mesoscopic systems has been briefly reviewed in application to traps with arbitrary shapes and dimension. This theory describes the phases of the classical gas and the formed Bose-Einstein condensate, as well as the entire vicinity of the phase transition point. The statistics and thermodynamics of Bose-Einstein condensation have been studied in detail, including their self-similar structure in the critical region, transition to the thermodynamic limit, effect of boundary conditions on the properties of a system, and nonequivalence of the description of Bose-Einstein condensation in different statistical ensembles. The complete classification of universality classes of Bose-Einstein condensation has been given.
Soliton resonance in bose-einstein condensate
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Bose-Einstein Condensate and Gravitational Shielding
De Aquino, Fran
2014-01-01
In this work we show that when possible transform some types of substance into a Bose-Einstein condensate at room temperature, which exists long enough to be used in practice then will be possible to use these substances in order to create efficient Gravitational Shieldings.
Skyrmion physics in Bose-Einstein ferromagnets
Al Khawaja, U.; Stoof, H.T.C.
2001-01-01
We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general also allows for point-like topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and ferromagnetic spin-1 Bose gases.
Chaos in a Bose-Einstein condensate
Wang Zhi-Xia; Ni Zheng-Guo; Cong Fu-Zhong; Liu Xue-Shen; Chen Lei
2010-01-01
It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose-Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential.A formally exact solution of the timedependent Gross-Pitaevskii equation is constructed,which describes the matter shock waves with chaotic or periodic amplitudes and phases.
Bose-Einstein correlations between kaons
Bose-Einstein correlations between identical charged kaons are observed in αα, pp, and panti p collisions at the CERN Intersecting Storage Rings. The average radial extension of the K-emitting region is found to be (2.4+-0.9) fm. (orig.)
Initial stages of Bose-Einstein condensation
Stoof, H.T.C.
1997-01-01
We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory has the important advantage that both the kinetic and coherent stages of the nucleation process can be described in a unified way by a single Fokker-Planck equation.
Initial stages of Bose-Einstein condensation
Stoof, H.T.C.
2001-01-01
We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory confirms the results of the semiclassical treatment, but has the important advantage that both the kinetic and coherent stages of the nucleation process can now be describe
Gigantic excitation of Bose-Einstein condensate
Karkuszewski, Z P; Zakrzewski, J; Karkuszewski, Zbyszek P.; Sacha, Krzysztof; Zakrzewski, Jakub
2001-01-01
It is shown that by a modification of the trapping potential one may excite Bose-Einstein condensate to a state in which atomic external degrees of freedom are predominantly in the {\\it excited} trap state. Such an excited condensate can be prepared experimentally --- it requires only a proper change in time of the potential in atomic traps, as realized in laboratories already.
Stirring a Bose-Einstein condensate
Damski, Bogdan [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland); Institut fuer Theoretische Physik, Universitaet Hannover, Hannover (Germany); Sacha, Krzysztof; Zakrzewski, Jakub [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland)
2002-10-14
By shining a tightly focused laser light on a Bose-Einstein condensate (BEC) and moving the centre of the beam along a spiral path one may stir the BEC and create vortices. It is shown that one can induce rotation of the BEC in the direction opposite to the direction of stirring. (author)
Clark, Kevin B
2010-03-01
Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate
Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications
M. Aslam Chaudhry
2007-01-01
Full Text Available Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The Riemann zeta function and its extension, the polylogarithm function, arise in the theory of numbers. Though it might not have been expected, these two sets of functions belong to a wider class of functions whose members have operator representations. In particular, we show that the Fermi-Dirac and Bose-Einstein integral functions are expressible as operator representations in terms of themselves. Simpler derivations of previously known results of these functions are obtained by their operator representations.
Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations and entanglement
Szirmai G.; Nagy D.; Domokos P.
2010-01-01
A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, i.e. the Bose-Einstein condensate is robust a...
The ideal Bose-Einstein gas, revisited
Some questions concerning the ideal Bose-Einstein gas are reviewed and examined further. The bulk behavior including the condensation phenomenon is characterized by the thermodynamical properties, occupations of the states and their fluctuations, and the properties of the density matrices, including the diagonal and off-diagonal long range orders. Particular attention is focused on the difference between the canonical and grand canonical ensembles and a case is made that the latter does not represent any physical system in the condensed region. The properties in a finite region are also examined to study the approach to the bulk limit and secondly to derive the surface properties such as the surface tension (due to the boundary). This is mainly done for the special case of a rectangular parallelopiped (box) for various boundary conditions. The question of the asymptotic behavior of the fluctuations in the occupation of the ground state in the condensed region in the canonical ensemble is examined for these systems. Finally, the local properties near the wall of a half infinite system are calculated and discussed. The surface properties also follow this way and agree with the strictly thermodynamic result. Although it is not intended to be a complete review, it is largely self-contained, with the first section containing the basic formulas and a discussion of some general concepts which will be needed. Especially discussed in detail are the extra considerations that are needed in thermodynamics and statistical mechanics to include the surface properties, and the quantum hierarchy of the density matrices and local conservation laws. In the concluding remarks several problems are mentioned which need further analysis and clarification. (Auth.)
Astrophysical Bose-Einstein Condensates and Superradiance
Kuhnel, Florian
2014-01-01
We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of a "Eulerian metric", where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.
Phenomenological theory of spinor Bose-Einstein condensates
Gu, Qiang
2002-01-01
A phenomenological model is proposed to describe the behavior of spinor Bose-Einstein condensates. In the absence of hyperfine spin-spin interactions, Bose-Einstein condensation leads to a spontaneous magnetization at the same transition temperature. This is the so-called Bose-Einstein ferromagnetism. Including the hyperfine spin interactions, the phase diagram of the spinor condensate in an optical trap is studied and the Gross-Pitaevskii equation is extended. The possibility of checking for...
Hysteresis effects in Bose-Einstein condensates
Sacchetti, Andrea
2010-01-01
Here, we consider damped two-components Bose-Einstein condensates with many-body interactions. We show that, when the external trapping potential has a double-well shape and when the nonlinear coupling factors are modulated in time, hysteresis effects may appear under some circumstances. Such hysteresis phenomena are a result of the joint contribution between the appearance of saddle node bifurcations and damping effect.
Entangled light from Bose-Einstein condensates
Ng, H. T.; Bose, S.
2008-01-01
We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes, which leak out and can be separated and e...
Bose-Einstein condensation of 84Sr.
Martinez de Escobar, Y N; Mickelson, P G; Yan, M; DeSalvo, B J; Nagel, S B; Killian, T C
2009-11-13
We report Bose-Einstein condensation of (84)Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N(0) approximately 3 x 10(5)) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images. PMID:20365965
Bose-Einstein Condensation of 84-Sr
de Escobar, Y. N. Martinez; Mickelson, P. G.; Yan, M; DeSalvo, B. J.; Nagel, S. B.; Killian, T. C.
2009-01-01
We report Bose-Einstein condensation of 84-Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow creation of large condensates (N0 ~ 3x10^5) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images.
Cosmic Axion Bose-Einstein Condensation
Banik, Nilanjan; Sikivie, Pierre
2015-01-01
QCD axions are a well-motivated candidate for cold dark matter. Cold axions are produced in the early universe by vacuum realignment, axion string decay and axion domain wall decay. We show that cold axions thermalize via their gravitational self-interactions, and form a Bose-Einstein condensate. As a result, axion dark matter behaves differently from the other proposed forms of dark matter. The differences are observable.
Dynamics of Bose-Einstein condensation
Davis, M J
2001-01-01
approaches are in excellent agreement in their range of validity. We are therefore able to assign a temperature to the numerical simulations. However, the presently available equilibrium theories fail near the critical region, whereas the projected Gross-Pitaevskii equation remains valid throughout the Bose-Einstein condensation phase transition as long as the relevant modes remain highly occupied. This suggests that the equation will be useful in studying the role of vortices in the critical region, and the shift of the transition temperature with the atomic interaction strength. This thesis is concerned with the dynamics of thermal Bose-Einstein condensates with two main areas of emphasis. We summarise the development of the quantum kinetic theory of C. W. Gardiner, P. Zoller, and co-workers, and in particular its application to the problem of condensate growth. We extend an earlier model of the growth of a Bose-Einstein condensate to include the full dynamical effects of the thermal cloud by numerically so...
The Gross-Pitaevskii equation and Bose-Einstein condensates
Rogel-Salazar, J.
2013-03-01
The Gross-Pitaevskii equation (GPE) is discussed at the level of an advanced course on statistical physics. In the standard literature the GPE is usually obtained in the framework of the second quantization formalism, which in many cases goes beyond the material covered in many advanced undergraduate courses. In this paper, we motivate the derivation of the GPE in relationship to concepts from statistical physics, highlighting a number of applications from the dynamics of a Bose-Einstein condensate to the excitations of the gas cloud. This paper may be helpful for encouraging the discussion of modern developments in a statistical mechanics course, and can also be of use in other contexts such as mathematical physics and modelling. The paper is suitable for undergraduate and graduate students, as well as for general physicists.
Quantum field theory and Bose Einstein condensation
We study the phenomenon of Bose-Einstein condensation in cosmological and laboratory situations. To do this we examine the extreme temperature limits of a self-interacting O(2)-invariant scalar field theory with a non-zero charge density. The transition point has been well known for a long time in the case of an interactionless theory. However, due to a combination of technical problems imposed by having interactions and finite density, the transition in the interacting theory is not well understood. Here, in order to probe the Bose-Einstein condensation transition we perform a dimensional reduction of the 4D O(2)-invariant theory to give an effective theory in 3D. After dimensional reduction we use the 3D effective theory to calculate the two-loop effective potential which is used to examine the phase structure. This is a perturbative calculation and is still inappropriate for looking at the critical temperature. To find the critical temperature we use the non-perturbative linear delta expansion on the effective 3D theory. Tins is done in both the high temperature limit appropriate to cosmological applications and the low temperature limit appropriate to laboratory experiments with atomic gases. We study the Bose-Einstein condensation transition out of equilibrium. After a sudden quench which sends the system into the critical region, we look at how the condensate originates and grows. We study the equations of motion obtained from the one-loop effective action. It is found that the magnitude of the field expectation value grows at a slower rate at higher charge densities but that charge flows into the ground state at a faster rate at higher charge densities. In order to perform most of the analytic calculations, we show how dimensional regularization and Mellin summation can be elegantly combined to give an economical method for calculating high temperature Feynman diagrams. (author)
Bose-Einstein condensation in layered systems
Haerdig, A
1993-01-01
The thermodynamic properties of an ideal gas of bosons moving freely within layered planes and having a finite amplitude for jumping between neighbouring planes, are derived. As long as this coupling is non-zero, the system becomes effectively two-dimensional at sufficiently high temperatures. At a correspondingly low temperature it undergoes a Bose-Einstein transition into a condensed phase as in three dimensions. Below the critical temperature the specific heat is a universal function of only one dimensionless system variable. The phase transition becomes weaker as the coupling between the planes decreases and eventually disappears when the planes decouple. (author)
Two scales in Bose-Einstein correlations
Khoze, V A; Ryskin, M G; Schegelsky, V A
2016-01-01
We argue that the secondaries produced in high energy hadron collisions are emitted by small size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. That is, Bose-Einstein correlation of two emitted identical particles should be described by a `two-radii' parametrization ansatz. We discuss the expected energy, charged multiplicity and transverse momentum of the pair (that is, $\\sqrt{s},~N_{\\rm ch}, k_t$) behaviour of both the small and large size components.
Bose-Einstein Condensation of Atomic Hydrogen
Fried, Dale G.
1999-01-01
This thesis describes the observation and study of Bose-Einstein condensation of a trapped, dilute gas of atomic hydrogen. The condensate and normal gas are studied by two-photon spectroscopy of the 1S-2S transition. We condense over 10^9 atoms per second for several seconds, and the peak condensate density is around 5x10^15 cm^-3. Topics covered in the thesis include a theoretical analysis of Bose-condensed hydrogen, a description of the cryogenic trapping cell and the evaporative cooling te...
Analog gravity from Bose-Einstein condensates
Barcelo, Carlos; Liberati, Stefano; Visser, Matt
2000-01-01
We analyze prospects for the use of Bose-Einstein condensates as condensed-matter systems suitable for generating a generic ``effective metric'', and for mimicking kinematic aspects of general relativity. We extend the analysis due to Garay et al, [gr-qc/0002015, gr-qc/0005131]. Taking a long term view, we ask what the ultimate limits of such a system might be. To this end, we consider a very general version of the nonlinear Schrodinger equation (with a 3-tensor position-dependent mass and ar...
Quantum turbulence in trapped atomic Bose-Einstein condensates
Tsatsos, Marios C.; Tavares, Pedro E. S.; Cidrim, André; Fritsch, Amilson R.; Caracanhas, Mônica A.; dos Santos, F. Ednilson A.; Barenghi, Carlo F.; Bagnato, Vanderlei S.
