WorldWideScience

Sample records for boron nitride thin

  1. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  2. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  3. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  4. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  5. Characterization of boron nitride thin films prepared from a polymer precursor

    International Nuclear Information System (INIS)

    Chan, V.Z.; Rothman, J.B.; Palladino, P.; Sneddon, L.G.; Composto, R.J.

    1996-01-01

    Excellent quality boron nitride (BN) thin films on silicon have been produced by a simple procedure involving spincoating solutions of the open-quote open-quote single-source close-quote close-quote polymeric-precursor polyborazylene, (B 3 N 3 H ∼4 ) x , on a silicon substrate, followed by pyrolysis at 900 degree C. Rutherford backscattering spectrometry (RBS) indicates that the B/N ratios are 1.37 and 1.09 for conversions carried out in a vacuum oven at 900 and 1250 degree C, respectively. Forward recoil spectrometry (FRES) showed that the atomic percent of residual hydrogen is 10 and 9%, respectively. Plain-view and cross-sectional scanning electron microscopy (SEM) studies showed that the samples annealed at 900 degree C were clean and uniform in thickness. A thickness of 800x10 15 atoms/cm 2 was determined by ion scattering. Films annealed to 1250 degree C likewise showed a continuous unbroken boron nitride layer, but also exhibited morphological features resulting from reactions of the underlying silicon oxide-silicon interface in the substrate. Auger electron spectroscopy and atomic force microscopy showed that the BN coating produced at this higher temperature remained unbroken but had a surface area of ∼15% covered by dimples 2 endash 7 nm in depth. Compared to typical films made by chemical vapor deposition, BN films produced from this open-quote open-quote single-source close-quote close-quote method have lower hydrogen and carbon concentrations. copyright 1996 Materials Research Society

  6. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  7. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  8. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  9. Structural and optical properties of amorphous oxygenated iron boron nitride thin films produced by reactive co-sputtering

    International Nuclear Information System (INIS)

    Essafti, A.; Abouelaoualim, A.; Fierro, J.L.G.; Ech-chamikh, E.

    2009-01-01

    Amorphous oxygenated iron boron nitride (a-FeBN:O) thin films were prepared by reactive radio-frequency (RF) sputtering, from hexagonal boron nitride chips placed on iron target, under a total pressure of a gas mixture of argon and oxygen maintained at 1 Pa. The films were deposited onto silicon and glass substrates, at room temperature. The power of the generator RF was varied from 150 to 350 W. The chemical and structural analyses were investigated using X-ray photoelectron spectroscopy (XPS), energy dispersive of X-ray and X-ray reflectometry (XRR). The optical properties of the films were obtained from the optical transmittance and reflectance measurements in the ultraviolet-visible-near infrared wavelengths range. XPS reveals the presence of boron, nitrogen, iron and oxygen atoms and also the formation of different chemical bonds such as Fe-O, B-N, B-O and the ternary BNO phase. This latter phase is predominant in the deposited films as observed in the B 1s and N 1s core level spectra. As the RF power increases, the contribution of N-B bonds in the as-deposited films decreases. The XRR results show that the mass density of a-FeBN:O thin films increases from 2.6 to 4.12 g/cm 3 with increasing the RF power from 150 to 350 W. This behavior is more important for films deposited at RF power higher than 150 W, and has been associated with the enhancement of iron atoms in the film structure. The optical band gap decreases from 3.74 to 3.12 eV with increasing the RF power from 150 to 350 W.

  10. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  11. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  12. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  13. Humidity effects on the electrical properties of hexagonal boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie/CNRS UMR 8520, Cite Scientifique, Avenue Poincare, 59652 Villeneuve d' Ascq (France)]. E-mail: ali.soltani@iemn.univ-lille1.fr; Thevenin, P. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France); Bakhtiar, H. [Faculty of Science, Physics Department, Technology University of Malaysia, Karung Berkunci 791, 80990, Johor Bahru, Johor (Malaysia); Bath, A. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France)]. E-mail: bath@metz.supelec.fr

    2005-01-03

    Thin films of hexagonal boron nitride (h-BN) were grown by a plasma enhanced chemical vapour deposition (PECVD) technique. The quality of the films was assessed by infrared spectroscopy, microRaman spectroscopy as a function of annealing temperature and by X-ray photoelectron spectroscopy. The films proved to be thermally stable up to 1370 K. Current-voltage measurements were performed, as a function of humidity, using metal-insulator-semiconductor and metal-insulator-metal structures. Typical resistivities were found in the range 10{sup 13}-10{sup 14} {omega} cm in dry air and exhibit high sensitivity against humidity. The influence of the mean orientation of the c-axis of the BN films was considered. Sawtooth voltage pulse trains were also applied. Threshold switching phenomena were observed, but only in atmosphere containing humidity. The values of the switching voltages depend strongly on the relative humidity (RH), on the characteristics of the applied sawtooth voltage pulse trains, as well as on the nature of the metallic electrode.

  14. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  15. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Glavin, Nicholas R. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Jespersen, Michael L. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Check, Michael H. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Hu, Jianjun [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Hilton, Al M. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Wyle Laboratories, Dayton, OH 45433 (United States); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, Andrey A. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States)

    2014-12-01

    Pulsed laser deposition (PLD) has been investigated as a technique for synthesis of ultra-thin, few-layer hexagonal boron nitride (h-BN) thin films on crystalline highly ordered pyrolytic graphite (HOPG) and sapphire (0001) substrates. The plasma-based processing technique allows for increased excitations of deposited atoms due to background nitrogen gas collisional ionizations and extended resonance time of the energetic species presence at the condensation surface. These processes permit growth of thin, polycrystalline h-BN at 700 °C, a much lower temperature than that required by traditional growth methods. Analysis of the as-deposited films reveals epitaxial-like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h-BN film, and amorphous BN (a-BN) on the sapphire substrates, both with thicknesses of 1.5–2 nm. Stoichiometric films with boron-to-nitrogen ratios of unity were achieved by adjusting the background pressure within the deposition chamber and distance between the target and substrate. The reduction in deposition temperature and formation of stoichiometric, large-area h-BN films by PLD provide a process that is easily scaled-up for two-dimensional dielectric material synthesis and also present a possibility to produce very thin and uniform a-BN. - Highlights: • PLD was used to synthesize boron nitride thin films on HOPG and sapphire substrates. • Lattice matched substrate allowed for formation of polycrystalline h-BN. • Nitrogen gas pressure directly controlled film chemistry and structure. • Technique allows for ultrathin, uniform films at reduced processing temperatures.

  16. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  17. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  18. Apatite formability of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Keshri, Anup K; Agarwal, Arvind; Singh, Virendra; Seal, Sudipta

    2011-01-01

    This study investigates the ability of boron nitride nanotubes (BNNTs) to induce apatite formation in a simulated body fluid environment for a period of 7, 14 and 28 days. BNNTs, when soaked in the simulated body fluid, are found to induce hydroxyapatite (HA) precipitation on their surface. The precipitation process has an initial incubation period of ∼ 4.6 days. The amount of HA precipitate increases gradually with the soaking time. High resolution TEM results indicated a hexagonal crystal structure of HA needles. No specific crystallographic orientation relationship is observed between BNNT and HA, which is due to the presence of a thin amorphous HA layer on the BNNT surface that disturbs a definite orientation relationship.

  19. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  20. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  1. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  2. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  3. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  4. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  5. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  6. Influence of heat treatment on field emission characteristics of boron nitride thin films

    International Nuclear Information System (INIS)

    Li Weiqing; Gu Guangrui; Li Yingai; He Zhi; Feng Wei; Liu Lihua; Zhao Chunhong; Zhao Yongnian

    2005-01-01

    Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 x 10 -4 Pa and the temperature of 800 and 1000 deg. C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 deg. C and disappeared at temperature of 1000 deg. C

  7. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  8. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  9. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  10. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  11. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  12. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  13. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  14. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  15. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  16. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  17. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics

    Science.gov (United States)

    KC, Pratik; Rai, Amit; Ashton, Taylor S.; Moore, Arden L.

    2017-12-01

    The ability of graphene to serve as an ultrathin heat spreader has been previously demonstrated with impressive results. However, graphene is electrically conductive, making its use in contact with electronic devices problematic from a reliability and integration perspective. As an alternative, hexagonal boron nitride (h-BN) is a similarly structured material with large in-plane thermal conductivity but which possesses a wide band gap, thereby giving it potential to be utilized for directing contact, near-junction thermal management of electronics without shorting or the need for an insulating intermediate layer. In this work, the viability of using large area, continuous h-BN thin films as direct contact, near-junction heat spreaders for electronic devices is experimentally evaluated. Thin films of h-BN several square millimeters in size were synthesized via an atmospheric pressure chemical vapor deposition (APCVD) method that is both simple and scalable. These were subsequently transferred onto a microfabricated test device that simulated a multigate transistor while also allowing for measurements of the device temperature at various locations via precision resistance thermometry. Results showed that these large-area h-BN films with thicknesses of 77-125 nm are indeed capable of significantly lowering microdevice temperatures, with the best sample showing the presence of the h-BN thin film reduced the effective thermal resistance by 15.9% ± 4.6% compared to a bare microdevice at the same power density. Finally, finite element simulations of these experiments were utilized to estimate the thermal conductivity of the h-BN thin films and identify means by which further heat spreading performance gains could be attained.

  18. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  19. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  20. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  1. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  2. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Gangopadhyay, S.; Jones, Burton; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  3. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-12-17

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  4. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Page 1 ... 1. Introduction. Boron nitride nanotubes (BNNTs) are like carbon nanotubes. (CNTs) in structure in which carbon atoms are replaced by alternate boron and nitrogen atoms. Thus, BNNTs demon- ... istic analyser for intermediate landing situation of inserted mass.15 Also, a macroscopic continuum simulation is sug-.

  5. MOCVD of hexagonal boron nitride thin films on Si(100) using new single source precursors

    CERN Document Server

    Boo, J H; Yu, K S; Kim, Y S; Kim, Y S; Park, J T

    1999-01-01

    We have been carried out the growth of hexagonal boron nitride (h-BN) thin films on Si(100) substrates by low pressure metal-organic chemical vapor deposition (LPMOCVD) method using triethylborane tert-butylamine complex (TEBTBA), Et sub 3 BNH sub 2 ( sup t Bu), and triethylborane isopropylamine complex (TEBIPA), Et sub 3 BNH sub 2 ( sup t Pr) as a new single molecular precursors in the temperature range of 850 approx 1000 .deg. C. polycrystalline, crack-free h-BN film was successfully grown on Si(100) substrate at 850 .deg. C using TEBTBA. This growth temperature is very lower than those in previous reports. Carbon-rich polycrystalline BN was also obtained at 900 .deg. C from TEBIPA. With increasing substrate temperature to 1000 .deg. C, however, BC sub 4 N-like species are strongly formed along with h-BN and the BN films obtained from both TEBTBA and TEBIPA but almost polycrystalline. To our best knowledge, this is the first report of the growth of h-BN films formed with the new single source precursors of ...

  6. Structure of boron nitride after the high-temperature shock compression

    International Nuclear Information System (INIS)

    Kurdyumov, A.V.; Ostrovskaya, N.F.; Pilipenko, V.A.; Pilyankevich, A.N.; Savvakin, G.I.; Trefilov, V.I.

    1979-01-01

    Boron nitride structure changes as a result of high temperature dynamic compression are studied. The X-ray technique and transmission electron microscopy have been applied. The data on the structure and regularities of formation of diamond-like modifications of boron nitride at high temperature impact compression permit to consider martensite transformation as the first stage of formation of the sphalerite phase stable at high pressures. The second stage is possible if the temperature at the impact moment is sufficiently high for intensive diffusion processes

  7. Catalytic growth of vertically aligned neutron sensitive 10Boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Khan, Ghulamullah; Ramay, Shahid M.; Mahmood, Asif; Amin, Muhammad; Muhammad, Nawshad

    2016-01-01

    10 Boron nitride nanotubes ( 10 BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned 10 BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned 10 BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned 10 BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of 10 BNNT. HR-TEM shows tubular morphology of the synthesized 10 BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal 10 Boron nitride ( 10 h-BN) nature of the synthesized 10 BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm −1 ) that corresponds to E 2g mode of vibration in 10 h-BN

  8. The preparation of high-adsorption, spherical, hexagonal boron nitride by template method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2014-11-15

    Highlights: • The high-adsorption, spherical, hexagonal boron nitride powders were prepared. • The influence mechanism of template content on the micro-morphology and adsorption was explored. • At appropriate synthesis temperature, higher adsorption mesoporous spheres h-BN began to form. - Abstract: This research used low-cost boric acid and borax as a source of boron, urea as a nitrogen source, dodecyl-trimethyl ammonium chloride (DTAC) as a template, and thus prepared different micro-morphology hexagonal boron nitride powders under a flowing ammonia atmosphere at different nitriding temperatures. The effects of the template content and nitriding temperature on the micro-morphology of hexagonal boron nitride were studied and the formation mechanism analysed. The influences of the template content and nitriding temperature on adsorption performance were also explored. The results showed that at a nitriding temperature of 675 °C, the micro-morphologies of h-BN powder were orderly, inhomogeneous spherical, uniform spherical, beam, and pie-like with increasing template content. The micro-morphology was inhomogeneous spherical at a DTAC dose of 7.5%. The micro-morphology was uniform spherical at a DTAC dose of 10%. At a DTAC dose of 12%, the micro-morphology was a mixture of beam and pie-like shapes. At a certain template content (DTAC at 10%) and at lower nitriding temperatures (625 °C and 650 °C), spherical shell structures with surface subsidence began to form. The porous spheres would appear at a nitriding temperature of 675 °C, and the ball diameter thus formed was approximately 500–600 nm. The ball diameter was about 600–700 nm when the nitriding temperature was 700 °C. At a nitriding temperature of 725 °C, the ball diameter was between 800 and 1000 nm and sintering necking started to form. When the relative pressure was higher, previously closed pores opened and connected with the outside world: the adsorption then increased significantly. The

  9. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  10. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  11. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  12. Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes

    International Nuclear Information System (INIS)

    Saxena, Prapti; Sanyal, Sankar P

    2006-01-01

    In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)

  13. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  14. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  15. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  16. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  17. CVD boron nitride infiltration of fibrous structures: properties of low temprature deposits

    International Nuclear Information System (INIS)

    Gebhardt, J.J.

    1973-01-01

    The pyrolytic infiltration of boron nitride and silica fibrous structures with boron nitride was investigated using the thermal decomposition of B-trichloroborazole (TCB) to provide the matrix surrounding felted and 4-directional braided constructions. The deposition precursor was generated on a continuous basis by the reaction between boron trichloride and ammonium chloride in a fixed bed reactor under conditions of total conversion of the trichloride: 3BCl 3 + 3NH 4 Cl = B 3 N 3 H 3 Cl 3 + 9HCl. Deposition rates in boron nitride felt specimens varied between 8 and 28 μm/h, depending on the distance from the exterior surface at the minimum deposition temperature used (1100 0 C ). Infiltration of 4-directional silica braids was poorer because of clogging of the fiber bundle surfaces and access paths to voids in the weave. Deposits prepared at 1100 0 C and above were stable to moisture and consisted of glassy transparent materials which had no discernible x-ray diffraction pattern. Heat treatment of low temperature deposits in nitrogen at 1800 0 C caused significant growth of the crystallites and the emergence of x-ray patterns characteristic of hexagonal boron nitride. Heat treatment in vacuum caused changes in the infrared spectrum which could be correlated with mass analyses of the gases evolved. Loss of hydrogen with amines predominated to about 1500 0 C above which point the loss of nitrogen became significant. (14 figures) (U.S.)

  18. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  19. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  20. The structure and dynamics of boron nitride nanoscrolls

    International Nuclear Information System (INIS)

    Perim, Eric; Galvao, Douglas S

    2009-01-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  1. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    International Nuclear Information System (INIS)

    Majidi, R.; Ghafoori Tabrizi, K.; Jalili, S.

    2009-01-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  2. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Ghafoori Tabrizi, K., E-mail: K-TABRIZI@sbu.ac.i [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Jalili, S. [Department of Chemistry, K.N. Toosi University of Technology, Tehran 16315-1618 (Iran, Islamic Republic of)

    2009-11-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  3. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  4. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    International Nuclear Information System (INIS)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-01-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol"−"1 and − 2457.124 kcal mol"−"1 respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol"−"1 which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol"−"1) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  5. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  6. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    Science.gov (United States)

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  7. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa. Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1 stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  8. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  9. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    Science.gov (United States)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  10. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    Science.gov (United States)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  11. Phase transitions to 120 GPa for shock-compressed pyrolytic and hot-pressed boron nitride

    International Nuclear Information System (INIS)

    Gust, W.H.; Young, D.A.

    1977-01-01

    Shock-compression characteristics of two types of hexagonal graphitelike boron nitride have been investigated. Highly oriented very pure pyrolytic boron nitride exhibits shock-velocity versus particle-velocity discontinuities that appear to be manifestations of the initiation of a sluggish phase transition. This transition begins at 20 GPa and is driven to completion (melting) at 75 GPa. Discontinuities in the plot for impure hot-pressed boron nitride indicate initiation at 10 GPa and completion at 20 GPa. The (U/sub s/, U/sub p/) plots follow essentially the same paths for 4.0 < U/sub p/ < 5.2 km/sec. No evidence for a transition to a metalliclike state was seen. Temperature calculations indicate that the material is liquid above approx.80 GPa

  12. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  13. Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Fahy, S.; Taylor, C.A. II and; Clarke, R.

