WorldWideScience

Sample records for boreal forest-tundra eastern

  1. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  2. Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests

    Science.gov (United States)

    Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.

    2006-12-01

    We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.

  3. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States). Environmental Research Div.; Iltis, H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Botany

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  4. The effects of boreal forest expansion on the summer Arctic frontal zone

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Stefan; Snyder, Peter K.; Harding, Keith J. [University of Minnesota, Department of Soil, Water, and Climate, Saint Paul, MN (United States)

    2012-05-15

    Over the last 100 years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6 C at and near the surface during June with some locations warming by 1-2 C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer. (orig.)

  5. Wetlands in Canada's western boreal forest: Agents of change

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L.; Krogman, N. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    2006-11-15

    Wetlands of the western boreal forest are poorly studied. In the last decade (1990-2000) there were approximately 1810 northern hemisphere scientific papers published addressing boreal wetlands, tundra, taiga, or bogs. We explore the extent of understanding and impacts of six major agents of change affecting forested wetlands of the boreal zone: (1) commercial forestry, (2) petroleum extraction, (3) mining (bitumen, coal, peat, ore, and diamonds), (4) agriculture, (5) climate change, and (6) hydrologic alteration. Finally, we address the social context, costs, and recommendations for wetland maintenance.

  6. Identifying forest patterns from space to explore dynamics across the circumpolar boreal

    Science.gov (United States)

    Montesano, P. M.; Neigh, C. S. R.; Feng, M.; Channan, S.; Sexton, J. O.; Wagner, W.; Wooten, M.; Poulter, B.; Wang, L.

    2017-12-01

    A variety of forest patterns are the result of interactions between broad-scale climate and local-scale site factors and history across the northernmost portion of the circumpolar boreal. Patterns of forest extent, height, and cover help describe forest structure transitions that influence future and reflect past dynamics. Coarse spaceborne observations lack structural detail at forest transitions, which inhibits understanding of these dynamics. We highlight: (1) the use of sub-meter spaceborne stereogrammetry for deriving structure estimates in boreal forests; (2) its potential to complement other spaceborne estimates of forest structure at critical scales; and (3) the potential of these sub-meter and other Landsat-derived structure estimates for improving understanding of broad-scale boreal dynamics such as carbon flux and albedo, capturing the spatial variability of the boreal-tundra biome boundary, and assessing its potential for change.

  7. Development of a spatial forest data base for the eastern boreal forest region of Ontario. Forest fragmentation and biodiversity project technical report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In 1991, a spatial forest database over large regions of Ontario was initiated as the basis for research into forest fragmentation and biodiversity using data generated from the digital analysis of LANDSAT thematic mapper satellite data integrated into a geographic information system (GIS). The project was later extended into the eastern segment of the Boreal forest system. This report describes preparation of the spatial forest data base over the eastern Boreal Forest Region that extends from the northern boundary of the Great Lakes-St. Lawrence Forest Region and the southern margin of the James Bay Lowland, between the Ontario-Quebec border and a point west of Michipicoten on Lake Superior. The report describes the methodology used to produce the data base and results, including mapping of water, dense and sparse conifer forest, mixed forest, dense and sparse deciduous forest, poorly vegetated areas, recent cutovers of less than 10 years, old cutovers and burns, recent burns of less than 10 years, wetlands, bedrock outcrops, agriculture, built-up areas, and mine tailings.

  8. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  9. Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters

    Science.gov (United States)

    Tomshin, Oleg A.; Solovyev, Vladimir S.

    2017-11-01

    The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.

  10. Carbon dynamics in lakes of the boreal forest under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Benoy, G.; Wrona, F. [Environment Canada, Saskatoon, SK (Canada). National Water Research Inst.; Cash, K. [Environment Canada, Saskatoon, SK (Canada). Prairie and Northern Wildlife Research Centre; McCauley, E. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-09-15

    This article reviewed factors influencing lake ecosystem carbon dynamics in boreal forest regions and identified research areas needed to accurately forecast the impacts of climate change on carbon pools and flux rates. The review suggested that carbon pools in profundal and littoral sediments across the boreal forest should be identified. Climate change experiments should be conducted to quantify ecosystem carbon dynamics as well as changes in aquatic food web structures. Whole system experiments are also needed to examine the hydrologic and bio-geochemical conditions in which allochthonous carbon is integrated into food webs in potentially drier climates. Results also indicated the need for a watershed-scale assessment of carbon budgets for lakes in transitional zones between boreal forests, prairies, parklands, forests, and tundra. It was concluded that studies are also needed to investigate the integration of lacustrine carbon pools and flux rates on carbon budgets at both the local watershed and boreal forest biome scale. 113 refs., 3 figs.

  11. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  12. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  13. Characterization of breeding habitats for black and surf scoters in the eastern boreal forest and subarctic regions of Canada

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells, A.M.; Lohnes, E.J.R.; Osenton, P.C.; Altmann, S.H.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    We analyzed characteristics of wetland habitats used by breeding black scoters (Melanitta nigra) and surf scoters (M. perspicillata) in the eastern boreal forest and subarctic regions of Canada based on satellite telemetry data collected in the spring and summer. During 2002 and 2004, nine black scoters (four males, five females) were tracked to breeding areas in Quebec, Manitoba, and Northwest Territories. In addition, in 2001?04, seven surf scoters (three males, four females) were tracked to breeding areas in Labrador, Quebec, Northwest Territories, and Nunavut. Based on satellite telemetry data, locations of black and surf scoters in breeding areas were not significantly different in regard to latitude and longitude. Presumed breeding areas were manually plotted on topographic maps and percent cover type and water were estimated. Breeding habitat of black scoters was significantly different than that for surf scoters, with black scoters mainly using open (tundra) areas (44%) and surf scoters using mainly forest areas (66%). Surf scoters presumed breeding areas were at significantly higher elevations than areas used by black scoters. Some breeding areas were associated with islands, but the role of islands for breeding areas is equivocal. These results aid in the identification of potentially critical breeding areas and provide a baseline classification of breeding habitats used by these two species.

  14. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  15. Preliminary Assessment of JERS-1 SAR to Discriminating Boreal Landscape Features for the Boreal Forest Mapping Project

    Science.gov (United States)

    McDonald, Kyle; Williams, Cynthia; Podest, Erika; Chapman, Bruce

    1999-01-01

    This paper presents an overview of the JERS-1 North American Boreal Forest Mapping Project and a preliminary assessment of JERS-1 SAR imagery for application to discriminating features applicable to boreal landscape processes. The present focus of the JERS-1 North American Boreal Forest Mapping Project is the production of continental scale wintertime and summertime SAR mosaics of the North American boreal forest for distribution to the science community. As part of this effort, JERS-1 imagery has been collected over much of Alaska and Canada during the 1997-98 winter and 1998 summer seasons. To complete the mosaics, these data will be augmented with data collected during previous years. These data will be made available to the scientific community via CD ROM containing these and similar data sets compiled from companion studies of Asia and Europe. Regional landscape classification with SAR is important for the baseline information it will provide about distribution of woodlands, positions of treeline, current forest biomass, distribution of wetlands, and extent of major rivercourses. As well as setting the stage for longer term change detection, comparisons across several years provides additional baseline information about short-term landscape change. Rapid changes, including those driven by fire, permafrost heat balance, flooding, and insect outbreaks can dominate boreal systems. We examine JERS-1 imagery covering selected sites in Alaska and Canada to assess quality and applicability to such relevant ecological and hydrological issues. The data are generally of high quality and illustrate many potential applications. A texture-based classification scheme is applied to selected regions to assess the applicability of these data for distinguishing distribution of such landcover types as wetland, tundra, woodland and forested landscapes.

  16. Pennsylvania boreal conifer forests and their bird communities: past, present, and potential

    Science.gov (United States)

    Douglas A. Gross

    2010-01-01

    Pennsylvania spruce (Picea spp.)- and eastern hemlock (Tsuga canadensis)-dominated forests, found primarily on glaciated parts of the Allegheny Plateau, are relicts of boreal forest that covered the region following glacial retreat. The timber era of the late 1800s and early 1900s (as late as 1942) destroyed most of the boreal...

  17. Tundra a boreální lesy Kanady. 3. Sukcese na pingu a rozhraní les-tundra

    Czech Academy of Sciences Publication Activity Database

    Rusek, Josef

    2007-01-01

    Roč. 55, č. 3 (2007), s. 121-123 ISSN 0044-4812 Institutional research plan: CEZ:AV0Z60660521 Keywords : Canadian tundra * boreal forests * succession on a pingo Subject RIV: EH - Ecology, Behaviour

  18. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  19. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  20. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Christopher J. Earle

    1993-01-01

    The alpine timberline in much of western North America is characterized by a structurally complex transition from subalpine forest to alpine tundra, the forest-tundra ecotone. Trees within the ecotone are typically arrayed across the landscape within clumps or "ribbon forests," elongated strips oriented perpendicular to the prevailing winds. This study...

  1. TALL-HERB BOREAL FORESTS ON NORTH URAL

    Directory of Open Access Journals (Sweden)

    A. A. Aleinikov

    2016-09-01

    . Comparative research into species and ecological diversity of typical (anthropogenically transformed and unique (tall-herb boreal forests has been conducted. On the basis of the collected field data, a map of the diffuse area for tall-herb boreal forests has been compiled and a set of species characteristic for these forests has been determined. The obtained data fundamentally change our notions of potential vegetation in boreal forests. Conclusions. Considerable species- and ecological diversity of tall-herb forest flora fundamentally changes our notion of the appearance of European boreal forests and determines their unique role in maintaining the highest possible level of biodiversity. The presence of tall-herb forests in various parts of eastern European taiga together with Eurasian habitats of most tall-herb species lead us to a suggestion that it is exactly this type of forests that represented the prehistoric boreal forests. In this connection, further research into still preserved fragments of tall-herb forests within the boundaries of northern Eurasia acquires huge significance. This research will help put forward systems of forest management aimed at restoring potential biodiversity of boreal forests in general.

  2. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  3. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Science.gov (United States)

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  4. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Directory of Open Access Journals (Sweden)

    Junior A Tremblay

    Full Text Available Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change" were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus, a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5, compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5. However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of

  5. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    Science.gov (United States)

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  6. Browning boreal forests of western North America

    Science.gov (United States)

    Verbyla, David

    2011-12-01

    The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges

  7. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  8. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model

    Science.gov (United States)

    Chaste, Emeline; Girardin, Martin P.; Kaplan, Jed O.; Portier, Jeanne; Bergeron, Yves; Hély, Christelle

    2018-03-01

    Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the

  9. Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, P.M. [Trent Univ., Peterborough, ON (Canada); Rouse, W.R. [McMaster Univ., Hamilton, ON (Canada)

    1995-12-31

    A study was conducted to examine the inter-annual variability in energy fluxes of treeline tundra and forest and to investigate the sensitivity of forest and tundra energy balances to climatic changes. A five year record of energy balance data from contiguous wetland tundra and subarctic forest sites near Churchill, Manitoba was analyzed. The data included snow free periods only. Wind direction was used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. The differences between onshore and offshore fluxes at the tundra site were larger than for the forest. The tundra-to-forest Bowen ratios decreased with increasing vapour pressure deficit and increasing air temperature. Results suggest that energy partitioning in the wetland tundra is more sensitive to climate change than in the treeline forests. 22 refs., 1 tab., 6 figs.

  10. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  11. Changes in forest productivity across Alaska consistent with biome shift.

    Science.gov (United States)

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  13. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model

    Directory of Open Access Journals (Sweden)

    E. Chaste

    2018-03-01

    Full Text Available Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus. LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP, and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these

  14. Silviculture's role in managing boreal forests

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    1998-01-01

    Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...

  15. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.

    1993-01-01

    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  16. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2013-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  17. Who is the new sheriff in town regulating boreal forest growth?

    Science.gov (United States)

    Park Williams, A.; Xu, Chonggang; McDowell, Nate G.

    2011-12-01

    Climate change appears to be altering boreal forests. One recently observed symptom of these changes has been an apparent weakening of the positive relationship between high-latitude boreal tree growth and temperature at some sites (D'Arrigo et al 2008). This phenomenon is referred to as the 'divergence problem' or 'divergence effect' and is thought to reflect a non-linear relationship between temperature and tree growth, where recent warming has allowed other factors besides growing-season temperature to emerge as dominant regulators of annual growth rates. Figure 1 demonstrates this divergence phenomenon with records of tree-ring widths collected from 59 populations of white spruce in Alaska 1. Key tendencies among these populations include: (1) growth is most sensitive to temperature during relatively cold growing seasons (figure 1(a)), (2) populations at colder sites are more sensitive to temperature than those at warmer sites are (figure 1(a)), and (3) growth at warmer sites may respond negatively to increased temperature beyond some optimal growing-season temperature (figure 1(b)). Since temperature is rising rapidly at high latitudes, one interpretation of figures 1(a) and (b) is that warming has promoted increased growth at colder sites, but caused growth to plateau or slow at warmer sites. Corroborating this interpretation, satellite imagery and tree-ring data indicate increasing vegetation productivity near the forest-tundra boundary but declining productivity in warmer regions within forest interiors (e.g., Bunn and Goetz 2006, Beck and Goetz 2011, Beck et al 2011, Berner et al 2011). Will continued warming cause a northward migration of boreal forests, with mortality in the warmer, southern locations and expansion into the colder tundra? This question is difficult to answer because many factors besides temperature influence boreal forest dynamics. Widespread productivity declines within interior boreal forests appear to be related to warming

  18. Decadal-scale ecosystem memory reveals interactive effects of drought and insect defoliation on boreal forest productivity

    Science.gov (United States)

    Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.

    2017-12-01

    Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the

  19. The eastern migratory caribou: the role of genetic introgression in ecotype evolution.

    Science.gov (United States)

    Klütsch, Cornelya F C; Manseau, Micheline; Trim, Vicki; Polfus, Jean; Wilson, Paul J

    2016-02-01

    Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada's Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation.