2016-03-01
Turbulence, the complicated fluid behavior of nonlinear and statistical nature, arises in many physical systems across various disciplines, from tiny laboratory scales to geophysical and astrophysical ones. The notion of turbulence in the quantum world was conceived long ago by Onsager and Feynman, but the occurrence of turbulence in ultracold gases has been studied in the laboratory only very recently. Albeit new as a field, it already offers new paths and perspectives on the problem of turbulence. Herein we review the general properties of quantum gases at ultralow temperatures paying particular attention to vortices, their dynamics and turbulent behavior. We review the recent advances both from theory and experiment. We highlight, moreover, the difficulties of identifying and characterizing turbulence in gaseous Bose-Einstein condensates compared to ordinary turbulence and turbulence in superfluid liquid helium and spotlight future possible directions.
Quantum field theory and Bose Einstein condensation
Bedingham, D J
2001-01-01
We study the phenomenon of Bose-Einstein condensation in cosmological and laboratory situations. To do this we examine the extreme temperature limits of a self-interacting O(2)-invariant scalar field theory with a non-zero charge density. The transition point has been well known for a long time in the case of an interactionless theory. However, due to a combination of technical problems imposed by having interactions and finite density, the transition in the interacting theory is not well understood. Here, in order to probe the Bose-Einstein condensation transition we perform a dimensional reduction of the 4D O(2)-invariant theory to give an effective theory in 3D. After dimensional reduction we use the 3D effective theory to calculate the two-loop effective potential which is used to examine the phase structure. This is a perturbative calculation and is still inappropriate for looking at the critical temperature. To find the critical temperature we use the non-perturbative linear delta expansion on the effec...
Analog gravity from Bose-Einstein condensates
Barcelo, C; Visser, M; Barcelo, Carlos; Liberati, Stefano; Visser, Matt
2001-01-01
We analyze prospects for the use of Bose-Einstein condensates as condensed-matter systems suitable for generating a generic ``effective metric'', and for mimicking kinematic aspects of general relativity. We extend the analysis due to Garay et al, [gr-qc/0002015, gr-qc/0005131]. Taking a long term view, we ask what the ultimate limits of such a system might be. To this end, we consider a very general version of the nonlinear Schrodinger equation (with a 3-tensor position-dependent mass and arbitrary nonlinearity). Such equations can be used for example in discussing Bose-Einstein condensates in heterogeneous and highly nonlinear systems. We demonstrate that at low momenta linearized excitations of the phase of the condensate wavefunction obey a (3+1)-dimensional d'Alembertian equation coupling to a (3+1)-dimensional Lorentzian-signature ``effective metric'' that is generic, and depends algebraically on the background field. Thus at low momenta this system serves as an analog for the curved spacetime of genera...
Topological Objects in Two-component Bose-Einstein Condensates
Cho, Y. M.; Khim, Hyojoong; Zhang, Pengming
2005-01-01
We study the topological objects in two-component Bose-Einstein condensates. We compare two competing theories of two-component Bose-Einstein condensate, the popular Gross-Pitaevskii theory and the recently proposed gauge theory of two-component Bose-Einstein condensate which has an induced vorticity interaction. We show that two theories produce very similar topological objects, in spite of the obvious differences in dynamics. Furthermore we show that the gauge theory of two-component Bose-E...
Study of Bose-Einstein condensation in a harmonic oscillator potential
Bose-Einstein condensation is an accumulation of population in the ground state of a system of bosons as the temperature of the system is reduced below a critical temperature. This condensation is entirely a consequence of the quantum statistics of the Bose-Einstein distribution. We consider this statistics for our calculation. The ground state occupation numbers of a fixed number of bosons in an isotropic threedimensional harmonic oscillator potential above and below the critical temperature are found numerically by a method that was done previously [1]. This potential more closely approximates the conditions of the experiments performed to date on alkali atoms. Energy, heat capacity and chemical potential are found numerically. Finally all the results are compared with analytical calculations
Bose-Einstein Condensation of Metastable Helium
Dos Santos, F. Pereira; Léonard, J.; Wang, Junmin; Barrelet, C. J.; Perales, F.; Rasel, E.; Unnikrishnan, C. S.; Leduc, M.; Cohen-Tannoudji, C.
2001-04-01
We have observed a Bose-Einstein condensate in a dilute gas of 4He in the 32S1 metastable state. We find a critical temperature of \\(4.7+/-0.5\\) μK and a typical number of atoms at the threshold of 8×106. The maximum number of atoms in our condensate is about 5×105. An approximate value for the scattering length a = \\(16+/-8\\) nm is measured. The mean elastic collision rate at threshold is then estimated to be about 2×104 s-1, indicating that we are deeply in the hydrodynamic regime. The typical decay time of the condensate is 2 s, which places an upper bound on the rate constants for two-body and three-body inelastic collisions.
Optimized production of large Bose Einstein Condensates
Comparat, D; Fioretti, A; Pillet, P; Stern, G; Tolra, B L
2006-01-01
We suggest different simple schemes to efficiently load and evaporate a ''dimple'' crossed dipolar trap. The collisional processes between atoms which are trapped in a reservoir load in a non adiabatic way the dimple. The reservoir trap can be provided either by a dark SPOT Magneto Optical Trap, the (aberrated) laser beam itself or by a quadrupolar or quadratic magnetic trap. Optimal parameters for the dimple are derived from thermodynamical equations and from loading time, including possible inelastic and Majorana losses. We suggest to load at relatively high temperature a tight optical trap. Simple evaporative cooling equations, taking into account gravity, the possible occurrence of hydrodynamical regime, Feshbach resonance processes and three body recombination events are given. To have an efficient evaporation the elastic collisional rate (in s$^{-1}$) is found to be on the order of the trapping frequency and lower than one hundred times the temperature in micro-Kelvin. Bose Einstein condensates with mor...
Bose-Einstein distribution of money in a free-market economy. II
Kürten, K. E.; Kusmartsev, F. V.
2011-01-01
We argue about the application of methods of statistical mechanics to free economy (Kusmartsev F. V., Phys. Lett. A, 375 (2011) 966) and find that the most general distribution of money or income in a free-market economy has a general Bose-Einstein distribution form. Therewith the market is described by three parameters: temperature, chemical potential and the space dimensionality. Numerical simulations and a detailed analysis of a generic model confirm this finding.
Exactly solvable models for multiatomic molecular Bose-Einstein condensates
Santos, G, E-mail: gfilho@if.ufrgs.br, E-mail: gfilho@cbpf.br [Instituto de Fisica da UFRGS, Av. Bento Goncalves, 9500, Agronomia, Porto Alegre, RS (Brazil)
2011-08-26
I introduce two families of exactly solvable models for multiatomic hetero-nuclear and homo-nuclear molecular Bose-Einstein condensates through the algebraic Bethe ansatz method. The conserved quantities of the respective models are also shown. (paper)
Stability of the Bose-Einstein condensate under polynomial perturbations
Gielerak, R.; Damek, J.
2002-01-01
The problem of the Bose-Einstein condensate preservation under thermofield and standard gauge-invariant perturbations is discussed. A new result on stability of the condensate under thermofield perturbations of a polynomial type is presented.
Inelastic chaotic scattering on a Bose-Einstein condensate
Hunn, Stefan; Hiller, Moritz; Buchleitner, Andreas; Cohen, Doron; Kottos, Tsampikos
2010-01-01
We devise a microscopic scattering approach to probe the excitation spectrum of a Bose-Einstein condensate. We show that the experimentally accessible scattering cross section exhibits universal Ericson fluctuations, with characteristic properties rooted in the underlying classical field equations.
Knots in a Spinor Bose-Einstein Condensate
Kawaguchi, Yuki; Nitta, Muneto; Ueda, Masahito
2008-01-01
We show that knots of spin textures can be created in the polar phase of a spin-1 Bose-Einstein condensate, and discuss experimental schemes for their generation and probe, together with their lifetime.
Phase coherence length of a Bose-Einstein condensate
Gerbier, F.; Richard, S.; Thywissen, J. H.; Hugbart, M.; Bouyer, P.; Aspect, A.
2002-01-01
We report on the measurement of the momentum distribution of an elongated Bose-Einstein condensate. A broadening of the distribution with increasing temperature is observed, which is clear evidence for phase fluctuations in the sample.
Quantum Evaporation of a Bose-Einstein Condensate
Duine, R. A.; Stoof, H.T.C.
2002-01-01
We show that a Bose-Einstein condensate emits atoms, if either the condensate wave function, or the scattering length of the atoms depends strongly on time. Moreover, the emission process is coherent and atoms can oscillate back and forth between the condensate and the excited states. Inspired by recent experimental results, we present results of simulations of the response of a Bose-Einstein condensate to a very rapid change in the scattering length. The possibility of molecule formation is ...
Production of a chromium Bose-Einstein condensate
Griesmaier, Axel; Stuhler, Jürgen; Pfau, Tilman
2005-01-01
The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in ...
Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices
2007-01-01
Critical temperature and condensate fraction of Bose-Einstein condensation in the optical lattice are studied. The results show that the critical temperature in optical lattices can be characterized with an equivalent critical temperature in a single lattice, which provide a fast evaluation of critical temperature and condensate fraction of Bose-Einstein condensation confined with pure optical trap. Critical temperature can be estimated with an equivalent critical temperature. It is predicted that critical temperature is proportional to q in q number lattices for superfluid state and should be equal to that in a single lattic for Mott insulate state. Required potential depth or Rabi frequency and maximum atom number in the lattices both for superfluid state and Mott state are presented based on views of thermal mechanical statistics.
Bose-Einstein Correlations in $e^{+} e^{-} \\to W^{+}W^{-}$ at 172 and 183 GeV
Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
Bose-Einstein correlations between like-charge pions are studied in hadronic final states produced by e+e- annihilations at center-of-mass energies of 172 and 183 GeV. Three event samples are studied, each dominated by one of the processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the existence of Bose-Einstein correlations in W decays, an attempt is made to determine Bose-Einstein correlations for pions originating from the same W boson and from different W bosons, as well as for pions from (Z/g)* to qq events. The following results are obtained for the individual chaoticity parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19 +- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R = 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the second is systematic. At the current level of statistical precision it is not established whether Bose-Einstein correlations, between pions from different W bosons exist or not.
Elastic scattering of a Bose-Einstein condensate at a potential landscape
We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory
Elastic scattering of a Bose-Einstein condensate at a potential landscape
Brezinova, Iva; Lode, Axel U. J.; Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.; Collins, Lee A.; Schneider, Barry I.; Burgdörfer, Joachim
2013-01-01
We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory.
Bose-Einstein correlations in pp annihilations at rest
Two-charged-pion correlations were studied in pp (→ 2π+2π-nπ0, n ≥ 0) annihilations at rest with the CPLEAR detector at the Low-Energy Antiproton Ring (LEAR). A strong enhancement was found in the production of pairs of like-sign pions with a small value of the relative four-momentum Q, with respect to pairs of unlike-sign pions. The observed enhancement was interpreted as a consequence of the Bose-Einstein symmetrization of the twopion wave function. The data are well represented by a correlation function parametrized as a double-Gaussian; an exponential parametrization is also statistically acceptable. The value of the correlation strength is found to be > 1. The high-quality large data samples together with the ability for K± identification and final-state separation allowed the study of systematic effects impacting on the Q dependence of the correlation function and on the extracted space parameters of the pion sources. (orig.)
Scattering Length Instability in Dipolar Bose-Einstein Condensates
We predict a new kind of instability in a Bose-Einstein condensate composed of dipolar particles. Namely, a comparatively weak dipole moment can produce a large, negative two-body scattering length that can collapse the Bose-Einstein condensate. To verify this effect, we validate mean-field solutions to this problem using exact, diffusion Monte Carlo methods. We show that the diffusion Monte Carlo energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering length with the dipole strength is accounted for properly
Bose-Einstein condensates in atomic gases: simple theoretical results
The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)
Impurities in Bose-Einstein Condensates: From Polaron to Soliton.
Shadkhoo, Shahriar; Bruinsma, Robijn
2015-09-25
We propose that impurities in a Bose-Einstein condensate which is coupled to a transversely laser-pumped multimode cavity form an experimentally accessible and analytically tractable model system for the study of impurities solvated in correlated liquids and the breakdown of linear-response theory [corrected]. As the strength of the coupling constant between the impurity and the Bose-Einstein condensate is increased, which is possible through Feshbach resonance methods, the impurity passes from a large to a small polaron state, and then to an impurity-soliton state. This last transition marks the breakdown of linear-response theory. PMID:26451565
Coherently Scattering Atoms from an Excited Bose-Einstein Condensate
Bijlsma, M.J.; Stoof, H.T.C.
1999-01-01
We consider scattering atoms from a fully Bose-Einstein condensed gas. If we take these atoms to be identical to those in the Bose-Einstein condensate, this scattering process is to a large extent analogous to Andreev reflection from the interface between a superconducting and a normal metal. We determine the scattering wave function in both the absence and the presence of a vortex. Our results show a qualitative difference between these two cases that can be understood as due to an Aharonov-...
Production of a Bose Einstein condensate of metastable helium atoms
Santos, F. Pereira Dos; Léonard, J.; Wang, Junmin; Barrelet, C. J.; Perales, F.; Rasel, E.; Unnikrishnan, C. S.; Leduc, M.; Cohen-Tannoudji, C.
2003-04-01
We recently observed a Bose-Einstein condensate in a dilute gas of 4He in the 23S1 metastable state. In this article, we describe the successive experimental steps which led to the Bose-Einstein transition at 4.7 μK: loading of a large number of atoms in a MOT, efficient transfer into a magnetic Ioffé-Pritchard trap, and optimization of the evaporative cooling ramp. Quantitative measurements are also given for the rates of elastic and inelastic collisions, both above and below the transition.