    1997-01-01

    Experimental and theoretical investigations of the infrared-active, polarization-dependent phonon frequencies of cubic boron nitride films have been performed in light of recent claims that large frequency shifts during initial nucleation are the result of strain caused by highly nonequilibrium growth conditions. We show that the formation of small, separate grains of cubic boron nitride during the initial growth leads to a frequency shift in the infrared-active transverse-optic mode, polarized normal to the substrate, which is opposite in sign and twice the magnitude of the shift for modes polarized parallel to the substrate. In contrast, film strain causes a frequency shift in the mode polarized normal to the substrate, which is much smaller in magnitude than the frequency shift for modes polarized parallel to the substrate. Normal and off-normal incidence absorption measurements, performed at different stages of nucleation and growth, show that large frequency shifts in the transverse-optic-phonon modes during the initial stage of growth are not compatible with the expected effects of strain, but are in large part due to nucleation of small isolated cubic BN grains which coalesce to form a uniform layer. Numerical results from a simple model of island nucleation and growth are in good agreement with experimental results. copyright 1997 The American Physical Society

  14. Catalytic growth of vertically aligned neutron sensitive {sup 10}Boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz, E-mail: pervaizahmad@siswa.um.edu.my, E-mail: Pervaiz-pas@yahoo.com; Khandaker, Mayeen Uddin, E-mail: mu-khandaker@yahoo.com, E-mail: mu-khandaker@um.edu.my; Amin, Yusoff Mohd [University of Malaya, Department of Physics, Faculty of Science (Malaysia); Khan, Ghulamullah [University of Malaya, Department of Mechanical Engineering (Malaysia); Ramay, Shahid M. [King Saud University, Department of Physics and Astronomy, College of Science (Saudi Arabia); Mahmood, Asif [King Saud University, Department of Chemical Engineering, College of Engineering (Saudi Arabia); Amin, Muhammad [University of the Punjab, Department of Physics (Pakistan); Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (Pakistan)

    2016-01-15

    {sup 10}Boron nitride nanotubes ({sup 10}BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned {sup 10}BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned {sup 10}BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned {sup 10}BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of {sup 10}BNNT. HR-TEM shows tubular morphology of the synthesized {sup 10}BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal {sup 10}Boron nitride ({sup 10}h-BN) nature of the synthesized {sup 10}BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm{sup −1}) that corresponds to E{sub 2g} mode of vibration in {sup 10}h-BN.

  15. Effect of heat conditions on the mechanical properties of boron nitride polycrystals

    International Nuclear Information System (INIS)

    Bochko, A.V.

    1986-01-01

    This paper examines the effect of various types of heat treatment on the mechanical and service properties of polycrystals of boron nitride. Quantitative phase analysis was carried out using the methods described when using a DRON-2.0 x-ray diffractometer. The mechanical characteristics were determined by the method of local loading using the standard nitride polycrystals in the initial state are quite high. On the basis of the results it may be concluded that the heat treatment conditions examined (annealing, hf heating, annealing and hf heating) lead to the same changes in the structural state as those taking place in thermal cycling thus causing the corresponding reduction of the level of the strength properties of the boron nitride polycrystals

  16. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  17. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  18. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  19. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  20. Toward Edge-Defined Holey Boron Nitride Nanosheets

    Science.gov (United States)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  1. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films

    International Nuclear Information System (INIS)

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Lebedev, V; Nebel, C E; Ambacher, O; Williams, O A

    2013-01-01

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10 8 cm −2 ), in the case of hydrogen-treated ND seeding particles, to very high values of 10 11 cm −2 for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young’s moduli of more than 1000 GPa. (paper)

  2. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics

    KAUST Repository

    Zhang, Kai; Yap, Fungling; Li, Kun; Ng, Changtai; Li, Linjun; Loh, Kianping

    2013-01-01

    Vertical integration of hexagonal boron nitride (h-BN) and graphene for the fabrication of vertical field-effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining

  3. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L 9 (3 4 ). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  4. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  5. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  6. A novel theranostic nanobioconjugate. "1"2"5/"1"3"1I labeled phenylalanine conjugated boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ozge Kozgus Guldu; Perihan Unak; Suna Timur

    2017-01-01

    Here we report the synthesis of boron nitride nanotubes (BNNTs) via a chemical vapor deposition method, as potential agents for boron neutron capture therapy. BNNTs were functionalized with PAMAM[G-2] dendrimer and then, conjugated with l-Phe using EDC/NHS. After that, BNNTs were radiolabeled with "1"2"5/"1"3"1I, which are commonly used for both therapy and diagnosis in clinical and pre-clinical studies. BNNTs were radiolabeled with a maximum yield with "1"2"5/"1"3"1I in compared with 4-borono-l-phenyalanine which is currently used as a commercial drug. Radiolabeling parameters were optimized with thin layer radiochromatography and high performance liquid radiochromatography. BNNTs are promising nanobioconjugates as new theranostic agents. (author)

  7. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    Science.gov (United States)

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evolution of magnetism by rolling up hexagonal boron nitride nanosheets tailored with superparamagnetic nanoparticles.

    Science.gov (United States)

    Hwang, Da Young; Choi, Kyoung Hwan; Park, Jeong Eon; Suh, Dong Hack

    2017-02-01

    Controlling tunable properties by rolling up two dimensional nanomaterials is an exciting avenue for tailoring the electronic and magnetic properties of materials at the nanoscale. We demonstrate the tailoring of a magnetic nanocomposite through hybridization with magnetic nanomaterials using hexagonal boron nitride (h-BN) templates as an effective way to evolve magnetism for the first time. Boron nitride nanosheets exhibited their typical diamagnetism, but rolled-up boron nitride sheets (called nanoscrolls) clearly have para-magnetism in the case of magnetic susceptibility. Additionally, the Fe 3 O 4 NP sample shows a maximum ZFC curve at about 103 K, which indicates well dispersed superparamagnetic nanoparticles. The ZFC curve for the h-BN-Fe 3 O 4 NP scrolls exhibited an apparent rounded maximum blocking temperature at 192 K compared to the Fe 3 O 4 NPs, leading to a dramatic increase in T B . These magnetic nanoscroll derivatives are remarkable materials and should be suitable for high-performance composites and nano-, medical- and electromechanical-devices.

  9. Experimental core electron density of cubic boron nitride

    DEFF Research Database (Denmark)

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse

    as well as experimental result. The redistribution of electron density will, if not accounted for, result in increased thermal parameters. It is estimated that 1.7-2 electrons is transferred from boron to nitrogen. [1]: N. Bindzus, T. Straasø, N. Wahlberg, J. Becker, L. Bjerg, N. Lock, A.-C. Dippel, and B......Experimental core electron density of cubic boron nitride Nanna Wahlberg*, Niels Bindzus*, Lasse Bjerg*, Jacob Becker*, and Bo B. Iversen* *Aarhus University, Department of Chemistry, CMC, Langelandsgade 140, 8000 Århus, Denmark The resent progress in powder diffraction provides data of quality...... obtained. The displacement parameters reported here are significantly lower than those previously reported, stressing the importance of an adequate description of the core density. The charge transfer from boron to nitrogen clearly affects the inner electron density, which is evident from theoretical...

  10. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  11. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  12. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  13. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    International Nuclear Information System (INIS)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-01-01

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  14. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    Energy Technology Data Exchange (ETDEWEB)

    Seyed-Talebi, Seyedeh Mozhgan [Shahid Chamran University, Golestan boulevard, Ahvaz, Khouzestan (Iran, Islamic Republic of); Neek-Amal, M., E-mail: neekamal@srttu.edu [Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of)

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  15. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  16. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  17. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  18. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    Science.gov (United States)

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  19. single-walled boron nitride nanotube for use as biosensor or in

    Indian Academy of Sciences (India)

    Vitamin C; vitamin B3; density functional theory; boron nitride nanotube (BNNT). 1. Introduction ... and disadvantages of functionalizations of BNNTs for increasing their ... a protein that gives structure to bones, cartilage, muscle and blood ...

  20. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  1. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  2. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  3. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  4. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.; Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized

  5. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  6. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  7. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  8. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  9. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  10. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  11. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  12. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  13. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    International Nuclear Information System (INIS)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies

  14. Dependence of some characteristics of granulated wurtzite boron nitride powders on conditions of their production

    International Nuclear Information System (INIS)

    Volkogon, V.M.

    1986-01-01

    Compaction of wurtzite boron nitride powders (both pure and with plasticizers) by different methods is studied for its peculiarities. Compaction of powders in all cases is established to obey basic regularities of compaction. Such physical and technological characteristics of wurtzite boron nitride powders granulated after preliminary compaction as specific surface, bulk weight and yield point are studied. It is shown that properties of these powders depend on the method of their compaction prior to granulation. Powders produced after preliminary compaction of initial BN W powders under high static and dynamic pressures possess the best characteristics

  15. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  16. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    Science.gov (United States)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  17. Boron nitride nanotubes as a reinforcement for brittle matrices

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Porwal, H.; Saggar, Richa; Chlup, Zdeněk; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3339-3349 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Amorphous borosilicate glass * Boron nitride nanotubes * Composite * Toughening mechanisms * Scratch resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  18. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  19. Unveiling the Structural Origin of the High Carrier Mobility of a Molecular Monolayer on Boron Nitride

    OpenAIRE

    Xu, Rui; He, Daowei; Zhang, Yuhan; Wu, Bing; Liu, Fengyuan; Meng, Lan; Liu, Jun-Fang; Wu, Qisheng; Shi, Yi; Wang, Jinlan; Nie, Jia-Cai; Wang, Xinran; He, Lin

    2014-01-01

    Very recently, it was demonstrated that the carrier mobility of a molecular monolayer dioctylbenzothienobenzothiophene (C8-BTBT) on boron nitride can reach 10 cm2/Vs, the highest among the previously reported monolayer molecular field-effect transistors. Here we show that the high-quality single crystal of the C8-BTBT monolayer may be the key origin of the record-high carrier mobility. We discover that the C8-BTBT molecules prefer layer-by-layer growth on both hexagonal boron nitride and grap...

  20. Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Fischnaller, Martin; Köck, Rainer; Bakry, Rania, E-mail: rania.bakry@uibk.ac.at; Bonn, Günther K.

    2014-05-01

    Highlights: • Protein tryptic digests were desalted and enriched utilizing hexagonal boron nitride. • Phosphopeptides were desalted with high recovery rates. • Boron nitride exhibits high wettability allowing fast sample preparation. • Boron nitride shows protein depletion capability applied for peptide purification. - Abstract: Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.

  1. Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride

    International Nuclear Information System (INIS)

    Fischnaller, Martin; Köck, Rainer; Bakry, Rania; Bonn, Günther K.

    2014-01-01

    Highlights: • Protein tryptic digests were desalted and enriched utilizing hexagonal boron nitride. • Phosphopeptides were desalted with high recovery rates. • Boron nitride exhibits high wettability allowing fast sample preparation. • Boron nitride shows protein depletion capability applied for peptide purification. - Abstract: Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling

  2. Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Oezdogan, Kemal; Berber, Savas [Physics Department, Gebze Institute of Technology, Cayirova Kampusu, Gebze, 41400 Kocaeli (Turkey)

    2009-06-15

    We use ab initio density functional theory calculations to study the interaction of hydrogen with vacancies in boron nitride nanotubes to optimize the hydrogen storage capacity through defect engineering. The vacancies reconstruct by forming B-B and N-N bonds across the defect site, which are not as favorable as heteronuclear B-N bonds. Our total energy and structure optimization results indicate that the hydrogen cleaves these reconstructing bonds to form more stable atomic structures. The hydrogenated defects offer smaller charge densities that allow hydrogen molecule to pass through the nanotube wall for storing hydrogen inside the nanotubes. Our optimum reaction pathway search revealed that hydrogen molecules could indeed go through a hydrogenated defect site with relatively small energy barriers compared to the pristine nanotube wall. The calculated activation energies for different diameters suggest a preferential diameter range for optimum hydrogen storage in defective boron nitride nanotubes. (author)

  3. Simulation of STM technique for electron transport through boron-nitride nanotubes

    International Nuclear Information System (INIS)

    Ganji, M.D.; Mohammadi-nejad, A.

    2008-01-01

    We report first-principles calculations on the electrical transport properties of boron-nitrid nanotubes (BNNTs). We consider a single walled (5,0) boron-nitrid nanotube sandwiched between an Au(1 0 0) substrate and a monatomic Au scanning tunneling microscope (STM) tip. Lateral motion of the tip over the nanotube wall cause it to change from one conformation class to the others and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BNNT/Au nanowires are shown to be a convenient switch. Experiments with a conventional STM are proposed to test these predictions. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe systems at zero bias are analyzed, and it suggests that the variation of the coupling between the wire and the electrodes leads to switching behaviour

  4. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    Science.gov (United States)

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  5. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  6. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  7. The mechanical design of hybrid graphene/boron nitride nanotransistors: Geometry and interface effects

    Science.gov (United States)

    Einalipour Eshkalak, Kasra; Sadeghzadeh, Sadegh; Jalaly, Maisam

    2018-02-01

    From electronic point of view, graphene resembles a metal or semi-metal and boron nitride is a dielectric material (band gap = 5.9 eV). Hybridization of these two materials opens band gap of the graphene which has expansive applications in field-effect graphene transistors. In this paper, the effect of the interface structure on the mechanical properties of a hybrid graphene/boron nitride was studied. Young's modulus, fracture strain and tensile strength of the models were simulated. Three likely types (hexagonal, octagonal and decagonal) were found for the interface of hybrid sheet after relaxation. Although Csbnd B bonds at the interface were indicated to result in more promising electrical properties, nitrogen atoms are better choice for bonding to carbon for mechanical applications.

  8. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    Science.gov (United States)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  9. Cubic boron nitride (cBN) - A new material for advanced optoelectronic devices. Properties and perspectives

    International Nuclear Information System (INIS)

    Nistor, S.V.; Nistor, L.C.; Dinca, G.

    2001-01-01

    Cubic boron nitride (cBN) exhibits, besides exceptional thermal and mechanical properties similar to diamond, an excellent ability to be n or p doped, which makes it a strong candidate for advanced, high - temperature optical and microelectronic devices. Despite its outstanding characteristics, there are quite a few reports concerning the physical properties of cBN. This is partly due to the absence of natural cBN gems and the extreme difficulties in producing enough large (mm 3 sized) single crystals, or single phase thin films, for physical characterization. The state of the art knowledge concerning the basic properties of crystalline cBN, as well as our recent results of microstructure and defect properties studies will be presented. (authors)

  10. Shock compression behavior of a mixture of cubic and hexagonal boron nitride

    Science.gov (United States)

    Hu, Xiaojun; Yang, Gang; Zhao, Bin; Li, Peiyun; Yang, Jun; Leng, Chunwei; Liu, Hanyu; Huang, Haijun; Fei, Yingwei

    2018-05-01

    We report Hugoniot measurements on a mixture of cubic boron nitride (cBN) and hexagonal boron nitride (hBN, ˜10% in weight) to investigate the shock compression behavior of BN at Hugoniot stresses up to 110 GPa. We observed a discontinuity at ˜77 GPa along the Hugoniot and interpreted it as the manifestation of the shock-induced phase transition of hBN to cBN. The experimental stress at 77-110 GPa shows significant deviation from the hydrodynamic Hugoniot of cBN calculated using the Mie-Grüneisen model coupled with the reported 300 K-isotherms of cBN. Our investigation reveals that material strength in cBN increases with the experimental stress at least up to 110 GPa. The material strength might be preserved at higher stress if we consider the previously reported high stress data.

  11. Covalent Surface Functionalization of Boron Nitride Nanotubes Fabricated with Diazonium Salt

    Directory of Open Access Journals (Sweden)

    Zhujun Wang

    2018-01-01

    Full Text Available The chemical inertness and poor wetting properties of boron nitride nanotubes (BNNTs hindered their applications. In this work, BNNTs have been functionalized with aniline groups by reacting with diazonium salt and the graft content of aniline component was calculated as high as 71.4 wt.%. The chemical structure, composition, and morphology of functionalized BNNTs were carefully characterized to illustrate the modification. The anilinocarbocation generated by decomposition of diazonium salt reacted not only with NH2 sites, but also with B-OH sites on the surface of BNNTs. Meanwhile, the reaction applied a hot strong acid environment, which would help to open parts of B-N bonds to produce more reactive sites and enrich the functional groups grafted on the surface of BNNTs. Consequently, the functionalized BNNTs exhibited significantly improved dispersion stability in chloroform compared with pristine BNNTs. Amino surface functionalization of BNNTs offered more possibilities for surface chemical design of boron nitride and its practical application.

  12. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  13. Water-dispersed thermo-responsive boron nitride nanotubes: synthesis and properties

    Czech Academy of Sciences Publication Activity Database

    Kalay, S.; Stetsyshyn, Y.; Lobaz, Volodymyr; Harhay, K.; Ohar, H.; Ҫulha, M.

    2016-01-01

    Roč. 27, č. 3 (2016), 035703_1-035703_8 ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA13-08336S; GA MPO(CZ) FR-TI4/625 Institutional support: RVO:61389013 Keywords : boron nitride nanotubes * thermo-responsive polymer brushes * poly(N-isopropylacrylamide) Subject RIV: CA - Inorganic Chemistry Impact factor: 3.440, year: 2016

  14. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Roland Yingjie [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Tsang, Siu Hon [Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Loeblein, Manuela; Chow, Wai Leong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); CNRS-International NTU Thales Research Alliance CINTRA UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore 637553 (Singapore); Loh, Guan Chee [Institue of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Toh, Joo Wah; Ang, Soon Loong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  15. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Grush, M.; Callcott, T.A. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  16. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-01-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called open-quotes super diamond,close quotes and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods

  17. Covalently bonded disordered thin-film materials. Materials Research Society symposium proceedings Volume 498

    International Nuclear Information System (INIS)

    Siegal, M.P.; Milne, W.I.; Jaskie, J.E.

    1998-01-01

    The current and potential impact of covalently bonded disordered thin films is enormous. These materials are amorphous-to-nanocrystalline structures made from light atomic weight elements from the first row of the periodic table. Examples include amorphous tetrahedral diamond-like carbon, boron nitride, carbon nitride, boron carbide, and boron-carbon-nitride. These materials are under development for use as novel low-power, high-visibility elements in flat-panel display technologies, cold-cathode sources for microsensors and vacuum microelectronics, encapsulants for both environmental protection and microelectronics, optical coatings for laser windows, and ultra-hard tribological coatings. researchers from 17 countries and a broad range of academic institutions, national laboratories and industrial organizations come together in this volume to report on the status of key areas and recent discoveries. More specifically, the volume is organized into five sections. The first four highlight ongoing work primarily in the area of amorphous/nanocrystalline (disordered) carbon thin films; theoretical and experimental structural characterization; electrical and optical characterizations; growth methods; and cold-cathode electron emission results. The fifth section describes the growth, characterization and application of boron- and carbon-nitride thin films

  18. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  19. Polymer/boron nitride nanocomposite materials for superior thermal transport performance.