  20. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Jeanne Portier

    2016-09-01

    Full Text Available Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF data from fire archives as well as a broad field campaign in Quebec’s coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1 determine if climate influences the fire risk along the latitudinal gradient; (2 fractionate the transects into different fire risk zones; and (3 quantify the fire cycle—defined as the time required to burn an area equivalent to the size of the study area—of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150–300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent

  1. The changing effects of Alaska's boreal forest on the climate system

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...

  2. Global climate change adaptation: examples from Russian boreal forests

    International Nuclear Information System (INIS)

    Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I.

    1997-01-01

    The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaption measures for them: (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation

  3. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel

    2017-11-01

    A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.

  4. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    Science.gov (United States)

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  5. Nitrogen alters carbon dynamics during early succession in boreal forest

    Science.gov (United States)

    Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen. Treseder

    2010-01-01

    Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...

  6. Controls on moss evaporation in a boreal black spruce forest

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  7. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  8. Newtonian boreal forest ecology

    OpenAIRE

    Hari, Pertti; Aakala, Tuomas; Aalto, Juho; Bäck, Jaana; Hollmén, Jaakko; Jõgiste, Kalev; Koupaei, Kourosh Kabiri; Kähkönen, Mika A.; Korpela, Mikko; Kulmala, Liisa; Nikinmaa, Eero; Pumpanen, Jukka; Salkinoja-Salonen, Mirja; Schiestl-Aalto, Pauliina; Simojoki, Asko

    2017-01-01

    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by...

  9. Changes in forest productivity across Alaska consistent with biome shift

    Science.gov (United States)

    Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz

    2011-01-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...

  10. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    Science.gov (United States)

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  11. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest

    Directory of Open Access Journals (Sweden)

    F. Gennaretti

    2017-11-01

    Full Text Available A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill. B.S.P. gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20–30 % of its high-frequency component (i.e., when decadal trends are removed. The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.

  12. Rock, Paper, Protest: The Fight for the Boreal Forest

    Science.gov (United States)

    Gunz, Sally; Whittaker, Linda

    2016-01-01

    Canada's boreal forests are second only to the Amazon in producing life-giving oxygen and providing a habitat for thousands of species, from the large woodland caribou to the smallest organisms. The boreal forests are the lifeblood of many Aboriginal communities and the thousands of workers, Aboriginal and non-Aboriginal, who harvest and process…

  13. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers

    Science.gov (United States)

    Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.

    2018-01-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.

  14. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    OpenAIRE

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal fore...

  15. Resilience of Alaska's boreal forest to climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F.S. III; Ruess, R.W.; Euskirchen, E.S.; Jones, J.B.; Kielland, K.; Taylor, D.L. [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Hollingsworth, T.N. [United States Dept. of Agriculture, Portland, OR (United States). Forest Services, Pacific Northwest Research Station; Alaska Univ., Fairbanks, AK (United States); Mack, M.C. [Florida Univ., Gainesville, FL (United States). Dept. of Botany; Johnstone, J.F. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Biology; Kasischke, E.S. [Maryland Univ., College Park, MD (United States). Dept. of Geography; Jorgenson, M.T. [Alaska Ecoscience, Fairbanks, AK (United States); Kofinas, G.P. [Alaska Univ., Fairanks, AK (United States). School of Natural Resources and Agricultureal Sciences, Inst. of Arctic Biology; Turetsky, M.R. [Guelph Univ., Guelph, ON (Canada). Dept. of Integrative Biology; Yarie, J. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences, Forest Soils Laboratory; Lloyd, A.H. [Middlebury College, Middlebury, VT (United States). Dept. of Biology

    2010-07-15

    This paper reported on a study that evaluated the resilience of Alaska's boreal forest system to rapid climatic change. As the most northern and coldest forested biome, the boreal forest is underlain by discontinuous permafrost. High-latitude amplification of global warming has caused Alaska's boreal forest to warm twice as rapidly as the global average. Recent warming has resulted in reduced growth of dominant tree species, plant disease, insect outbreaks, thawing of permafrost, drying of lakes and increased wildfires. These changes have modified key structural features in the boreal forest, including long-term landscape-scale change in carbon stocks. This study reviewed the findings of the Bonanza Creek Long-Term Ecological Research program and determined that the Alaskan boreal system remains quite resilient but is undergoing changes in ecosystem and landscape structure, feedbacks, and interactions that, with continued warming, will likely cause reorganization or potentially transformation to a fundamentally different system. Permafrost will also remain relatively resilient to continued warming except in high-ice-content lowlands and in areas burned by severe wildfires. The greatest sources of uncertainty are changes in snow cover, which will influence the rate at which these changes occur. 71 refs., 2 figs.

  16. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  17. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  18. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    Science.gov (United States)

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a

  19. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    Science.gov (United States)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  20. Identifying the tundra-forest border in the stomate record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, B.C.S. [Minnesota Univ., Minneapolis, MN (United States). Limnological Research Center; MacDonald, G.M. [California Univ., Los Angeles, CA (United States). Dept. of Botanical Sciences; Moser, K.A. [McMaster Univ., Hamilton, ON (Canada)

    1996-05-01

    The relationship between conifer stomata and existing vegetation across tundra, forest-tundra, and closed zones in the Yellowknife area of the Northwest Territories was studied. Conifer stomata were identified in surface samples from lakes in the treeline zone, but were absent in samples from tundra lakes. Stomate analysis was recorded and the results were presented in a concentration diagram plotting stomate concentrations according to vegetation zone. Conifer stomate analysis was not able to resolve differences between forest-tundra and closed forest. Nevertheless, it was suggested that stomate analysis will become an important technique supplementing pollen analysis for reconstructing past tree-line changes since the presence of stomata in lakes make it possible to separate the tundra from forest-tundra and closed forest. The limited dispersal of conifer stomata permitted a better resolution of tree-line boundaries than did pollen. 13 refs., 3 figs.

  1. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  2. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Science.gov (United States)

    Klinge, Michael; Dulamsuren, Choimaa; Erasmi, Stefan; Nikolaus Karger, Dirk; Hauck, Markus

    2018-03-01

    In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI) were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest-steppe), which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l.) in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation to the respective total boreal forest

  3. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    Petri Vaattovaara (1), Tuukka Petäjä (2), Jorma Joutsensaari (1), Pasi Miettinen (1), Boris Zaprudin (1,6), Aki Kortelainen (1), Juha Heijari (3,7), Pasi Yli-Pirilä (3), Pasi Aalto (2), Doug R. Worsnop (4), and Ari Laaksonen(1,5) (1) University of Eastern Finland, Finland (2) University of Helsinki, Finland (3) University of Eastern Finland, Finland (4) Aerodyne Research Inc., USA (5) Finnish Meteorological Institute, Finland (6) Currently at University of Turku, Finland (7) Currently at Maritime Research Centre, Finland Email address of the Corresponding author: Petri.Vaattovaara@uef.fi The geographical extent of the tropical, temperate and boreal forests is about 30% of the Earth's land surface. Those forests are located around the world in different climate zones effecting widely on atmospheric composition via new particle formation. The Boreal forests solely cover one third of the forests extent and are one of the largest vegetation environments, forming a circumpolar band throughout the northern hemisphere continents, with a high potential to affect climate processes [1]. In order to more fully understand the possible climatic effects of the forests, the properties of secondary organic aerosols (SOA) in varying conditions (e.g. a change in meteorological parameters or in the concentrations of biogenic and antropogenic trace gases) need to be better known. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer [2]) and the UFH-TDMA (ultrafine hygroscopicity tandem differential mobility analyzer [3]) methods parallel to shed light on the evolution of the nucleation and Aitken mode particle compositions (via physic-chemical properties) at a virgin boreal forest site in varying conditions. The measurements were carried out at Hyytiälä forest station in Northern Europe (Finland) during 15 spring nucleation events. We also carried out a statistical analysis using linear correlations in order to explain the variability in

  4. The changing effects of Alaska’s boreal forests on the climate system

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  5. The effect of fire intensity on soil respiration in Siberia boreal forest

    Science.gov (United States)

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  6. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  7. Cost-effective age structure and geographical distribution of boreal forest reserves.

    Science.gov (United States)

    Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-02-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost

  8. The changing effects of Alaska's boreal forests on the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, E.S.; Chapin, F.S. III [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences

    2010-07-15

    The boreal forest is the northernmost forested biome and is expected to be sensitive to global warming. Recent climate warming in the boreal forests of Alaska has influenced the exchange of trace gases, water, and energy between the forests and the atmosphere. In turn, these changes in the structure and function of boreal forests can influence regional and global climates. This study examined the type and magnitude of the climate feedbacks from boreal forests in Alaska. Biogeophysical and biogeochemical feedbacks were examined with particular reference to surface energy balance across boreal ecosystems and over the full annual cycle. The impact of ground heat exchange on permafrost was studied in terms of vegetation dynamics and disturbance regimes such as fires and insect outbreaks. In general, research has indicated that the net effect of a warming climate is a positive regional feedback to warming. The main positive climate feedbacks are currently related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most dominant at the regional scale and reduce the resilience of the boreal vegetation by amplifying the rate of regional warming. This paper also described carbon and methane release from permafrost degradation, changes in lake area, changes in land use and snow season changes. The role of earth system models in representing climate feedbacks from Alaskan boreal forests was discussed. It was concluded that although the boreal forest provides climate regulation as an ecosystem service, the net effect of the climate feedbacks to climate warming are not fully understood. As such, there is a need to continue to evaluate feedback pathways, given the recent warming in Alaska and the large variety of associated mechanisms that can change terrestrial ecosystems and affect the climate system. 59 refs

  9. Forest fires may cause cooling in boreal Canada

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    As climate in North America continues to become warmer and drier through the 21st century, a new study finds that fire may be playing an increasingly important role in shaping the climate of the boreal regions of Canada. Forest fires change the amount of shortwave radiation absorbed by Earth's surface by reducing vegetation cover and changing the composition of plant species, thereby changing the reflectivity of the surface (albedo). Fires also affect other ecosystem processes and increase aerosol (particularly soot) emission and deposition, all of which alter regional climate through a series of feedbacks mechanisms. Jin et al. used satellite observations of surface albedo from 2000 to 2011 and fire perimeter data since 1970 to study how forest fires affect surface albedo and associated shortwave radiation at the surface, across forests in boreal Canada.

  10. Rating a Wildfire Mitigation Strategy with an Insurance Premium: A Boreal Forest Case Study

    Directory of Open Access Journals (Sweden)

    Georgina Rodriguez-Baca

    2016-05-01

    Full Text Available Risk analysis entails the systematic use of historical information to determine the frequency, magnitude and effects of unexpected events. Wildfire in boreal North America is a key driver of forest dynamics and may cause very significant economic losses. An actuarial approach to risk analysis based on cumulative probability distributions was developed to reduce the adverse effects of wildfire. To this effect, we developed spatially explicit landscape models to simulate the interactions between harvest, fire and forest succession over time in a boreal forest of eastern Canada. We estimated the amount of reduction of timber harvest necessary to build a buffer stock of sufficient size to cover fire losses and compared it to an insurance premium estimated in units of timber volume from the probability of occurrence and the amount of damage. Overall, the timber harvest reduction we applied was much more costly than the insurance premium even with a zero interest rate. This is due to the fact that the insurance premium is directly related to risk while the timber harvest reduction is not and, as a consequence, is much less efficient. These results, especially the comparison with a standard indicator such as an insurance premium, have useful implications at the time of choosing a mitigation strategy to protect timber supplies against risk without overly diminishing the provision of services from the forest. They are also promoting the use of insurance against disastrous events in forest management planning.

  11. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    Science.gov (United States)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  12. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    Science.gov (United States)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate

  13. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  14. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives

    Directory of Open Access Journals (Sweden)

    Uprety Yadav

    2012-01-01

    Full Text Available Abstract Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention

  15. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  16. Fire Effects at the Tundra-Boreal Ecotone in Interior Alaska

    Science.gov (United States)

    Howard, B. K.; Mack, M. C.; Johnstone, J. F.; Walker, X. J.; Roland, C.

    2016-12-01

    Climate warming in northern latitudes has led to an intensification of disturbance by wildfire. Little is known about the effects of fire on tundra vegetation. Changes in vegetation composition could have important implications for carbon cycling , and may feedback positively or negatively to future climate change (Randerson et al., 2006). Our study utilizes extensive pre-fire ecological data collected by the National Park Service (NPS) Inventory and Monitoring (I&M) program to assess the prefire conditions important in driving successional pathways within Denali National Park and Preserve. In 2013, the East Toklat fire burned 30,000 acres of tussock tundra and mixed white and black spruce forest at a high severity, which encompassed 50 NPS plots that were originally monitored in 2003. Our sampling occurred the summer of 2016 following the same NPS protocols to assess post-fire vegetation composition. In addition, we conducted a seeding experiment using locally collected white and black spruce seed to assess natural and potential tree regeneration in unburned and post fire environments. Seed traps were established along our transects to assess seed rain. A multivariate approach will be used to assess post-fire community dynamics and future field seasons will address tree germination and survival rates. These data will then be coupled with pre and post-fire ecological data to parse out important factors driving secondary succession.

  17. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    Science.gov (United States)

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and forests respectively, and thus play a minor role in total forest C storage in NE China.

  18. Proceedings of the 1999 Sustainable Forest Management Network conference: science and practice : sustaining the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Veeman, S.; Smith, D.W.; Purdy, B.G.; Salkie, F.J.; Larkin, G.A. [eds.