Dark Lump Excitations in Bose-Einstein Condensates
黄国翔; 朱善华
2002-01-01
Key Laboratory for Optical and Magnetic Resonance Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062We investigate the dynamics of two-dimensional matter-wave pulses in a Bose-Einstein condensate with diskshaped traps. For the case ofrepulsive atom-atom interactions, a Kadomtsev-Petviashvili equation with positive dispersion is derived using the method of multiple scales. The results show that it is possible to excite dark lump-like two-dimensional nonlinear excitations in the Bose-Einstein condensate.
Tunneling Dynamics Between Atomic and Molecular Bose-Einstein Condensates
CHEN Chang-Yong
2004-01-01
Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.
Bose-Einstein condensates: BECs from the fridge
Friedrich, Bretislav
2009-10-01
Large ensembles of atoms can be buffer-gas loaded into a magnetic trap and further evaporatively cooled all the way down to quantum degeneracy. The approach has now been shown to provide an alternative - and potentially general - route to Bose-Einstein condensation.
Bose-Einstein correlation within the framework of hadronic mechanics
The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy
Investigating tunable KRb gases and Bose-Einstein condensates
Jørgensen, Nils Byg
2015-01-01
We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...
Excitation Spectrum of Three Dressed Bose-Einstein Condensates
OU-YANG Zhong-Wen; KUANG Le-Man
2000-01-01
We study quantum dynamics of three dressed Bose-Einstein condensates in a high-Q cavity. The quasiparticle excitation spectrum of this system is found numerically. The stability of the quasiparticle excitation is analyzed. It is shown that there exist instabilities in the excitation spectrum.
Magnon Bose-Einstein condensation at inhomogeneous conditions
The Spin Supercurrent and Bose-Einstein condensation of magnons, similar to an atomic BEC, was discovered in superfluid 3He-B, which is characterized by absolute purity. Later this phenomena were observed in a few magnetically ordered materials with different types of impurities. In this article we will review the properties of magnon BEC in a presence of impurities and defects
Symmetry-assisted vorticity control in Bose-Einstein condensates
Pérez-García, Víctor M.; García-March, Miguel A.; Ferrando, Albert
2006-01-01
Using group-theoretical methods and numerical simulations we show how to act on the topological charge of individual vortices in Bose-Einstein condensates by using control potentials with appropriate discrete symmetries. As examples of our methodology we study charge inversion and vortex erasing by acting on a set of control laser gaussian beams generating optical dipole traps.
Squeezing and temperature measurement in Bose-Einstein Condensates
Rogel-Salazar, J.; Choi, S.; New, G. H. C.; Burnett, K.
2003-01-01
In this paper we discuss the presence of temperature-dependent squeezing in the collective excitations of trapped Bose-Einstein condensates, based on a recent theory of quasiparticle damping. A new scheme to measure temperature below the critical temperature is also considered.
A fresh look at Bose-Einstein correlations
Recent experimental data on Bose-Einstein (BE) correlations between identical bosons are reviewed, and new results concerning the interpretation of the BE enhancement are discussed. In particular, it is emphasized that the classical interpretation of the correlation function in terms of the space-time distribution of particle production points cannot be directly applied to particle production in high energy reactions
Dynamical Properties of a Rotating Bose-Einstein Condensate
Kling, Sebastian; Pelster, Axel
2007-01-01
Within a variational approach to solve the Gross-Pitaevskii equation we investigate dynamical properties of a rotating Bose-Einstein condensate which is confined in an anharmonic trap. In particular, we calculate the eigenfrequencies of low-energy excitations out of the equilibrium state and the aspect ratio of the condensate widths during the free expansion.
A single electron in a Bose-Einstein condensate
Balewski, Jonathan Benedikt
2014-02-20
This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.
Method for monopole creation in spinor Bose-Einstein condensates
Chang, D. E.
2002-01-01
We present a method for creating a monopole in an antiferromagnetic spin-1 Bose-Einstein condensate. The required phase engineering of the multicomponent condensate is achieved using light shifts, which depend on both the magnetic substate m_F and polarization of the incident laser beam.
Spontaneous emission of polaritons from a Bose-Einstein condensate
Marzlin, Karl-Peter; Zhang, Weiping
1999-01-01
We study the spontaneous emission of a partially excited Bose-Einstein condensate composed of two-level atoms. The formation of polaritons induced by the ground-state part of the condensate leads to an avoided crossing in the photon spectrum. This avoided crossing acts similarly to a photonic band gap and modifies the spontaneous emission rate.
How Does a Dipolar Bose-Einstein Condensate Collapse?
Bohn, J. L.; Wilson, R. M.; Ronen, S.
2008-01-01
We emphasize that the macroscopic collapse of a dipolar Bose-Einstein condensate in a pancake-shaped trap occurs through local density fluctuations, rather than through a global collapse to the trap center. This hypothesis is supported by a recent experiment in a chromium condensate.
Entanglement Properties in Two-Component Bose-Einstein Condensate
Jiang, Di-You
2016-05-01
We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.
Scattering of atoms on a Bose-Einstein condensate
Poulsen, Uffe V.; Molmer, Klaus
2002-01-01
We study the scattering properties of a Bose-Einstein condensate held in a finite depth well when the incoming particles are identical to the ones in the condensate. We calculate phase shifts and corresponding transmission and reflection coefficients, and we show that the transmission times can be negative, i.e., the atomic wavepacket seemingly leaves the condensate before it arrives.
Explosion of a collapsing Bose-Einstein condensate
Duine, R. A.; Stoof, H.T.C.
2000-01-01
We show that elastic collisions between atoms in a Bose-Einstein condensate with attractive interactions lead to an explosion that ejects a large fraction of the collapsing condensate. We study variationally the dynamics of this explosion and find excellent agreement with recent experiments on magnetically trapped Rubidium-85. We also determine the energy and angular distribution of the ejected atoms during the collapse.
Bose-Einstein correlation within the framework of hadronic mechanics
Burande, Chandrakant S. [Vilasrao Deshmukh College of Engineering and Technology, Mouda, India-441104, Email: csburande@gmail.com (India)
2015-03-10
The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.
Bright soliton trains of trapped Bose-Einstein condensates
Al Khawaja, U.; Stoof, H. T. C.; Hulet, R. G.; Strecker, K.E.; Patridge, G.B.
2002-01-01
We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.
PHENIX results on Bose-Einstein correlation functions
,
2016-01-01
Measurement of Bose-Einstein or HBT correlations of identified charged particles provide insight into the space-time structure of particle emitting sources in heavy-ion collisions. In this paper we present the latest results from the RHIC PHENIX experiment on such measurements.
Are Bose-Einstein Correlations emerging from correlations of fluctuations?
Rybczynski, M.; Utyuzh, O. V.; Wilk, G.(National Centre for Nuclear Studies, Warsaw, Poland); Wlodarczyk, Z
2002-01-01
We demonstrate how Bose-Einstein correlations emerge from the correlations of fluctuations allowing for their extremely simple and fast numerical modelling. Both the advantages and limitations of this new method of implementation of BEC in the numerical modelling of high energy multiparticle processes are outlined and discussed. First applications to description of $e^+e^-$ data are given.
Bose-Einstein condensation in a gas of sodium atoms
K.B. Davis; M.O. Mewes; M.R. Andrews; N.J. van Druten; D.S. Durfee; D.M. Kurn; W. Ketterle
1995-01-01
We have observed Bose-Einstein condensation of sodium atoms. The atoms were trapped in a novel trap that employed both magnetic and optical forces. Evaporative cooling increased the phase-space density by 6 orders of magnitude within seven seconds. Condensates contained up to 5 x 105 atoms at densit
Interference of an array of independent Bose-Einstein condensates
Hadzibabic, Z; Bretin, V; Stock, S; Battelier, Baptiste; Bretin, Vincent; Hadzibabic, Zoran; Proxy, Jean Dalibard; Stock, Sabine; ccsd-00001592, ccsd
2004-01-01
We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interference patterns were observed after independent condensates were released from a one-dimensional optical lattice and allowed to expand and overlap. This initially surprising phenomenon is explained with a simple theoretical model which generalizes the analysis of the interference of two independent condensates.
Bose-Einstein correlations in $W^{+}W^{-}$ events at LEP2
Abdallah, J; Adam, W; Adzic, P; Albrecht, Z; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Metreveli, Z V; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Seth, K; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Tabize, M; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2005-01-01
Bose-Einstein correlations (BEC) between final state particles in the reaction e+e- -> W+W- -> q_1 anti-q_2 q_3 anti-q_4 have been studied. Data corresponding to a total integrated luminosity of 550 pb^{-1}, recorded by the DELPHI detector at centre-of-mass energies ranging from 189 to 209 GeV, were analysed. An indication for inter-W BEC between like-sign particles has been found at the level of 2.4 standard deviations of the combined statistical and systematic uncertainties.
We have used three-body recombination rates as a sensitive probe of the statistical correlations between atoms in Bose-Einstein condensates (BEC) and in ultracold noncondensed dilute atomic gases. We infer that density fluctuations are suppressed in the BEC samples. We measured the three-body recombination rate constants for condensates and cold noncondensates from number loss in the F=1,mf=-1 hyperfine state of 87Rb . The ratio of these is 7.4(2.6) which agrees with the theoretical factor of 3 exclamation point and demonstrates that condensate atoms are less bunched than noncondensate atoms. copyright 1997 The American Physical Society
De Angelis, A
1999-01-01
To estimate the strength of the Bose-Einstein correlations and the radius of the hadronization region in multiparticle production, the two-particle correlation functions $R$ for identical pairs is adjusted to a parametric function describing the enhancement at small momentum differences. This is usually done by means of a binned uncorrelated least squares fit. This article demonstrates that this procedure underestimates the statistical errors. A recipe is given to construct from the data the covariance matrix To estimate the strength of the Bose-Einstein correlations and the radius of the hadronization region in multiparticle production, the two-particle correlation functions $R$ for identical pairs is adjusted to a parametric function describing the enhancement at small momentum differences. This is usually done by means of a binned uncorrelated least squares fit. This article demonstrates that this procedure underestimates the statistical errors. A recipe is given to construct from the data the covariance m...
Hall, David
2012-06-01
Bose-Einstein condensation in dilute gases, with its myriad ramifications in fields as diverse as atomic, condensed-matter, cosmological, fluid, quantum, and statistical physics, offers unique possibilities for the synthesis of research and pedagogy. The highly visual nature of the experiments can make Bose-Einstein condensates a particularly compelling teaching instrument, particularly for those encountering these topics for the first time. The associated technological challenges provide copious opportunities for development of fundamental research skills while retaining the intimate context of tabletop research. Our program at Amherst College pursues studies of multicomponent condensates, tunable ultracold collisions (i.e., Feshbach resonances), and topological defects (e.g., vortices). In this talk I will describe our experimental efforts in these three principal directions, taken singly and in combination, with a nod to the peculiarities and opportunities inherent to an essentially undergraduate research program.
Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region RG=1.01±0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields RKP=2.07±0.04(stat)+0.01-0.14(sys) fm and λKP=0.29±0.06(stat)+0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found
Scalar field as a Bose-Einstein condensate?
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole
All optical cooling of $^{39}$K to Bose Einstein condensation
Salomon, Guillaume; Lepoutre, Steven; Aspect, Alain; Bourdel, Thomas
2014-01-01
We report the all-optical production of Bose Einstein condensates (BEC) of $^{39}$K atoms. We directly load $3 \\times 10^{7}$ atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with $3 \\times 10^5$ atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover.
Scalar field as a Bose-Einstein condensate?
Castellanos, Elías; Escamilla-Rivera, Celia [Mesoamerican Centre for Theoretical Physics (ICTP regional headquarters in Central America, the Caribbean and Mexico), Universidad Autónoma de Chiapas, Carretera Zapata Km. 4, Real del Bosque (Terán), 29040, Tuxtla Gutiérrez, Chiapas (Mexico); Macías, Alfredo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Mexico D.F. 09340 (Mexico); Núñez, Darío, E-mail: ecastellanos@mctp.mx, E-mail: cescamilla@mctp.mx, E-mail: amac@xanum.uam.mx, E-mail: nunez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
Excitations of Bose-Einstein condensates at finite temperatures
Rusch, M
2000-01-01
in their frequency spectra. Where possible we derive energy shifts and lifetimes of excitations. For one particular mode, the breathing mode, the effects of the discreteness of the system are sufficiently pronounced that the simple picture of an energy shift and width fails. Experiments in spherical traps have recently become feasible and should be able to test our detailed quantitative predictions. Recent experimental observations of collective excitations of Bose condensed atomic vapours have stimulated interest in the microscopic description of the dynamics of a Bose-Einstein condensate confined in an external potential. We present a finite temperature field theory for collective excitations of trapped Bose-Einstein condensates and use a finite-temperature linear response formalism, which goes beyond the simple mean-field approximation of the Gross-Pitaevskii equation. The effect of the non-condensed thermal atoms we include using perturbation theory in a quasiparticle basis. This presents a simple scheme ...