    Science.gov (United States)

    Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping

    2012-06-25

    Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si3N4/DLC substrate

    International Nuclear Information System (INIS)

    Roman, W S; Riascos, H; Caicedo, J C; Ospina, R; Tirado-MejIa, L

    2009-01-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si 3 N 4 substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm -2 , 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm -1 for B - N bonding and bands around 1700 cm -1 associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), α-Si 3 N 4 (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si 3 N 4 /DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  1. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  2. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  3. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  4. Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism

    Science.gov (United States)

    Sonde, Sushant; Dolocan, Andrei; Lu, Ning; Corbet, Chris; Kim, Moon J.; Tutuc, Emanuel; Banerjee, Sanjay K.; Colombo, Luigi

    2017-06-01

    Chemical vapor deposition (CVD) of two-dimensional (2D) hexagonal boron nitride (h-BN) is at the center of numerous studies for its applications in novel electronic devices. However, a clear understanding of the growth mechanism is lacking for its wider industrial adoption on technologically relevant substrates such as SiO2. Here, we demonstrate a controllable growth method of thin, wafer scale h-BN films on arbitrary substrates. We also clarify the growth mechanism to be diffusion and surface segregation (D-SS) of boron (B) and nitrogen (N) in Ni and Co thin films on SiO2/Si substrates after exposure to diborane and ammonia precursors at high temperature. The segregation was found to be independent of the cooling rates employed in this report, and to our knowledge has not been found nor reported for 2D h-BN growth so far, and thus provides an important direction for controlled growth of h-BN. This unique segregation behavior is a result of a combined effect of high diffusivity, small film thickness and the inability to achieve extremely high cooling rates in CVD systems. The resulting D-SS h-BN films exhibit excellent electrical insulating behavior with an optical bandgap of about 5.8 eV. Moreover, graphene-on-h-BN field effect transistors using the as-grown D-SS h-BN films show a mobility of about 6000 cm2 V-1 s-1 at room temperature.

  5. Thermodynamic Studies of Decane on Boron Nitride and Graphite Substrates Using Synchrotron Radiation and Molecular Dynamics Simulations

    Science.gov (United States)

    Strange, Nicholas; Arnold, Thomas; Forster, Matthew; Parker, Julia; Larese, J. Z.; Diamond Light Source Collaboration; University of Tennessee Team

    2014-03-01

    Hexagonal boron nitride (hBN) has a lattice structure similar to that of graphite with a slightly larger lattice parameter in the basal plane. This, among other properties, makes it an excellent substrate in place of graphite, eliciting some important differences. This work is part of a larger effort to examine the interaction of alkanes with magnesium oxide, graphite, and boron nitride surfaces. In our current presentation, we will discuss the interaction of decane with these surfaces. Decane exhibits a fully commensurate structure on graphite and hBN at monolayer coverages. In this particular experiment, we have examined the monolayer structure of decane adsorbed on the basal plane of hBN using synchrotron x-ray radiation at Diamond Light Source. Additionally, we have examined the system experimentally with volumetric isotherms as well as computationally using molecular dynamics simulations. The volumetric isotherms allow us to calculate properties which provide important information about the adsorbate's interaction with not only neighboring molecules, but also the interaction with the adsorbent boron nitride.

  6. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  7. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  8. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Amberger, Martin A.; Hoeltig, Michael; Broekaert, Jose A.C.

    2010-01-01

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL -1 . As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL -1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g -1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al 2 O 3 , powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a

  9. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, Martin A.; Hoeltig, Michael [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C., E-mail: jose.broekaert@chemie.uni-hamburg.d [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2010-02-15

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL{sup -1}. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL{sup -1} of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 mug g{sup -1} for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al{sub 2}O{sub 3}, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective

  10. A theoretical investigation of defects in a boron nitride monolayer

    International Nuclear Information System (INIS)

    Azevedo, Sergio; Kaschny, J R; Castilho, Caio M C de; Mota, F de Brito

    2007-01-01

    We have investigated, using first-principles calculations, the energetic stability and structural properties of antisites, vacancies and substitutional carbon defects in a boron nitride monolayer. We have found that the incorporation of a carbon atom substituting for one boron atom, in an N-rich growth condition, or a nitrogen atom, in a B-rich medium, lowers the formation energy, as compared to antisites and vacancy defects. We also verify that defects, inducing an excess of nitrogen or boron, such as N B and B N , are more stable in its reverse atmosphere, i.e. N B is more stable in a B-rich growth medium, while B N is more stable in a N-rich condition. In addition we have found that the formation energy of a C N , in a N-rich medium, and C B in a B-rich medium, present formation energies comparable to those of the vacancies, V N and V B , respectively

  11. Point defects and oxidation mechanism in cubic boron nitride

    International Nuclear Information System (INIS)

    Gorshin, A.P.; Shvajko-Shvajkovskij, V.E.

    1994-01-01

    A theoretical analysis of the defect formation in boron nitride by the Schottky mechanism within the framework of the quasi-chemical approximation method is carried out. On the base of solution of the disordering equations at different conditions of electroneutrality are obtained the dependences of defect concentrations in β-BN on the partial nitrogen pressure in equilibrium conditions. Experimental checking of the theoretical analysis proposed confirms the hypothesis on the presence of defects of nonstoichiometric origin in the β-BN anion sublattice

  12. In situ characterization of thin film growth: Boron nitride on silicon

    International Nuclear Information System (INIS)

    Fukarek, W.

    2001-01-01

    Real-time ellipsometry (RTE) in combination with particle flux measurement is applied to ion beam assisted deposition of boron nitride (BN) films. RTE is used as a tool for process diagnostic to improve the deposition stability. A novel technique for the determination of absolute density depth profiles from dynamic growth rate data and film forming particle flux is employed. From real-time cantilever curvature measurement and simultaneously recorded film thickness data instantaneous stress depth profiles are derived with a depth resolution in the nm range. The synergistic effects on the information obtained from RTE, particle flux, and cantilever bending data are demonstrated. The density of turbostratic BN (tBN) is found to increase slightly with film thickness while the compressive stress decreases, indicating an increasing quality and/or size of crystallites in the course of film growth. Refractive index and density depth profiles in cubic BN (cBN) films correspond perfectly to structural information obtained from dark field transmission electron microscope graphs. The established tBN/cBN two-layer model is found to be a crude approximation that has to be replaced by a three-layer model including nucleation, grain growth, and coalescence of cBN. The instantaneous compressive stress in a homogeneous tBN film is found to decrease, while the density increases during growth. The instantaneous compressive stress depth profiles in cBN films are more complex and not easy to understand but reliable information on the structural evolution during growth can be extracted

  13. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  14. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia); Zhou, Yinghong; Xiao, Yin [Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (Australia); Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-11-15

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  15. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si{sub 3}N{sub 4}/DLC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Roman, W S; Riascos, H [Grupo Plasma, Laser y Aplicaciones, Universidad Tecnologica de Pereira (Colombia); Caicedo, J C [Grupo de PelIculas Delgadas, Universidad del Valle, Cali (Colombia); Ospina, R [Laboratorio de Plasma, Universidad Nacional de Colombia, sede Manizales (Colombia); Tirado-MejIa, L, E-mail: hriascos@utp.edu.c [Laboratorio de Optoelectronica, Universidad del Quindio (Colombia)

    2009-05-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si{sub 3}N{sub 4} substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm{sup -2}, 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm{sup -1} for B - N bonding and bands around 1700 cm{sup -1} associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), alpha-Si{sub 3}N{sub 4} (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si{sub 3}N{sub 4}/DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  16. Synthesis of boron nitride nanotubes and their applications

    Directory of Open Access Journals (Sweden)

    Saban Kalay

    2015-01-01

    Full Text Available Boron nitride nanotubes (BNNTs have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed.

  17. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  18. Large-scale fabrication and utilization of novel hexagonal/turbostratic composite boron nitride nanosheets

    KAUST Repository

    Zhong, Bo

    2017-02-15

    In this report, we have developed a scalable approach to massive synthesis of hexagonal/turbostratic composite boron nitride nanosheets (h/t-BNNSs). The strikingly effective, reliable, and high-throughput (grams) synthesis is performed via a facile chemical foaming process at 1400°C utilizing ammonia borane (AB) as precursor. The characterization results demonstrate that high quality of h/t-BNNSs with lateral size of tens of micrometers and thickness of tens of nanometers are obtained. The growth mechanism of h/t-BNNSs is also discussed based on the thermogravimetric analysis of AB which clearly shows two step weight loss. The h/t-BNNSs are further used for making thermoconductive h/t-BNNSs/epoxy resin composites. The thermal conductivity of the composites is obviously improved due to the introduction of h/t-BNNSs. Consideration of the unique properties of boron nitride, these novel h/t-BNNSs are envisaged to be very valuable for future high performance polymer based material fabrication.

  19. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Chamber with punches made from polycrystal cubic boron nitrides for Moessbauer study at high hydrostatic pressure

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1978-01-01

    The design of a high hydrostatic pressure chamber with polycrystallic boron nitride dies weakly absorbing gamma radiation with energies of more than 14 keV is described. The use of this material permits to investigate single- and polycrystal bodies using the Moessbauer effect when the geometry of the experiment remains unchanged and the hydrostatic pressure is up to 70 kbar. The basic units of the chamber are a teflon capsule placed in a container made of a pressed boron and epoxide resin mixture, electric inputs and a die of polycrystal cubic boron nitride. The pressure is transferred to the sample tested through a liquid (petrol or the 4 to 1 mixture of methanole and ethanole) which does not become solid at a pressure below 37 kbar. Basic dimensions of the chamber are given and the dependence of the pressure in the capsule on the force applied to the chamber is also presented

  1. Comparative study of the interfaces of graphene and hexagonal boron nitride with silver

    DEFF Research Database (Denmark)

    Garnica, Manuela; Schwarz, Martin; Ducke, Jacob

    2016-01-01

    Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h-BN) and graphene sheets on sil...

  2. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene.

    Science.gov (United States)

    Morchutt, Claudius; Björk, Jonas; Krotzky, Sören; Gutzler, Rico; Kern, Klaus

    2015-02-11

    Polymerization of 1,3,5-tris(4-bromophenyl)benzene via dehalogenation on graphene and hexagonal boron nitride is investigated by scanning tunneling microscopy experiments and density functional theory calculations. This work reveals how the interactions between molecules and graphene or h-BN grown on Ni(111) govern the surface-confined synthesis of polymers through C-C coupling.

  3. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  4. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Abdullahi, Yusuf Zuntu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339, Kaduna State (Nigeria); Rahman, Md. Mahmudur, E-mail: mahmudur@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Shuaibu, Alhassan [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Nigerian Defence Academy, P.M.B 2109 Kaduna (Nigeria); Abubakar, Shamsu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Yobe State University, P.M.B. 1144, Yobe State (Nigeria); Zainuddin, Hishamuddin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Muhida, Rifki [Department of Physics-Energy Engineering, Surya University, Gedung 01 Scientia Business Park, Jl. Boulevard Gading Serpong Blok O/1, Summarecon Serpong, Tangerang 15810, Banten (Indonesia); Setiyanto, Henry [Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132 (Indonesia)

    2014-08-15

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  5. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Abdullahi, Yusuf Zuntu; Rahman, Md. Mahmudur; Shuaibu, Alhassan; Abubakar, Shamsu; Zainuddin, Hishamuddin; Muhida, Rifki; Setiyanto, Henry

    2014-01-01

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  6. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  7. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  8. Boron nitride: A new photonic material

    International Nuclear Information System (INIS)

    Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O'Connel, J.; Henry, A.

    2014-01-01

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp 2 -BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  9. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  10. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  11. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    International Nuclear Information System (INIS)

    Choi, B.J.

    1999-01-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure

  12. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani [School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia.43600 Bangi, Selangor (Malaysia)

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  13. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  14. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin; Zhu, Hongdan; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte; Meng, Changgong

    2017-01-01

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated

  15. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  16. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  17. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    Science.gov (United States)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  18. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  19. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  20. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine.

    Science.gov (United States)

    Noor-A-Alam, Mohammad; Kim, Hye Jung; Shin, Young-Han

    2014-04-14

    In contrast to graphene, a hexagonal boron nitride (h-BN) monolayer is piezoelectric because it is non-centrosymmetric. However, h-BN shows neither in-plane nor out-of-plane dipole moments due to its three-fold symmetry on the plane and the fact that it is completely flat. Here, we show that the controlled adsorption of hydrogen and/or fluorine atoms on both sides of a pristine h-BN sheet induces flatness distortion in a chair form and an out-of plane dipole moment. In contrast, a boat form has no out-of-plane dipole moment due to the alternating boron and nitrogen positions normal to the plane. Consequently, the chair form of surface-modified h-BN shows both in-plane and out-of-plane piezoelectric responses; while pristine h-BN and the boat form of decorated h-BN have only in-plane piezoelectric responses. These in-plane and out-of-plane piezoelectric responses of the modified h-BN are comparable to those in known three-dimensional piezoelectric materials. Such an engineered piezoelectric two-dimensional boron nitride monolayer can be a candidate material for various nano-electromechanical applications.

  1. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study

    Science.gov (United States)

    Roondhe, Basant; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-05-01

    To understand the underlying physics behind the interaction of biomolecules with the nanomaterials to use them practically as bio-nanomaterials is very crucial. A first principles calculation under the frame work of density functional theory is executed to investigate the electronic structures and binding properties of alkaloids (Caffeine and Nicotine) over single walled boron nitride nanotube (BNNT) and boron nitride nanoribbon (BNNR) to determine their suitability towards filtration or sensing of these molecules. We have also used GGA-PBE scheme with the inclusion of Van der Waals (vdW) interaction based on DFT-D2. Increase in the accuracy by incorporating the dispersion correction in the calculation is observed for the long range Van der Waals interaction. Binding energy range of BNNT and BNNR with both alkaloids have been found to be -0.35 to -0.76 eV and -0.45 to -0.91 eV respectively which together with the binding distance shows physisorption binding of these molecules to the both nanostructures. The transfer of charge between the BN nanostructures and the adsorbed molecule has also been analysed by using Lowdin charge analysis. The sensitivity of both nanostructures BNNT and BNNR towards both alkaloids is observed through electronic structure calculations, density of states and quantum conductance. The binding of both alkaloids with BNNR is stronger. The analysis of the calculated properties suggests absence of covalent interaction between the considered species (BNNT/BNNR) and alkaloids. The study may be useful in designing the boron nitride nanostructure based sensing device for alkaloids.

  2. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  3. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

    Science.gov (United States)

    Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-02-01

    Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

  4. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  5. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  6. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  7. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  8. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  9. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  10. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  11. Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(1 1 1) by electron spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, A.P., E-mail: arnold.farkas@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Szeged (Hungary); Török, P. [Department of Physical Chemistry and Materials Science, University of Szeged, Szeged (Hungary); Solymosi, F. [MTA–SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Rerrich B. tér 1, H-6720 Szeged (Hungary); Kiss, J. [Department of Physical Chemistry and Materials Science, University of Szeged, Szeged (Hungary); MTA–SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Rerrich B. tér 1, H-6720 Szeged (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Szeged (Hungary); MTA–SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Rerrich B. tér 1, H-6720 Szeged (Hungary)

    2015-11-01

    Graphical abstract: - Highlights: • We provided fingerprint data by Auger electron spectroscopy that makes it possible to differentiate between adsorbed borazine multilayer and h-BN overlayer. • The strong characteristic surface phonon losses in HREELS indicate the production of well defined boron nitride nanomesh on Rh(1 1 1). • Methoxy species were stable even above room temperature on BN covered Rh(1 1 1) and desorbed from the surface after recombination reactions with hydrogen. - Abstract: The adsorption and dissociation of borazine were investigated on Rh(1 1 1) single crystal surface by Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) methods. Borazine is one of the most frequently applied precursor molecules in the preparation process of boron nitride overlayer on metal single crystal surfaces. On Rh(1 1 1) surface it adsorbs molecularly at 140 K. We did not find any preferred orientation, although there is evidence of “flat” and perpendicular molecular geometry, too. Dehydrogenation starts even below 200 K and finishes until ∼7–800 K. No other boron or nitrogen containing products were observed in TPD beyond molecular borazine. Through the hydrogen loss of molecules hexagonal boron nitride layer forms in the 600–1100 K temperature range as it was indicated by AES and the characteristic optical phonon HREEL losses of h-BN overlayer. The adsorption behaviour of the boron nitride covered surface was also studied through the adsorption of methanol at 140 K. HREELS and TPD measurements showed that methanol adsorbed molecularly and a fraction of it dissociated to form surface methoxy and gas phase hydrogen on the h-BN/Rh(1 1 1) surface.

  12. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  13. The Effect of Adjacent Materials on the Propagation of Phonon Polaritons in Hexagonal Boron Nitride.

    Science.gov (United States)

    Kim, Kris S; Trajanoski, Daniel; Ho, Kevin; Gilburd, Leonid; Maiti, Aniket; van der Velden, Luuk; de Beer, Sissi; Walker, Gilbert C

    2017-07-06

    In order to apply the ability of hexagonal boron nitride (hBN) to confine energy in the form of hyperbolic phonon polariton (HPhP) modes in photonic-electronic devices, approaches to finely control and leverage the sensitivity of these propagating waves must be investigated. Here, we show that by surrounding hBN with materials of lower/higher dielectric responses, such as air and silicon, lower/higher surface momenta of HPhPs can be achieved. Furthermore, an alternative method for preparing thin hBN crystals with minimum contamination is presented, which provides opportunities to study the sensitivity of the damping mechanism of HPhPs on adsorbed materials. Infrared scanning near-field optical microscopy (IR-SNOM) results suggest that the reflections at the upper and lower hBN interfaces are primary causes of the damping of HPhPs, and that the damping coefficients of propagating waves are highly sensitive to adjacent layers, suggesting opportunities for sensor applications.