    1999-05-01

    The wide range and complex nature of research in sustainable forest management, supported cooperatively by the forest products industry, governments, the universities, First Nations and other groups, is reflected in the 128 papers presented at this conference. The range of topics discussed include historical perspectives of forest disturbances, including fires and harvesting, biological diversity, gaseous, liquid and solid wastes, community sustainability, public involvement, land aquatic interfaces, forest management planning tools, contaminant transfer, First Nations issues, certification, monitoring and resource trade-offs. The theme of the conference {sup S}cience and practice: sustaining the boreal forest` was selected to identify the key efforts of the Sustainable Forest Management (SFM) Network on boreal forest research. The objective of the conference was to exchange knowledge and integrate participants into a better working network for the improvement of forest management. refs., tabs., figs.

  19. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P  0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. © 2013 John Wiley & Sons Ltd.

  20. Indirect effects of rodents on arthropods in a Scandinavian boreal forest

    OpenAIRE

    Malá, Barbora

    2016-01-01

    Rodents in boreal forest are an important component of food webs. Their role as drivers of the boreal forest ecosystem is debated. As herbivores they affect plant communities and alter qualities of plants. Consequently availability of food resources for other herbivorous species is altered. In my thesis I studied whether rodents indirectly influence communities of arthropods via plant resources. It is assumed that phytophagous arthropods respond to changes in plant resources by different feed...

  1. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  2. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.

    Science.gov (United States)

    Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric

    2015-11-01

    Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Directory of Open Access Journals (Sweden)

    M. Klinge

    2018-03-01

    Full Text Available In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest–steppe, which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l. in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation

  4. Landsat-based Analysis of Mountain Forest-tundra Ecotone Response to Climate Trends in Sayan Mountains

    Science.gov (United States)

    Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon

    2007-01-01

    observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends

  5. Timing of plant phenophases since 1752 in the boreal forest environment

    Science.gov (United States)

    Kubin, Eero; Tolvanen, Anne; Karhu, Jouni; Valkama, Jari

    2016-04-01

    Global warming and climate change will significantly affect on forest environment in northern latitudes. There is the strong evidence that increase of early spring and late autumn temperatures will have impacts on growth and growth cycles. In Finland the Finnish Forest Research Institute (Luke since 2015) established in 1996 National Phenological Network to study changes of phenophases all over the country representing southern, middle and northern boreal forest zones. Continuous detailed scientific monitoring includes eleven forest plant species and it forms an excellent basis to evaluate responses of forest vegetation in respect to climate change. Monitoring is done together with Universities and other Institutes. Prior to the establishment of the Finnish National Phenological Network observations has been made solely based on volunteers since 1752. This citizen-science data is very important to analyze phenophases together with the results of the National Network. The long-term data since 1752 shows e.g. an advancement in the onset of Prunus padus flowering by five days per 100 years and correspondingly three days in the rowan (Sorbus aucuparia). The latest results of the Finnish National Network (1996 - 2014) fits well to this long term trend. In the Finnish National Phenological Network we have monitored phenophases of forest spieces throughout the growth period, focusing on nine forest tree species and two dwarf shrubs. The results can be followed in real time at: http://www.metla.fi/metinfo/fenologia/index-en.htm. We have observed big differences in phenophases between southern and northern boreal zone. Onset of downy birch leafing happens one month later in the north compared with southern boreal zone. Coming into leaf has clearly occurred earlier during the research period since 1996 in the northern boreal zone compared with southern boreal zone. This indicates the response of climate change. The timing of leaf colouring and leaf fall was observed remained

  6. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  7. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  8. Use of middle infrared radiation to estimate the leaf area index of a boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.S. [Kingston Univ., Surrey (United Kingdom). Centre for Earth and Environmental Science Research, School of Geography; Wicks, T. E.; Curran, P.J. [Southampton Univ., Southampton, Hampshire (United Kingdom). Dept. of Geography

    2000-06-01

    Reflected radiation recorded by satellite sensors is a common procedure to estimate the leaf area index (LAI) of boreal forest. The normalized difference vegetation index (NDVI), derived from measurements of visible and near infrared radiation were commonly used to estimate LAI. But research in tropical forest has shown that LAI is more closely related to radiation of middle infrared wavelengths than that of visible wavelengths. This research calculated a vegetation index (VI3) using radiation from vegetation recorded at near and middle infrared wavelengths. In the case of boreal forest, VI3 and LAI displayed a closer relationship than NDVI and LAI. Also, the use of VI3 explained approximately 76 per cent of the variation in field estimates of LAI, versus approximately 46 per cent for NDVI. The authors concluded that consideration should be given to information provided by middle infrared radiation to estimate the leaf area index of boreal forest. The research area was located in the Southern Study Area (SSA) of the BOReal Ecosystem-Atmospher Study (BOREAS), situated on the southern edge of the Canadian boreal forest, 40 km north of Prince Albert, Saskatchewan. 1 tab., 4 figs., 46 refs.

  9. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  10. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  11. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    Science.gov (United States)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum

  12. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  13. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  14. NPP Boreal Forest: Kuusamo, Finland, 1967-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal forest...

  15. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  16. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1991-01-01

    Smoke aerosol and background aerosol particles were collected from the controlled burning of boreal forest where vegetation species and relative mass distributions are known. Chemical mass balances were constructed for the total mass of carbonaceous aerosol particles emitted during the prescribed burn. In addition, a carbonaceous species inventory was developed for aerosol particles presnt under background, smoldering, and full-fire conditions; the production of organic carbon and elemental carbon particles is noted for these two fire regimes. Distributions of the solvent-soluble organic components of the sampled aerosols were generated to identify molecular properties that can be traced to unburned and pyrolyzed materials present in the boreal forest fuels

  17. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  18. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    Full Text Available Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii, sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  19. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  20. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  1. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  2. Caesium-137 in a boreal forest ecosystem. Aspects on the long-term behaviour

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Nelin, P.; Palo, T.

    1993-11-01

    Cycling of radioactive caesium, particularly the isotope Cs-137, is studied in boreal forest biotopes mainly located at the Vindeln experimental forest, 60 km NW of Umeaa, Sweden, (64 degrees 16'N, 19 degrees 48'E). The distribution of radioactive caesium in this forest ecosystem, prior to and in different periods after the Chernobyl accident, reflects the existence of fast changes particularly at an early stage after the deposition, superimposed on slow redistribution over long time periods. The definite causes to this complex dynamic behaviour are not yet unambiguously established. In this work we use the specific results from local field studies as a basis to describe the general pattern and time dependence of Cs-137 redistribution in a boreal forest. We raise the hypothesis that: 'Cs-137 present in a boreal forest tends towards a homogenous distribution among the living cells of that system'. This hypothesis is based on physiological characteristics concerning transport over cell membranes and intracellular distribution in comparison to potassium, and the apparently conservative conditions prevailing for caesium in boreal ecosystems - e.g. the facts that very little of the radioactive caesium deposited over the forest area is lost from the system by run off, more than 90% of the total deposition of Cs-137 resides in the upper organic horizon in podzol areas, and that the availability in the ecosystem, as can be seen from the Cs-137 concentration in moose meat, is not significantly different in 1985 (i.e. prior to the Chernobyl accident) in comparison to the period 1986-1990. The aim of this work is to elucidate how predictions, based on our hypothesis about redistribution processes in the boreal forest, corroborates with the main features in the time-dependent change of Cs-137 activity, according to measurements on perennial vegetation from the local sites. In particular the implicit dependence of the dynamics of the redistribution processes on primary

  3. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  4. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  5. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  6. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil and bec...... and that transfer of N to the soil is not facilitated by fungal hyphae....

  7. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Amar Madoui

    2015-11-01

    Full Text Available In the managed boreal forest, harvesting has become a disturbance as important as fire. To assess whether forest recovery following both types of disturbance is similar, we compared post-disturbance revegetation rates of forests in 22 fire events and 14 harvested agglomerations (harvested areas over 5–10 years in the same vicinity in the western boreal forest of Quebec. Pre-disturbance conditions were first compared in terms of vegetation cover types and surficial deposit types using an ordination technique. Post-disturbance changes over 30 years in land cover types were characterized by vectors of succession in an ordination. Four post-disturbance stages were identified from the 48 land thematic classes in the Landsat images: “S0” stand initiation phase; “S1” early regeneration phase; “S2” stem exclusion phase; and “S3” the coniferous forest. Analyses suggest that fire occurs in both productive and unproductive forests, which is not the case for harvesting. Revegetation rates (i.e., rapidity with which forest cover is re-established appeared to be more advanced in harvested agglomerations when compared with entire fire events. However, when considering only the productive forest fraction of each fire, the revegetation rates are comparable between the fire events and the harvested agglomerations. The S0 is practically absent from harvested agglomerations, which is not the case in the fire events. The difference in revegetation rates between the two disturbance types could therefore be attributed mostly to the fact that fire also occurs in unproductive forest, a factor that has to be taken into account in such comparisons.

  8. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    Science.gov (United States)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.

  9. Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.

    Science.gov (United States)

    Börger, Luca; Nudds, Thomas D

    2014-01-01

    Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all

  10. Forest Floor Carbon Exchange of a Boreal Black Spruce Forest in Eastern Canada

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-06-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pffmax) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pffmax was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied seasonally from 13 to 24% and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17-18% of Peco depending on the year and the

  11. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  12. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika

    2015-01-01

    ) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...... on SOC stocks in boreal and northern temperate forest ecosystems, which is in any case species-, site- and practice-specific. Properly conducted long-term experiments are therefore necessary to enable us to clarify the relative importance of different harvesting practices on the SOC stores, the key...

  13. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    Science.gov (United States)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  14. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forests * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  15. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  16. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    Science.gov (United States)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  17. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  18. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Science.gov (United States)

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  19. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  20. Quantifying the missing link between forest albedo and productivity in the boreal zone

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  1. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  2. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    Science.gov (United States)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  3. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  4. First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests

    Directory of Open Access Journals (Sweden)

    Hugo Carreno-Luengo

    2015-10-01

    Full Text Available The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space Agency (ESA sponsored Balloon Experiments for University Students (BEXUS 19 stratospheric balloon experiment using the P(Y and C/A Reflect Ometer (PYCARO instrument operated in closed-loop mode. Maps of the polarimetric ratio for L1 and L2 Global Positioning System (GPS and GLObal Navigation Satellite System (GLONASS, and for E1 Galileo signals are derived from the float phase at 27,000 m height, and the specular points are geolocalized on the Earth’s surface. Polarimetric ratio ( maps over boreal forests are shown to be in the range 2–16 dB for the different GNSS codes. This result suggests that the scattering is taking place not only over the soil, but over the different forests elements as well. Additionally to the interpretation of the experimental results a theoretical investigation of the different contributions to the total reflectivity over boreal forests is performed using a bistatic scattering model. The simulated cross- (reflected Left Hand Circular Polarization LHCP and co-polar (reflected Right Hand Circular Polarization RHCP reflectivities are evaluated for the soil, the canopy, and the canopy–soil interactions for three different biomass densities: 725 trees/ha, 150 trees/ha and 72 trees/ha. For elevation angles larger than the Brewster angle, it is found that the cross-polar signal is dominant when just single reflections over the forests are evaluated, while in the case of multiple reflections the co-polar signal becomes the largest one. The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space

  5. The impact of boreal forest fire on climate warming

    Science.gov (United States)

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  6. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  7. Detecting Local Drivers of Fire Cycle Heterogeneity in Boreal Forests: A Scale Issue

    Directory of Open Access Journals (Sweden)

    Annie Claude Bélisle

    2016-07-01

    Full Text Available Severe crown fires are determining disturbances for the composition and structure of boreal forests in North America. Fire cycle (FC associations with continental climate gradients are well known, but smaller scale controls remain poorly documented. Using a time since fire map (time scale of 300 years, the study aims to assess the relative contributions of local and regional controls on FC and to describe the relationship between FC heterogeneity and vegetation patterns. The study area, located in boreal eastern North America, was partitioned into watersheds according to five scales going from local (3 km2 to landscape (2800 km2 scales. Using survival analysis, we observed that dry surficial deposits and hydrography density better predict FC when measured at the local scale, while terrain complexity and slope position perform better when measured at the middle and landscape scales. The most parsimonious model was selected according to the Akaike information criterion to predict FC throughout the study area. We detected two FC zones, one short (159 years and one long (303 years, with specific age structures and tree compositions. We argue that the local heterogeneity of the fire regime contributes to ecosystem diversity and must be considered in ecosystem management.

  8. The Bering Land Bridge: a moisture barrier to the dispersal of steppe-tundra biota?

    Science.gov (United States)

    Elias, Scott A.; Crocker, Barnaby

    2008-12-01

    The Bering Land Bridge (BLB) connected the two principal arctic biological refugia, Western and Eastern Beringia, during intervals of lowered sea level in the Pleistocene. Fossil evidence from lowland BLB organic deposits dating to the Last Glaciation indicates that this broad region was dominated by shrub tundra vegetation, and had a mesic climate. The dominant ecosystem in Western Beringia and the interior regions of Eastern Beringia was steppe-tundra, with herbaceous plant communities and arid climate. Although Western and Eastern Beringia shared many species in common during the Late Pleistocene, there were a number of species that were restricted to only one side of the BLB. Among the vertebrate fauna, the woolly rhinoceros was found only to the west of the BLB, North American camels, bonnet-horned musk-oxen and some horse species were found only to the east of the land bridge. These were all steppe-tundra inhabitants, adapted to grazing. The same phenomenon can be seen in the insect faunas of the Western and Eastern Beringia. The steppe-tundra beetle fauna of Western Beringia was dominated by weevils of the genus Stephanocleonus, a group that was virtually absent from Eastern Beringia. The dry-adapted weevils, Lepidophorus lineaticollis and Vitavitus thulius were important members of steppe-tundra communities in Eastern Beringia, but were either absent or rare in Western Beringia. The leaf beetles Chrysolina arctica, C. brunnicornis bermani, and Galeruca interrupta circumdata were typical members of the Pleistocene steppe-tundra communities of Western Beringia, but absent from Eastern Beringia. On the other hand, some steppe tundra-adapted leaf beetles managed to occupy both sides of the BLB, such as Phaedon armoraciae. Much of the BLB remains unstudied, but on biogeographic grounds, it appears that there was some kind of biological filter that blocked the movements of some steppe-tundra plants and animals across the BLB.