Interferometry with Bose-Einstein Condensates in Microgravity
Müntinga, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M
2013-01-01
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.
Photoassociation of sodium in a Bose-Einstein condensate
We form ultracold Na2 molecules by single-photon photoassociation of a Bose-Einstein condensate, measuring the photoassociation rate, linewidth, and light shift of the J=1 , v=135 vibrational level of the A1Σ+u molecular state. The photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are in good agreement with a two-body theory having no free parameters
Dark soliton creation in Bose-Einstein condensates
Carr, L. D.; Brand, J.; Burger, S.; Sanpera, A.
2000-01-01
It is demonstrated that stable, standing dark solitons can be created in current dilute-gas Bose-Einstein condensate experiments by the proper combination of phase and density engineering. Other combinations result in a widely controllable range of grey solitons. The phonon contribution is small and is calculated precisely. The ensuing dynamics should be observable in situ, i.e. without ballistic expansion of the condensate.
Vortex Nucleation in a Stirred Bose-Einstein Condensate
Raman, C.; Abo-Shaeer, J. R.; Vogels, J. M.; Xu, K.; Ketterle, W.
2001-01-01
We studied the nucleation of vortices in a Bose-Einstein condensate stirred by a laser beam. We observed the vortex cores using time-of-flight absorption imaging. By varying the size of the stirrer, we observed either discrete resonances or a broad response as a function of the frequency of the stirrer's motion. Stirring beams small compared to the condensate size generated vortices below the critical rotation frequency for the nucleation of surface modes, suggesting a local mechanism of gene...
Bose-Einstein condensation of magnons in spin pumping systems
NAKATA, KOUKI; Korai, Yusuke
2013-01-01
We clarify the condition for the occurrence of magnon Bose-Einstein condensation (BEC) in spin pumping systems without using external pumping magnetic fields. The Goldstone model is generalized and the stability of the vacuum is closely investigated. By applying the generalized Goldstone model to spin pumping systems, the condition for the experimental realization of the stable magnon BEC in spin pumping systems is theoretically proposed.
Relaxation rates and collision integrals for Bose-Einstein condensates
Gust, Erich D.; Reichl, L. E.
2012-01-01
Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, $\\mathcal{G}^{12}$, $\\mathcal{G}^{22}$, and $\\mathcal{G}^{31}$. All three collision integrals conserve momentum and energy during bogolon collisions, but only $ \\mathcal{G}^{22}$ conserves bogolon number. Previous works have considered the contribution of only two collision integrals, $ \\mathcal{G...
Spin turbulence in spinor Bose-Einstein condensates
Tsubota, Makoto; Fujimoto, Kazuya
2013-01-01
We summarize the recent theoretical and numerical works on spin turbulence (ST) in spin-1 spinor Bose-Einstein condensates. When the system is excited from the ground state, it goes through hy- drodynamic instability to ST in which the spin density vector has various disordered direction. The properties of ST depend on whether the spin-dependent interaction is ferromagnetic or antiferro- magnetic. ST has some characteristics different from other kinds of turbulence in quantum fluids. Firstly,...
Bose-Einstein condensation of photons in an optical microcavity
Klaers, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2010-01-01
Bose-Einstein condensation, the macroscopic ground state accumulation of particles with integer spin (bosons) at low temperature and high density, has been observed in several physical systems, including cold atomic gases and solid state physics quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition, because the chemical potential of photons vanishes and, when the temperature is r...
Observation of Faraday Waves in a Bose-Einstein Condensate
Engels, P.; Atherton, C.; Hoefer, M. A.
2007-01-01
Faraday waves in a cigar-shaped Bose-Einstein condensate are created. It is shown that periodically modulating the transverse confinement, and thus the nonlinear interactions in the BEC, excites small amplitude longitudinal oscillations through a parametric resonance. It is also demonstrated that even without the presence of a continuous drive, an initial transverse breathing mode excitation of the condensate leads to spontaneous pattern formation in the longitudinal direction. Finally, the e...
Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics
Kashif Ammar Yasir; Wu-Ming Liu
2015-01-01
Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror ...
Photon-photon gates in Bose-Einstein condensates
Rispe, Arnaud; He, Bing; Simon, Christoph
2010-01-01
It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here we propose a method for realizing a controlled phase gate between two stored photons. The photons are both stored in the ground state of the effective trapping potential inside the condensate. The collision-induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a Feshbach resonance. A controlled phase shift of $\\pi$ can be achieved in one second.
Quantum Spin Nematic States in Bose-Einstein Condensates
Zhou, Fei
2001-01-01
We review some recent results on discrete symmetries and topological order in spinor Bose-Einstein condensates (BECs) of $^{23}Na$. For spin one bosons with two-body scatterings dominated by a total spin equal to two channel, the BECs are in quantum spin nematic states at a low density limit. We study spin correlations in condensates at different limits and analyze hidde$ symmetries using a non-perturbative approach developed recently. We further more investigate the influence of hidden $Z_2$...
A Bose-Einstein condensate in a microtrap
We describe an experiment to create a sizable 87Rb Bose-Einstein condensate (BEC) in a simple magnetic microtrap, created by a current through a Z-shaped wire and a homogeneous bias field. The BEC is created close to a reflecting surface. It is an ideal coherent source for experiments with cold atoms close to surfaces, be it small-volume microtraps or directly studying the interactions between cold atoms and a warm surface
Rate limit for photoassociation of a Bose-Einstein condensate
Javanainen, Juha; Mackie, Matt
2001-01-01
We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density \\rho and mass m, the limit is approximately 6\\hbar\\rho^{2/3}/m. At low temperatures this is a more stringent restriction than the unitary limit of scattering theory.
Optimized production of a cesium Bose-Einstein condensate
Kraemer, Tobias; Herbig, Jens; Mark, Michael; Weber, Tino; Chin, Cheng; Naegerl, Hanns-Christoph; Grimm, Rudolf
2004-01-01
We report on the optimized production of a Bose-Einstein condensate of cesium atoms using an optical trapping approach. Based on an improved trap loading and evaporation scheme we obtain more than $10^5$ atoms in the condensed phase. To test the tunability of the interaction in the condensate we study the expansion of the condensate as a function of scattering length. We further excite strong oscillations of the trapped condensate by rapidly varying the interaction strength.
Qubit Residence Time Measurements with a Bose-Einstein Condensate
Sokolovski, Dmitri
2009-01-01
We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The stronq, medium and weak measurement regimes are analysed and a new type of Zeno effect is discussed. The analogy between the residence and the traversal (tunnelling) times is highlighted.
39K Bose-Einstein condensate with tunable interactions.
Roati, G.; Zaccanti, M.; D'Errico, C; Catani, Jacopo; Modugno, Michele; Simoni, Andrea; Inguscio, M.; Inguscio, Massimo
2007-01-01
We produce a Bose-Einstein condensate of 39K atoms. Condensation of this species with a naturally small and negative scattering length is achieved by a combination of sympathetic cooling with 87Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intraspecies interactions at Feshbach resonances. We explore the tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a 39K condensate is interesting for future experi...
Exact Hydrodynamics of a Trapped Dipolar Bose-Einstein Condensate
Eberlein, C.C.; O'Dell, D. H. J.; Giovanazzi, S.
2004-01-01
We present exact results in the Thomas-Fermi regime for the statics and dynamics of a harmonically trapped Bose-Einstein condensate that has dipole-dipole interactions in addition to the usual s-wave contact interactions. Remarkably, despite the nonlocal and anisotropic nature of the dipolar interactions, the density profile in a general time-dependent harmonic trap is an inverted parabola. The evolution of the condensate radii is governed by local, ordinary differential equations, and as an ...
Phase diffusion in a Bose-Einstein condensate of light
de Leeuw, A.W.; van der Wurff, E. C. I.; Duine, R. A.; Stoof, H.T.C.
2014-01-01
We study phase diffusion in a Bose-Einstein condensate of light in a dye-filled optical microcavity, i.e., the spreading of the probability distribution for the condensate phase. To observe this phenomenon, we propose an interference experiment between the condensed photons and an external laser. We determine the average interference patterns, considering quantum and thermal fluctuations as well as dissipative effects due to the dye. Moreover, we show that a representative outcome of individu...
Bose-Einstein Condensation in Exotic Trapping Potentials
Salasnich, Luca
2001-01-01
We discuss thermal and dynamical properties of Bose condensates confined by an external potential. First we analyze the Bose-Einstein transition temperature for an ideal Bose gas in a generic power-law potential and d-dimensional space. Then we investigate the effect of the shape of the trapping potential on the properties of a weakly-interacting Bose condensate. We show that using exotic trapping potentials the condensate can exhibit interesting coherent quantum phenomena, like superfluidity...
Anisotropic Bose-Einstein condensates and completely integrable dynamical systems
A Gaussian ansatz for the wave function of two-dimensional harmonically trapped anisotropic Bose-Einstein condensates is shown to lead, via a variational procedure, to a coupled system of two second-order, nonlinear ordinary differential equations. This dynamical system is shown to be in the general class of Ermakov systems. Complete integrability of the resulting Ermakov system is proven. Using the exact solution, collapse of the condensate is analyzed in detail. Time dependence of the trapping potential is allowed
Momentum state engineering and control in Bose-Einstein condensates
Potting, S.; M. Cramer; Meystre, P.
2001-01-01
We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration...
Modulated amplitude waves in Bose-Einstein condensates
We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations
Interference of Bose-Einstein Condensates on an Atom Chip
Shin, Y.; Sanner, C.; Jo, G. -B.; Pasquini, T. A.; Saba, M.; Ketterle, W.; Pritchard, D. E.; Vengalattore, M.; Prentiss, M.
2005-01-01
We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly confining direction into a purely magnetic double-well potential. We observed the matter wave interference pattern formed upon releasing the condensates from the microtraps. The intrinsic features of the quartic potential at the merge point, such as zero trap frequency and extremel...
Casimir force on an interacting Bose-Einstein condensate
Biswas, Shyamal; Majumder, Dwipesh; Saha, Kush [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Bhattacharjee, J K [S.N. Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata 700098 (India); Chakravarty, Nabajit, E-mail: tpsb2@iacs.res.i [Positional Astronomy Centre, Block AQ, Plot 8, Sector 5, Salt Lake, Kolkata 700091 (India)
2010-04-28
We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wavefunction as well as for the phonon field. We have shown that the condensate wavefunction (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of the Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.
Casimir force on interacting Bose-Einstein condensate
Biswas, Shyamal; Bhattacharjee, J K; Majumder, Dwipesh; Saha, Kush; Chakravarty, Nabajit
2009-01-01
We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate (BEC) which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wave function as well as for the phonon field. We have shown that, the condensate wave function (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.
Modeling Bose-Einstein correlations at LEP 2
Some pros and cons of different models for describing Bose-Einstein correlations among final state bosons in hadronic e+e- events are presented in general and in fully hadronic e+e- → W+W- event at LEP 2 in particular. One model based on a local reweighting approach is described in some detail and some predictions for effects on hadronic e+e- → W+W- are given. (author)
Geometrical pumping with a Bose-Einstein condensate
Lu, Hsin-I; Schemmer, Max; Aycock, Lauren M.; Genkina, Dina; Sugawa, Seiji; Spielman, Ian B.
2015-01-01
We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global -- topological -- properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits non-quantized charge pumping set by local -- geometrical -- properties of the band structure. Like topological charge p...
Bose-Einstein correlations in WW pair production at LEP
Van Remortel, N
2003-01-01
This paper presents an overview of the latest results from the L3 and DELPHI collaborations concerning the measurement of Bose-Einstein correlations between identical bosons coming from different W's in fully hadronic WW decays. Using the same method, L3 sees no indication of any inter-W BEC effect, while DELPHI reports an indication of inter-W BEC between like-charged particles of the order of three standard deviations.
Spin-Mixing Interferometry with Bose-Einstein Condensates.
Gabbrielli, Marco; Pezzè, Luca; Smerzi, Augusto
2015-10-16
Unstable spinor Bose-Einstein condensates are ideal candidates to create nonlinear three-mode interferometers. Our analysis goes beyond the standard SU(1,1) parametric approach and therefore provides the regime of parameters where sub-shot-noise sensitivities can be reached with respect to the input total average number of particles. Decoherence due to particle losses and finite detection efficiency are also considered. PMID:26550872
Inhibition of Coherence in Trapped Bose-Einstein Condensates
We analyze the dependence of the collapse and revival of many-atom coherence of a trapped Bose-Einstein condensate on the trap potential, dimensionality of the gas, and atom number fluctuations. We show that in a class of experimentally relevant systems the collapse time vanishes in the limit of a large number of atoms, implying that the trapped Bose gas cannot sustain a well-defined quantum phase. copyright 1997 The American Physical Society
Simple method for collective excitation of Bose-Einstein condensate
Damski, B; Sacha, K; Zakrzewski, J; Damski, Bogdan; Karkuszewski, Zbyszek P.; Sacha, Krzysztof; Zakrzewski, Jakub
2002-01-01
An appropriate, time-dependent modification of the trapping potential may be sufficient to create effectively collective excitations in a cold atom Bose-Einstein condensate. The proposed method is complementary to earlier suggestions and should allow creating both dark solitons and vortices. It seems to be quite feasible experimentally --- it requires only a proper change in time of the potential in atomic traps, as realized in laboratories already.