  14. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  15. Method of forming an abrasive compact of cubic boron nitride

    International Nuclear Information System (INIS)

    Bell, F.R.

    1976-01-01

    This patent concerns an abrasive compact comprising diamond or cubic boron nitride or mixtures thereof held in a matrix of a refractory substance and a substance which dissolves the abrasive particle to at least a limited extent. The compact may be made by subjecting a powdered mixture of the ingredients to conditions of temperature and pressure at which the abrasive particle is crystallographically stable and the solvent substance acts to dissolve the abrasive particle. The refractory substance and solvent substance are preferably so chosen that during compact manufacture there is interaction resulting in the formation of a hard material

  16. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  17. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects

  18. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  19. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  20. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  1. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  2. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  3. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  4. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  5. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  6. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  7. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    Science.gov (United States)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  8. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    Science.gov (United States)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  9. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  10. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  11. Experimental studies of hydrogen on boron nitride: II. NMR studies of orientational ordering of H2

    International Nuclear Information System (INIS)

    Evans, M.D.; Sullivan, N.S.

    1995-01-01

    The authors report the results of NMR studies of thin films of hydrogen adsorbed on hexagonal boron nitride. Orientational ordering is observed below 1 K but the ordering is not complete, and a clear two-component ordering is observed. Molecules are either (i) almost completely ordered with local order parameters σ=left-angle 1-3/2Jz 2 right-angle clustered close to a maximum value of σ congruent 0.94 (comparable to the values for long range ordering in bulk samples at high ortho concentrations), and (ii) a large fraction of the molecules that remain nearly disordered with σ≤0.25. The degree of orientational ordering depends on the number of hydrogen layers and on the ortho-hydrogen concentration, and these studies indicate that ordering occurs principally in the first four layers closest to the substrate, with weaker orientational ordering in the outer layers near the free surface even at temperatures as low as 210 mK

  12. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  13. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  14. Pressure effects on dynamics behavior of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Taha [Faculty of Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-01-15

    The dynamic behavior of Multiwall boron nitride nanotubes (MWBNNTs) is investigated by employing multiple elastic shells model. The influences of van der Waals interactions on layers are shown as nonlinear functions of the interlayer distance of MWBNNTs. Governing equations are solved by using the developed finite element method and by employing time history diagrams. The radial wave speed from the outermost layer to the innermost layer is computed. The effects of geometrical factors such as diameter-to-thickness ratio on dynamic behavior of MWBNNTs are determined. The magnification aspects of MWBNNTs are computed, and the effects of surrounding pressures on wave speed and magnification aspect of MWBNNTs are discussed.

  15. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  16. Point defects in cubic boron nitride after neutron irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Ide, Munetoshi; Yamaji, Hiromichi; Matsukawa, Tokuo; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1993-01-01

    The production of point defects induced by reactor neutrons and the thermal behavior of defects in sintered cubic boron nitride are investigated using the optical absorption and electron spin resonance (ESR) methods. A strong structureless absorption over the visible region was observed after fast neutron irradiation to a dose of 5.3 x 10 16 n/cm 2 (E > 0.1 MeV) at 25 K. This specimen also shows an ESR signal with g-value 2.006 ± 0.001, which can be tentatively identified as an electron trapped in a nitrogen vacancy. On examination of the thermal decay of the signal, the activation energy for recovery of the defects was determined to be about 1.79 eV. (author)

  17. Effective cleaning of hexagonal boron nitride for graphene devices.

    Science.gov (United States)

    Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2012-09-12

    Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.

  18. Synthesis of hexagonal boron nitride with the presence of representative metals

    Energy Technology Data Exchange (ETDEWEB)

    Budak, Erhan, E-mail: erhan@ibu.edu.t [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey); Bozkurt, Cetin [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey)

    2010-11-15

    Hexagonal boron nitride (h-BN) samples were prepared using the modified O'Connor method with KNO{sub 3} and Ca(NO{sub 3}){sub 2} at different temperatures (1050, 1250, and 1450 deg. C). The samples were characterized by FTIR, XRD, and SEM techniques. Usage of representative metals exhibited a positive effect on the crystallization of h-BN and they caused the formation of nano-scale products at relatively low temperature. XRD results indicated that there was an increase in interlayer spacing due to the d-{pi} interaction. The calculated lattice constants were very close to the reported value for h-BN.

  19. Orthorhombic BN: A novel superhard sp{sup 3} boron nitride allotrope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiguo [College of Physics, Beihua University, Jilin 132013 (China); Lu, Mingchun [Department of Aeronautical Engineering Professional Technology, Jilin Institute of Chemical Technology, Jilin 132102 (China); Zhu, Li; Zhu, Lili; Li, Yadan [College of Physics, Beihua University, Jilin 132013 (China); Zhang, Miao, E-mail: zhangmiaolmc@126.com [College of Physics, Beihua University, Jilin 132013 (China); College of Materials Science and Engineering, National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Li, Quan, E-mail: liquan777@jlu.edu.cn [College of Materials Science and Engineering, National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2014-02-07

    Here, a novel superhard orthorhombic allotrope of boron nitride (O-BN) with the space group of Pbam has been predicted using first-principles calculations. Our results revealed that O-BN simultaneously posses incompressible with a high bulk modulus of 397.38 GPa, and superhard properties with a high Vickers hardness of 65 GPa. Further phonon calculations show O-BN structure is dynamically stable. Moreover, it is thermodynamics energetically more preferable than previous proposed BN allotropes and a transparent insulator with an indirect band gap of about 4.85 eV. Our researches represent a significant step toward the exploration of superhard materials.

  20. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  1. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    International Nuclear Information System (INIS)

    Kim, Do-Hyun; Lee, Minwoo; Ye, Bora; Jang, Ho-Kyun; Kim, Gyu Tae; Lee, Dong-Jin; Kim, Eok-Soo; Kim, Hong Dae

    2017-01-01

    Highlights: • Hexagonal boron nitride flakes are etched at low temperature in air by catalysts. • The presence of transition metal oxides produces an etched structure in the flakes. • Etched surfaces become highly active due to vacancy defects formed in the flakes. - Abstract: Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co_3O_4, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co_3O_4 and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  2. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyun, E-mail: nanotube@korea.ac.kr [School of Electrical Engineering, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Minwoo; Ye, Bora [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of); Jang, Ho-Kyun; Kim, Gyu Tae [School of Electrical Engineering, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Dong-Jin [New Functional Components Research Team, Korea Institute of Footware & Leather Technology, 152 Danggamseo-ro, Busanjin-gu, Busan 614-100 (Korea, Republic of); Kim, Eok-Soo [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of); Kim, Hong Dae, E-mail: hdkim@kitech.re.kr [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of)

    2017-04-30

    Highlights: • Hexagonal boron nitride flakes are etched at low temperature in air by catalysts. • The presence of transition metal oxides produces an etched structure in the flakes. • Etched surfaces become highly active due to vacancy defects formed in the flakes. - Abstract: Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co{sub 3}O{sub 4}, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co{sub 3}O{sub 4} and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  3. Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging

    International Nuclear Information System (INIS)

    Bao, Jie; Huang, Shirong; Zhang, Yong; Lu, Xiuzhen; Yuan, Zhichao; Jeppson, Kjell; Liu, Johan; Edwards, Michael; Fu, Yifeng

    2016-01-01

    The need for electrically insulating materials with a high in-plane thermal conductivity for lateral heat spreading applications in electronic devices has intensified studies of layered hexagonal boron nitride (h-BN) films. Due to its physicochemical properties, h-BN can be utilised in power dissipating devices such as an electrically insulating heat spreader material for laterally redistributing the heat from hotspots caused by locally excessive heat flux densities. In this study, two types of boron nitride based heat spreader test structures have been assembled and evaluated for heat dissipation. The test structures separately utilised a few-layer h-BN film with and without graphene enhancement drop coated onto the hotspot test structure. The influence of the h-BN heat spreader films on the temperature distribution across the surface of the hotspot test structure was studied at a range of heat flux densities through the hotspot. It was found that the graphene-enhanced h-BN film reduced the hotspot temperature by about 8–10 °C at a 1000 W cm −2 heat flux density, a temperature decrease significantly larger than for h-BN film without graphene enhancement. Finite element simulations of the h-BN film predict that further improvements in heat spreading ability are possible if the thermal contact resistance between the film and test chip are minimised. (paper)

  4. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  5. Fluorescent converter and neutron absorber being made of boron nitride

    International Nuclear Information System (INIS)

    Matsumoto, G.; Teramura, M.; Sato, J.; Maeda, M.

    1983-01-01

    To improve the sensitivity of fluorescent converter is essential to the neutron radiography (NRG) which utilizes portable, not so strong, neutron sources. The fluorescent converter made of boron nitride (BN) is fabricated and tested. The sensitivity is about 1/20 of the NE426, but the homogeneity may be better. If 10 BN is utilized, the sensitivity will be five times as much as that of natural BN. Using the neutron beam of the Kyoto University Research Reactor, the flux of which is about 10 6 n/cm 2 sec, a good neutron television image was gained by X-ray television camera. As a bi-product of this converter, a flexible absorber was fabricated. (Auth.)

  6. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  7. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity

  8. Doped indium nitride thin film by sol-gel spin coating method

    Science.gov (United States)

    Lee, Hui San; Ng, Sha Shiong; Yam, Fong Kwong

    2017-12-01

    In this study, magnesium doped indium nitride (InN:Mg) thin films grown on silicon (100) substrate were prepared via sol-gel spin coating method followed by nitridation process. A custom-made tube furnace was used to perform the nitridation process. Through this method, the low dissociation temperature issue of InN:Mg thin films can be solved. The deposited InN:Mg thin films were investigated using various techniques. The X-rays diffraction results revealed that two intense diffraction peaks correspond to wurtzite structure InN (100), and InN (101) were observed at 29° and 33.1° respectively. Field emission scanning electron microscopy images showed that the surface of the films exhibits densely packed grains. The elemental composition of the deposited thin films was analyzed using energy dispersive X-rays spectroscopy. The detected atomic percentages for In, N, and Mg were 43.22 %, 3.28 %, and 0.61 % respectively. The Raman spectra showed two Raman- and infrared-active modes of E2 (High) and A1 (LO) of the wurtzite InN. The band gap obtained from the Tauc plot showed around 1.74 eV. Lastly, the average surface roughness measured by AFM was around 0.133 µm.

  9. A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route

    Science.gov (United States)

    Salles, Vincent; Bernard, Samuel; Brioude, Arnaud; Cornu, David; Miele, Philippe

    2010-02-01

    Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments.Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments. Electronic supplementary information (ESI) available: Experimental details and EDX results. See DOI: 10.1039/b9nr00185a

  10. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  11. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Moon, W.H.; Hwang, H.J.

    2004-01-01

    We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon-octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon-heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs

  12. Ab initio studies of vacancies in (8,0) and (8,8) single-walled carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-09-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology Vol. 12, 7030?7036, 2012 Ab Initio Studies of Vacancies in (8,0) and (8,8) Single-Walled Carbon and Boron Nitride NanotubesAb M. G. Mashapa 1, 2, *, N. Chetty 2, and S. Sinha Ray 1, 3 1 DST...

  13. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li

    2018-04-04

    Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.

  14. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  15. A cubic boron nitride film-based fluorescent sensor for detecting Hg2+

    Science.gov (United States)

    Liu, W. M.; Zhao, W. W.; Zhang, H. Y.; Wang, P. F.; Chong, Y. M.; Ye, Q.; Zou, Y. S.; Zhang, W. J.; Zapien, J. A.; Bello, I.; Lee, S. T.

    2009-05-01

    Cubic boron nitride (cBN) film-based sensors for detecting Hg2+ ions were developed by surface functionalization with dansyl chloride. To immobilize dansyl chloride, 3-aminopropyltriethoxy silane was modified on hydroxylated cBN surfaces to form an amino-group-terminated self-assembled monolayer. The covalent attachment of the amino groups was confirmed by x-ray photoelectron spectroscopy. The selectivity and sensitivity of the sensors to detect diverse metal cations in ethanol solutions were studied by using fluorescence spectroscopy, revealing a great selectivity to Hg2+ ions. Significantly, the dansyl-chloride-functionalized cBN film sensors were recyclable after the sensing test.

  16. Fundamental characterization of the effect of nitride sidewall spacer process on boron dose loss in ultra-shallow junction formation

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, P. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States) and Microelectronics Research Center, University of Texas, Austin, TX 78758 (United States)]. E-mail: puneet.kohli@sematech.org; Chakravarthi, S. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Jain, Amitabh [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Bu, H. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Mehrotra, M. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Dunham, S.T. [Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (United States); Banerjee, S.K. [Microelectronics Research Center, University of Texas, Austin, TX 78758 (United States)

    2004-12-15

    A nitride spacer with an underlying deposited tetraethoxysilane (TEOS) oxide that behaves as a convenient etch stop layer is a popular choice for sidewall spacer in modern complementary metal oxide semiconductor (CMOS) process flows. In this work, we have investigated the effect of the silicon nitride spacer process chemistry on the boron profile in silicon and the related dose loss of B from Si into silicon dioxide. This is reflected as a dramatic change in the junction depth, junction abruptness and junction peak concentration for the different nitride chemistries. We conclude that the silicon nitride influences the concentration of hydrogen in the silicon dioxide and different nitride chemistries result in different concentrations of hydrogen in the silicon dioxide during the final source/drain anneal. The presence of H enhances the diffusivity of B in the silicon dioxide and thereby results in a significant dose loss from the Si into the silicon dioxide. In this work, we show that this dose loss can be minimized and the junction profile engineered by choosing a desirable nitride chemistry.

  17. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Schimpf, C.; Motylenko, M.; Rafaja, D.

    2013-01-01

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques

  18. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  19. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  20. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  1. Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2013-12-04

    Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

  2. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    Science.gov (United States)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  3. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  4. Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride

    Science.gov (United States)

    Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick

    2017-09-01

    Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.

  5. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    Science.gov (United States)

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Adsorption modes of molecular iodine on defected boron nitrides: A DFT study

    Science.gov (United States)

    Arabieh, Masoud; Azar, Yavar Taghipour

    2018-03-01

    The interaction of molecular iodine with pristine and monovacant boron-nitride quantum dots (QDs) have been investigated using density functional theory. It was found that removing one B or N single atom significantly decreased the calculated Eg values at various exchange functional. In B-defected BN system, the localized spin densities canceled each other and overall polarization of system was found to be equal to unity. For N-defected system there was smaller spin densities localized on each closest B atoms. Both B- and N-vacancies caused appearance of new states in gap region. Our calculation revealed that spin density and polarization of defected system are localized on vacancy region and other atoms did not take part in this polarization. The results of electron localization function for N-DBN showed there was high density region at the position of removed nitrogen atom. The calculated adsorption energies implied that there was no significant chemical interaction between iodine molecule and pristine BN sheet. We suggested that when a deficiency was imposed to the BN sheet, the reactivity of the modified system toward iodine molecule significantly could increase. We found strong interaction between iodine and nitrogen atoms of B-DBN system. In the case of I2/N-DBN system the neighbor atoms had no contribution in spin polarization of the system and it seemed that all spin density of system transferred to the iodine molecule after adsorption. Strong correlation between molecular iodine orientation and BN-QDs via their interactions type has been clarified in this work. These findings may provide a deeper insight into halogen molecules interactions with low dimensional defected boron nitrides.

  7. Structure and energetics of nanotwins in cubic boron nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  8. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  9. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  10. Energetics and formation mechanism of borders between hexagonal boron nitride and graphene

    Science.gov (United States)

    Sawahata, Hisaki; Yamanaka, Ayaka; Maruyama, Mina; Okada, Susumu

    2018-06-01

    We studied the energetics of two-dimensional heterostructures consisting of hexagonal boron nitride (h-BN) and graphene with respect to the border structure and heterobond species using density functional theory. A BC heterobond is energetically preferable at the border between h-BN and graphene. We also found that the polarization at the zigzag border increases the total energy of the heterostructures. Competition between the bond formation energy and the polarization energy leads to chiral borders at which BC heterobonds are dominant. By taking the formation process of the heterostructures into account, the zigzag border with BC heterobonds is found to be preferentially synthesized from graphene edges under hydrogen-rich conditions.

  11. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  12. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.F.; Bello, I.; Lei, M.K.; Lee, C.S.; Lee, S.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science; Li, K.Y. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon (Hong Kong)

    2000-06-01

    Boron carbon nitride (BCN) films were deposited on silicon substrates by radio frequency (r.f.) (13.56 MHz) magnetron sputtering from hexagonal boron nitride (h-BN) and graphite targets in an Ar-N{sub 2} gas mixture of a constant pressure of 1.0 Pa. During deposition, the substrates were maintained at a temperature of 400 C and negatively biased using a pulsed voltage with a frequency of 330 kHz. Different analysis techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and scanning Auger electron microscopy (SAM) were used for characterization. In addition, the mechanical and tribological properties of the films were investigated by nano-indentation and micro-scratching. The carbon concentration in the films could be adjusted by the coverage area of a graphite sheet on the h-BN target, and decreased with increasing bias voltage. It was found that the ternary compound films within the B-C-N composition triangle possessed a less ordered structure. B--N, B--C and C--N chemical bonds were established in the films, and no phase separation of graphite and h-BN occurred. At zero bias voltage, amorphous BC{sub 2}N films with atomically smooth surface could be obtained, and the microfriction coefficient was 0.11 under a normal load of 1000 {mu}N. Hardness as determined by nano-indentation was usually in the range of 10-30 GPa, whereas the Young's modulus was within 100-200 GPa. (orig.)

  13. Preparation of calcium-doped boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Anzai, Atsushi; Fuchigami, Masayo; Yamanaka, Shoji; Inumaru, Kei

    2012-01-01

    Highlights: ► Ca-doped boron nitride was prepared by pulsed laser deposition. ► The films do not have long range order structure in terms of XRD. ► But the films had short-range order structure of h-BN sheets. ► Ca-free films had the same optical band gap as crystalline bulk h-BN (5.8 eV.) ► Ca-doping brought about decreases of the optical band gap by ca. 0.4 eV. -- Abstract: Calcium-doped BN thin films Ca x BN y (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al 2 O 3 (0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca 3 N 2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.