  9. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  10. Fire in the range of the Western Arctic Caribou Herd

    Science.gov (United States)

    Kyle Joly; T. Scott Rupp; Randi R. Jandt; F. Stuart Chapin

    2009-01-01

    Wildfire is the dominant ecological driver in boreal forest ecosystems. Although much less is known, it also affects tundra ecosystems. Fires effectively consume fruticose lichens, the primary winter forage for caribou, in both boreal and tundra ecosystems. We summarize 1950-2007 fire regime data for northwestern Alaska and subregions. We also identified meteorological...

  11. Major losses of nutrients following a severe drought in a boreal forest.

    Science.gov (United States)

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  12. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  13. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  14. Regional Instability in the Abundance of Open Stands in the Boreal Forest of Eastern Canada

    Directory of Open Access Journals (Sweden)

    Rija Rapanoela

    2016-05-01

    Full Text Available Fires are a key disturbance of boreal forests. In fact, they are the main source of renewal and evolution for forest stands. The variability of fire through space and time results in a diversified forest mosaic, altering their species composition, structure and productivity. A resilient forest is assumed to be in a state of dynamic equilibrium with the fire regime, so that the composition, age structure and succession stages of forests should be consistent with the fire regime. Dense spruce-moss stands tend, however, to diminish in favour of more open stands similar to spruce-lichen stands when subjected to more frequent and recurring disturbances. This study therefore focused on the effects of spatial and temporal variations in burn rates on the proportion of open stands over a large geographic area (175,000 km2 covered by black spruce (Picea mariana (Mill. Britton, Sterns, Poggenb.. The study area was divided into 10 different zones according to burn rates, as measured using fire-related data collected between 1940 and 2006. To test if the abundance of open stands was unstable over time and not in equilibrium with the current fire regime, forest succession was simulated using a landscape dynamics model that showed that the abundance of open stands should increase progressively over time in zones where the average burn rate is high. The proportion of open stands generated during a specific historical period is correlated with the burn rate observed during the same period. Rising annual burn rates over the past two decades have thereby resulted in an immediate increase in the proportion of open stands. There is therefore a difference between the current proportion of open stands and the one expected if vegetation was in equilibrium with the disturbance regime, reflecting an instability that may significantly impact the way forest resources are managed. It is apparent from this study that forestry planning should consider the risks associated

  15. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    Science.gov (United States)

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  16. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  17. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  18. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    Science.gov (United States)

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression

  19. Can Runoff Responses be Used to Predict Aquatic Biogeochemical Fluxes from Boreal Forest Ecosystems?

    Science.gov (United States)

    Prestegaard, K. L.; Ziegler, S. E.; Billings, S. A.; Edwards, K. A.

    2017-12-01

    Climate change has direct effects on precipitation and temperature, which contribute to indirect changes in ecosystem productivity, runoff, biogeochemical processes, and species composition. In this research, we examine water balances in boreal forest watersheds to determine spatial and inter-annual variations in their responses to changes in precipitation. Our research indicates that Central and Western N. American boreal watersheds with mean annual precipitation (MAP) of less than 1000 mm exhibit positive relationships between annual precipitation and annual evapotranspiration, suggesting an increase in forest productivity during wet years often without increased runoff. In Maritime boreal watersheds in Eastern N. America and N. Europe, runoff is a significantly larger portion of the water balance and runoff increases with precipitation This regionalism in the water balance may have significant consequences for biogeochemical fluxes; for example, where MAP >1000 mm, a future wetter climate may result in increases in the terrestrial-to-aquatic transport of solutes. To test this idea, we examined inter-annual variations in hydrologic and dissolved organic carbon fluxes in watersheds in Newfoundland and Labrador along a longitudinal transect. Mean annual temperature varies from 0-5.2oC along the transect, and MAP varies from 1050 to 1500 mm. Data indicate an increase in evapotranspiration, runoff, and soil DOC fluxes with the increasing mean annual precipitation among watersheds along the transect. During the 2011-2015 period of study there was significant overlap in annual precipitation among the sites. Although wet water years also produced higher amounts of runoff from most watersheds, the annual soil DOC flux within each region was not significantly affected by these inter-annual changes in precipitation. Stream and groundwater monitoring data from the catchments reveal seasonal variations in evapotranspiration and runoff and their role in solute fluxes, and

  20. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    Science.gov (United States)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  1. Permafrost thaw and fire history: implications of boreal tree cover changes on land surface properties and turbulent energy fluxes in the Taiga Plains, Canada

    Science.gov (United States)

    Sonnentag, Oliver; Helbig, Manuel; Payette, Fanny; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura; Pappas, Christoforos; Detto, Matteo; Baltzer, Jennifer; Quinton, William; Marsh, Philip

    2016-04-01

    . The spatial heterogeneities within the eddy covariance flux footprints (forest/wetland vs. wetland) were resolved with a two-dimensional footprint model parameterized with various remote sensing data sets. Our results suggest that an increasing coverage of wetlands at the expense of forests reduces ga and thus the efficiency of the land surface to transfer heat to the atmosphere. At the same time gs is increased and thus more moisture is lost to the atmosphere from saturated wetland surfaces. The alteration of bulk transfer land surface properties lead to drastic decreases in Bowen ratios by reducing H and increasing LE with increasing coverage of wetlands. The most pronounced contrasts between forests and wetlands are observed in H during the late snow cover period in April. We used a similar set of eddy covariance flux measurements made concurrently at Havikpak Creek (68°19' N; 133°31' W) and Trail Valley Creek (68°44' N; 133°26' W), a boreal forest and a nearby tundra site in the boreal-tundra ecotone, respectively, as a first-order proxy for potentially increasing PTC under more stable permafrost conditions in contrast to Scotty Creek. Preliminary results indicate trends in ga, gs, H and LE opposite to those observed at Scotty Creek between forests and wetlands. Our study demonstrates diverging implications of boreal tree cover changes on land surface properties and turbulent energy fluxes, thus on regional climate system feedback directions and strengths, as a function of permafrost conditions and fire history.

  2. Forest floor carbon exchange of a boreal black spruce forest in eastern North America

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-09-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow (5 cm) soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper (50 and 100 cm) soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pff-max) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pff-max was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied from 13 to 24% over the snow-free period and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17

  3. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  4. Plant component features of forest-bog ecotones of eutrophic paludification in the south of boreal forest zone of West Siberia

    Science.gov (United States)

    Klimova, N. V.; Chernova, N. A.; Pologova, N. N.

    2018-03-01

    Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.

  5. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  6. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests?

    NARCIS (Netherlands)

    Schulze, E.D.; Hessenmoeller, D; Knohl, A.; Luyssaert, S; Boerner, A; Grace, J.

    2009-01-01

    This chapter investigates biomass, net primary productivity (NPP), and net ecosystem productivity (NEP) of boreal and temperate forest ecosystems in relation to stand density and age. Forests may accumulate woody biomass at constant rate for centuries and there is little evidence of an age-related

  7. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  8. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  9. Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests

    Science.gov (United States)

    B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez

    2013-01-01

    Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...

  10. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  11. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  12. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  13. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  14. How Will the Tundra-Taiga Interface Respond to Climate Change?

    Energy Technology Data Exchange (ETDEWEB)

    Skre, Oddvar [Norwegian Forest Research Inst., Fana (Norway); Baxter, Bob [Univ. of Durham (United Kingdom). School of Biological and Biomedical Sciences; Crawford, Robert M.M. [Univ. of St. Andrews (United Kingdom); Callaghan, Terry V. [Univ. of Sheffield (United Kingdom). Sheffield Centre for Arctic Ecology; Fedorkov, Aleksey [Russian Academy of Sciences, Syktyvkar (Russian Federation). Inst. of Biology

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  15. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  16. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  17. Landscape Controls of CH4 Fluxes in a Catchment of the Forest Tundra in Northern Siberia

    Science.gov (United States)

    Flessa, H.; Rodionov, A.; Guggenberger, G.; Fuchs, H.; Magdon, P.; Shibistova, O.; Zrazhevskaya, G.; Kasansky, O.; Blodau, C.

    2007-12-01

    Soils have the capacity to both produce and consume atmospheric methane. The direction and the size of net- CH4 exchange between soils and atmosphere is mainly controlled by the soil aeration, temperature and the amount of bioavailable organic matter. All these factors are strongly influenced by distribution and seasonal dynamics of permafrost. Thus, distribution of permafrost and the thickness of the active layer can exert strong influence on CH4 dynamics in artic and northern boreal ecosystems. We analyzed the spatial and temporal variability of net-CH4 exchange within a catchment located in the Siberian forest tundra at the eastern shore of the lower Yenissej River to constrain the current function of this region as a sink or source of atmospheric CH4 and to gain insight into the potential for climatic change to alter the rate and form of carbon cycling and CH4 fluxes in this region. Net-fluxes of CH4 were measured from July to November 2003 and from August 2006 to July 2007 on representative soils of the catchment (mineral soils with different thawing depth, soils of bog plateaux) and on a thermokarst pond. In addition, dissolved CH4 in the stream draining the catchment was determined. Field observations, classification of landscape structures from satellite images and flux measurements were combined to estimate total catchment CH4 exchange. Nearly all soils of the catchment were net-sinks of atmospheric CH4 with annual CH4-C uptake rates ranging between 1.2 and 0.2 kg ha-1 yr-1. The active layer depth was the main factor determining the size of CH4 uptake. Total net-exchange of CH4 from the catchment was dominated by ponds that covered only about 2% of the catchment area. Due to high CH4 emission from these aquatic systems, the catchment was a net source of atmospheric CH4 with a mean annual emission of approximately 170 kg CH4-C ha-1. CH4 concentration in streams draining the catchment can help to identify areas with high CH4 production. The results suggest

  18. Nitrogen balance along a northern boreal forest fire chronosequence.

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  19. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    Science.gov (United States)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  20. Ecosystem Responses to Partial Harvesting in Eastern Boreal Mixedwood Stands

    Directory of Open Access Journals (Sweden)

    Brian D. Harvey

    2013-05-01

    Full Text Available Partial harvesting has been proposed as a key aspect to implementing ecosystem management in the Canadian boreal forest. We report on a replicated experiment located in boreal mixedwoods of Northwestern Quebec. In the winter of 2000–2001, two partial harvesting treatments, one using a dispersed pattern, and a second, which created a (400 m2 gap pattern, were applied to a 90-year-old aspen-dominated mixed stand. The design also included a clear cut and a control. Over the course of the following eight years, live tree, coarse woody debris, regeneration and ground beetles were inventoried at variable intervals. Our results indicate that all harvesting treatments created conditions favorable to balsam fir (Abies balsamea sapling growth and trembling aspen (Populus tremuloides sapling recruitment. However, balsam fir and trembling aspen regeneration and ground beetles response to gap cuts were closer to patterns observed in clear cuts than in dispersed harvesting. The underlying reasons for these differing patterns can be linked to factors associated with the contrasting light regimes created by the two partial harvesting treatments. The study confirms that partially harvesting is an ecologically sound approach in boreal mixedwoods and could contribute to maintaining the distribution of stand ages at the landscape level.

  1. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    Science.gov (United States)

    Kelly, Ryan; Genet, Helene; McGuire, A. David; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  2. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    Science.gov (United States)

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to

  4. Multi-Cohort Stand Structural Classification: Ground- and LiDAR-based Approaches for Boreal Mixedwood and Black Spruce Forest Types of Northeastern Ontario

    Science.gov (United States)

    Kuttner, Benjamin George

    Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using Li

  5. Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence

    Science.gov (United States)

    Rydén, Patrik; Björk, Rafael; Schäfer, Martina L.; Lundström, Jan O.; Petersén, Bodil; Lindblom, Anders; Forsman, Mats; Sjöstedt, Anders

    2012-01-01

    Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P tularemia (temporal correlation, 0.76; P tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators. PMID:22124130

  6. APPLICATION OF REMOTE SENSING DATA FOR THE ASSESSMENT OF THE UJUK MOUNTAIN BOREAL FORESTS (THE TYVA REPUBLIC, RUSSIA

    Directory of Open Access Journals (Sweden)

    Khulermaa B. Kuular

    2016-01-01

    Full Text Available This paper discusses some issues related to assessment and monitoring of forests insouthern Siberia. This study aims to evaluate the response of southern boreal forests to climate warming at local scale. Estimating the impacts of climate change on mountain boreal forests requires a more complete accounting of tree growth/climate interaction. We used both remote sensing and field data. Field measurements were made from the upper to lower timberline of dark deciduous forest in 2005 and 2012. The remote sensing datasets were generated from LANDSAT scenes of different dates (19.08.1988, 25.06.1992 and 18.08.2011. For estimation of forests changes, we used values of NDVI (Normalized Difference Vegetation Index and NBR (Normalized Burn Ratio.

  7. Are Boreal Ovenbirds, Seiurus aurocapilla, More Prone to Move across Inhospitable Landscapes in Alberta's Boreal Mixedwood Forest than in Southern Québec's Temperate Deciduous Forest?

    Directory of Open Access Journals (Sweden)

    Marc Bélisle

    2007-12-01

    Full Text Available Population life-history traits such as the propensity to move across inhospitable landscapes should be shaped by exposure to landscape structure over evolutionary time. Thus, birds that recently evolved in landscapes fragmented by natural disturbances such as fire would be expected to show greater behavioral and morphological vagility relative to conspecifics that evolved under less patchy landscapes shaped by fewer and finer-scaled disturbances, i.e., the resilience hypothesis. These predictions are not new, but they remain largely untested, even for well-studied taxa such as neotropical migrant birds. We combined two experimental translocation, i.e., homing, studies to test whether Ovenbird, Seiurus aurocapilla, from the historically dynamic boreal mixedwood forest of north-central Alberta (n = 55 is more vagile than Ovenbird from historically less dynamic deciduous forest of southern Québec (n = 89. We found no regional difference in either wing loading or the response of homing Ovenbird to landscape structure. Nevertheless, this study presents a heuristic framework that can advance the understanding of boreal landscape dynamics as an evolutionary force.