Generation and interaction of solitons in Bose-Einstein condensates
Burger, S.; Carr, L. D.; Ohberg, P.; Sengstock, K.; Sanpera, A.
2002-01-01
Generation, interaction and detection of dark solitons in Bose-Einstein condensates is considered. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. The generation of soliton pairs as well as their interaction is also considered. Finally, motivated by the recent experimental results of Cornish et al. (Phys. Rev Lett. 85, 1795, 2000), we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way...
Bose-Einstein Condensation of Dark Matter Axions
Sikivie, P.; Yang, Q.
2009-01-01
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate. We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microw...
Bose-Einstein condensation of atoms and photons
Bose-Einstein condensation has now been observed in diverse physical systems, starting from liquid Helium, excitons, to alkali atoms at nanokelvin temperature. The trapped cold atoms have provided an ideal venue for exploring fascinating ideas, ranging from Kosterlitz- Thouless (KT) phase transition, metal-insulator quantum phase transition to the realization of Abelian and non- Abelian gauge fields and solitonic excitations, in a controlled environment. Here, after a brief introduction to condensation phenomena in free space and trap, we explicate the working of the magneto optical trap, the work horse of the cold-atom laboratories. Subsequently, we illustrate the properties of experimentally realized dark, bright and grey solitons in the cigar shaped Bose-Einstein condensate (BEC). Focusing on a pan-cake type BEC in two dimensions, the basic aspects of the unique vortex excitations on a plane is elaborated, from which the Kosterlitz-Thouless phase transition follows, when the bound vortex-anti-vortex pairs unbind at TKT. We then describe the recent realization of Bose-Einstein condensation of the ubiquitous photons at room temperature. (author)
Stability of trapped Bose-Einstein condensates in one-dimensional tilted optical lattice potential
Fang Jian-Shu; Liao Xiang-Ping
2011-01-01
Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.
Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate
Rogel-Salazar, J.; Choi, S.; New, G. H. C.; Burnett, K.
2003-01-01
We describe the quantum state of a Bose-Einstein condensate at zero temperature. By evaluating the Q-function we show that the ground state of Bose-Einstein condensate under the Hartree approximation is squeezed. We find that multimode Schroedinger cat states are generated as the condensate evolves in a ballistic expansion.
Bose-Einstein condensation of indirect excitons in coupled quantum wells
Kavoulakis, G. M.
2002-01-01
We study the ground-state properties of a quasi-two-dimensional Bose-Einstein condensate of indirect excitons, which are confined in an anisotropic harmonic potential. Incorporating the interactions, we calculate the order parameter variationally. The difficulties in the detection of a Bose-Einstein condensate are also discussed, along with possible ways which would overcome them.
Collapse of Bose-Einstein condensate with dipole-dipole interactions
Lushnikov, Pavel M.
2002-01-01
A dynamics of Bose-Einstein condensate of a gas of bosonic particles with long-range dipole-dipole interactions in a harmonic trap is studied. Sufficient analytical criteria are found both for catastrophic collapse of Bose-Einstein condensate and for long-time condensate existence. Analytical criteria are compared with variational analysis.
Coherence and Squeezing of Bose-Einstein Condensates in Double Wells
Yi, Xiao-jie
2016-05-01
We investigate coherence and squeezing of a two-mode Bose-Einstein condensate trapped in a double-well potential. By analytically deriving the form of coherence and numerically calculating the squeezing parameter, we show that the coherence and the squeezing may be controlled by adjusting some parameters of the two-mode Bose-Einstein condensate.
A general approach to the Bose-einstein condensation of neutral atoms with repellent interaction
A general approach to the Bose-Einstein condensation of neutral atoms with repellent interaction is presented. Especially in the case of free atoms (V = 0) with repellent interaction, an exact solution for the atom's wave function can be derived, and therefore the calculation of atom's Bose-Einstein condensation is completed
Measurement of Genuine Three-Particle Bose-Einstein Correlations in Hadronic Z decay
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2002-01-01
We measure three-particle Bose-Einstein correlations in hadronic Z decay with the L3 detector at LEP. Genuine three-particle Bose-Einstein correlations are observed. By comparing two- and three-particle correlations we find that the data are consistent with fully incoherent pion production.
A geometrothermodynamic approach to ideal quantum gases and Bose-Einstein condensates
Quevedo, Hernando
2015-01-01
We analyze in the context of geometrothermodynamics the behavior of ideal quantum gases which satisfy either the Fermi statistics or the Bose statistics. Although the corresponding Hamiltonian does not contain a potential, indicating the lack of classical thermodynamic interaction, we show that the curvature of the equilibrium space is non-zero, and can be interpreted as a measure of the effective quantum interaction between the gas particles. In the limiting case of a classical Boltzmann gas, we show that the equilibrium space becomes flat, as expected from the physical viewpoint. In addition, we derive a thermodynamic fundamental equation for the Bose-Einstein condensation and, using the Ehrenfest scheme, we show that it can be considered as a first order phase transition which in the equilibrium space corresponds to a curvature singularity. This result indicates that the curvature of the equilibrium space can be used to measure the thermodynamic interaction in classical and quantum systems.
Schmitt, Julian; Damm, Tobias; Dung, David; Wahl, Christian; Vewinger, Frank; Klaers, Jan; Weitz, Martin
2016-01-22
We examine the phase evolution of a Bose-Einstein condensate of photons generated in a dye microcavity by temporal interference with a phase reference. The photoexcitable dye molecules constitute a reservoir of variable size for the condensate particles, allowing for grand canonical statistics with photon bunching, as in a lamp-type source. We directly observe phase jumps of the condensate associated with the large statistical number fluctuations and find a separation of correlation time scales. For large systems, our data reveal phase coherence and a spontaneously broken symmetry, despite the statistical fluctuations. PMID:26849597
Quantum Mass Acquisition in Spinor Bose-Einstein Condensates
Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito
2014-12-01
Quantum mass acquisition, in which a massless (quasi)particle becomes massive due to quantum corrections, is predicted to occur in several subfields of physics. However, its experimental observation remains elusive since the emergent energy gap is too small. We show that a spinor Bose-Einstein condensate is an excellent candidate for the observation of such a peculiar phenomenon as the energy gap turns out to be 2 orders of magnitude larger than the zero-point energy. This extraordinarily large energy gap is a consequence of the dynamical instability. The propagation velocity of the resultant massive excitation mode is found to be decreased by the quantum corrections as opposed to phonons.
Atomic Tunnelling Dynamics of Two Squeezed Bose-Einstein Condensates
LI Jin-Hui; KUANG Le-Man
2003-01-01
In this paper, tunnelling dynamics of squeezed Bose-Einstein condensates (BEC's) in the presence of the nonlinear self-interaction of each species, the interspecies nonlinear interaction, and the Josephson-like tunnelling interaction is investigated by using the second quantization approach. The influence of BEC squeezing on macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunnelling is analyzed in detail. It is shown that the MQST and coherent atomic tunnelling between two squeezed BEC's can be manipulated through changing squeezing amplitude and squeezing phase of BEC squeezed states.
Vortices in Attractive Bose-Einstein Condensates in Two Dimensions
The form and stability of quantum vortices in Bose-Einstein condensates with attractive atomic interactions is elucidated. They appear as ring bright solitons, and are a generalization of the Townes soliton to nonzero winding number m. An infinite sequence of radially excited stationary states appear for each value of m, which are characterized by concentric matter-wave rings separated by nodes, in contrast to repulsive condensates, where no such set of states exists. It is shown that robustly stable as well as unstable regimes may be achieved in confined geometries, thereby suggesting that vortices and their radial excited states can be observed in experiments on attractive condensates in two dimensions
Vortices and ring solitons in Bose-Einstein condensates
The form and stability properties of axisymmetric and spherically symmetric stationary states in two and three dimensions, respectively, are elucidated for Bose-Einstein condensates. These states include the ground state, central vortices, and radial excitations of both. The latter are called ring solitons in two dimensions and spherical shells in three. The nonlinear Schroedinger equation is taken as the fundamental model; both extended and harmonically trapped condensates are considered. It is found that the instability times of ring solitons can be long compared to experimental time scales, making them effectively stable over the lifetime of an experiment
Pumping of twin-trap Bose-Einstein condensates
Steel, M. J.; Walls, D. F.
1997-01-01
We consider extensions of the twin-trap Bose-Einstein condensate system of Javaneinen and Yoo [Phys. Rev. Lett., 76, 161--164 (1996)] to include pumping and output couplers. Such a system permits a continual outflow of two beams of atoms with a relative phase coherence maintained by the detection process. We study this system for two forms of thermal pumping, both with and without the influence of inter-atomic collisions. We also examine the effects of pumping on the phenomenon of collapses a...
Observation of Faraday Waves in a Bose-Einstein Condensate
Engels, Peter; Atherton, Collin; Hoefer, Mark
2007-06-01
Faraday waves in a cigar-shaped Bose-Einstein condensate are created. It is shown that periodically modulating the transverse confinement, and thus the nonlinear interactions in the BEC, excites small amplitude longitudinal oscillations through a parametric resonance. It is also demonstrated that even without the presence of a continuous drive, an initial transverse breathing mode excitation of the condensate leads to spontaneous pattern formation in the longitudinal direction. Finally, the effects of strongly driving the transverse breathing mode with large amplitude are investigated. In this case, impact-oscillator behavior and intriguing nonlinear dynamics, including the gradual emergence of multiple longitudinal modes, are observed.
Observation of Weak Collapse in a Bose-Einstein Condensate
Eigen, Christoph; Suleymanzade, Aziza; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P
2016-01-01
We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential an optical-box trap. We characterise the critical point for collapse and the collapse dynamics, observing universal behaviour in agreement with theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.
Distillation of a one-dimensional Bose-Einstein condensate
We study the dynamics of a one-dimensional Bose-Einstein condensate located in a time-dependent double-well trapping potential. In particular we investigate the way the system discovers existence of a ground state created in the new deeper well. It was shown that the transfer of the system into the minimum of the potential is triggered by the appearance of the condensate in the new well. Only then the thermal cloud follows the condensed part. During the transfer the eigenvectors of the single-particle density matrix have components localized simultaneously in both wells, which indicates a partial coherence between the two parts of the system.
Bose-Einstein condensation in antiferromagnets at low temperatures
The Bose-Einstein condensation (BEC) was predicted by Einstein in 1925 and this effect is characterized by the formation of a collective quantum state, when macroscopic number of particles is governed by a single wave function. The BEC of magnons was discovered experimentally in superfluid phase of 3He. In the present work we report our progress on the BEC of magnons investigations in solid antiferromagnets at low temperatures by magnetic resonance methods. The duration of the FID signal in two samples of easy-plane antiferromagnets CsMnF3 has been studied. Obtained data confirm the formation of magnon BEC in antiferromagnet CsMnF3
Composite nature of hadrons and Bose-Einstein correlations
Bialas, A.
2016-07-01
I am reporting results of two papers, written together with W.Florkowski and K.Zalewski [1, 2], discussing the consequences of the observation [3] that, due to their composite nature and thus finite size, hadrons observed in the HBT measurements must be correlated in space-time. Using the blast-wave model [4] adjusted [1] to ALICE data on the measured HBT radii in pp collisions at 7 TeV [5], the full Bose-Einstein correlation functions in three direction (out, side, long) are evaluated. The results are presented together with some additional comments.
Cooling of a Bose-Einstein Condensate by Spin Distillation.
Naylor, B; Maréchal, E; Huckans, J; Gorceix, O; Pedri, P; Vernac, L; Laburthe-Tolra, B
2015-12-11
We propose and experimentally demonstrate a new cooling mechanism leading to purification of a Bose-Einstein condensate (BEC). Our scheme starts with a BEC polarized in the lowest energy spin state. Spin excited states are thermally populated by lowering the single particle energy gap set by the magnetic field. Then, these spin-excited thermal components are filtered out, which leads to an increase of the BEC fraction. We experimentally demonstrate such cooling for a spin 3 ^{52}Cr dipolar BEC. Our scheme should be applicable to Na or Rb, with the perspective to reach temperatures below 1 nK. PMID:26705630
Observation of solitonic vortices in Bose-Einstein condensates.
Donadello, Simone; Serafini, Simone; Tylutki, Marek; Pitaevskii, Lev P; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele
2014-08-01
We observe solitonic vortices in an atomic Bose-Einstein condensate (BEC) after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation. Experimental observations agree with numerical simulations. These solitonic vortices are the decay product of phase defects of the BEC order parameter spontaneously created after a rapid quench across the BEC transition in a cigar-shaped harmonic trap and are shown to have a very long lifetime. PMID:25148333
Probing a Bose-Einstein Condensate with an Atom Laser
Döring, D.; Robins, N. P.; Figl, C.; Close, J. D.
2008-01-01
A pulsed atom laser derived from a Bose-Einstein condensate is used to probe a second target condensate. The target condensate scatters the incident atom laser pulse. From the spatial distribution of scattered atoms, one can infer important properties of the target condensate and its interaction with the probe pulse. As an example, we measure the s-wave scattering length that, in low energy collisions, describes the interaction between the |F=1,m_F=-1> and |F=2,m_F=0> hyperfine ground states ...
A Raman waveplate for spinor Bose-Einstein condensates.