  14. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  15. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  16. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun [Department of Physics, Govt. College Banjar, Kullu, Himanchal Pradesh, 175123 India (India); Bahadur, Amar, E-mail: abr.phys@gmail.com [Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, 228118 India (India); Mishra, Madhukar [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031 India (India); Vasudeva, Neena [Department of Physics, S. V. G. College, Ghumarwin, Bilaspur, Himanchal Pradesh, 1714021 India (India)

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  17. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D.; Seo, Jung-Woo T.; Chen, Kan-Sheng; Marks, Tobin J.; Hersam, Mark C.

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10–9 A/cm2 at 2 MV/cm and high capacitances of 245 nF/cm2. The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm2 V–1 s–1 at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics.

  18. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  19. Toughening effect of multi-walled boron nitride nanotubes and their influence on the sintering behaviour of 3Y-TZP zirconia ceramics

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Chlup, Zdeněk; Porwal, H.; Kasiarova, M.; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 7 (2014), s. 1829-1843 ISSN 0955-2219 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Zirconia * Boron nitride nanotubes * Composite * Spark plasma sintering * Toughening mechanism Subject RIV: JI - Composite Materials Impact factor: 2.947, year: 2014

  20. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  1. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    Science.gov (United States)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  2. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  3. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com [Young Researchers and Elite Club, Kermanshah Br anch, Islamic Azad University, P.O. Box: 6718997551, Kermanshah (Iran, Islamic Republic of); Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir [Physics Department, Faculty of Science, Kharazmi University, University Square, P.O. Box: 3197937551, Karaj (Iran, Islamic Republic of)

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  4. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  5. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  6. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  7. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    International Nuclear Information System (INIS)

    Mohamed, Norani Muti; Ahmad, Pervaiz; Saheed, Mohamed Shuaib Mohamed; Burhanudin, Zainal Arif

    2014-01-01

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor

  8. Electronic structure and optical properties of boron nitride nanotube bundles from first principles

    Science.gov (United States)

    Behzad, Somayeh

    2015-06-01

    The electronic and optical properties of bundled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated by using density functional theory. Owing to the inter-tube coupling, the dispersions along the tube axis and in the plane perpendicular to the tube axis of BNNT bundles are significantly varied, which are characterized by the decrease of band gap, the splitting of the doubly degenerated states, the expansions of valence and conduction bands. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities.

  9. The interaction between hexagonal boron nitride and water from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2015-06-21

    The use of hexagonal boron nitride (h-BN) in microfluidic and nanofluidic applications requires a fundamental understanding of the interaction between water and the h-BN surface. A crucial component of the interaction is the binding energy, which is sensitive to the treatment of electron correlation. In this work, we use state of the art quantum Monte Carlo and quantum chemistry techniques to compute the binding energy. Compared to high-level many-body theory, we found that the second-order Møller-Plesset perturbation theory captures the interaction accurately and can thus be used to develop force field parameters between h-BN and water for use in atomic scale simulations. On the contrary, density functional theory with standard dispersion corrections tends to overestimate the binding energy by approximately 75%.

  10. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  11. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  12. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  13. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  14. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties

    International Nuclear Information System (INIS)

    Ulus, Hasan; Üstün, Tugay; Eskizeybek, Volkan; Şahin, Ömer Sinan; Avcı, Ahmet; Ekrem, Mürsel

    2014-01-01

    Highlights: • We studied the effects of BN nanoplatelets on tensile strength and elasticity modulus for polymer composites. • We investigated the synergetic effects of BN nanoplatelets and MWCNTs on tensile strength and elasticity modulus for polymer composites. • Fracture surfaces were examined by SEM analysis. - Abstract: In this study, production and mechanical properties of hybrid nanocomposites have been investigated. Hybrid nanocomposites are consisting of boron nitride nanoplatelets (BN) and multiwall carbon nanotubes (MWCNT) embedded in epoxy resin. The BN and MWCNT were mixed to epoxy resin in different weight fractions and mixtures were utilized for tensile test specimen production. The synthesized BN and produced hybrid nanocomposites were characterized by SEM, TEM, XRD, FT-IR and TGA analyses. The elasticity modulus and tensile strength values were obtained via tensile tests. The fracture morphologies were investigated after tensile test by means of scanning electron microscopy

  15. Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing

    Science.gov (United States)

    Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri

    2018-05-01

    The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.

  16. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  17. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  18. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c

  19. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  20. Optical absorption of zigzag single walled boron nitride nanotubes

    Science.gov (United States)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E7.5 eV. We found that in lower energies, E7.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7

  1. Fabrication and properties of ceramic composites with a boron nitride matrix

    International Nuclear Information System (INIS)

    Kim, D.P.; Cofer, C.G.; Economy, J.

    1995-01-01

    Boron nitride (BN) matrix composites reinforced by a number of different ceramic fibers have been prepared using a low-viscosity, borazine oligomer which converts in very high yield to a stable BN matrix when heated to 1,200 C. Fibers including Nicalon (SiC), FP (Al 2 O 3 ), Sumica and Nextel 440 (Al 2 O 3 -SiO 2 ) were evaluated. The Nicalon/BN and Sumica/BN composites displayed good flexural strengths of 380 and 420 MPa, respectively, and modulus values in both cases of 80 GPa. On the other hand, FP/BN and Nextel/BN composites exhibited very brittle behavior. Nicalon fiber with a carbon coating as a buffer barrier improved the strength by 30%, with a large amount of fiber pullout from the BN matrix. In all cases except for Nicalon, the composites showed low dielectric constant and loss

  2. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives

    OpenAIRE

    Bernard, Samuel; Miele, Philippe

    2014-01-01

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the che...

  3. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures

    Science.gov (United States)

    Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu

    2018-02-01

    Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.

  4. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites

    International Nuclear Information System (INIS)

    Madakbaş, Seyfullah; Çakmakçı, Emrah; Kahraman, Memet Vezir

    2013-01-01

    Highlights: ► PAN/h-BN composites with improved thermal stability were prepared. ► Thermal properties of composites were analysed by TGA and DSC. ► Flame retardancy of the composites increased up to 27%. - Abstract: Polyacrylonitrile is a thermoplastic polymer with unique properties and it has several uses. However its flammability is a major drawback for certain applications. In this study it was aimed to prepare polyacrylonitrile (PAN)/hexagonal boron nitride (h-BN) composites with improved flame retardancy and thermal stability. Chemical structures of the composites were characterized by FTIR analysis. Thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass transition temperatures and char yields increased with increasing h-BN percentage. Flame retardancy of the PAN composite materials improved with the addition of h-BN and the LOI value reached to 27% from 18%. Furthermore, the surface morphology of the composites was investigated by SEM analysis.

  5. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  6. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    Science.gov (United States)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2017-02-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the complex permittivity (ɛ ^*) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  7. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures.

    Science.gov (United States)

    Gopinadhan, Kalon; Shin, Young Jun; Jalil, Rashid; Venkatesan, Thirumalai; Geim, Andre K; Castro Neto, Antonio H; Yang, Hyunsoo

    2015-09-21

    Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of ∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron-nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen-Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications.

  8. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  9. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  10. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    Science.gov (United States)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  11. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine

    International Nuclear Information System (INIS)

    Roy, Arup Kumer; In, Insik; Park, Byoungnam; Lee, Kang Seok; Park, Sung Young

    2014-01-01

    Boron nitride nanosheet (BNNS) decorated with silver nanoparticles (AgNPs) was successfully synthesized via mussel-inspired chemistry of dopamine. Poly(dopamine)-functionalized BNNS (PDA-BNNS) was prepared by adding dopamine into the aqueous dispersion of hydroxylated BNNS (OH-BNNS) at alkaline condition. AgNPs were decorated on PDA-BNNS through spontaneous reduction of silver cations by catechol moieties of a PDA layer on BNNS, resulting in AgNP-BNNS with good dispersion stability. Incorporation of PDA on BNNS not only played a role as a surface functionalization method of BNNS, but also provided a molecular platform for creating very sophisticated two-dimensional (2D) BNNS-based hybrid nanomaterials such as metal nanoparticle-decorated BNNS. (paper)

  12. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  13. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.

    Science.gov (United States)

    Kodali, Vamsi K; Roberts, Jenny R; Shoeb, Mohammad; Wolfarth, Michael G; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T; Stefaniak, Aleksandr; Jordan, Kevin C; Whitney, Roy R; Porter, Dale W; Erdely, Aaron D

    2017-10-01

    Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute

  14. A self-propagation high-temperature synthesis and annealing route to synthesis of wave-like boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin; Zhang, Laiping [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Gu, Yunle, E-mail: ncm@mail.wit.edu.cn [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Pan, Xinye; Zhao, Guowei; Zhang, Zhanhui [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China)

    2013-03-15

    Highlights: ► Large quantities of wave-like BN nanotubes were synthesized by SHS-annealing method. ► The catalytic boron-containing porous precursor was produced by self-propagation high-temperature synthesis method. ► Three growth models were proposed to explain the growth mechanism of the wave-like BN nanotubes. - Abstract: Large quantities of boron nitride (BN) nanotubes were synthesized by annealing a catalytic boron-containing porous precursor in flowing NH{sub 3} gas at 1180 °C. The porous precursor was prepared by self-propagation high-temperature synthesis (SHS) method at 800 °C using Mg, B{sub 2}O{sub 3} and amorphous boron powder (α-B) as the starting materials. The porous precursor played an important role in large quantities synthesis of BN nanotubes. The as-synthesized product was characterized by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), Raman, Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM). Characterization results indicated that the BN nanotubes displayed wave-like inner structures with diameters in the range of 50–300 nm and average lengths of more than 10 μm. The possible growth mechanism of the BN nanotubes was also discussed.

  15. Niobium Nitride Thin Films and Multilayers for Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Roach, William; Beringer, Douglas; Li, Zhaozhu; Clavero, Cesar; Lukaszew, Rosa

    2013-03-01

    Niobium nitride in thin film form has been considered for a number of applications including multi-layered coatings onto superconducting radio frequency cavities which have been proposed to overcome the fundamental accelerating gradient limit of ~50 MV/m in niobium based accelerators. In order to fulfill the latter application, the selected superconductor's thermodynamic critical field, HC, must be larger than that of niobium and separated from the Nb surface by an insulating layer in order to shield the Nb cavity from field penetration and thus allow higher field gradients. Thus, for the successful implementation of such multilayered stack it is important to consider not just the materials inherent properties but also how these properties may be affected in thin film geometry and also by the specific deposition techniques used. Here, we show the results of our correlated study of structure and superconducting properties in niobium nitride thin films and discuss the shielding exhibited in NbN/MgO/Nb multilayer samples beyond the lower critical field of Nb for the first time. This work was funded by the Defense Threat Reduction Agency (HDTRA-10-1-0072).

  16. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  17. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  18. Clean and polymer-free transfer of CVD-grown graphene films on hexagonal boron nitride substrates

    Science.gov (United States)

    Fujihara, Miho; Ogawa, Shun; Yoshimura, Shintaro; Inoue, Ryosuke; Maniwa, Yutaka; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Miyata, Yasumitsu

    2017-05-01

    This report describes the development of a solution-assisted, polymer-free transfer method and the characterization of chemical vapor deposition (CVD)-grown graphene on hexagonal boron nitride. Raman analysis reveals that polymer-free samples have small variations in G- and 2D-mode Raman frequencies and are minimally affected by charge doping as observed for clean exfoliated graphene. Electrical measurements indicate that charge doping, hysteresis, and carrier scattering are suppressed in polymer-free samples. The results demonstrate that this method provides a simple and effective way to prepare clean heterostructures of CVD-grown, large-area graphene and other two-dimensional materials.

  19. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity

    Science.gov (United States)

    Abbasi, F. M.; Gul, Maimoona; Shehzad, S. A.

    2018-05-01

    Current study provides a comprehensive numerical investigation of the peristaltic transport of boron nitride-ethylene glycol nanofluid through a symmetric channel in presence of magnetic field. Significant effects of Brownian motion and thermophoresis have been included in the energy equation. Hall and Ohmic heating effects are also taken into consideration. Resulting system of non-linear equations is solved numerically using NDSolve in Mathematica. Expressions for velocity, temperature, concentration and streamlines are derived and plotted under the assumption of long wavelength and low Reynolds number. Influence of various parameters on heat and mass transfer rates have been discussed with the help of bar charts.

  20. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    Science.gov (United States)

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs.

  1. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  2. Size-dependent oriented attachment in the growth of pure and defect-free hexagonal boron nitride nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L X; Zheng, Y [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China); Li, Z H [Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Ahmed, A S, E-mail: mtq10ll@sheffield.ac.uk, E-mail: zhaohuili@fzu.edu.cn, E-mail: zyingth@sina.com [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2011-05-27

    Pure and defect-free hexagonal boron nitride (hBN) nanocrystals with deep-ultraviolet light emissions at around 215 nm were prepared via a solid state reaction. This involved preparing a precursor from potassium borohydride and ammonium chloride powders, and then heating the precursor and additional ammonium chloride to 1000 deg. C within a nitrogen atmosphere. The hBN nanocrystals were studied using a variety of characterization techniques (e.g., TEM, AFM, N{sub 2} absorption/desorption). A growth mechanism based on size-dependent oriented attachment was proposed for the nanocrystals.

  3. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  4. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  5. Novel Electronic and Magnetic Properties of Graphene Nanoflakes in a Boron Nitride Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Gao, Fei

    2012-04-05

    Novel electronic and magnetic properties of various-sized graphene nanoflakes (GNFs) embedded in a boron nitride (BN) layer are studied using ab initio methods. The feasibility of synthesizing hybrid GNF-BN structure, a desirable quantum dot structure, is explored. In this structure, photoexcited electrons and holes occupy the same spatial region - the GNF region - which offers an effective way to generate a GNF-based light-emitting device and adjust its emitted optical properties by controlling the size and array of GNF in the BN layer. Based on the important magnetism properties of embedded GNF, we propose a specific configuration to obtain a large spin. Together with the high stability of spin alignment, the proposed configuration can be exploited for spintronic devices.

  6. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  7. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    International Nuclear Information System (INIS)

    Nagakubo, A.; Ogi, H.; Hirao, M.; Sumiya, H.

    2014-01-01

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  8. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography

    International Nuclear Information System (INIS)

    Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug

    2007-01-01

    Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin

  9. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom

    Science.gov (United States)

    Gupta, Varun; Kumar, Ankit; Ray, Nirat

    2018-05-01

    The permeability of atomic hydrogen in monolayer hexagonal Boron Nitride(h-BN) and graphene has been studied using first-principles density functional theory based simulations. For the specific cases of physisorption and chemisoroption, barrier heights are calculated using the nudged elastic band approach. We find that the barrier potential for physisorption through the ring is lower for graphene than h-BN. In the case of chemisorption, where the H atom passes through by making bonds with the atoms in the ring, the barrier potential for the graphene was found to be higher than that of h-BN. We conclude that the penetration of H atom with notable kinetic energy (graphene as compared to h-BN. Whereas through chemisorption, lower kinetic energy (>3eV) H-atoms have a higher chance to penetrate through h-BN than graphene.

  10. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  11. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  12. Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wenqin; Zhang, Wei; Gao, Yuwen [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Liang, Guozheng, E-mail: lgzheng@suda.edu.cn [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Gu, Aijuan, E-mail: ajgu@suda.edu.cn [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Yuan, Li [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2013-04-01

    A new organized hexagonal boron nitride (OhBN) with significantly increased amount of amine groups was synthesized, and characterized by Fourier Transform Infrared (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG) analysis, UV–vis Transmittance Spectra, Transmission Electron Microscope (TEM) and the potentiometric titration. The content of amine groups for OhBN is about 5 times of that for original hexagonal boron nitride (hBN). Based on the preparation of OhBN, new composites consisting of OhBN and bismaleimide (BD) resin were developed, which show greatly improved integrated performance (including dynamic mechanical, dielectric and thermal properties) compared with BD resin and the hBN/BD composites. In the case of the OhBN/BD composite with 15 wt% OhBN, its storage modulus, dielectric loss, thermal conductivity and coefficient of thermal expansion are about 1.2, 0.56, 1.11 and 0.92 times of the corresponding values of hBN/BD composite, respectively; moreover, the glass transition temperature of the former is 15 °C higher than that of the latter. These interesting results suggest that the integrated performance of the composites is closely related to the surface nature of the fillers because the change in the surface nature not only varies the chemical structure, free volume and crosslinking density of the composite, but also determines the interfacial nature between inorganic fillers and the resin matrix. This investigation demonstrates that the method proposed herein provides a new approach to prepare organized inorganic fillers as well as corresponding composites with controlled structure and expected performances for cutting-edge industries.

  13. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  14. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  15. Thermal transport across graphene and single layer hexagonal boron nitride

    International Nuclear Information System (INIS)

    Zhang, Jingchao; Hong, Yang; Yue, Yanan

    2015-01-01

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs

  16. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method

    International Nuclear Information System (INIS)

    Singhal, S. K.; Srivastava, A. K.; Gupta, Anil K.; Chen, Z. G.

    2010-01-01

    We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B-N-O-Fe/Mg was prepared by ball milling a mixture of B, B 2 O 3 , Fe 2 O 3 and MgO (1:7:2:1 mass ratio) in NH 3 for 3 h. BN nanotubes (diameter: 20-100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 o C in NH 3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.