  8. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    Science.gov (United States)

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  9. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Science.gov (United States)

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  10. Recent Changes to the Strength of the CO2 Sink in Boreal Land Regions (Invited)

    Science.gov (United States)

    Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.; Gurney, K. R.; Melillo, J. M.

    2009-12-01

    Studies suggest that high-latitude terrestrial ecosystems have had a significant influence on the global carbon budget by acting as a substantial sink of atmospheric CO2 over the latter part of the 20th Century. However, recent changes in the controlling factors of this sink, including surface air temperature warming and increases in the frequency and severity of disturbances, have the potential to alter the C balance of boreal land regions. Whether these ecosystems continue to sequester atmospheric CO2 in the face of these changes is a key question in global change science and policy, as any changes to the strength of this major terrestrial sink will have important implications for the global C budget and climate system. Here, we diagnose and attribute contemporary terrestrial CO2 sink strength in the boreal land regions using a biogeochemical process model within a simulation framework that incorporates the impacts of recent changes in atmospheric chemistry and climate variability, as well as fire, forest management and agricultural land use regimes. The simulations estimate that the boreal land regions acted as a net sink of 102 TgC yr-1 from 1960 to 1980 that declined in strength to 28 TgC yr-1 for the 1990s and switched to a source of 99 TgC yr-1 from years 2000 to 2006. The weakening sink strength in the 1990s was largely a result of C losses from Boreal North American tundra and forest ecosystems through increasing decomposition of soil organic matter in response to warmer temperatures. Compared to previous decades, a near doubling of fire emissions was the major factor causing the boreal land regions to switch to a net C source since 2000 when large burn years occurred across the region, particularly in forests of Boreal Asia. A steady sink averaging 23 TgC yr-1 was estimated for Boreal European ecosystems from 1960 to 2006, with the ‘fertilization’ effects of increasing atmospheric CO2 concentration and N deposition primarily responsible for the

  11. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

    Science.gov (United States)

    Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.

    2017-03-01

    Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.

  12. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    Science.gov (United States)

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  13. Cross-scale controls on carbon emissions from boreal forest megafires.

    Science.gov (United States)

    Walker, Xanthe J; Rogers, Brendan M; Baltzer, Jennifer L; Cumming, Steven G; Day, Nicola J; Goetz, Scott J; Johnstone, Jill F; Schuur, Edward A G; Turetsky, Merritt R; Mack, Michelle C

    2018-04-26

    Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m -2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale. © 2018 John Wiley & Sons Ltd.

  14. Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site

    Science.gov (United States)

    Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.

    2016-12-01

    Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and

  15. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  16. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    Science.gov (United States)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  17. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-01-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  18. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  19. Occurrence patterns of dead wood and wood-dependent lichens in managed boreal forest landscapes

    OpenAIRE

    Svensson, Måns

    2013-01-01

    Dead wood is a key resource for biodiversity, on which thousands of forest organisms are dependent. Because of current forest management, there has been a large-scale change in dead wood amounts and qualities, and consequently, many wood-dependent species are threatened. The general aim of this thesis is to increase our understanding of habitat requirements and occurrence patterns of wood-dependent lichens in managed, boreal forest landscapes. We surveyed dead wood and wood-dependent lichens ...

  20. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  1. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada.

    Science.gov (United States)

    Köster, Egle; Köster, Kajar; Berninger, Frank; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka

    2017-12-01

    Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO 2 ) and methane (CH 4 ) emissions. We studied changes in CO 2 , CH 4 and nitrous oxide (N 2 O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100years. The soils in our study acted as sources of CO 2 and N 2 O and sinks for CH 4 . The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH 4 , and the N 2 O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  3. Shifting Patterns of Boreal Forest Succession and Browning Over the Last 30 Years

    Science.gov (United States)

    Goulden, M.; Czimczik, C. I.; Randerson, J. T.

    2017-12-01

    Climate and fire largely control the productivity ("greenness") and biodiversity of boreal forests in North America. Our research focuses on better understanding: 1) the patterns of, controls on, and recent changes in North American Boreal Forest "Browning" and the declining Normalized Difference Vegetation Index (NDVI) observed in satellite records, and 2) the patterns of, controls on, and recent changes in North American Boreal Forest fire recovery and succession. Much of our effort has used the Landsat archive to analyze the patterns of wildfire and forest recovery along a transect cutting across central Canada; this study areas covers 3 Landsat rows x 25 paths with 2500 summer images. Key findings include: 1) Most (80-90%) of the recent NDVI trends in our study area are attributable to wildfire (areas that burned after 1995 and also before 1975 show browning; areas that burned in 1975-1995 show greening). 2) There are a significant number of non-fire related patches that show either browning or greening; some of these patches are related to fires or human disturbances that aren't in our disturbance database, but others occur in wetter areas, where there is a general tendency toward browning with many specific cases of greening. 3) Various remote sensing metrics yield complementary information providing a clearer sense of the biophysical trends during succession. 4) We see evidence of accelerating succession from 1985-1995 to 2005-2015. This acceleration isn't dramatic, just 1-3 years during early recovery and more during later succession, but it is a consistent feature of the analysis. We are not seeing a systematic decline in old-stand LAI. While NDVI declines in old stands with the loss of deciduous trees, we are not seeing a systematic decrease in old stand LAI or wide spread mortality.

  4. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  5. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2013-02-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  6. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Science.gov (United States)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  7. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    Science.gov (United States)

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Impact of Boreal Forest Fire on Climate Warming

    OpenAIRE

    Randerson, J. T.; Liu, H.; Flanner, M. G.; Chambers, S. D.; Jin, Y.; Hess, P. G.; Pfister, G.; Mack, M. C.; Treseder, K. K.; Welp, L. R.; Chapin, F. S.; Harden, J. W.; Goulden, M. L.; Lyons, E.; Neff, J. C.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (–2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo ha...

  9. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance : Insights from a global process-based vegetation model

    NARCIS (Netherlands)

    Yue, Chao; Ciais, P.; Luyssaert, S.; Cadule, Patricia; Harden, J. L.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and

  10. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Science.gov (United States)

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  11. Forest floor carbon exchange of a boreal black spruce forest in eastern North America

    Directory of Open Access Journals (Sweden)

    O. Bergeron

    2009-09-01

    Full Text Available This study reports continuous automated measurements of forest floor carbon (C exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto and forest floor photosynthesis (Pff to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj and Pff (Pff-eco relative to that of total ecosystem respiration (Re and photosynthesis (Peco, respectively, were also quantified.

    Shallow (5 cm soil temperature explained 67–86% of the variation in Rs-auto for all ground cover types, while deeper (50 and 100 cm soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring.

    Maximum photosynthetic capacity of the forest floor (Pff-max saturated at low irradiance levels (~200 μmol m−2 s−1 and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pff-max was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two

  12. Changes in Arctic and Boreal ecosystems of North America: Integrating Recent Results from the Field, Remote Sensing and Ecosystem Models

    Science.gov (United States)

    Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.

    2017-12-01

    The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of

  13. Eastern Africa Coastal Forest Programme

    OpenAIRE

    Younge, A.

    2002-01-01

    The eastern African coastal forest ecoregion is recognised as one of Africa’s centres of species endemism, and is distributed over six countries (Somalia, Kenya, Tanzania, Mozambique, Zimbabwe and Malawi). Most is found in Kenya, Tanzania and Mozambique, which form our focal region. The coastal forests are fragmented, small and surrounded by poor communities that have a high demand for land and forest resources. Although coastal forests have significant cultural and traditional...

  14. Biased representation of disturbance rates in the roadside sampling frame in boreal forests: implications for monitoring design

    Directory of Open Access Journals (Sweden)

    Steven L. Van Wilgenburg

    2015-12-01

    Full Text Available The North American Breeding Bird Survey (BBS is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest "loss," forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes

  15. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  16. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Science.gov (United States)

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  17. Maintaining animal assemblages through single-species management: the case of threatened caribou in boreal forest.

    Science.gov (United States)

    Bichet, Orphé; Dupuch, Angélique; Hébert, Christian; Le Borgne, Hélène Le; Fortin, Daniel

    2016-03-01

    With the intensification of human activities, preserving animal populations is a contemporary challenge of critical importance. In this context, the umbrella species concept is appealing because preserving a single species should result in the protection of multiple co-occurring species. Practitioners, though, face the task of having to find suitable umbrellas to develop single-species management guidelines. In North America, boreal forests must be managed to facilitate the recovery of the threatened boreal caribou (Rangifer tarandus). Yet, the effect of caribou conservation on co-occurring animal species remains poorly documented. We tested if boreal caribou can constitute an effective umbrella for boreal fauna. Birds, small mammals, and insects were sampled along gradients of post-harvest and post-fire forest succession. Predictive models of occupancy were developed from the responses of 95 species to characteristics of forest stands and their surroundings. We then assessed the similarity of species occupancy expected between simulated harvested landscapes and a 90 000-km2 uncut landscape. Managed landscapes were simulated based on three levels of disturbance, two timber-harvest rotation cycles, and dispersed or aggregated cut-blocks. We found that management guidelines that were more likely to maintain caribou populations should also better preserve animal assemblages. Relative to fragmentation or harvest cycle, we detected a stronger effect of habitat loss on species assemblages. Disturbing 22%, 35%, and 45% of the landscape should result, respectively, in 80%, 60%, and 40% probability for caribou populations to be sustainable; in turn, this should result in regional species assemblages with Jaccard similarity indices of 0.86, 0.79, and 0.74, respectively, relative to the uncut landscape. Our study thus demonstrates the value of single-species management for animal conservation. Our quantitative approach allows for the evaluation of management guidelines prior

  18. Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II

    Science.gov (United States)

    Patokoski, J.; Ruuskanen, T. M.; Kajos, M. K.; Taipale, R.; Rantala, P.; Aalto, J.; Ryyppö, T.; Nieminen, T.; Hakola, H.; Rinne, J.

    2015-12-01

    In this study a long-term volatile organic compound (VOCs) concentration data set, measured at the SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) boreal forest site in Hyytiälä, Finland during the years 2006-2011, was analyzed in order to identify source areas and profiles of the observed VOCs. VOC mixing ratios were measured using proton transfer reaction mass spectrometry. Four-day HYSPLIT 4 (Hybrid Single Particle Lagrangian Integrated Trajectory) backward trajectories and the Unmix 6.0 receptor model were used for source area and source composition analysis. Two major forest fire events in Russia took place during the measurement period. The effect of these fires was clearly visible in the trajectory analysis, lending confidence to the method employed with this data set. Elevated volume mixing ratios (VMRs) of non-biogenic VOCs related to forest fires, e.g. acetonitrile and aromatic VOCs, were observed. Ten major source areas for long-lived VOCs (methanol, acetonitrile, acetaldehyde, acetone, benzene, and toluene) observed at the SMEAR II site were identified. The main source areas for all the targeted VOCs were western Russia, northern Poland, Kaliningrad, and the Baltic countries. Industrial areas in northern continental Europe were also found to be source areas for certain VOCs. Both trajectory and receptor analysis showed that air masses from northern Fennoscandia were less polluted with respect to both the VOCs studied and other trace gases (CO, SO2 and NOx), compared to areas of eastern and western continental Europe, western Russia, and southern Fennoscandia.

  19. Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest

    Science.gov (United States)

    Gagen, M.; Finsinger, W.; McCarroll, D.; Wagner, F.

    2009-04-01

    The Boreal forests contains 33% of the earth's forest cover and are located at the latitude where most of the estimated global warming is predicted to occur. Warming as a consequence of rising carbon dioxide will affect evapotranspiration within the biome, with significant consequences given that water vapour is an important greenhouse gas. However, there is also a physiological forcing associated with the effects of rising carbon dioxide on plants. Higher atmospheric carbon dioxide will reduce evapotraspiration because tree stomata tend to close under elevated carbon dioxide. The warming associated with reduced evapotranspiration is known as carbon dioxide physiological forcing and it is not well constrained. Here we suggest that future predictions of evapotranspiration flux within the Boreal forest zone might be more accurately gauged by taking account of palaeo evidence of changing plant water use efficiency and stomatal density in the two most important Boreal plant species: Pinus sylvestris and Betula nana. Stable carbon isotope ratios in tree ring cellulose and stomatal density measurements, from preserved leaves falling on the forest floor, hold a record of the plant physiological changes associated with adjustment to rising carbon dioxide. We present evidence that, rather than plants simply closing their stomatal apertures under recent elevated carbon dioxide, over the last 150 years reduced evapotranspiration in the northern Boreal forest has been associated with a powerful plastic response including reductions in stomatal conductance via changes in stomatal density and pore length. Furthermore we present evidence that trees may be reaching the limits of their ability to respond plastically to rising carbon dioxide by increasing their water use efficiency.