Schultz, Justin T; Hansen, Azure; Bigelow, Nicholas P
2014-07-15
We demonstrate a waveplate for a pseudo-spin-1/2 Bose-Einstein condensate (BEC) using a two-photon Raman interaction. The angle of the waveplate is set by the relative phase of the optical fields, and the retardance is controlled by the pulse area. The waveplate allows us to image maps of the Stokes parameters of a BEC and thereby measure its relative ground-state phase. We demonstrate the waveplate by measuring the Stokes parameters of a coreless vortex. PMID:25121704
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss-two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground-state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling. (authors)
Analytic vortex dynamics in an annular Bose-Einstein condensate
Toikka, L. A.; Suominen, K.-A.
2016-05-01
We consider analytically the dynamics of an arbitrary number and configuration of vortices in an annular Bose-Einstein condensate obtaining expressions for the free energy and vortex precession rates to logarithmic accuracy. We also obtain lower bounds for the lifetime of a single vortex in the annulus. Our results enable a closed-form analytic treatment of vortex-vortex interactions in the annulus that is exact in the incompressible limit. The incompressible hydrodynamics that is developed here paves the way for more general analytical treatments of vortex dynamics in non-simply-connected geometries.
Symmetry classification of spinor Bose-Einstein condensates
Kawaguchi, Yuki [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ueda, Masahito [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Macroscopic Quantum Control Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan)
2011-11-15
We propose a method for systematically finding ground states of spinor Bose-Einstein condensates by utilizing the symmetry properties of the system. By this method, we can find not only an inert state, whose symmetry is maximal in the manifold under consideration, but also a noninert state, which has lower symmetry and depends on the parameters in the Hamiltonian. We establish the symmetry-classification method for the spin-1, 2, and 3 cases at zero magnetic field, and find an additional phase in the last case. The properties of the vortices in the spin-3 system are also discussed.
Bose-Einstein Condensation of Photons and Photon Pairs
张建军; 袁建辉; 张俊佩; 成泽
2012-01-01
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.
Behaviour of Rotating Bose-Einstein Condensates Under Shrinking
ZHAI Hui; ZHOU Qi
2005-01-01
@@ When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate,which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be satiated at a finite value when the interaction strength is gradually reduced.We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett.90 (2003) 170405].
Bose-Einstein correlations in W-pair decays
Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J. P.; Martin, F.; E. Merle; M.N. Minard; Pietrzyk, B; Alemany, R; Bravo, S.; Casado, M. P.; M. Chmeissani; Crespo, J M.
2000-01-01
Bose-Einstein correlations are studied in semileptonicWW --> qqbarlnu and fully hadronic WW --> qqbarqqbar W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einsteincorrelations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW --> qqbarlnu events. The same Mon...
Collisions of Dark Solitons in Elongated Bose-Einstein Condensates
We present experimental data showing the head-on collision of dark solitons generated in an elongated Bose-Einstein condensate. No discernable interaction can be recorded, in full agreement with the fundamental theoretical concepts of solitons as mutually transparent quasiparticles. Our soliton generation technique allows for the creation of solitons with different depths; hence, they can be distinguished and their trajectories be followed. Simulations of the 1D-Gross-Pitaevskii equation have been performed to compare the experiment with a mean-field description
Soliton Solutions in Three-Component Bose-Einstein Condensates
ZHANG Xiao-Fei; XIE Chong-Wei; WANG Shi-En
2007-01-01
We obtain soliton and plane wave solutions for the coupled nonlinear Schr(o)dinger equations, which describe the dynamics of the three-component Bose-Einstein condensates by using the Hirota method. Meanwhile we find that the system which has attractive atomic interaction will only possess a shape changing (inelastic) collision property due to intensity redistribution in the absence of the spin-exchange interaction. As a discussed example, we investigate the one-soliton, two-soliton solutions and collisional effects between bright two-soliotn solution, which lead to the intensity redistribution.
Motion of objects through dilute Bose-Einstein condensates
This paper discusses the motion of objects through quantum fluids described by the Gross Pitaevskii (GP) equation. The object moves without dissipation at velocities below a threshold which corresponds to the critical velocity for vortex nucleation. Above the critical velocity, vortex shedding is the dominant mechanism of energy transfer between the object and the fluid. We compare the predictions of the GP model with experiments on an oscillating laser beam in an alkali vapour Bose Einstein condensate and ions in superfluid helium-4. (orig.)
Propagation of Sound in a Bose-Einstein Condensate
Andrews, M.R.; Kurn, D.M.; Miesner, H.; Durfee, D.S.; Townsend, C.G.; Inouye, S.; Ketterle, W. [Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
1997-07-01
Sound propagation has been studied in a magnetically trapped dilute Bose-Einstein condensate. Localized excitations were induced by suddenly modifying the trapping potential using the optical dipole force of a focused laser beam. The resulting propagation of sound was observed using a novel technique, rapid sequencing of nondestructive phase-contrast images. The speed of sound was determined as a function of density and found to be consistent with Bogoliubov theory. This method may generally be used to observe high-lying modes and perhaps second sound. {copyright} {ital 1997} {ital The American Physical Society}
Geometrical Pumping with a Bose-Einstein Condensate
Lu, H.-I.; Schemmer, M.; Aycock, L. M.; Genkina, D.; Sugawa, S.; Spielman, I. B.
2016-05-01
We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.
Stability of self-gravitating Bose-Einstein-Condensates
Schroven, Kris; Lämmerzahl, Claus
2015-01-01
We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein- Condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii- Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.
Bose-Einstein condensation of alkaline earth atoms: $^{40}${Ca}
Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe
2009-01-01
We have achieved Bose-Einstein condensation of $^{40}$Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground state s-wave scattering length of $^{40}$Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about $2 \\cdot 10^4$ atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less ...
High visibility gravimetry with a Bose-Einstein condensate
Debs, J E; Barter, T H; Döring, D; Dennis, G R; McDonald, G; Robins, N P; Close, J D
2010-01-01
We present results from an atomic gravimeter using a Bose-Einstein condensate with fringe visibility up to 85%. A direct comparison with a thermal state displays a significant increase in visibility for a condensed source. We do not observe any detrimental effects of atom-atom interactions, provided the cloud is allowed to reach the ballistic free-expansion regime. By increasing the space-time area enclosed by our interferometer using large-momentum-transfer beamsplitters, we achieve a precision of 17 ppm in a measurement of the local acceleration due to gravity.
Solitons, Bose-Einstein condensation and superfluidity in He II
The analytic form of a wave propagating with a constant velocity and a permanent profile is inferred for a weakly interacting Bose gas, using an exact (rather than asymptotic) solution of the field equation of the self-consistent Hartree model. The significance of this approach is indicated, especially when realistic interatomic potentials are used. In addition, the general relation between solitons and Bose-Einstein condensation is underlined by invoking the profound insight recently acquired in studies of the quantum liquids involved in the living state. It is concluded that solitons may occur in He II, and may play a significant role in the phenomena of superfluidity. (author)
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.
Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P
2016-04-29
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime. PMID:27176521
Dynamics of vortex dipoles in confined Bose-Einstein condensates
Torres, P.J. [Departamento de Matematica Aplicada, Universidad de Granada, 18071 Granada (Spain); Kevrekidis, P.G., E-mail: kevrekid@gmail.com [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical System Group, Computational Science Research Center, and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hall, D.S. [Department of Physics, Amherst College, Amherst, MA 01002-5000 (United States)
2011-08-01
We present a systematic theoretical analysis of the motion of a pair of straight counter-rotating vortex lines within a trapped Bose-Einstein condensate. We introduce the dynamical equations of motion, identify the associated conserved quantities, and illustrate the integrability of the ensuing dynamics. The system possesses a stationary equilibrium as a special case in a class of exact solutions that consist of rotating guiding-center equilibria about which the vortex lines execute periodic motion; thus, the generic two-vortex motion can be classified as quasi-periodic. We conclude with an analysis of the linear and nonlinear stability of these stationary and rotating equilibria. -- Highlights: → A model describing the motion of a vortex dipole in a quasi two-dimensional trapped Bose-Einstein condensate is considered. → The model is integrable and the generic motion of the dipole is quasi-periodic. → Stationary and periodic (guiding-center) equilibria are identified. → Both equilibria are found to be dynamically stable.
Bose-Einstein graviton condensate in a Schwarzschild black hole
Alfaro, Jorge; Gabbanelli, Luciano
2016-01-01
We analyze in detail a previous proposal by Dvali and G\\'omez that black holes could be treated as consisting of a Bose-Einstein condensate of gravitons. In order to do so we extend the Einstein-Hilbert action with a chemical potential-like term, thus placing ourselves in a grand-canonical ensemble. The form and characteristics of this chemical potential-like piece are discussed in some detail. After this, we proceed to expand the ensuing equations of motion up to second order around the classical Schwarzschild metric so that some non-linear terms in the metric fluctuation are kept. We argue that the resulting equations could be interpreted as the Gross-Pitaevskii equation describing a graviton Bose-Einstein condensate trapped by the black hole gravitational field. Next we search for solutions and, modulo some very plausible assumptions, we find out that the condensate vanishes outside the horizon but is non-zero in its interior. Based on hints from a numerical integration of the equations we formulate an ans...
Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates
We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations
Resistive flow in a weakly interacting Bose-Einstein condensate.
Jendrzejewski, F; Eckel, S; Murray, N; Lanier, C; Edwards, M; Lobb, C J; Campbell, G K
2014-07-25
We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices. PMID:25105631
Analogue gravitational phenomena in Bose-Einstein condensates
Finazzi, Stefano
2012-08-01
Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.
Accelerated optimization problem search using Bose-Einstein condensation
We investigate a computational device that harnesses the effects of Bose-Einstein condensation to accelerate the speed of finding the solution of optimization problems. Many computationally difficult problems, including NP-complete problems, can be formulated as a ground state search problem. In a Bose-Einstein condensate, below the critical temperature, bosonic particles have a natural tendency to accumulate in the ground state. Furthermore, the speed of attaining this configuration is enhanced as a result of final state stimulation. We propose a physical device that incorporates these basic properties of bosons into the optimization problem, such that an optimized solution is found by a simple cooling of the physical temperature of the device. Using a semiclassical model to calculate the equilibration time for reaching the ground state, we found that this can be sped up by a factor of N, where N is the boson number per site. This allows for the annealing times for reaching a particular error to be systematically decreased by increasing the boson number per site. (paper)
Stability and d -wave collapse of a dipolar Bose-Einstein condensate
Full text: Although the phenomenon of Bose-Einstein condensation is a purely statistical effect that also appears in an ideal gas, the physics of Bose-Einstein condensates (BECs) of dilute gases is considerably enriched by the presence of interactions among the atoms. In usual experiments with BECs, the only relevant interaction is the isotropic and short-range contact interaction, which is described by a single parameter, the scattering length a. In contrast, the dipole-dipole interaction between particles possessing an electric or magnetic dipole moment is of long range character and anisotropic, which gives rise to new phenomena. Most prominently, the stability of a dipolar BEC depends not only on the value of the scattering length a, but also strongly on the geometry of the external trapping potential. Here, we report on the experimental investigation of the stability of a dipolar BEC of 52Cr as a function of the scattering length and the trap aspect ratio. We find good agreement with a universal stability threshold arising from a simple theoretical model. Using a pancake-shaped trap with the dipoles oriented along the short axis of the trap, we are able to tune the scattering length to zero, stabilizing a purely dipolar quantum gas. We also experimentally investigate the collapse dynamics of a dipolar condensate of 52Cr atoms when the s-wave scattering length characterizing the contact interaction is reduced below a critical value. A complex dynamics, involving an anisotropic, d-wave symmetric explosion of the condensate, is observed on time scales significantly shorter than the trap period. At the same time, the condensate atom number decreases abruptly during the collapse. We compare our experimental results with numerical simulations of the three-dimensional Gross-Pitaevskii equation, including the contact and dipolar interactions as well as three-body losses. The simulations indicate that the collapse is accompanied by the formation of two vortex rings
Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions
Chaudhry, M Aslam; Tassaddiq, Asifa
2010-01-01
Fermi-Dirac and Bose-Einstein integral functions are of importance not only in quantum statistics but for their mathematical properties, in themselves. Here, we have extended these functions by introducing an extra parameter in a way that gives new insights into these functions and their relation to the family of zeta functions. These extensions are "dual" to each other in a sense that is explained. Some identities are proved for them and the relation between them and the general Hurwitz-Lerch zeta function (\\phi(z,s,v) is exploited to deduce new identities.
Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions
Chaudhry, M. Aslam; Qadir, Asghar; Tassaddiq, Asifa
2010-01-01
Fermi-Dirac and Bose-Einstein integral functions are of importance not only in quantum statistics but for their mathematical properties, in themselves. Here, we have extended these functions by introducing an extra parameter in a way that gives new insights into these functions and their relation to the family of zeta functions. These extensions are "dual" to each other in a sense that is explained. Some identities are proved for them and the relation between them and the general Hurwitz-Lerc...
Effect of interaction strength on gap solitons of Bose-Einstein condensates in optical lattices
Yang Ru-Shu; Yang Jiang-He
2008-01-01
We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.