  17. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    Science.gov (United States)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  18. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  19. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  20. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  1. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Jankowski, A.F.; Terminello, L.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Boron nitride is an interesting material for technological applications and for fundamental solid state physics investigations. It is a compound isoelectronic with carbon and, like carbon can possess sp{sup 2} and sp{sup 3} bonded phases resembling graphite and diamond. BN crystallizes in the sp{sup 2}-bonded hexagonal (h-BN), rhombohedral (r-BN) and turbostratic phases, and in the sp{sup 3}-bonded cubic (c-BN) and wurtzite (w-BN) phases. A new family of materials is obtained when replacing C-C pairs in graphite with isoelectronic B-N pairs, resulting in C{sub 2}BN compounds. Regarding other boron compounds, BN is exceptional in the sense that it has standard two-center bonds with conventional coordination numbers, while other boron compounds (e.g. B{sub 4}C) are based on the boron icosahedron unit with three-center bonds and high coordination numbers. The existence of several allotropic forms and fullerene-like structures for BN suggests a rich variety of local bonding and poses the questions of how this affects the local electronic structure and how the material accommodates the stress induced in the transition regions between different phases. One would expect point defects to play a crucial role in stress accommodation, but these must also have a strong influence in the electronic structure, since the B-N bond is polar and a point defect will thus be a charged structure. The study of point defects in relationship to the electronic structure is of fundamental interest in these materials. Recently, the authors have shown that Near-Edge X-ray Absorption Fine Structure (NEXAFS) is sensitive to point defects in h-BN, and to the formation of metastable phases even in amorphous materials. This is significant since other phase identification techniques like vibrational spectroscopies or x-ray diffraction yield ambiguous results for nanocrystalline and amorphous samples. Serendipitously, NEXAFS also combines chemical selectivity with point defect sensitivity.

  2. Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2016-02-14

    Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat current along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.

  3. Nano-structure and tribological properties of B+ and Ti+ co-implanted silicon nitride

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Noda, Katsutoshi; Yamauchi, Yukihiko

    2005-01-01

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 x 10 17 ions/cm 2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti + -implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti + -implanted sample was the lowest, followed by B + , Ti + co-implanted and B + -implanted samples

  4. Laser shock processing on microstructure and hardness of polycrystalline cubic boron nitride tools with and without nanodiamond powders

    International Nuclear Information System (INIS)

    Melookaran, Roslyn; Melaibari, Ammar; Deng, Cheng; Molian, Pal

    2012-01-01

    Highlights: ► Laser shock waves hardened polycrystalline cubic boron nitride tools by up to 15%. ► Laser shock waves can build layer-by-layer of nanodiamond to form micro-diamond tools. ► Multiple laser shocks induce significant phase transitions in cBN and nanodiamond. -- Abstract: High amplitude, short duration shock waves created by a 1064 nm, 10 ns Q-switched Nd:YAG laser were used to increase the hardness as well as build successive layers of nanodiamond on sintered polycrystalline cubic boron nitride (PcBN) tools. Multiple scans of laser shocking were applied. Scanning electron microscopy, Raman spectroscopy, Tukon microhardness tester, and optical surface profilometer were used to evaluate the microstructure, phase change, Vicker’s microhardness and surface roughness. Results indicated that laser shock processing of plain PcBN changed the binder concentration, caused phase transition from cubic to hexagonal form, increased the hardness, and almost unaffected surface roughness. Laser shock wave sintering of nanodiamond powders on PcBN resulted in deagglomeration and layer-by-layer build-up of nanoparticles for a thickness of 30 μm inferring that a novel solid freeform technique designated as “shock wave induced freeform technique (SWIFT)” is being discovered for making micro-tools. Depending on the number of multiple laser shocks, the hardness of nanodiamond compact was lower or higher than that of PcBN. It is hypothesized that nanodiamond particles could serve as crack deflectors, increasing the fracture toughness of PcBN.

  5. Electronic response of a photodiode coupled to a boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Costa, Fabio E.; Raele, Marcus P.; Zahn, Guilherme S.; Geraldo, Bianca; Vieira Junior, Nilson D.; Samad, Ricardo E.; Genezini, Frederico A., E-mail: priscila3.costa@usp.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    A portable thermal neutron detector is proposed in this work using a silicon photodiode coupled to a boron thin film. The aim of this work was to verify the effect in the electronic response of this specific photodiode due to boron deposition, since the direct deposition of boron in the semiconductor surface could affect its electrical properties specifically the p-type layer that affects directly the depletion region of the semiconductor reducing the neutron detector efficiency count. Three boron depositions with different thickness were performed in the photodiode (S3590-09) surface by pulsed laser deposition and the photodiode was characterized, before and after the deposition process, using a radioactive americium source. Energy spectra were used to verify the electronic response of the photodiode, due to the fact that it is possible to relate it to the photopeak pulse height and resolution. Spectra from the photodiode without and with boron film deposition were compared and a standard photodiode (S3590-04) that had the electronic signal conserved was used as reference to the pulse height for electronics adjustments. The photopeak energy resolution for the photodiode without boron layer was 10.26%. For the photodiode with boron deposition at different thicknesses, the resolution was: 7.64 % (0.14 μm), 7.30 % (0.44 μm) and 6.80 % (0.63 μm). From these results it is possible to evaluate that there was not any degradation in the silicon photodiode. (author)

  6. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  7. Preparation of boron-nitrogen films by sputtering

    International Nuclear Information System (INIS)

    Klose, S.; Winde, B.

    1980-01-01

    Hard boron-nitrogen films adherent to various substrates can be prepared by sputtering. IR investigations suggest the existence of cubic boron nitride in certain layers. Transmission electron microscope studies have shown a quasi-amorphous structure irregularly incorporating crystallites of zinc blende structure of some nm in diameter

  8. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    Science.gov (United States)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  9. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  10. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  11. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    Directory of Open Access Journals (Sweden)

    Rachana Gupta

    2015-09-01

    Full Text Available Cobalt nitride (Co-N thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (RN2 was varied. As RN2 increases, Co(N, Co4N, Co3N and CoN phases are formed. An incremental increase in RN2, after emergence of Co4N phase at RN2 = 10%, results in a linear increase of the lattice constant (a of Co4N. For RN2 = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co4N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M4N have been theoretically predicted. Incorporation of N atoms in M4N configuration results in an expansion of a (relative to pure metal and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M4N compounds. Though a higher (than pure Fe magnetic moment for Fe4N thin films has been evidenced experimentally, higher (than pure Co magnetic moment is evidenced in this work.

  12. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  13. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  14. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride.

    Science.gov (United States)

    Chen, Lin; Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study.

  15. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-01-01

    Graphical abstract: Structural properties and stability characteristics of single- and double-walled boron-nitride nanotubes functionalized with Flavin mononucleotide (FMN) in aqueous environment are investigated employing molecular dynamics simulations. - Highlights: • Structural and buckling analysis of boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN). • Gyration radius increases linearly as the weight percentage of FMN increases. • Presence of water molecules results in more expansion of FMN around BNNTs. • Critical buckling force of functionalized BNNTs is higher than that of pure BNNTs. • The critical strain of functionalized BNNTs is found to be lower than that of pure ones. - Abstract: The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  16. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels

    Science.gov (United States)

    Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2018-05-01

    A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12–16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

  17. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

    Science.gov (United States)

    Shautsova, Viktoryia; Gilbertson, Adam M.; Black, Nicola C. G.; Maier, Stefan A.; Cohen, Lesley F.

    2016-07-01

    We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping.

  18. Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices

    Directory of Open Access Journals (Sweden)

    Isaac Isarn

    2018-03-01

    Full Text Available In this work, the effect of the addition of boron nitride (BN fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 μm agglomerates, allowed to increase this value until 1.75 W/K·m.

  19. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  20. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    International Nuclear Information System (INIS)

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-01-01

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu) 2 ] 2 precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities

  1. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  2. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  3. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  4. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effects of axial magnetic field on the electronic and optical properties of boron nitride nanotube

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2011-07-01

    The splitting of band structure and absorption spectrum, for boron nitride nanotubes (BNNTs) under axial magnetic field, is studied using the tight binding approximation. It is found that the band splitting ( ΔE) at the Γ point is linearly proportional to the magnetic field ( Φ/Φ0). Our results indicate that the splitting rate νii, of the two first bands nearest to the Fermi level, is a linear function of n -2 for all (n,0) zigzag BNNTs. By investigation of the dependence of band structure and absorption spectrum to the magnetic field, we found that absorption splitting is equal to band splitting and the splitting rate of band structure can be used to determine the splitting rate of the absorption spectrum.

  6. Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shiliang; Wang, Zhenhua; Ding, Ning [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Elaine Wong, Y.-L. [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Chen, Xiangfeng, E-mail: xiangfchensdas@163.com [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Qiu, Guangyu [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Dominic Chan, T.-W., E-mail: twdchan@cuhk.edu.hk [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2016-09-14

    The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π–π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography–tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24–0.50 ng L{sup −1}; signal-to-noise ratio = 3:1), low limits of quantification (0.79–1.56 ng L{sup −1}; signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2–1000 ng L{sup −1}, and good precision (relative standard deviation < 12%). The PCBs concentration in environmental water samples was determined by the developed method. This results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants. - Highlights: • The hexagonal boron nitride nanosheets were synthesized. • The nanosheets were used as adsorbent for solid-phase extraction. • The h-BN demonstrates remarkable adsorption of PCBs from water samples. • The method was successfully applied in determination of PCBs in water samples.

  7. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Jiang, Leyong; Guo, Jun; Dai, Xiaoyu [SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Xiang, Yuanjiang, E-mail: xiangyuanjiang@126.com [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and the thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.

  8. X-ray diffraction of residual stresses in boron nitride coated on steel substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Ramdan, R.D.; Venkatesh, V.C.; Hamid, N.H.B.

    2002-01-01

    Cubic boron nitride (cBN) is a promising coating material for cutting tools especially for applications that have contact with ferrous metals. This is because of its extreme hardness, chemical stability at high temperature and inertness with ferrous metals. However applications of cBN as coating material has not been used extensively due to the poor adhesion between cBN and its substrate. High stress level in the film is considered to be the main factor for the delamination of cBN films after deposition. Thus the present research concentrates on residual stress analysis of cBN films by x-ray diffraction method. Fourier transform infra-red (FTIR) spectroscopy analysis was also performed on the samples to study the structure of the deposited films. Based on the present experimental results and previous literature study, a new theoretical model for cBN film growth was proposed. (Author)

  9. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    Science.gov (United States)

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  10. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    Science.gov (United States)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  11. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  12. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  13. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  14. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  15. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-12-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms.

  16. Adhesion and size dependent friction anisotropy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Chiu, Hsiang-Chih; Riedo, Elisa; Dogan, Sedat; Volkmann, Mirjam; Klinke, Christian

    2012-01-01

    The frictional properties of individual multiwalled boron nitride nanotubes (BN-NTs) synthesized by chemical vapour deposition (CVD) and deposited on a silicon substrate are investigated using an atomic force microscope tip sliding along (longitudinal sliding) and across (transverse sliding) the tube’s principal axis. Because of the tube’s transverse deformations during the tip sliding, a larger friction coefficient is found for the transverse sliding as compared to the longitudinal sliding. Here, we show that the friction anisotropy in BN-NTs, defined as the ratio between transverse and longitudinal friction forces per unit area, increases with the nanotube–substrate contact area, estimated to be proportional to (L NT R NT ) 1/2 , where L NT and R NT are the length and the radius of the nanotube, respectively. Larger contact area denotes stronger surface adhesion, resulting in a longitudinal friction coefficient closer to the value expected in the absence of transverse deformations. Compared to carbon nanotubes (C-NTs), BN-NTs display a friction coefficient in each sliding direction with intermediate values between CVD and arc discharge C-NTs. CVD BN-NTs with improved tribological properties and higher oxidation temperature might be a better candidate than CVD C-NTs for applications in extreme environments. (paper)

  17. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  18. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  19. Observation of apparent MOS regimes on Al/PECVD grown boron nitride/p-c-Si/Al MIS structure, investigated through admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Orhan [Yildiz Technical University, Department of Physics, Esenler, istanbul (Turkey)

    2009-02-15

    PECVD grown boron nitride (BN) on crystalline silicon (c-Si) semiconductor was investigated by admittance measurement in the form of metal/insulator/semiconductor (MIS) structure. Apart from well-known regimes of traditional MOS structure, gradual bypassing of depletion layer was observed once ambient temperature (frequency) increased (decreased). Such an anomalous behavior was interpreted through modulations of charges located within BN film and/or at the interfacial layer of BN film/c-Si junction in terms of weighted average concept. (author)

  20. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions

    International Nuclear Information System (INIS)

    Zhang, Bin; Yang, Gang

    2014-01-01

    A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model

  1. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Science.gov (United States)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  2. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  3. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    International Nuclear Information System (INIS)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-01-01

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO 2 . Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO 2 as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO 2 . Dominant interfacial recombination pathways such as electron capture by TiO 2 surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO 2 , allowing electronic transport at TiO 2 /h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO 2 /CdSe interface

  4. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  5. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon

    International Nuclear Information System (INIS)

    Liu, N.; Liu, J.B.; Gao, G.Y.; Yao, K.L.

    2014-01-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 10 4 –10 6 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias. - Highlights: • Negative differential resistance (NDR) behavior with giant peak-to-valley ratio is found. • Doping concentration changes the NDR peak position significantly. • NDR peak position can enter into mV bias range and even lower than mV bias. • The results are explained by the bias-dependent transmission spectra and band structures

  6. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Masoud Darvish Ganji, Amir Mirnejad and Ali Najafi

    2010-01-01

    Full Text Available Methane adsorption onto single-wall boron nitride nanotubes (BNNTs and carbon nanotubes (CNTs was studied using the density functional theory within the generalized gradient approximation. The structural optimization of several bonding configurations for a CH4 molecule approaching the outer surface of the (8,0 BNNT and (8,0 CNT shows that the CH4 molecule is preferentially adsorbed onto the CNT with a binding energy of −2.84 kcal mol−1. A comparative study of nanotubes with different diameters (curvatures reveals that the methane adsorptive capability for the exterior surface increases for wider CNTs and decreases for wider BNNTs. The introduction of defects in the BNNT significantly enhances methane adsorption. We also examined the possibility of binding a bilayer or a single layer of methane molecules and found that methane molecules preferentially adsorb as a single layer onto either BNNTs or CNTs. However, bilayer adsorption is feasible for CNTs and defective BNNTs and requires binding energies of −3.00 and −1.44 kcal mol−1 per adsorbed CH4 molecule, respectively. Our first-principles findings indicate that BNNTs might be an unsuitable material for natural gas storage.

  7. Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide

    International Nuclear Information System (INIS)

    Ye, Zhijiang; Martini, Ashlie; Otero-de-la-Roza, Alberto; Johnson, Erin R

    2015-01-01

    Offset-driven self-retraction and oscillatory motion of bilayer graphene has been observed experimentally and is potentially relevant for nanoscale technological applications. In a previous article, we showed that friction between laterally offset graphene layers is controlled by roughness and proposed a simple reduced-order model based on density-functional theory (DFT) and molecular dynamics (MD) data, with which predictions on the experimental size-scale could be made. In this article, we extend our study to other layered materials, with emphasis on boron nitride (BN) and molybdenum disulfide (MoS 2 ). Using MD and DFT simulations of these systems and a generalized version of the reduced-order model, we predict that BN will exhibit behavior similar to graphene (heavily-damped oscillation with a decay rate that increases with roughness) and that MoS 2 shows no oscillatory behavior even in the absence of roughness. This is attributed to the higher energy barrier for sliding in MoS 2 as well as the surface structure. Our generalized reduced-order model provides a guide to predicting and tuning experimental oscillation behavior using a few parameters that can be derived from simulation data. (paper)

  8. Adsorption of nucleic acid bases and amino acids on single-walled carbon and boron nitride nanotubes: a first-principles study.

    Science.gov (United States)

    Zheng, Jiaxin; Song, Wei; Wang, Lu; Lu, Jing; Luo, Guangfu; Zhou, Jing; Qin, Rui; Li, Hong; Gao, Zhengxiang; Lai, Lin; Li, Guangping; Mei, Wai Ning

    2009-11-01

    We study the adsorptions of nucleic acid bases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) and four amino acids phenylalanine, tyrosine, tryptophan, alanine on the single-walled carbon nanotubes (SWCNTs) and boron nitride nanotubes (SWBNNTs) by using density functional theory. We find that the aromatic content plays a critical role in the adsorption. The adsorptions of nucleic acid bases and amino acids on the (7, 7) SWBNNT are stronger than those on the (7, 7) SWCNT. Oxidative treatment of SWCNTs favors the adsorption of biomolecules on nanotubes.

  9. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  10. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  11. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  12. Rigid thin windows for vacuum applications

    Science.gov (United States)

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  13. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  14. Ni foam assisted synthesis of high quality hexagonal boron nitride with large domain size and controllable thickness

    Science.gov (United States)

    Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan

    2018-04-01

    The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.

  15. Anisotropic emission of the X-ray K-emission band of nitrogen in hexagonal boron nitride

    International Nuclear Information System (INIS)

    Tegeler, E.; Kosuch, N.; Wiech, G.; Faessler, A.

    1977-05-01

    The intensity distribution of the N K-emission band of hexagonal boron nitride samples with partially orientated crystallites was found to be strongly dependent upon the take-off angle of the emitted radiation. The observed emission bands can be separated unambiguously into a sigma- and a π-subband. On the basis of the directional characteristic of radiating dipoles within the layers (sigma-bondings) and perpendicular to the layers (π-bonding) the angular dependence of the intensity of the subbands is quantitatively explained. In addition the degree of orientation of the crystallites on the sample can be determined. The intensity distributions of the emission bands to be expected for single crystals and for samples without any texture are determined; in the latter case the results are found to be in good agreement with experimental results. (orig.) [de

  16. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy

    International Nuclear Information System (INIS)

    Barrès, T.; Tribollet, B.; Stephan, O.; Montigaud, H.; Boinet, M.; Cohin, Y.

    2017-01-01

    Silicon nitride thin films are widely used as diffusion barriers within stacks in the glass industry but turn out to be porous at the nanometric scale. EIS measurements were conducted on SiNx thin layers deposited on a gold layer. An electrochemical model was established to fit the EIS measurements making use of data from other complementary techniques. In particular, Transmission Electron Microscopy was performed on these thin layers to determine the diameter and the qualitative morphology of the pores. A quantitative determination of the through-porosity of the layer was deduced from the EIS model and was in good agreement with TEM measurements. Moreover, combining EIS with local observations enabled inhomogeneities in the layer to be probed by highlighting a specific region in the layer.