  20. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  1. Effects of ionizing radiation on the boreal forest

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1995-08-01

    The Field-Irradiator-Gamma (FIG) project chronically exposed a section of the boreal forest to ionizing radiation by placing a 137 Cs source on tope of a 20-m tower at a forest site in southeastern Manitoba. The irradiation continued from 1973 to 1986 and the forest was exposed to radiological dose rates ranging from 65 mGy.h -1 to 0.005 mGy.h -1 along a gradient extending 500 m from the source. The irradiation killed the tree canopy close to the irradiator, resulting in the formation of a herbaceous zone of vegetation at high dose rates. After 14 years of irradiation, some tree species were still being affected at dose rates as low as about 1 mGy.h -1 . The data gathered at the FIG site can be used to identify radiological dose rates that forest communities can tolerate. This information allows decisions to be made concerning guidelines for protection of the general environment from radionuclide emissions from various anthropogenic sources, such as nuclear reactors and uranium tailings. This report reviews the previous data collected at the FIG site during the pre-irradiation and irradiation phases and the methodology used to establish a baseline for future comparisons. Permanently marked sampling plots are a particular strength to the study, whereby researchers can compare the present forest community with that measured during the past 25 years. (author). 53 refs., 6 tabs., 22 figs

  2. Effects of ionizing radiation on the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Amiro, B D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1995-08-01

    The Field-Irradiator-Gamma (FIG) project chronically exposed a section of the boreal forest to ionizing radiation by placing a {sup 137}Cs source on tope of a 20-m tower at a forest site in southeastern Manitoba. The irradiation continued from 1973 to 1986 and the forest was exposed to radiological dose rates ranging from 65 mGy.h{sup -1} to 0.005 mGy.h{sup -1} along a gradient extending 500 m from the source. The irradiation killed the tree canopy close to the irradiator, resulting in the formation of a herbaceous zone of vegetation at high dose rates. After 14 years of irradiation, some tree species were still being affected at dose rates as low as about 1 mGy.h{sup -1}. The data gathered at the FIG site can be used to identify radiological dose rates that forest communities can tolerate. This information allows decisions to be made concerning guidelines for protection of the general environment from radionuclide emissions from various anthropogenic sources, such as nuclear reactors and uranium tailings. This report reviews the previous data collected at the FIG site during the pre-irradiation and irradiation phases and the methodology used to establish a baseline for future comparisons. Permanently marked sampling plots are a particular strength to the study, whereby researchers can compare the present forest community with that measured during the past 25 years. (author). 53 refs., 6 tabs., 22 figs.

  3. Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences

    DEFF Research Database (Denmark)

    Halldin, S.; Gryning, Sven-Erik; Gottschalk, L.

    1999-01-01

    The role of the land surface in controlling climate is still underestimated and access to information from the boreal-forest zone is instrumental to improve this situation. This motivated the organisation of NOPEX (Northern hemisphere climate-Processes land-surface Experiment) in the southern part...... as an integrated part of this Special Issue. (C) 1999 Elsevier Science B.V. All rights reserved....

  4. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  5. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, María; Tikkanen, Olli-Pekka

    2016-01-01

    if species sensitivity, the species ability to tolerate climatic variations determined by traits, plays a key role in determining vulnerability. We analyse the role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two poorly-known but species-rich taxa in boreal...... forest, saproxylic beetles and fungi, using three IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement in habitat quality associated with an increase of deadwood, an important resource for species, as a consequence of increased tree growth under high emissions...... scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...

  6. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  7. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  8. An Approach for Forest Inventory in Canada's Northern Boreal region, Northwest Territories

    Science.gov (United States)

    Mahoney, C.; Hopkinson, C.; Hall, R.; Filiatrault, M.

    2017-12-01

    The northern extent of Canada's northern boreal forest is largely inaccessible resulting in logistical, financial, and human challenges with respect to obtaining concise and accurate forest resource inventory (FRI) attributes such as stand height, aboveground biomass and forest carbon stocks. This challenge is further exacerbated by mandated government resource management and reporting of key attributes with respect to assessing impacts of natural disturbances, monitoring wildlife habitat and establishing policies to mitigate effects of climate change. This study presents a framework methodology utilized to inventory canopy height and crown closure over a 420,000 km2 area in Canada's Northwest Territories (NWT) by integrating field, LiDAR and satellite remote sensing data. Attributes are propagated from available field to coincident airborne LiDAR thru to satellite laser altimetry footprints. A quality controlled form of the latter are then submitted to a k-nearest neighbor (kNN) imputation algorithm to produce a continuous map of each attribute on a 30 m grid. The resultant kNN stand height (r=0.62, p=0.00) and crown closure (r=0.64, p=0.00) products were identified as statistically similar to a comprehensive independent airborne LiDAR source. Regional uncertainty can be produced with each attribute to identify areas of potential improvement through future strategic data acquisitions or the fine tuning of model parameters. This study's framework concept was developed to inform Natural Resources Canada - Canadian Forest Service's Multisource Vegetation Inventory and update vast regions of Canada's northern forest inventories, however, its applicability can be generalized to any environment. Not only can such a framework approach incorporate other data sources (such as Synthetic Aperture Radar) to potentially better characterize forest attributes, but it can also utilize future Earth observation mission data (for example ICESat-2) to monitor forest dynamics and the

  9. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  10. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    Science.gov (United States)

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  12. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    Science.gov (United States)

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  13. Eastern forest environmental threat assessment center

    Science.gov (United States)

    Southern Research Station. USDA Forest Service

    2010-01-01

    The Eastern Forest Environmental Threat Assessment Center (EFETAC) provides the latest research and expertise concerning threats to healthy forests – such as insects and disease, wildland loss, invasive species, wildland fire, and climate change – to assist forest landowners, managers and scientists throughout the East. Established in 2005, EFETAC is a joint effort of...

  14. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  15. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m -1 (OC) and 0.120 to 0.160 mg/m -3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m -3 (OC) and 0.006--0.050 mg/m -3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  16. Annual survival rates of adult and immature eastern population tundra swans

    Science.gov (United States)

    Nichols, J.D.; Bart, J.; Limpert, R.J.; Sladen, William J. L.; Hines, J.E.

    1992-01-01

    Tundra swans (Cygnus columbianus ) of the eastern population were neckbanded in Maryland, North Carolina, and Alaska from 1966 through 1990. These swans were resighted and recaptured during autumn, winter, and spring, 1966-1990. Although the original motivation for this study involved swan movements, we wanted to use the resulting data to test hypotheses about sources of variation in swan survival rates. Recaptures of legbanded and neckbanded swans permitted us to estimate neckband loss rates, which were found to vary with age and sex of swans, and number of years since initial application. Estimates of annual neckband retention rate ranged from about 0.50 for adult male swans greater than or equal to 2 years after initial neckbanding to > 0.96 for immature swans and adult females the first year following neckbanding. This variation in neckband loss rates prevented the simple correction of survival estimates to account for such loss. Consequently, we developed a series of multinomial models parameterized with survival, sighting, and neckband retention probabilities for use with the recapture and resighting data.

  17. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences.

    Science.gov (United States)

    Williams, J.; Petäjä, T.

    2012-04-01

    This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  18. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010: an overview of meteorological and chemical influences

    Directory of Open Access Journals (Sweden)

    J. Williams

    2011-10-01

    Full Text Available This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce; mixed forest (Birch and conifers; and woodland scrub (e.g. Willows, Aspen; indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO, urban anthropogenic pollution (pentane and SO2 and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes. None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  19. Simulating the Effect of Climate Change on Vegetation Zone Distribution on the Loess Plateau, Northwest China

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    2015-06-01

    Full Text Available A risk assessment of vegetation zone responses to climate change was conducted using the classical Holdridge life zone model on the Loess Plateau of Northwest China. The results show that there are currently ten vegetation zones occurring on the Loess Plateau (1950–2000, including alvar desert, alpine wet tundra, alpine rain tundra, boreal moist forest, boreal wet forest, cool temperate desert, cool temperate desert scrub, cool temperate steppe, cool temperate moist forest, warm temperate desert scrub, warm temperate thorn steppe, and warm temperate dry forest. Seventy years later (2070S, the alvar desert, the alpine wet tundra and the cool temperate desert will disappear, while warm temperate desert scrub and warm temperate thorn steppe will emerge. The area proportion of warm temperate dry forest will expand from 12.2% to 22.8%–37.2%, while that of cool temperate moist forest will decrease from 18.5% to 6.9%–9.5%. The area proportion of cool temperate steppe will decrease from 51.8% to 34.5%–51.6%. Our results suggest that future climate change will be conducive to the growth and expansion of forest zones on the Loess Plateau, which can provide valuable reference information for regional vegetation restoration planning and adaptive strategies in this region.

  20. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Science.gov (United States)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  1. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  2. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  3. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  4. Fragmentation of eastern United States forest types

    Science.gov (United States)

    Kurt H. Riitters; John W. Coulston

    2013-01-01

    Fragmentation is a continuing threat to the sustainability of forests in the Eastern United States, where land use changes supporting a growing human population are the primary driver of forest fragmentation (Stein and others 2009). While once mostly forested, approximately 40 percent of the original forest area has been converted to other land uses, and most of the...

  5. Surface albedo in relation to disturbance and early stand dynamics in the boreal forest: Implications for climate models

    Science.gov (United States)

    Halim, M. A.; Thomas, S. C.

    2017-12-01

    Surface albedo is the most important biophysical radiative forcing in the boreal forest. General Circulation Model studies have suggested that harvesting of boreal forest has a net cooling effect, in contrast to other terrestrial biomes, by increasing surface albedo. However, albedo estimation in these models has been achieved by simplifying processes governing albedo at a coarse scale (both spatial and temporal). Biophysical processes that determine albedo likely operate on small spatial and temporal scales, requiring more direct estimates of effects of landcover change on net radiation. We established a chronosequence study in post-fire and post-clearcut sites (2013, 2006, 1998), logging data from July 2013 to July 2017 in boreal forest sites in northwestern Ontario, Canada. Each age-class X disturbance had 3 three replicates, matched to 18 permanent circular plots (10-m radius) each with an instrumented tower measuring surface albedo, air and soil temperature, and soil moisture. We also measured leaf area index, species composition and soil organic matter content at each site. BRDF-corrected surface albedo was calculated from daily 30m x 30m reflectance data fused from the MODIS MOD09GA product and Landsat 7 reflectance data. Calculated albedo was verified using ground-based measurements. Results show that fire sites generally had lower (15-25%) albedo than clearcut sites in all seasons. Because of rapid forest regrowth, large perturbations of clearcut harvests on forest albedo started to fade out within a year. Albedo differences between fire and clearcut sites also declined sharply with stand age. Younger stands generally had higher albedo than older stands mainly due to the presence of broadleaf species (for example, Populus tremuloides). In spring, snow melted 10-12 days earlier in recent (2013) clearcut sites compared to closed-canopy sites, causing a sharp reduction in surface albedo in comparison to old clearcut/fire sites (2006 and 1998). Snow melted

  6. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  7. High Upward Fluxes of Formic Acid from a Boreal Forest Canopy

    Science.gov (United States)

    Schobesberger, Siegfried; Lopez-Hilifiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; hide

    2016-01-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward gross flux of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  8. The role of novel forest ecosystems in the conservation of wood?inhabiting fungi in boreal broadleaved forests

    OpenAIRE

    Juutilainen, Katja; M?nkk?nen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-01-01

    Abstract The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood?associated species. This is especially alarming given the important role wood?inhabiting fungi have in the natural decay processes. In t...

  9. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  10. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Science.gov (United States)

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  11. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  12. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  13. Holocene vegetation and climate change on the Haanja heights, South-East Estonia

    International Nuclear Information System (INIS)

    Saarse, Leili; Rajamaee, Raivo

    1997-01-01

    The development of forests on the Haanja Heights has been controlled by external factors, including climate, soils, hydrology, and human impact. The sediment sequence from Lake Kirikumaee, which covers about 12 000 years, records the vegetation history throughout the Late Glacial and Holocene. In the Alleroed, woodland tundra with sparse birch and willow was established. Grass-shrub tundra in the Younger Dryas was replaced by birch forest in the Pre-Boreal. During the Holocene two major shifts in vegetation dynamics occurred: the first about 8500 BP with a sharp decline in Betula-Pinus forest and development of broad-leaved forest, and the second about 3500 BP, with a decline in broad-leaved forest and regeneration of Pinus-Betula forest with a high share of Picea. The climate modelling, based on pollen record and lake-level changes, suggest cold, severe climate with low precipitation values in the early Pre-Boreal. Between 9500-8500 BP the climate was rather stable. The lake level first rose, then stabilized, and finally dropped. The sharp climate amelioration in the late Boreal together with the humidity increase resulted in a lake-level rise. The decreased precipitation and rather high summer temperatures, increased evapotranspiration, and reduced water balance are characteristic of the Sub-Boreal. Since 3500 BP, the climate deteriorated and mixed coniferous forest started to dominate. Several small climatic fluctuations, including the Little Ice Age cooling, have been traced by modelling. (author)

  14. Conservation assessments for five forest bat species in the Eastern United States

    Science.gov (United States)

    Frank R., III Thompson

    2006-01-01

    Assesses the status, distribution, conservation, and management considerations for five Regional Forester Sensitive Species of forest bats on national forests in the Eastern United States: eastern pipistrelle, evening bat, southeastern myotis, eastern small-footed myotis, and northern long-eared bat. Includes information on the taxonomy, description, life history,...

  15. Forest production dynamics along a wood density spectrum in eastern US forests

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi

    2015-01-01

    Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.

  16. Competitive interactions among raptors in boreal forests.

    Science.gov (United States)

    Hakkarainen, Harri; Mykrä, Sakari; Kurki, Sami; Tornberg, Risto; Jungell, Sven

    2004-11-01

    We examined inter-specific interactions among goshawks ( Accipiter gentilis), common buzzards (Buteo buteo) and honey buzzards (Pernis apivorus) in western Finland in 1983-1996. Because goshawks are among the largest birds of prey species in boreal forests they may take over the nest of smaller and less-competitive forest-dwelling raptors when searching for suitable places for breeding. Accordingly, more than half of newly established goshawk territories were found on the territories previously occupied by the common buzzard and the honey buzzard. Otherwise, territory sharing between these species was rare. Fledgling production of honey buzzards was not associated with the presence of goshawks, probably owing to the almost 2 months later onset of breeding. This probably decreases competitive interactions between these two species. An intensive interference competition, instead, seemed to be evident between common buzzards and goshawks, because the fledgling production of common buzzards was decreased by 20% as a result of failures during incubation and nestling period in the vicinity (nests. Similarly, territory occupancy of common buzzards till the next breeding season was significantly reduced in the presence of goshawks. Relatively high proportions of occupied buzzard territories (17%) in the study area were shared by breeding goshawks on the same territory. This suggests that although their diets are dissimilar they inhabit similar habitats and might compete for the available prime nesting habitats within forest landscapes. In addition, goshawks benefit from taking over the complete nests of other raptors, imposing upon the original owners of the nest, because building a large stick nest is probably energetically costly. As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites.