Interaction of a Bose-Einstein Condensate and a Superconductor via Eddy Currents
Sapina, Igor; Dahm, Thomas
2013-01-01
We study center-of-mass oscillations of a dipolar Bose-Einstein condensate in the vicinity of a superconducting surface. We show that the magnetic field of the magnetic dipoles induces eddy currents in the superconductor, which act back on the Bose-Einstein condensate. This leads to a shift of its oscillation frequency and to an anharmonic coupling of the Bose-Einstein condensate with the superconductor. The anharmonicity creates a coupling to one of the collective modes of the condensate tha...
Bose-Einstein condensation as an alternative to inflation
Das, Saurya
2015-01-01
It was recently shown that gravitons with a very small mass should have formed a Bose-Einstein condensate in the very early Universe, whose density and quantum potential can account for the dark matter and dark energy in the Universe respectively. Here we show that the condensation can also naturally explain the observed large scale homogeneity and isotropy of the Universe. Furthermore gravitons continue to fall into their ground state within the condensate at every epoch, accounting for the observed flatness of space at cosmological distances scales. Finally, we argue that the density perturbations due to quantum fluctuations within the condensate give rise to a scale invariant spectrum. This therefore provides a viable alternative to inflation, which is not associated with the well-known problems associated with the latter.
Kinetic approach to a relativistic Bose-Einstein condensate
Meistrenko, Alex; Zhou, Kai; Greiner, Carsten
2015-01-01
We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a non-zero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte-Carlo simulation BAMPS for an underpopulated but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons.
Thermalization and Bose-Einstein Condensation in Overpopulated Glasma
Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2013-05-02
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.
Thermalization and Bose-Einstein Condensation in Overpopulated Glasma
Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju
2012-01-01
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter ("Glasma") is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization, and based on that we find approximate scaling solutions as well as numerically study the onset of condensation.
Analogue gravitational phenomena in Bose-Einstein condensates
Finazzi, Stefano
2012-01-01
Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which...
Probing superfluidity of Bose-Einstein condensates via laser stirring
Singh, Vijay Pal; Weimer, Wolf; Morgener, Kai; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Moritz, Henning; Mathey, Ludwig
2016-02-01
We investigate the superfluid behavior of a Bose-Einstein condensate of 6Li molecules. In the experiment by Weimer et al. [Phys. Rev. Lett. 114, 095301 (2015), 10.1103/PhysRevLett.114.095301] a condensate is stirred by a weak, red-detuned laser beam along a circular path around the trap center. The rate of induced heating increases steeply above a velocity vc, which we define as the critical velocity. Below this velocity, the moving beam creates almost no heating. In this paper, we demonstrate a quantitative understanding of the critical velocity. Using both numerical and analytical methods, we identify the nonzero temperature, the circular motion of the stirrer, and the density profile of the cloud as key factors influencing the magnitude of vc. A direct comparison to the experimental data shows excellent agreement.
Dynamics of macroscopic tunneling in elongated Bose-Einstein condensates
We investigate macroscopic tunneling from an elongated quasi-one-dimensional trap, forming a 'cigar-shaped' Bose-Einstein condensate (BEC). Using a recently developed formalism we get the leading analytical approximation for the right-hand side of the potential wall, i.e., outside the trap, and a formalism based on Wigner functions, for the left side of the potential wall, i.e., inside the BEC. We then present accomplished results of numerical calculations, which show a 'blip' in the particle density traveling with an asymptotic shock velocity, as resulted from previous works on a dotlike trap but with significant differences from the latter. Inside the BEC a pattern of a traveling dispersive shock wave is revealed. In the attractive case, we find trains of bright solitons frozen near the boundary.
Bose-Einstein Condensate In Nuclei Theory And Experiment
In the present work the possibility of the concept of Bose-Einstein condensation (BEC) in light and intermediate nuclei was considered. As was Shown, different types of theory give different conditions for the phase transition to the BEC state. The most important question from this point of view is value of nuclear density for this transition. According to the accurate quantum-mechanical calculations this value should be much smaller than it is for the nucleus in the normal state [1]. From the other hand, some kinds of the models give the opposite results for this [2]. There are the theories which consider the properties of alpha-cluster wave function [3] and more sophisticated mechanisms of the BEC formation. In this work the comparison between these theories, including the present approach, and experimental data was discussed as well as a systematic of the experimental results which we can explain from the BEC point of view.
Dynamical tunneling with Bose-Einstein condensates on atom chips
Full text: A generic feature of conservative classical dynamical systems with two or more degrees of freedom is that their trajectories form complicated phase space structures where chaos and regular motion are closely intertwined Among these structures are islands of regular motion that a classical system can not escape from but between which a quantum particle may tunnel. Dynamical tunneling of ultra cold atoms in standing wave has previously been observed but deep inside the quantum dynamical regime. Here we investigate the prospects for improved experiments with Bose Einstein condensates on atom chips that are closer to the classical regime In particular we concentrate on the effect of classical chaos on the tunnelling an issue of some controversy in the literature. Copyright (2005) Australian Institute of Physics
Q-balls in atomic Bose-Einstein condensates
Enqvist, K
2003-01-01
Relativistic scalar field theories with a conserved global charge Q often possess (meta)stable spherically symmetric soliton solutions, called Q-balls. We elaborate on the perfect formal analogy which exists between Q-balls, and spherically symmetric solitons in certain non-relativistic atomic Bose-Einstein condensates, for which the dominant interatomic interaction can be tuned attractive. The stability of such atomic Q-balls depends on higher-order interatomic interactions, which can render the Q-balls absolutely stable for large Q. In a harmonic trap, present in existing experiments, the Q-ball solution is modified in an essential way. If the trap is significantly prolongated in one direction, however, then genuine solitons do appear, and some of the Q-ball properties studied in a relativistic cosmological context, such as their formation and collisions, can also be addressed experimentally.
Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics
Yasir, Kashif Ammar
2015-01-01
Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror and is driven by a single mode optical field. The numerical results provide evidence for controlled optical bistability in optomechanics using transverse optical field which directly interacts with atoms causing the coupling of transverse field with momentum side modes, exited by intra-cavity field. This technique of transverse field coupling is also used to control bistable dynamics of both moving-end mirror and BEC. The report provides an understanding of temporal dynamics of moving-end mirror and BEC with respect to tr...
Dynamics of Spin-2 Bose-Einstein Condensates
无
2007-01-01
We numerically simulate the dynamics of a spin-2 Bose-Einstein condensate. We find that the initial phase plays an important role in the spin component oscillations. The spin mixing processes can fully cancel out due to quantum interference when taking some initial special phase. In all the spin mixing processes, the total spin is conversed.When the initial population is mainly occupied by a component with the maximal or minimal magnetic quantum number,the oscillations of spin components cannot happen due to the total spin conversation. The presence of quadratic Zeeman energy terms suppresses some spin mixing processes so that the oscillations of spin components are suppressed in some initial spin configuration. However, the linear Zecman energy terms have no effects on the spin mixing processes.
Stabilization of ring dark solitons in Bose-Einstein condensates
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, where appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings
85Rb tunable-interaction Bose-Einstein condensate machine
We describe our experimental setup for creating stable Bose-Einstein condensates (BECs) of 85Rb with tunable interparticle interactions. We use sympathetic cooling with 87Rb in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume, crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the 85Rb atoms. Typical 85Rb condensates contain 4x104 atoms with a scattering length of a=+200a0. Many aspects of the design presented here could be adapted to other dual-species BEC machines, including those involving degenerate Fermi-Bose mixtures. Our minimalist apparatus is well suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the 85Rb BEC machine at JILA, which we discuss at the end of this article.
Spin turbulence in spinor Bose-Einstein condensates
We summarize the recent theoretical and numerical works on spin turbulence (ST) in spin-1 spinor Bose-Einstein condensates. When the system is excited from the ground state, it goes through hydrodynamic instability to ST in which the spin density vector has various disordered direction. The properties of ST depend on whether the spin-dependent interaction is ferromagnetic or antiferromagnetic. ST has some characteristics different from other kinds of turbulence in quantum fluids. Firstly, the spectrum of the spin-dependent interaction energy exhibits the characteristic power law different from the usual Kolmogorov -5/3 law. Secondly, ST can show the spin-glass-like behavior; the spin density vectors are spatially random but temporally frozen.
Quantum turbulence in atomic Bose-Einstein condensates
Weakly interacting, dilute atomic Bose-Einstein condensates (BECs) have proved to be an attractive context for the study of nonlinear dynamics and quantum effects at the macroscopic scale. Recently, weakly interacting, dilute atomic BECs have been used to investigate quantum turbulence both experimentally and theoretically, stimulated largely by the high degree of control which is available within these quantum gases. In this article we motivate the use of weakly interacting, dilute atomic BECs for the study of turbulence, discuss the characteristic regimes of turbulence which are accessible, and briefly review some selected investigations of quantum turbulence and recent results. We focus on three stages of turbulence – the generation of turbulence, its steady state and its decay – and highlight some fundamental questions regarding our understanding in each of these regimes
Transport of Bose-Einstein condensates through two dimensional cavities
The recent experimental advances in manipulating ultra-cold atoms make it feasible to study coherent transport of Bose-Einstein condensates (BEC) through various mesoscopic structures. In this work the quasi-stationary propagation of BEC matter waves through two dimensional cavities is investigated using numerical simulations within the mean-field approach of the Gross-Pitaevskii equation. The focus is on the interplay between interference effects and the interaction term in the non-linear wave equation. One sees that the transport properties show a complicated behaviour with multi-stability, hysteresis and dynamical instabilities for non-vanishing interaction. Furthermore, the prominent weak localization effect, which is a robust interference effect emerging after taking a configuration average, is reduced and partially inverted for non-vanishing interaction.
Vortons in two component Bose-Einstein condensates
Ever since Witten's paper on superconducting cosmic strings, there has been an interest in strings with a non-trivial core structure. In particular, it is believed that such strings can form loops, known as vortons, which are stabilized against shrinking by current and charge trapped on the string world-sheet. In this paper, we show that analogous non-trivial vortices and stable vortex loops exist in non-relativistic two-component atomic Bose-Einstein condensates. In contrast with well-studied superfluid 4He, where similar vortex rings can be stable due to Magnus force only if they move, the vortex rings in two-component BECs can be stable even if they are at rest. We speculate that such vortons may have been already observed in the laboratory. Thus, it may be possible to test predictions regarding vortons in cosmology and astrophysics by doing controlled experiments in two-component BECs. (author)
Quantum mass acquisition in spinor Bose-Einstein condensates.
Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito
2014-12-01
Quantum mass acquisition, in which a massless (quasi)particle becomes massive due to quantum corrections, is predicted to occur in several subfields of physics. However, its experimental observation remains elusive since the emergent energy gap is too small. We show that a spinor Bose-Einstein condensate is an excellent candidate for the observation of such a peculiar phenomenon as the energy gap turns out to be 2 orders of magnitude larger than the zero-point energy. This extraordinarily large energy gap is a consequence of the dynamical instability. The propagation velocity of the resultant massive excitation mode is found to be decreased by the quantum corrections as opposed to phonons. PMID:25526104
Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate
Li, Fei, E-mail: wiself@gmail.com [Hunan First Normal University, Department of Education Science (China); Zhang, Dongxia; Rong, Shiguang; Xu, Ying [Hunan University of Science and Technology, Department of Physics (China)
2013-11-15
The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.
Bell correlations in a Bose-Einstein condensate.
Schmied, Roman; Bancal, Jean-Daniel; Allard, Baptiste; Fadel, Matteo; Scarani, Valerio; Treutlein, Philipp; Sangouard, Nicolas
2016-04-22
Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements. PMID:27102479
Black Hole Horizons and Bose-Einstein Condensation
Ferrari, Frank
2016-01-01
Consider a particle sitting at a fixed position outside of a stable black hole. If the system is heated up, the black hole horizon grows and there should exist a critical temperature above which the particle enters the black hole interior. We solve a simple model describing exactly this situation: a large N matrix quantum mechanics modeling a fixed D-particle in a black hole background. We show that indeed a striking phenomenon occurs: above some critical temperature, there is a non-perturbative Bose-Einstein condensation of massless strings. The transition, even though precisely defined by the presence of the condensate, cannot be sharply detected by measurements made in a finite amount of time. The order parameter is fundamentally non-local in time and corresponds to infinite-time correlations.
Rydberg Electrons in a Bose-Einstein Condensate.
Wang, Jia; Gacesa, Marko; Côté, R
2015-06-19
We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic Bose-Einstein condensate (BEC). The coupling between Rydberg electrons and BEC atoms leads to excitations of phonons, the exchange of which induces a Yukawa interaction between Rydberg atoms. Because of the small electron mass, the effective charge associated with this quasiparticle-mediated interaction can be large. Its range, equal to the BEC healing length, is tunable using Feshbach resonances to adjust the scattering length between BEC atoms. We find that for small healing lengths, the distortion of the BEC can "image" the Rydberg electron wave function, while for large healing lengths the induced attractive Yukawa potentials between Rydberg atoms are strong enough to bind them. PMID:26196974
Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)
Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H
2016-01-01
Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.
Power spectrum for the Bose-Einstein condensate dark matter
Velten, Hermano
2011-01-01
We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.