  17. Flexible Gallium Nitride for High-Performance, Strainable Radio-Frequency Devices.

    Science.gov (United States)

    Glavin, Nicholas R; Chabak, Kelson D; Heller, Eric R; Moore, Elizabeth A; Prusnick, Timothy A; Maruyama, Benji; Walker, Dennis E; Dorsey, Donald L; Paduano, Qing; Snure, Michael

    2017-12-01

    Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state-of-the-art values for electrical performance, with electron mobility exceeding 2000 cm 2 V -1 s -1 and sheet carrier density above 1.07 × 10 13 cm -2 . The influence of strain on the RF performance of flexible GaN high-electron-mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of carbon in boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Kugler, Veronika M.; Czigany, Zsolt; Flink, Axel; Werner, Oskar; Schneider, Jochen M.; Hultman, Lars; Helmersson, Ulf

    2003-01-01

    Boron suboxide thin films, with controlled carbon content, were grown by rf dual magnetron sputtering of boron and carbon targets in an argon-oxygen atmosphere. Film composition, structure, mechanical, and electrical properties were evaluated with x-ray photoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, nanoindentation, and high-frequency capacitance-voltage measurements. X-ray amorphous B-O-C films (O/B=0.02) showed an increase in density from 2.0 to 2.4 g/cm 3 as C content was increased from 0 to 0.6 at. % and the film with the highest density had nanocrystalline inclusions. The density increase occurred most likely due to the formation of B-C bonds, which are shorter than B-B bonds. All measured material properties were found to depend strongly on the C content and thus film density. The elastic modulus increased from 188 to 281 GPa with the increasing C content, while the relative dielectric constant decreased from 19.2 to 0.9. Hence, B-O-C films show a potential for protective coatings and even for application in electronic and optical devices

  19. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  20. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  1. Achieving Ohmic Contact for High-quality MoS2 Devices on Hexagonal Boron Nitride

    Science.gov (United States)

    Cui, Xu

    MoS2, among many other transition metal dichalcogenides (TMDCs), holds great promise for future applications in nano-electronics, opto-electronics and mechanical devices due to its ultra-thin nature, flexibility, sizable band-gap, and unique spin-valley coupled physics. However, there are two main challenges that hinder careful study of this material. Firstly, it is hard to achieve Ohmic contacts to mono-layer MoS2, particularly at low temperatures (T) and low carrier densities. Secondly, materials' low quality and impurities introduced during the fabrication significantly limit the electron mobility of mono- and few-layer MoS2 to be substantially below theoretically predicted limits, which has hampered efforts to observe its novel quantum transport behaviours. Traditional low work function metals doesn't necessary provide good electron injection to thin MoS2 due to metal oxidation, Fermi level pinning, etc. To address the first challenge, we tried multiple contact schemes and found that mono-layer hexagonal boron nitride (h-BN) and cobalt (Co) provide robust Ohmic contact. The mono-layer spacer serves two advantageous purposes: it strongly interacts with the transition metal, reducing its work function by over 1 eV; and breaks the metal-TMDCs interaction to eliminate the interfacial states that cause Fermi level pinning. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kohm.um at a carrier density of 5.3x10. 12/cm. 2. Similar to graphene, eliminating all potential sources of disorder and scattering is the key to achieving high performance in MoS2 devices. We developed a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within h-BN and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. The h-BN-encapsulation provides excellent protection from environmental factors, resulting in

  2. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  3. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains

    Science.gov (United States)

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-01

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  4. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    Science.gov (United States)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  5. Optical properties of bulk semiconductors and graphene/boron nitride: the Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    -dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction......We present an efficient implementation of the Bethe-Salpeter equation (BSE) for optical properties of materials in the projector augmented wave method Grid-based projector-augmented wave method (GPAW). Single-particle energies and wave functions are obtained from the Gritsenko, Leeuwen, Lenthe...

  6. Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study

    Science.gov (United States)

    Behzad, Somayeh

    2018-04-01

    Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.

  7. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls

    Science.gov (United States)

    Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui

    2016-04-01

    We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.

  8. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    Science.gov (United States)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  9. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    International Nuclear Information System (INIS)

    An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Jiao, Zhaoyong; Wu, Dapeng; Fu, Zhaoming; Wang, Kun

    2016-01-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for B n N n−1 , 2 μ B for B n N n , and 3 μ B for B n N n+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short B n N n+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long B n N n+1 chains under high bias voltages and other types of BN atomic chains (B n N n−1 and B n N n ). The proposed short B n N n+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  10. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    Science.gov (United States)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  11. Viscoelastic sliding and diffusive relaxation along grain boundaries in polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Pezzotti, G.; Nishida, Toshihiko; Kleebe, H.J.; Ota, Kenichi

    1997-01-01

    Dense hexagonal boron nitride (BN) materials were prepared via two different processing routes: (1) hot-pressing with the addition of a Ca/B-containing glass and (2) chemical vapor deposition (CVD). The resulting microstructure of both materials was studied by scanning and transmission electron microscopy. While the hot-pressed BN material shows, apart from large BN matrix grains, an inhomogeneous distribution of residual glass at room temperature, the CVD deposition yields a homogeneous fine grained microstructure with no amorphous residue detectable. Internal-friction experiments were performed to study the micromechanical response of the materials when exposed to high temperatures. The CVD material revealed no relaxation peak during testing up to 2,300 C, while the glass-doped sample showed a pronounced relaxation peak at a peak-top temperature of about 600 C. This temperature corresponds to the softening temperature known for bulk Ca/B-glasses and it is, therefore, concluded that the glass homogeneously wets the BN grains at elevated temperatures. The results presented are seen as the first clear evidence that the internal friction peak monitored for various glass-containing ceramics is indeed related to a viscous sliding process along grain boundaries

  12. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  13. Electronic properties and bulk moduli of new boron nitride polymorphs, i.e., hyperdiamond B12N12 and simple cubic B24N24, B12N12 fulborenites

    International Nuclear Information System (INIS)

    Pokropivny, V. V.; Bekenev, V. L.

    2006-01-01

    The energy-band structure, density of states, electron density distribution, equation of state, and bulk moduli of three boron-nitride fulborenite crystals, i.e., B 12 N 12 with diamond lattice and B 24 N 24 , B 12 N 12 with simple cubic lattice, whose sites contain fulborene B 12 N 12 and B 24 N 24 molecules, are calculated for the first time using the full-potential linearized augmented plane wave method. The following hyperdiamond B 12 N 12 parameters were obtained: the equilibrium lattice parameter a = 1.1191 nm, the B-N bond length a BN = 0.1405 nm, the number of atoms per unit cell Z = 192, the density ρ = 2.823 g/cm 3 , the bulk modulus B 0 = 658 GPa, and the band gap ΔE g = 3.05 eV. This is a previously unknown unique light superhard semiconductor faujasite with a recorded bulk modulus higher than that of diamond. There are reasons to assume that it is a E phase. The characteristics of B 24 N 24 with simple cubic lattice are as follows: the equilibrium lattice parameter a = 0.7346 nm, the B-N bond length a BN = 0.1521 nm, the number of atoms per unit cell Z = 48, the density ρ = 2.495 g/cm 3 , the bulk modulus B 0 = 367 GPa, and the band gap ΔE g = 3.76 eV. This material is a heteropolar semiconductor or insulator with a bulk modulus comparable with that of cubic boron nitride, as well as a new boron-nitride zeolite with channel diameter of 0.46 nm. B 12 N 12 with simple cubic lattice is a molecular semimetal

  14. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  15. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    International Nuclear Information System (INIS)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2015-01-01

    Highlights: • Bisphenol-F based boron-phenolic resins (B-BPF) with B−O bonds were synthesized. • The modified silicon nitride (m-SiN) was well dispersed and adhered in the B-BPF. • B-BPF/m-SiN composites have good thermal resistance and mechanical properties. • The grinding wheels bound by B-BPF/m-SiN have excellent grinding quality. - Abstract: In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link B−O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins

  16. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  17. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.

  18. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  19. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  20. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  1. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  2. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  3. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  4. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  5. Photometric and emission-spectrometric determination of boron in steels

    International Nuclear Information System (INIS)

    Thierig, D.

    1982-01-01

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated. (orig.) [de

  6. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  7. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential

    International Nuclear Information System (INIS)

    Zhao, Yinbo; Peng, Xianghe; Fu, Tao; Huang, Cheng; Feng, Chao; Yin, Deqiang; Wang, Zhongchang

    2016-01-01

    Highlights: • We optimize Tersoff potential to simulate the cBN better under nanoidentation. • Dislocations slip more easily along and directions on the {111} plane. • Shuffle-set dislocation slip along direction on {111} plane first. • A tetrahedron structure is found in the initial stage of the indentation. - Abstract: We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the {111} and {111} systems are relatively smaller, indicating that dislocations slip more easily along and directions on the {111} plane.

  8. Enhanced dispersion of boron nitride nanosheets in aqueous media by using bile acid-based surfactants

    Science.gov (United States)

    Chae, Ari; Park, Soo-Jin; Min, Byunggak; In, Insik

    2018-01-01

    Facile noncovalent surface functionalization of hydroxylated boron nitride nanosheet (BNNS-OH) was attempted through the sonication-assisted exfoliation of h-BN in aqueous media in the presence of bile acid-based surfactants such as sodium cholic acid (SC) or sodium deoxycholic acid (SDC), resulting in SC- or SDC-BNNS-OH dispersion with high up to 2 mg ml-1 and enhanced dispersion stability due to the increased negative zeta potential. While prepared SC-BNNS-OH revealed multi-layered BNNS structures, the large lateral sizes of hundreds nanometers and clear h-BN lattice structures are very promising for the preparation and application of water-processable BNNS-based nanomaterials. It is regarded that noncovalent functionalization of BNNS-OH based on σ-π interaction between with σ-rich bile acid-based amphiphiles and π-rich BNNS is very effective to formulate multi-functional BNNS-based nanomaterials or hybrids that can be utilized in various applications where both the pristine properties of BNNS and the extra functions are simultaneously required.

  9. Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications

    Science.gov (United States)

    Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho

    2017-12-01

    Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.

  10. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-07-01

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement. These 3 mm × 3 mm detectors were fabricated from 50 μm thick freestanding and flexible 10B enriched h-BN (h-10BN) films, grown by metal organic chemical vapor deposition followed by mechanical separation from sapphire substrates. Mobility-lifetime results suggested that holes are the majority carriers in unintentionally doped h-BN. The detectors were tested under thermal neutron irradiation from californium-252 (252Cf) moderated by a high density polyethylene moderator. A thermal neutron detection efficiency of ˜53% was achieved at a bias voltage of 200 V. Conforming to traditional solid-state detectors, the realization of h-BN epilayers with enhanced electrical transport properties is the key to enable scaling up the device sizes. More specifically, the present results revealed that achieving an electrical resistivity of greater than 1014 Ωṡcm and a leakage current density of below 3 × 10-10 A/cm2 is needed to fabricate large area h-BN detectors and provided guidance for achieving high sensitivity solid state neutron detectors based on h-BN.

  11. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    Science.gov (United States)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  12. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  13. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  14. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  15. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    Science.gov (United States)

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

  16. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Science.gov (United States)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  17. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Directory of Open Access Journals (Sweden)

    Yong-Jun Li

    2012-03-01

    Full Text Available We proposed intercalation of hexagonal boron nitride (hBN in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  18. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, J., E-mail: Dabrowski@ihp-microelectronics.com; Lippert, G.; Schroeder, T.; Lupina, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  19. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    International Nuclear Information System (INIS)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit; Niven, John F.; Johnson, Michel B.; Ashrafi, Behnam; White, Mary Anne

    2016-01-01

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m -1 K -1 ) and lower-density as-synthesized sheets (∝0.75 W m -1 K -1 ), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m -1 K -1 , for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m -1 K -1 , more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U. [Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna 1040 (Austria); Nicolay, P. [CTR Carinthian Tech Research AG, Villach 9524 (Austria)

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  1. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  2. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.Tuğrul, E-mail: atseyhan@anadolu.edu.tr [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Composite Materials Manufacturing Science Laboratory (CMMSL), Research and Application Center of Civil Aviation (RACCA), Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Göncü, Yapıncak; Durukan, Oya; Akay, Atakan; Ay, Nuran [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey)

    2017-05-15

    Chemical exfoliation of boron nitride nanosheets (BNNSs) from large flakes of specially synthesized micro-sized hexagonal boron nitride (h-BN) ceramics was carried out through microfluidization. The surface of BNNSs obtained was then functionalized with vinyl-trimethoxy silane (VTS) coupling agent through microfluidization once again in an effort to make them compatible with organic materials, especially those including polymers. The morphology of BNNSs with and without silane treatment was then systematically characterized by conducting various different analytical techniques, including Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Bright field Transmission Electron Microscopy (BF-TEM), Contact angle analyzer (CAA), Particle size analyzer (PSA) and Fourier Transmission Infrared (FTIR) spectroscopy attached with attenuated total reflectance (ATR) module. As a result, the silane treatment was determined to be properly and successfully carried out and to give rise to the irregularity of large flakes of the BNNSs by folding back their free edges upon themselves, which in turn assists in inducing further exfoliation of the few-layered nanosheets. To gain more insight into the effectiveness of the surface functionalization, thermal conductivity of polypropylene (PP) nanocomposites containing different amounts (1 wt% and 5 wt%) of BNNSs with and without silane treatment was experimentally investigated. Regardless of the weight content, PP nanocomposites containing silanized BNNSs were found to exhibit high thermal conductivity compared to PP nanocomposites containing BNNSs without silane treatment. It was concluded that microfluidization possesses the robustness to provide a reliable product quality, whether in small or large quantities, in a very time effective manner, when it comes to first exfoliating two-dimensional inorganic materials into few layered sheets, and functionalizing the surface of these sheets afterwards

  3. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  4. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  5. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    International Nuclear Information System (INIS)

    Zheng, Meng; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C; Pugno, Nicola M

    2013-01-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip–tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip–tube collision process and the roles of the scribing velocity and the frictional interaction on the tip–tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26–4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1–15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures. (paper)

  6. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics

    KAUST Repository

    Zhang, Kai

    2013-09-01

    Vertical integration of hexagonal boron nitride (h-BN) and graphene for the fabrication of vertical field-effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining an ultrathin dielectric with a semi-metallic system. Wafer scale fabrication and processing of these heterostructures is needed to make large scale integrated circuitry. In this work, by using remote discharged, radio-frequency plasma chemical vapor deposition, wafer scale, high quality few layer h-BN films are successfully grown. By using few layer h-BN films as top gate dielectric material, the plasmon energy of graphene can be tuned by electrostatic doping. An array of graphene/h-BN vertically stacked micrometer-sized disks is fabricated by lithography and transfer techniques, and infrared spectroscopy is used to observe the modes of tunable graphene plasmonic absorption as a function of the repeating (G/h-BN)n units in the vertical stack. Interestingly, the plasmonic resonances can be tuned to higher frequencies with increasing layer thickness of the disks, showing that such vertical stacking provides a viable strategy to provide wide window tuning of the plasmons beyond the limitation of the monolayer. An array of graphene/h-BN vertically stacked micrometer-sized disks is fabricated by lithography and transfer techniques, and infrared spectroscopy is used to observe the modes of tunable graphene plasmonic absorption as a function of the repeating (G/h-BN)n units in the vertical stack. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review

    Science.gov (United States)

    Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao

    2018-03-01

    Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.

  8. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.X. [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Wu, Y.Z., E-mail: youzhiwu@163.com [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); Mu, B. [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Qiao, L. [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Li, W.X.; Li, J.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, P., E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China)

    2017-03-15

    Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W{sub 2}N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W{sub 2}N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W{sub 2}N phase was negligible. The complete decomposition of W{sub 2}N film happened as the temperature reached up to 1473 K.

  9. Synthesis and mechanical properties of boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.; Kugler, Veronika; Nakao, Setsuo; Jin, Ping; Oestblom, Mattias; Hultman, Lars; Helmersson, Ulf

    2002-01-01

    Boron suboxide thin films have been deposited on Si(100) and graphite substrates by reactive rf magnetron sputtering of a sintered B target in an Ar/O 2 atmosphere. X-ray photoelectron spectroscopy, elastic recoil detection analysis, Fourier transform infrared spectroscopy, x-ray diffraction, and transmission electron microscopy were applied to study the influence of the O 2 partial pressure on the film composition and microstructure. BO x thin films with x=[0.02-0.21] and a C impurity of approximately 0.3 at. % were formed by varying the O 2 partial pressure from 7.2x10 -7 to 3.3x10 -2 Pa. All films were amorphous and the films with x≥0.15 contained boric acid on the surface due to a probable chemical reaction with water in laboratory atmosphere. Mechanical properties were evaluated by nanoindentation. As x was increased from 0.02 to 0.21, the elastic modulus decreased from 272 to 109 GPa. The change in the elastic modulus was attributed to the O concentration variations

  10. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  11. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  12. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage

    International Nuclear Information System (INIS)

    Hu, Zi-Yu; Shao, Xiaohong; Wang, Da; Liu, Li-Min; Johnson, J. Karl

    2014-01-01

    First-principles calculations are performed to investigate the adsorption of hydrogen onto Li-decorated hybrid boron nitride and graphene domains of (BN) x C 1−x complexes with x = 1, 0.25, 0.5, 0.75, 0, and B 0.125 C 0.875 . The most stable adsorption sites for the nth hydrogen molecule in the lithium-decorated (BN) x C 1−x complexes are systematically discussed. The most stable adsorption sites were affected by the charge localization, and the hydrogen molecules were favorably located above the C-C bonds beside the Li atom. The results show that the nitrogen atoms in the substrate planes could increase the hybridization between the 2p orbitals of Li and the orbitals of H 2 . The results revealed that the (BN) x C 1−x complexes not only have good thermal stability but they also exhibit a high hydrogen storage of 8.7% because of their dehydrogenation ability

  13. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  14. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  15. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  16. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y L [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa K [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Mangalaraj, D [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C Y [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C L [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  17. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Jeyachandran, Y.L.; Venkatachalam, S.; Karunagaran, B.; Narayandass, Sa.K.; Mangalaraj, D.; Bao, C.Y.; Zhang, C.L.