  17. Traditional Uses of Medicinal Plants from the Canadian Boreal Forest for the Management of Chronic Pain Syndromes.

    Science.gov (United States)

    Uprety, Yadav; Lacasse, Anaïs; Asselin, Hugo

    2016-04-01

    Chronic pain is more prevalent in indigenous populations who often prefer traditional remedies over allopathic drugs. Our objective was to investigate the traditional uses of medicinal plants from the Canadian boreal forest for the management of chronic pain syndromes. We reviewed the most extensive database on medicinal plants used by aboriginal people of the Canadian boreal forest to investigate the plants used in the management of 3 of the most common chronic pain syndromes: arthritis/rheumatism; back pain; and headache/migraine. We also reviewed the pharmacology and phytochemistry literature to investigate concordance with indigenous knowledge. A total of 114 medicinal plant species were reported, of which 27 (23.5%) were used to treat more than 1 chronic pain syndrome. Pharmacological or phytochemical evidence to explain plant function as chronic pain remedy was available in the literature for only 38 species (33%), with several species reported to have anti-inflammatory and analgesic properties effective in treating chronic pain syndromes. Our study showed the potential of boreal plants as alternative and complementary medicines for the treatment of chronic pain syndromes that could be enhanced by further research on efficacy and safety issues. © 2015 World Institute of Pain.

  18. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements

    DEFF Research Database (Denmark)

    Falge, E.; Tenhunen, J.; Baldocchi, D.

    2002-01-01

    , as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types...... in four classes: (1) boreal and high altitude conifers and grasslands: (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forest,,, Similar results are found for maximum daytime uptake (F-min) and the integral net carbon flux, but temperate......-min are largest for managed grasslands and crops. Largest observed values of F-min varied between -48 and -2 mumol m(-2) s(-1), decreasing in the order C-4-crops > C-3-crops > temperate deciduous forests > temperate conifers > boreal conifers > tundra ecosystems. Due to data restrictions, our analysis centered...

  19. How the eastern US National Forests were formed [Book review

    Science.gov (United States)

    Louis R. Iverson

    2014-01-01

    As a landscape ecologist conducting research on eastern forests for the US Forest Service (e.g., www.nrs.fs.fed.us/atlas), I was eager to learn about how the eastern National Forests came to be, as these forests now play such an important part of the natural world and provide a large carbon sink. The book did not disappoint and I'm confident that it will be...

  20. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    International Nuclear Information System (INIS)

    Olchev, A; Kurbatova, J; Novenko, E; Desherevskaya, O; Krasnorutskaya, K

    2009-01-01

    Effects of possible climatic and vegetation changes on H 2 O and CO 2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 deg. C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  1. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  2. Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model

    Directory of Open Access Journals (Sweden)

    Gilles Joanisse

    2013-07-01

    Full Text Available Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.

  3. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    Science.gov (United States)

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  4. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. What makes segmentation good? A case study in boreal forest habitat mapping

    OpenAIRE

    Räsänen, Aleksi; Rusanen, Antti; Kuitunen, Markku; Lensu, Anssi

    2013-01-01

    Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and ...

  6. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-10-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes; solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 references.

  7. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-11-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium and potassium to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 refs.

  8. Using MOPITT data and a Chemistry and Transport Model to Investigate Injection Height of Plumes from Boreal Forest Fires

    Science.gov (United States)

    Hyer, E. J.; Allen, D. J.; Kasischke, E. S.; Warner, J. X.

    2003-12-01

    Trace gas emissions from boreal forest fires are a significant factor in atmospheric composition and its interannual variability. A number of recent observations of emissions plumes above individual fire events (Fromm and Servranckx, 2003; COBRA 2003; Lamarque et al., 2003; Wotawa and Trainer, 2000) suggest that vertical properties of forest fire emission plumes can be very different from fossil fuel emission plumes. Understanding and constraining the vertical properties of forest fire emission plumes and their injection into the atmosphere during fire events is critical for accurate modeling of atmospheric transport and chemistry. While excellent data have been collected in a handful of experiments on individual fire events, a systematic examination of the range of behavior observed in fire events has been hampered by the scarcity of vertical profiles of atmospheric composition. In this study, we used a high-resolution model of boreal forest fire emissions (Kasischke et al, in review) as input to the Goddard/UM CTM driven by the GEOS-3 DAS, operating at 2 by 2.5 degrees with 35 vertical levels. We modeled atmospheric injection and transport of CO emissions during the fire season of 2000 (May-September). We altered the parameters of the model to simulate a range of scenarios of plume injection, and compared the resulting output to the CO profiles from the MOPITT instrument. The results presented here pertain to the boreal forest, but our methods should be useful for atmospheric modelers hoping to more realistically model transport of emission plumes from biomass burning. References: COBRA2003: see http://www.fas.harvard.edu/~cobra/smoke_canada_030530.pdf Fromm, M. and R. Servranckx, 2003. "Stratospheric Injection of Forest Fire Emissions on August 4, 1998: A Satellite Image Analysis of the Causal Supercell Convection." Geophysical Research Abstracts 5:13118. Kasischke, E.S.; E.J. Hyer, N.H.F. French, A.I. Sukhinin, J.H. Hewson, B.J. Stocks, in review. "Carbon

  9. Public Opinions and Use of Various Types of Recreational Infrastructure in Boreal Forest Settings

    Directory of Open Access Journals (Sweden)

    Vegard Gundersen

    2016-05-01

    Full Text Available We have investigated public preferences for use intensity and visual quality of forest recreational infrastructure. Forest infrastructure covers five classes, along a continuum from unmarked paths to paved walkways. Altogether, 39 sites were categorized into the five classes and measured with automatic counters. A sample of 545 respondents living in southeastern and middle Norway were asked to rate 15 forest scenes and 35 preconceptions of recreational settings. The path scenarios were depicted as digitally calibrated photos that systematically displayed physical path feature in boreal, semi-natural settings. Survey participants showed a clearly greater preference for photos and preconceptions of forests settings containing minor elements of forest infrastructure; unmarked paths received the highest score and forest roads/walkways/bikeways the lowest. We identified a clear mismatch between public preferences for forest infrastructure and the intensity of use; the less appreciated infrastructure was the most used. Planning and management has to consider these different needs for recreational infrastructure, and we propose an area zoning system that meets the different segments of forest visitors.

  10. Boreal Forest Fire Cools Climate

    Science.gov (United States)

    Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.

    2005-12-01

    We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.

  11. Newtonian boreal forest ecology: The Scots pine ecosystem as an example.

    Directory of Open Access Journals (Sweden)

    Pertti Hari

    Full Text Available Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.

  12. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)

    DEFF Research Database (Denmark)

    Breemen, N. van; Jenkins, A.; Wright, R.F.

    1998-01-01

    To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3 degrees-5 degrees C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m(2)) is enclosed within...... and the growing season has been prolonged relative to the control area. This has helped to sustain an increase in plant growth relative to the control and has also promoted increased N export in stream water. Photosynthetic capacity and carbon-nitrogen ratio of new leaves of most plant species did not change...

  13. Effects of fire on regional evapotranspiration in the central Canadian boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.; Ewers, Brent

    2009-04-08

    Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulation results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.

  14. Phytosociological studies of the forests with sessile oak and Norway spruce from South-Eastern Transylvania

    Directory of Open Access Journals (Sweden)

    Adrian Indreica

    2011-02-01

    Full Text Available The forests with sessile oak (Quercus petraea and Norway spruce (Picea abies from south-eastern Transylvania represent a peculiar type of phytocenoses, rather unusual for the present-day vegetation of Romania’s territory. Aim of the study is to provide a detailed description of the vegetation and to identify the phytosociological and typological units to which it could belong. Beside this, stand structure and regeneration status of the main tree species are illustrated. The studied area is located around Carpathian intermountain depressions Braşov and Ciuc, where vegetation had a peculiar history and today sessile oak forests on high altitude exists, interfering with spruce forests. The hypothesis of the process naturalness is supported by vegetation history in the area, climate, stand structure and peculiarities of herb layer composition (the mixture of relic of both mountain-boreal origin and south-European origin, like Vaccinium vitis-idaea, Pyrola rotundifolia and respectively Potentilla micrantha, Lathyrus venetus respectively. Sintaxonomically, studied phytocenoses with sessile oak and spruce belong mainly to acidophilus oak forests (Luzulo luzuloidis-Quercetum petraeae, but some of them resemble oak-hornbeam forests (Carici pilosae-Carpinetum, indicating a more recent change in stand structure and suggesting that not the soil, but the climate is the driving force of succession. Regeneration of sessile oak is at least satisfactory, but the expansion of spruce in such stands could seriously restrict the survival of sessile oak. A new typological unit will be appropriate,for a better management of sessile oak forests with spruce admixture.

  15. Phytosociological studies of the forests with sessile oak and Norway spruce from South-Eastern Transylvania

    Directory of Open Access Journals (Sweden)

    Adrian Indreica

    2011-06-01

    Full Text Available The forests with sessile oak (Quercus petraea and Norway spruce (Picea abies from south-eastern Transylvania represent a peculiar type of phytocenoses, rather unusual for the present-day vegetation of Romania’s territory. Aim of the study is to provide a detailed description of the vegetation and to identify the phytosociological and typological units to which it could belong. Beside this, stand structure and regeneration status of the main tree species are illustrated. The studied area is located around Carpathian intermountain depressions Brasov and Ciuc, where vegetation had a peculiar history and today sessile oak forests on high altitude exists, interfering with spruce forests. The hypothesis of the process naturalness is supported by vegetation history in the area, climate, stand structure and peculiarities of herb layer composition (the mixture of relic of both mountain-boreal origin and south-European origin, like Vaccinium vitis-idaea, Pyrola rotundifolia and respectively Potentilla micrantha, Lathyrus venetus respectively. Sintaxonomically, studied phytocenoses with sessile oak and spruce belong mainly to acidophilus oak forests (Luzulo luzuloidis-Quercetum petraeae, but some of them resemble oak-hornbeam forests (Carici pilosae-Carpinetum, indicating a more recent change in stand structure and suggesting that not the soil, but the climate is the driving force of succession. Regeneration of sessile oak is at least satisfactory, but the expansion of spruce in such stands could seriously restrict the survival of sessile oak. A new typological unit will be appropriate, for a better management of sessile oak forests with spruce admixture.

  16. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  17. Microbial transformations of C and N in a boreal forest floor as affected by temperature

    NARCIS (Netherlands)

    Verburg, P.S.J.; Dam, van D.; Hefting, M.M.; Tietema, A.

    1999-01-01

    The effects of temperature on N mineralization were studied in two organic surface horizons (LF and H) of soil from a boreal forest. The soil was incubated at 5 °C and 15 °C after adding 15 N and gross N fluxes were calculated using a numerical simulation model. The model was calibrated on microbial

  18. The impact of clearcutting in boreal forests of Russia on soils: A review

    Science.gov (United States)

    Dymov, A. A.

    2017-07-01

    Data on the impact of tree logging in boreal forests of Russia on soils are systematized. Patterns of soil disturbances and transformation of microclimatic parameters within clearcutting areas are discussed. Changes in the conditions of pedogenesis in secondary forests are analyzed. It is suggested that the changes in forest soils upon reforestation of clearcutting areas might be considered as specific post-logging soil successions. Data characterizing changes in the thickness of litter horizons and in the intensity of elementary pedogenic processes, acidity, and the content of exchangeable bases in soils of clearcutting areas in the course of their natural reforestation are considered. The examples of human-disturbed (turbated) soil horizons and newly formed anthropogenic soils on clearcutting areas are described. It is suggested that the soils on mechanically disturbed parts of clearcutting areas can be separated as a specific group of detritus turbozems.

  19. Functional ecology of advance regeneration in relation to light in boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Messier, C.; Claveau, Y.; Kelly, C. [Quebec Univ., Montreal, PQ (Canada); Doucet, R. [Quebec Ministere des Ressources Naturelles, Ste. Foy, PQ (Canada); Ruel, J.C. [Laval Univ., Quebec, PQ (Canada); Lechowicz, M.J. [McGill Univ., Montreal, PQ (Canada). Dept. of Biology

    1999-06-01

    A comparative and functional approach is adopted that stresses the morphological and physiological qualities that may favor greater or lesser capacity to grow in the shaded understory. The current understanding of the functional basis for variation in the shade tolerance of the main boreal trees is reviewed, and a consideration is given to how shade tolerance is linked to the ability to respond effectively to small canopy openings. The most commercially important shade tolerant conifers in the boreal forests of North America are concentrated on including: balsam fir, black spruce, and white spruce. The functional basis of shade tolerance and competition among boreal trees are examined for understanding, by comparing these species to their most important shade intolerant counterparts: jack pine, lodgepole pine, trembling aspen, and paper birch. The functional basis for growth and survival of established seedlings and saplings up to pole size are stressed. The ability of boreal tree genera to grow and survive in shade up to pole size depends on the functional responses of saplings to the changing biotic and abiotic variables in the understory as overstory canopy changes over time. At the leaf level, the only consistent differences among boreal tree genera are in specific leaf mass and maximum photosynthetic capacity. At the shoot and crown levels, clear structural differences exist among conifer tree genera. Shoot and crown structural traits exhibit most plasticity in relation to light availability for firs and least for pines. At the whole-plant level, shade intolerant tree species such as pines tend to be more affected by shading than shade tolerant ones. Considering these main qualities, a framework is advanced for determining advance regeneration in sapling performance that relates interspecific differences in crown structural plasticity, growth strategies, and light requirements as size increases with the size and frequency of canopy gaps. Fir and spruce co

  20. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  1. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NARCIS (Netherlands)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Lelieveld, J.