Gravity, Bose-Einstein Condensates and Gross-Pitaevskii Equation
Gupta, Patrick Das
2015-01-01
We explore the effect of mutual gravitational interaction between ultra-cold gas atoms on the dynamics of Bose-Einstein condensates (BEC). Small amplitude oscillation of BEC is studied by applying variational technique to reduce the Gross-Pitaevskii equation, with gravity included, to the equation of motion of a particle moving in a potential. According to our analysis, if the s-wave scattering length can be tuned to zero using Feshbach resonance for future BEC with occupation numbers as high as $\\approx 10^{20}$, there exists a critical ground state occupation number above which the BEC is unstable, provided that its constituents interact with a $1/r^3 $ gravity at short scales.
Thermalization and Bose-Einstein Condensation in Overpopulated Glasma
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation
Knot Solitons in Spinor Bose-Einstein Condensates
Hall, David; Ray, Michael; Tiurev, Konstantin; Ruokokoski, Emmi; Gheorghe, Andrei Horia; Möttönen, Mikko
2016-05-01
Knots are familiar entities that appear at a captivating nexus of art, technology, mathematics and science. Following a lengthy period of theoretical investigation and development, they have recently attracted great experimental interest in classical contexts ranging from knotted DNA and nanostructures to vortex knots in fluids. We demonstrate here the controlled creation and detection of knot solitons in the quantum-mechanical order parameter of a spinor Bose-Einstein condensate. Images of the superfluid reveal the circular shape of the soliton core and its associated linked rings. Our observations of the knot soliton establish an experimental foundation for future studies of their stability, dynamics and applications within quantum systems. Supported in part by NSF Grant PHY-1205822.
Bose-Einstein condensation of dipolar excitons in quantum wells
Timofeev, V B; Gorbunov, A V, E-mail: timofeev@issp.ac.r [Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region (Russian Federation)
2009-02-01
The experiments on Bose-Einstein condensation (BEC) of dipolar (spatially-indirect) excitons in the lateral traps in GaAs/AlGaAs Schottky-diode heterostructures with double and single quantum wells are presented. The condensed part of dipolar excitons under detection in the far zone is placed in k-space in the range which is almost two orders of magnitude less than thermal exciton wave vector. BEC occurs spontaneously in a reservoir of thermalized excitons. Luminescence images of Bose-condensate of dipolar excitons exhibit along perimeter of circular trap axially symmetrical spatial structures of equidistant bright spots which strongly depend on excitation power and temperature. By means of two-beam interference experiments with the use of cw and pulsed photoexcitation it was found that the state of dipolar exciton Bose-condensate is spatially coherent and the whole patterned luminescence configuration in real space is described by a common wave function.
Power spectrum for the Bose-Einstein condensate dark matter
Velten, Hermano, E-mail: velten@physik.uni-bielefeld.de [Departamento de Fisica, UFES, Vitoria, 29075-910 Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, 33501 Bielefeld (Germany); Wamba, Etienne [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)
2012-03-13
We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo-Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15 MeV
Scanning Cryogenic Magnetometry with a Bose-Einstein Condensate
Straquadine, Joshua; Yang, Fan; Lev, Benjamin
2016-05-01
Microscopy techniques co-opted from nonlinear optics and high energy physics have complemented solid-state probes in elucidating exotic order manifest in condensed matter systems. We present a novel scanning magnetometer which adds the techniques of ultracold atomic physics to the condensed matter toolbox. Our device, the Scanning Quantum CRyogenic Atom Microscope (SQCRAMscope) uses a one-dimensional Bose-Einstein condensate of 87 Rb to image magnetic and electric fields near surfaces between room and cryogenic temperatures, and allows for rapid sample changes while retaining UHV compatibility for atomic experiments. We present our characterization of the spatial resolution and magnetic field sensitivity of the device, and discuss the advantages and applications of this magnetometry technique. In particular, we will discuss our plans for performing local transport measurements in technologically relevant materials such as Fe-based superconductors and topological insulators.
Nonlinear waves in coherently coupled Bose-Einstein condensates
Congy, T.; Kamchatnov, A. M.; Pavloff, N.
2016-04-01
We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies the dynamics of the elementary excitations. The spectrum has two branches, which are affected in different ways. The upper branch experiences a modulational instability, which is stabilized by a long-wave-short-wave resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small dispersion it is described by a Korteweg-de Vries equation or by the Gardner equation, depending on the value of the parameters of the system.
Matter-wave recombiners for trapped Bose-Einstein condensates
Berrada, T.; van Frank, S.; Bücker, R.; Schumm, T.; Schaff, J.-F.; Schmiedmayer, J.; Julía-Díaz, B.; Polls, A.
2016-06-01
Interferometry with trapped atomic Bose-Einstein condensates (BECs) requires the development of techniques to recombine the two paths of the interferometer and map the accumulated phase difference to a measurable atom number difference. We have implemented and compared two recombining procedures in a double-well-based BEC interferometer. The first procedure utilizes the bosonic Josephson effect and controlled tunneling of atoms through the potential barrier, similar to laser light in an optical fiber coupler. The second one relies on the interference of the reflected and transmitted parts of the BEC wave function when impinging on the potential barrier, analogous to light impinging on a half-silvered mirror. Both schemes were implemented successfully, yielding an interferometric contrast of ˜20 % and 42% respectively. Building efficient matter-wave recombiners represents an important step towards the coherent manipulation of external quantum superposition states of BECs.
Vortex dynamics in coherently coupled Bose-Einstein condensates
Calderaro, Luca; Massignan, Pietro; Wittek, Peter
2016-01-01
In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent ...
Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.
Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe
2009-09-25
We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493
Critical rotation of an anharmonically trapped Bose-Einstein condensate
Ma Juan; Li Zhi; Xue Ju-Kui
2009-01-01
We consider rotational motion of an interacting atomic Bose-Einstein condensate (BEC) with both two- and threebody interactions in a quadratic-plus-quartic and harmonic-plus-Gaussian trap. By using the variational method, the influence of the three-body interaction and the anharmonicity of the trap on the lowest energy surface mode excitation and the spontaneous shape deformation (responsible for the vortex formation) in a rotating BEC is discussed in detail. It is found that the repulsive three-body interaction helps the formation of the vortex and reduces the lowest energy surface mode frequency and the critical rotational frequency of the system. Moreover, the critical rotational frequency for the vortex formation in the harmonic-plus-Gaussian potential is lower than that in the quadratic-plus-quartic potential.
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.; Holthaus, Martin; Ooi, C. H. Raymond; Svidzinsky, Anatoly A.; Ketterle, Wolfgang; Scully, Marlan O.
2006-01-01
We review the phenomenon of equilibrium fluctuations in the number of condensed atoms in a trap containing N atoms total. We start with a history of the Bose-Einstein distribution, the Einstein-Uhlenbeck debate concerning the rounding of the mean number of condensed atoms near a critical temperature, and a discussion of the relations between statistics of BEC fluctuations in the grand canonical, canonical, and microcanonical ensembles. Next we discuss different approaches capable of providing...
Laser controlling chaotic region of a two-component Bose-Einstein condensate
Boli Xia; Wenhua Hai
2005-01-01
@@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.
Dynamics of a quantum phase transition in a ferromagnetic Bose-Einstein condensate
Damski, Bogdan; Zurek, Wojciech H.
2007-01-01
We discuss dynamics of a slow quantum phase transition in a spin-1 Bose-Einstein condensate. We determine analytically the scaling properties of the system magnetization and verify them with numerical simulations in a one dimensional model.
Nonexponential motional damping of impurity atoms in Bose-Einstein condensates
Mazets, I. E.; Kurizki, G.
2004-01-01
We demonstrate that the damping of the motion of an impurity atom injected at a supercritical velocity into a Bose-Einstein condensate can exhibit appreciable deviation from the exponential law on time scales of $10^{-5}$ s.
A Variational Sum-Rule Approach to Collective Excitations of a Trapped Bose-Einstein Condensate
Kimura, Takashi; Saito, Hiroki; Ueda, Masahito
1998-01-01
It is found that combining an excitation-energy sum rule with Fetter's trial wave function gives almost exact low-lying collective-mode frequencies of a trapped Bose-Einstein condensate at zero temperature.
Currents algebra for an atom-molecule Bose-Einstein condensate model
Filho, Gilberto N. Santos
2016-01-01
I present an interconversion currents algebra for an atom-molecule Bose-Einstein condensate model and use it to get the quantum dynamics of the currents. For different choices of the Hamiltonian parameters I get different currents dynamics.
Vortex Rings and Mutual Drag in Trapped Bose-Einstein Condensates
Jackson, B.; McCann, J F; Adams, C. S.
1999-01-01
We study the drag on an object moving through a trapped Bose-Einstein condensate, and show that finite compressibility leads to a mutual drag, which is subsequently suppressed by the formation of a vortex ring.
Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate
Yip, S. -K.
1999-01-01
The internal vortex structure of a trapped spin-1 Bose-Einstein condensate is investigated. It is shown that it has a variety of configurations depending on, in particular, the ratio of the relevant scattering lengths and the total magnetization.
LIU Shi-Kuo; GAO Bin; FU Zun-Tao; LIU Shi-Da
2009-01-01
In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.
Dark matter as the Bose-Einstein condensation in loop quantum cosmology
Atazadeh, K.; Darabi, F.; M. Mousavi
2016-01-01
We consider the FLRW universe in a loop quantum cosmological model filled with the radiation, baryonic matter (with negligible pressure), dark energy and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first order phase transition, has been already studied in the literature. Here, we study the evolution of the physical quantities related to the early unive...
Phase structure of Bose - Einstein condensate in ultra-cold Bose gases
The Bose-Einstein condensation of ultra-cold Bose gases in studied by means of the Cornwall-Jackiw-Tomboulis effective potential approach in the improved double - bubble approximation which preserves the Goldstone theorem. The phase structure of Bose-Einstein condensate associating with two different types of phase transition is systematically investigated. Its main feature is that the symmetry which was broken at zero temperature gets restored at higher temperature. (author)
Environment-induced dynamics in a dilute Bose-Einstein condensate
Schelle, Alexej
2009-01-01
We directly model the quantum many particle dynamics during the transition of a gas of N indistinguishable bosons into a Bose-Einstein condensate. To this end, we develop a quantitative quantum master equation theory, which takes into account two body interaction processes, and in particular describes the particle number fluctuations characteristic for the Bose-Einstein phase transition. Within the Markovian dynamics assumption, we analytically prove and numerically verify the Boltzmann ergod...
Transition of a mesoscopic bosonic gas into a Bose-Einstein condensate
Schelle, Alexej
2011-01-01
The condensate number distribution during the transition of a dilute, weakly interacting gas of N=200 bosonic atoms into a Bose-Einstein condensate is modeled within number conserving master equation theory of Bose-Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs-Boltzmann equilibrium.
Generation of linear waves in the flow of Bose-Einstein condensate past an obstacle
Gladush, Yu. G.; Kamchatnov, A. M.
2007-01-01
The theory of linear wave structures generated in Bose-Einstein condensate flow past an obstacle is developed. The shape of wave crests and dependence of amplitude on coordinates far enough from the obstacle are calculated. The results are in good agreement with the results of numerical simulations obtained earlier. The theory gives a qualitative description of experiments with Bose-Einstein condensate flow past an obstacle after condensate's release from a trap.
Macroscopic Entanglement of a Bose Einstein Condensate on a Superconducting Atom Chip
Singh, Mandip
2007-01-01
We propose and analyse a practically implementable scheme to generate macroscopic entanglement of a Bose-Einstein condensate in a micro-magnetic trap magnetically coupled to a superconducting loop. We treat the superconducting loop in a quantum superposition of two different flux states coupled with the magnetic trap to generate macroscopic entanglement. Our scheme also provides a platform to realise interferometry of entangled atoms through the Bose-Einstein condensate and to explore physics...
Laser-induced Rotation of a Trapped Bose-Einstein Condensate
Marzlin, Karl-Peter; Zhang, Weiping
1997-01-01
In this letter, atom optic techniques are proposed to control the excitation of a Bose-Einstein condensate in an atomic trap. We show that by employing the dipole potential induced by four highly detuned travelling-wave laser beams with appropriate phases and frequencies, one can coherently excite a trapped Bose-Einstein condensate composed of ultracold alkali atoms into a state rotating around the trap center. The connection to vortex states is discussed.
Vortex Stability Near the Surface of a Bose-Einstein Condensate
Khawaja, U. Al
2003-01-01
We investigate energetic stability of vortices near the surface of a Bose-Einstein condensate. From an energy functional of a rotating Bose-Einstein condensate, written in terms of variables local to the surface, and a suitable trial wavefunction we calculate the energy of a moving vortex. The energetic stability of the vortex is investigated in terms of the rotation frequency of the confining potential. The critical frequency at which the vortices enter the condensate is calculated and compa...
Composite structure of vortices in two-component Bose-Einstein condensate
Ivashin Anatoly P.; Poluektov Yuri M.
2015-01-01
In contrast to one-component Bose-Einstein condensate case, the vortices in two-component condensate can have various complicated structures. The vortices in a space-homogeneous Bose-Einstein condensate have been studied in this paper. It is shown that the vortex structure is described by three dimensionless parameters. This is totally different from the usual one-component condensate case,where an isolated vortex is described by a parameterless dimensionless equation....