    2007-01-01

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film

  18. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinbo [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Peng, Xianghe, E-mail: xhpeng@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); Fu, Tao; Huang, Cheng; Feng, Chao [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Yin, Deqiang [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Wang, Zhongchang, E-mail: zcwang@wpi-aimr.tohoku.ac.jp [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-09-30

    Highlights: • We optimize Tersoff potential to simulate the cBN better under nanoidentation. • Dislocations slip more easily along <110> and <112> directions on the {111} plane. • Shuffle-set dislocation slip along <112> direction on {111} plane first. • A tetrahedron structure is found in the initial stage of the indentation. - Abstract: We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along <112> direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along <110> direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the <112>{111} and <110>{111} systems are relatively smaller, indicating that dislocations slip more easily along <110> and <112> directions on the {111} plane.

  19. First-principle approach based bandgap engineering for cubic boron nitride doped with group IIA elements

    Science.gov (United States)

    Li, Yubo; Wang, Pengtao; Hua, Fei; Zhan, Shijie; Wang, Xiaozhi; Luo, Jikui; Yang, Hangsheng

    2018-03-01

    Electronic properties of cubic boron nitride (c-BN) doped with group IIA elements were systematically investigated using the first principle calculation based on density functional theory. The electronic bandgap of c-BN was found to be narrowed when the impurity atom substituted either the B (IIA→B) or the N (IIA→N) atom. For IIA→B, a shallow accept level degenerated into valence band (VB); while for IIA→N, a shallow donor level degenerated conduction band (CB). In the cases of IIBe→N and IIMg→N, deep donor levels were also induced. Moreover, a zigzag bandgap narrowing pattern was found, which is in consistent with the variation pattern of dopants' radius of electron occupied outer s-orbital. From the view of formation energy, the substitution of B atom under N-rich conditions and the substitution of N atom under B-rich conditions were energetically favored. Our simulation results suggested that Mg and Ca are good candidates for p-type dopants, and Ca is the best candidate for n-type dopant.

  20. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  1. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  2. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro.

    Science.gov (United States)

    Lahiri, Debrupa; Rouzaud, Francois; Richard, Tanisha; Keshri, Anup K; Bakshi, Srinivasa R; Kos, Lidia; Agarwal, Arvind

    2010-09-01

    Biodegradable polylactide-polycaprolactone copolymer (PLC) has been reinforced with 0, 2 and 5wt.% boron nitride nanotubes (BNNTs) for orthopedic scaffold application. Elastic modulus of the PLC-5wt.% BNNT composite, evaluated through nanoindentation technique, shows a 1370% increase. The same amount of BNNT addition to PLC enhances the tensile strength by 109%, without any adverse effect on the ductility up to 240% elongation. Interactions of the osteoblasts and macrophages with bare BNNTs prove them to be non-cytotoxic. PLC-BNNT composites displayed increased osteoblast cell viability as compared to the PLC matrix. The addition of BNNTs also resulted in an increase in the expression levels of the Runx2 gene, the main regulator of osteoblast differentiation. These results indicate that BNNT is a potential reinforcement for composites for orthopedic applications. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinmei, E-mail: houxinmei@ustb.edu.cn; Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  6. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  7. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  8. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  9. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de, E-mail: sousaem@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Lab. de Materiais Nanoestruturados para Bioaplicacoes; Cardoso, Valbert Nascimento, E-mail: cardosov@farmacia.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia

    2011-07-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with {sup 99m}Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  11. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    International Nuclear Information System (INIS)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de; Cardoso, Valbert Nascimento

    2011-01-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with 99m Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  12. Chemical and Electronic Structure Studies of Refractory and Dielectric Thin Films.

    Science.gov (United States)

    Corneille, Jason Stephen

    1300 K yielded a stoichiometric film of rm SiO_2. The suboxides are believed to further react with oxygen forming rm SiO_2 at an elevated temperature. The growth of thin metallic iron films on Mo(100) was characterized as a preliminary study to the synthesis of iron oxides. By varying the substrate temperature during either the post or in-situ oxidation process, oxide films consisting of virtually pure phases of rm Fe_2O_3 and FeO can be successfully obtained as well as intermediate phases including rm Fe_3O_4. In addition, fairly discrete phase changes were found corresponding to the thermally induced reduction of the higher oxides. The adsorption of diborane on clean Ru(0001) and on surfaces precovered by ammonia was studied to lay the groundwork for the synthesis of boron nitride thin films. Boron -nitrogen adlayers were formed by exposing B/Ru(0001) surfaces to 5-10 Torr of ammonia or by coadsorbing ammonia and diborane at 90K with subsequent annealing to 600K. The adlayers formed were rich in boron and decomposed at temperatures well above 1100K. Finally, the adsorption and pyrolysis of tetrakis -(dimethylamido)-titanium (TDMAT) on several metal surfaces was studied as a precursor to the synthesis of titanium nitride thin films. TDMAT was found to decompose readily above {~}{480K} on metallic substrates, producing films with high carbon content. However, in the presence of ammonia, well below the threshold of gas-phase reaction ({< }{10^{-4}} Torr), the growth of low carbon-content titanium nitride films proceeds readily, via surface mediated reaction(s) of TDMAT and ammonia between 550-750K. The effects of surface temperature and reagent pressures are reported and discussed.

  13. Synthesis, Transfer, and Characterization of Nanoscale 2-Dimensional Materials

    Science.gov (United States)

    2015-09-01

    Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Kong J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition...hexagonal boron nitride layers. Nano Letters. 2010;10(8):3209–3215. 12. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Kong J. Synthesis of...microscopy. Physical Review B. 2009;80(15):155425. 33. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Kong J. Synthesis of monolayer hexagonal boron

  14. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    International Nuclear Information System (INIS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Luo, Jikui; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Yu, Bin

    2014-01-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H 2 O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. (paper)

  15. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  16. Method for preparing microstructure arrays on the surface of thin film material

    KAUST Repository

    Wang, Peng; Tang, Bo; Zhang, Lianbin

    2017-01-01

    Methods are provided for growing a thin film of a nanoscale material. Thin films of nanoscale materials are also provided. The films can be grown with microscale patterning. The method can include vacuum filtration of a solution containing the nanostructured material through a porous substrate. The porous substrate can have a pore size that is comparable to the size of the nanoscale material. By patterning the pores on the surface of the substrate, a film can be grown having the pattern on a surface of the thin film, including on the top surface opposite the substrate. The nanoscale material can be graphene, graphene oxide, reduced graphene oxide, molybdenum disulfide, hexagonal boron nitride, tungsten diselenide, molybdenum trioxide, or clays such as montmorillonite or lapnotie. The porous substrate can be a porous organic or inorganic membrane, a silicon stencil membrane, or similar membrane having pore sizes on the order of microns.

  17. Method for preparing microstructure arrays on the surface of thin film material

    KAUST Repository

    Wang, Peng

    2017-02-09

    Methods are provided for growing a thin film of a nanoscale material. Thin films of nanoscale materials are also provided. The films can be grown with microscale patterning. The method can include vacuum filtration of a solution containing the nanostructured material through a porous substrate. The porous substrate can have a pore size that is comparable to the size of the nanoscale material. By patterning the pores on the surface of the substrate, a film can be grown having the pattern on a surface of the thin film, including on the top surface opposite the substrate. The nanoscale material can be graphene, graphene oxide, reduced graphene oxide, molybdenum disulfide, hexagonal boron nitride, tungsten diselenide, molybdenum trioxide, or clays such as montmorillonite or lapnotie. The porous substrate can be a porous organic or inorganic membrane, a silicon stencil membrane, or similar membrane having pore sizes on the order of microns.

  18. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  19. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  20. Low temperature aluminum nitride thin films for sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Zamponi, C.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Institute for Materials Science, Chair for Inorganic Functional Materials, Kiel University, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Institute for Materials Science, Chair for Synthesis and Real Structure, Kiel University, D-24143 Kiel (Germany)

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  1. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Science.gov (United States)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-12-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.

  2. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Gandla, Srinivas; Gollu, Sankara Rao; Sharma, Ramakant; Sarangi, Venkateshwarlu; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-10-12

    In this paper, we have demonstrated the dual role of boron doping in enhancing the device performance parameters as well as the device stability in low temperatures (200 °C) sol-gel processed ZnO thin film transistors (TFTs). Our studies suggest that boron is able to act as a carrier generator and oxygen vacancy suppressor simultaneously. Boron-doped ZnO TFTs with 8 mol. % of boron concentration demonstrated field-effect mobility value of 1.2 cm{sup 2} V{sup −1} s{sup −1} and threshold voltage of 6.2 V, respectively. Further, these devices showed lower shift in threshold voltage during the hysteresis and bias stress measurements as compared to undoped ZnO TFTs.

  3. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  4. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    Science.gov (United States)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  5. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  6. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  7. Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride

    Science.gov (United States)

    Jungwirth, Nicholas R.; Fuchs, Gregory D.

    2017-08-01

    We investigate the polarization selection rules of sharp zero-phonon lines (ZPLs) from isolated defects in hexagonal boron nitride (HBN) and compare our findings with the predictions of a Huang-Rhys model involving two electronic states. Our survey, which spans the spectral range ˜550 - 740 nm , reveals that, in disagreement with a two-level model, the absorption and emission dipoles are often misaligned. We relate the dipole misalignment angle (Δ θ ) of a ZPL to its energy shift from the excitation energy (Δ E ) and find that Δ θ ≈0 ° when Δ E corresponds to an allowed HBN phonon frequency and that 0 ° ≤Δ θ ≤90 ° when Δ E exceeds the maximum allowed HBN phonon frequency. Consequently, a two-level Huang-Rhys model succeeds at describing excitations mediated by the creation of one optical phonon but fails at describing excitations that require the creation of multiple phonons. We propose that direct excitations requiring the creation of multiple phonons are inefficient due to the low Huang-Rhys factors in HBN and that these ZPLs are instead excited indirectly via an intermediate electronic state. This hypothesis is corroborated by polarization measurements of an individual ZPL excited with two distinct wavelengths that indicate a single ZPL may be excited by multiple mechanisms. These findings provide new insight on the nature of the optical cycle of novel defect-based single-photon sources in HBN.

  8. Application of wetting to fabrication of boron nitride/aluminum composites

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Nakae, Hideo; Okada, Koji

    1993-01-01

    The focus of this paper is the establishment of a cheap and easy method of manufacturing metal matrix composites by optimizing the wetting and structural properties of the materials used, (i.e. boron nitride/aluminum). Although aluminum is one of the most prominent metals in the fabrication of metal matrix composites, the oxidation of aluminum prevents us from precisely measuring the wetting of ceramics. Therefore, an improved sessile drop method was devised to prevent the oxidation of the aluminum. Using this method, the contact angle between h-BN (hexagonal-BN) and molten Al was measured in a purified He+3%H 2 atmosphere and in a very high vacuum in a temperature range of 1173-1373K. The contact angle progressed through four phases similar to typical ceramics. However, the contact angle became 0 degree in phase 4 at and over 1273K. This contact angle is extremely lower than the contact angles for typical ceramics and it indicates that h-BN is an ideal material for manufacturing a metal matrix composite from the viewpoint of wetting. It was also confirmed that AlN was produced at the solid/liquid interface and caused the contact angle to decrease to 0 degree. AlN has good structural properties whereas h-BN does not. Accordingly, it is suggested that h-BN particles, which have good wetting, be inserted into the Al melt. This will cause the surface of the h-BN to be converted into AlN which has good structural properties. Using this process, a metal matrix composite, which has good structural properties, should be produced. Further, since h-BN is lubricious, a material should be produced which has high wear resistance and good lubricating properties

  9. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  10. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    Science.gov (United States)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  11. Structural impact on the eigenenergy renormalization for carbon and silicon allotropes and boron nitride polymorphs

    Science.gov (United States)

    Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang

    2018-05-01

    The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.

  12. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo; Liu, Wei; Yu, Yuanlie; Xia, Long; Zhang, Jiulin; Chai, Zhenfei; Wen, Guangwu

    2017-01-01

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  13. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo

    2017-05-31

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  14. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Ajit D., E-mail: kelkar@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); Tian, Qiong [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Yu, Demei [School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Zhang, Lifeng, E-mail: lzhang@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States)

    2016-06-15

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  15. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Tian, Qiong; Yu, Demei; Zhang, Lifeng

    2016-01-01

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  16. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    Science.gov (United States)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  17. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  18. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation

    Science.gov (United States)

    Sajid, A.; Reimers, Jeffrey R.; Ford, Michael J.

    2018-02-01

    Key properties of nine possible defect sites in hexagonal boron nitride (h-BN), VN,VN -1,CN,VNO2 B,VNNB,VNCB,VBCN,VBCNS iN , and VNCBS iB , are predicted using density-functional theory and are corrected by applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance signals at 22.4, 20.83, and 352.70 MHz are assigned to VN,CN, and VNO2 B , respectively, while the observed photoemission at 1.95 eV is assigned to VNCB . Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for the two related defects VNCB and VBCN . VNCB is proposed for realizing long-lived quantum memory in h-BN. VBCN is predicted to have a triplet ground state, implying that spin initialization by optical means is feasible and suitable optical excitations are identified, making this defect of interest for possible quantum-qubit operations.

  19. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties.

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-21

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m(-3)) than that of the natural nacre. These excellent mechanical properties result from an ordered 'brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m(-1) K(-1)), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.

  20. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  1. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  2. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  3. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  4. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    Science.gov (United States)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  5. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement.

    Science.gov (United States)

    Wang, Zhengdong; Liu, Jingya; Cheng, Yonghong; Chen, Siyu; Yang, Mengmeng; Huang, Jialiang; Wang, Hongkang; Wu, Guanglei; Wu, Hongjing

    2018-04-15

    Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards.

  6. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors

    Science.gov (United States)

    Nakajima, Anri; Shoji, Atsushi; Yonemori, Kei; Seo, Nobuhide

    2016-02-01

    Thermal conductivities of silicone matrix polymers including fillers of diamond particles and/or hexagonal boron nitride (h-BN) platelets were systematically investigated in an attempt to find a thermal interface material (TIM) having high isotropic thermal conductivity and high electrical insulating ability to enable efficient heat dissipation from the motor coil ends of electric vehicles. The TIM with mixed fillers of diamond particles and h-BN platelets had a maximum thermal conductivity of 6.1 W m-1 K-1 that was almost isotropic. This is the highest value among the thermal conductivities of TIMs with silicone matrix polymer reported to date. The mechanism behind the thermal conductivity of the TIMs was also examined from the viewpoint of the change in the number of thermally conductive networks and/or a decrease in the thermal resistivity of junctions of neighboring diamond particles through the incorporation of h-BN platelets. The TIMs developed in this study will make it possible to manage the heat of electric motors and will help to popularize electric vehicles.

  7. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  8. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives.

    Science.gov (United States)

    Bernard, Samuel; Miele, Philippe

    2014-11-21

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  9. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives

    Directory of Open Access Journals (Sweden)

    Samuel Bernard

    2014-11-01

    Full Text Available Boron nitride (BN is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylaminoborazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  10. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gallardo-Vega, C.; Cruz, W. de la

    2006-01-01

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10 -2 to 1.3 x 10 -1 Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu 3 N) and x = 0.25 (Cu 4 N) when the nitrogen pressure is 1.3 x 10 -1 and 5 x 10 -2 Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33

  11. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  12. Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices

    Science.gov (United States)

    Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario

    2017-06-01

    Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.

  13. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  14. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M. Darvish, E-mail: ganji_md@yahoo.com [Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Gholian, M.; Mohammadzadeh, S. [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • ab initio DFT calculations were used for interaction of DMMP with BNNTs. • Full structural optimization was performed for several possible active sites. • Electronic structure of the energetically favorable complexes was analyzed. • The stability of the most stable complex was evaluated at ambient condition. • First-principles calculations showed that DMMP is strongly bound to the small diameter BNNTs. - Abstract: The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about −103.24 kJ mol{sup −1} and an O–B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications.

  15. A Review on the Preparation of Borazine-derived Boron Nitride Nanoparticles and Nanopolyhedrons by Spray-pyrolysis and Annealing Process

    Directory of Open Access Journals (Sweden)

    Vincent Salles

    2016-01-01

    Full Text Available Boron nitride (BN nanostructures (= nanoBN are struc‐ tural analogues of carbon nanostructures but display different materials chemistry and physics, leading to a wide variety of structural, thermal, electronic, and optical applications. Proper synthesis routes and advanced structural design are among the great challenges for preparing nanoBN with such properties. This review provides an insight into the preparation and characteriza‐ tion of zero dimensional (0D nanoBN including nanopar‐ ticles and nanopolyhedrons from borazine, an economically competitive and attractive (from a technical point of view molecule, beginning with a concise intro‐ duction to hexagonal BN, followed by an overview on the past and current state of research on nanoparticles. Thus, a review of the spray-pyrolysis of borazine to form BN nanoparticles is firstly presented. The use of BN nanopar‐ ticles as precursors of BN nanopolyhedrons is then de‐ tailed. Applications and research perspectives for these 0D nanoBN are discussed in the conclusion.

  16. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    Science.gov (United States)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  17. Tc depression and superconductor-insulator transition in molybdenum nitride thin films

    Science.gov (United States)

    Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.

    2018-03-01

    We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.

  18. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  19. Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor

    Science.gov (United States)

    Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David

    2017-12-01

    The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.

  20. Electronic properties and bulk moduli of novel boron nitride polymorphs: hyperdiamond B12N12 and the simple cubic B24N24, B12N12 fulborenites

    International Nuclear Information System (INIS)

    Pokrivnyj, V.V.; Bekenev, V.L.

    2006-01-01

    Equation of states, energy band structure, electronic density of states, and bulk moduli of the boron nitride fulborenite crystals: B 12 N 12 with a diamond lattice and B 24 N 24 , B 12 N 12 with a simple cubic lattice have been calculated for the first time by FLAPW method. Calculated parameters of these compounds are as follows: equilibrium lattice parameter, the length of B-N bond, the number of atoms per conventional cell, density, bulk modulus, band gap. Hyperdiamond B 12 N 12 is shown to have the record bulk modulus B 0 = 658 GPa [ru