    2011-01-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPACOPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyyti¨al¨a, Finland from 12 July–12

  2. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  3. Postfire Succession of Ants (Hymenoptera: Formicidae) Nesting in Dead Wood of Northern Boreal Forest.

    Science.gov (United States)

    Boucher, Philippe; Hébert, Christian; Francoeur, André; Sirois, Luc

    2015-10-01

    Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  5. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  6. Indicators of regenerative capacity for eastern hardwood forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Steve Horsley; Kurt W. Gottschalk; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2004-01-01

    Hardwood forests of the eastern United States are characterized by a complex mix of species associations that make it difficult to construct useful indicators of long-term sustainability, in terms of future forest composition and stocking levels. The Pennsylvania Regeneration Study examines regeneration adequacy in the state. The study uses the Forest Service's...

  7. Timber resource statistics for all forest land, except national forests, in eastern Oregon.

    Science.gov (United States)

    Donald R. Gedney; Patricia M. Bassett; Mary A. Mei

    1989-01-01

    This report summarizes a 1987 timber resource inventory of all forest land, except National Forests, in the 17 counties (Baker, Crook, Deschutes, Gilliam, Grant, Harney, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler Counties) in eastern Oregon. Detailed tables of forest area, timber volume, growth, mortality, and...

  8. Palaeoecological data as a tool to predict possible future vegetation changes in the boreal forest zone of European Russia: a case study from the Central Forest Biosphere Reserve

    Science.gov (United States)

    Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.

    2018-01-01

    New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.

  9. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec

    Directory of Open Access Journals (Sweden)

    Serge Payette

    2017-04-01

    Full Text Available Sugar maple (Acer saccharum forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macrocharcoal analysis. Despite having experienced a different number of fire events, the fire history of the maple sites was broadly similar, with two main periods of fire activity, i.e., early- to mid-Holocene and late-Holocene. A long fire-free interval of at least 3500 years separated the two periods from the mid-Holocene to 2000 years ago. The maple sites differ with respect to fire frequency and synchronicity of the last millennia. According to the botanical composition of charcoal, forest vegetation remained relatively homogenous during the Holocene, except recently. Conifer and broadleaf species coexisted in mixed forests during the Holocene, in phase with fire events promoting the regeneration of boreal and temperate tree assemblages including balsam fir (Abies balsamea and sugar maple.

  10. TUNDRA IN A CHANGING CLIMATE

    Directory of Open Access Journals (Sweden)

    Terry Callaghan

    2011-01-01

    Full Text Available Both palaeogeographical reconstructions and general circulation models indicate that global warming is especially strongly manifested in high latitudes. Under a 2°C increase in mean global temperature, almost the entire modern tundra zone would become potentially suitable for tree growth. Nevertheless, palaeobotanic data cannot be applied directly to estimating vegetation response to the global warming expected in the 21st century, as they characterize a quasi-equilibrium state of ecosystems, which takes several centuries to be achieved. Low migration rates of trees, damage caused by fires and insects, processes of soil drying or paludification, and influence of herbivorous animals and human activities may slow down considerably forest spread in tundra. Climate warming will probably cause a decline in the populations of Arctic species and expansion of ranges of some southern animal species into the Arctic.

  11. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  12. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  13. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  14. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    Science.gov (United States)

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  15. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Science.gov (United States)

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  16. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  17. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  18. Spatial Variability of Tree Transpiration Along a Soil Drainage Gradient of Boreal Black Spruce Forest

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2008-12-01

    Boreal forests are an integral component in obtaining a predictive understanding of global climate change because they comprise 33% of the world's forests and store large amounts of carbon. Much of this carbon storage is a result of peat formation in cold, poorly-drained soils. Transpiration plays a crucial role in the interaction between carbon and water cycles due to stomatal control of these fluxes. The primary focus of this study is to quantify the spatial variability and drivers of tree transpiration in boreal forest stands across a well- to poorly-drained soil drainage gradient. Species composition of this region of boreal forest changes during succession in well-drained soils from being primarily dominated by Picea mariana with co-dominant Pinus banksiana and Populus tremuloides in younger stands to being dominated solely by Picea marianain older stands. Poorly-drained soils are dominated by Picea mariana and change little with succession. Previous work in well-drained stands showed that 1) tree transpiration changed substantially with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential (Ψ) was kept constant to prevent excessive cavitation. We hypothesized that 1) minimum Ψ would be constant, 2) transpiration would be proportional to the sapwood-to-leaf area ratio across a soil drainage gradient, and 3) spatial relationships between trees would vary depending on stomatal responses to vapor pressure deficit (D). We tested these hypotheses by measuring Ψ of 33 trees and sap flux from 204 trees utilizing cyclic sampling constructed to study spatial relationships. Measurements were conducted at a 42-year-old stand representing maximum tree diversity during succession. There were no significant differences between growing season averaged Ψ in well- (-0.35 and -1.37 for pre-dawn and mid-day respectively) and poorly- drained soil conditions (-0.38 and -1.41 for pre-dawn and mid-day respectively) for Picea mariana. Water use

  19. Fragmentation of forest communities in the eastern United States

    Science.gov (United States)

    Kurt Riitters; John Coulston; James Wickham

    2011-01-01

    Forest fragmentation threatens the sustainability of forest communities in the eastern United States. Forest communities exhibiting either a low total area or low percentage of intact forest are subject to relatively higher risk of shifts in stand composition towards edge-adapted and invasive species. Such changes in stand composition could result in local extirpation...

  20. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    Science.gov (United States)

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  1. Spectral contribution of understory to forest reflectance in a boreal site: an analysis of EO-1 Hyperion data

    Czech Academy of Sciences Publication Activity Database

    Rautianien, M.; Lukeš, Petr

    2015-01-01

    Roč. 171, dec (2015), s. 98-104 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest reflectance model * hyperspectral * boreal * leaf area index * understory Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  2. Eastern national forests: managing for nontimber products

    Science.gov (United States)

    James L. Chamberlain; Robert J. Bush; A.L. Hammett; Philip A. Araman

    2002-01-01

    Many products are harvested from the forests of the eastern United States that are not timber-based but originate from plant materials. Over the past decade, concern has grown about the sustainability of the forest resources from which these products originate, and an associated interest in managing for these products has materialized. A content analysis of the...

  3. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Science.gov (United States)

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  4. Amines in boreal forest air at SMEAR II station in Finland

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Virkkula, Aki; Makkonen, Ulla; Praplan, Arnaud P.; Kontkanen, Jenni; Ahonen, Lauri; Kulmala, Markku; Hakola, Hannele

    2018-05-01

    We measured amines in boreal forest air in Finland both in gas and particle phases with 1 h time resolution using an online ion chromatograph (instrument for Measuring AeRosols and Gases in Ambient Air - MARGA) connected to an electrospray ionization quadrupole mass spectrometer (MS). The developed MARGA-MS method was able to separate and detect seven different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA), and butylamine (BA). The detection limits of the method for amines were low (0.2-3.1 ng m-3), the accuracy of IC-MS analysis was 11-37 %, and the precision 10-15 %. The proper measurements in the boreal forest covered about 8 weeks between March and December 2015. The amines were found to be an inhomogeneous group of compounds, showing different seasonal and diurnal variability. Total MMA (MMA(tot)) peaked together with the sum of ammonia and ammonium ions already in March. In March, monthly means for MMA were NH4+ these were 52 ± 16 and 425 ± 371 ng m-3, respectively. Monthly medians in March for MMA(tot), NH3, and NH4+ were 90 %, gas-phase DMA correlated well with 1.1-2 nm particle number concentration (R2 = 0.63) suggesting that it participates in atmospheric clustering. EA concentrations were low all the time. Its July means were < 0.36 and 0.4 ± 0.4 ng m-3 in gas and aerosol phases, respectively, but individual concentration data correlated well with monoterpene concentrations in July. Monthly means of PA and BA were below detection limits at all times.

  5. The behaviour of radioactive caesium in a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Lidstroem, K.; Palo, T.

    1991-01-01

    The distribution of radioactive caesium (Cs-134 and Cs-137) in a boreal forest ecosystem is studied with focus in the dynamics of the turnover in, and loss from, the system. Measurements of the distribution in soil and vegetation, as well as the loss of radioactive caesium by run-off from a catchment, constitute the basis for an analysis of the caesium budget in the system. Comparisons of the distribution of 'old' Cs-137, i.e. originating from fallout due to the atmospheric nuclear weapons test, and that due to deposition after the accident in Chernobyl 1986 are used for extrapolations to future situations concerning transport of Cs-137 via the food chains over berries and moose to man. The exposure in a long term perspective due to the average intake of Cs-137 in the Swedish population by consumption of meat, milk, and milk products (i.e. of an agricultural origin) is compared to that due to ingestion of the forest products: berries (bilberry, lingonberries, and cloudberries) and moose meat. (au) (34 refs.)

  6. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  7. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    Science.gov (United States)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  8. Establishment and growth of white spruce on a boreal forest floodplain: interactions between microclimate and mammalian herbivory

    Science.gov (United States)

    Amy C. Angell; Knut. Kielland

    2009-01-01

    White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...

  9. Landscape patterns of species-level association between ground-beetles and overstory trees in boreal forests of western Canada (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Colin Bergeron

    2011-11-01

    Full Text Available Spatial associations between species of trees and ground-beetles (Coleoptera: Carabidae involve many indirect ecological processes, likely reflecting the function of numerous forest ecosystem components. Describing and quantifying these associations at the landscape scale is basic to the development of a surrogate-based framework for biodiversity monitoring and conservation. In this study, we used a systematic sampling grid covering 84 km2 of boreal mixedwood forest to characterize the ground-beetle assemblage associated with each tree species occurring on this landscape. Projecting the distribution of relative basal area of each tree species on the beetle ordination diagram suggests that the carabid community is structured by the same environmental factors that affects the distribution of trees, or perhaps even by trees per se. Interestingly beetle species are associated with tree species of the same rank order of abundance on this landscape, suggesting that conservation of less abundant trees will concomitantly foster conservation of less abundant beetle species. Landscape patterns of association described here are based on characteristics that can be directly linked to provincial forest inventories, providing a basis that is already available for use of tree species as biodiversity surrogates in boreal forest land management.

  10. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape

    International Nuclear Information System (INIS)

    Curasi, Salvatore R; Loranty, Michael M; Natali, Susan M

    2016-01-01

    Shrub expansion in tundra ecosystems may act as a positive feedback to climate warming, the strength of which depends on its spatial extent. Recent studies have shown that shrub expansion is more likely to occur in areas with high soil moisture and nutrient availability, conditions typically found in sub-surface water channels known as water tracks. Water tracks are 5–15 m wide channels of subsurface water drainage in permafrost landscapes and are characterized by deeper seasonal thaw depth, warmer soil temperatures, and higher soil moisture and nutrient content relative to adjacent tundra. Consequently, enhanced vegetation productivity, and dominance by tall deciduous shrubs, are typical in water tracks. Quantifying the distribution of water tracks may inform investigations of the extent of shrub expansion and associated impacts on tundra ecosystem carbon cycling. Here, we quantify the distribution of water tracks and their contribution to growing season CO 2 dynamics for a Siberian tundra landscape using satellite observations, meteorological data, and field measurements. We find that water tracks occupy 7.4% of the 448 km 2 study area, and account for a slightly larger proportion of growing season carbon uptake relative to surrounding tundra. For areas inside water tracks dominated by shrubs, field observations revealed higher shrub biomass and higher ecosystem respiration and gross primary productivity relative to adjacent upland tundra. Conversely, a comparison of graminoid-dominated areas in water tracks and inter-track tundra revealed that water track locations dominated by graminoids had lower shrub biomass yet increased net uptake of CO 2 . Our results show water tracks are an important component of this landscape. Their distribution will influence ecosystem structural and functional responses to climate, and is therefore of importance for modeling. (letter)

  11. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  12. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-08-01

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO 2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO 2 exchange (NEE LAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEE LAND and direct climate change impacts on modeled temperature- and light-limited NEE LAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEE LAND (-20 g C m -2 ) and wetland NEE (-24 g C m -2 ) were similar, suggesting negligible wetland expansion effects on NEE LAND . In contrast, we find non-negligible direct climate change impacts when modeling NEE LAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO 2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO 2 uptake is projected to decline by 25 ± 14 g C m -2 for a moderate and 103 ± 38 g C m -2 for a high warming scenario, potentially reversing recently observed positive net CO 2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO 2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO 2 sources under continued anthropogenic CO 2 emissions. We conclude that NEE LAND changes are more likely to be

  13. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  14. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Directory of Open Access Journals (Sweden)

    J. Kontkanen

    2016-10-01

    Full Text Available The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  15. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  16. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy

    Science.gov (United States)

    Kukko, Antero; Kaijaluoto, Risto; Kaartinen, Harri; Lehtola, Ville V.; Jaakkola, Anttoni; Hyyppä, Juha

    2017-10-01

    Mobile laser scanning (MLS) provides kinematic means to collect three dimensional data from surroundings for various mapping and environmental analysis purposes. Vehicle based MLS has been used for road and urban asset surveys for about a decade. The equipment to derive the trajectory information for the point cloud generation from the laser data is almost without exception based on GNSS-IMU (Global Navigation Satellite System - Inertial Measurement Unit) technique. That is because of the GNSS ability to maintain global accuracy, and IMU to produce the attitude information needed to orientate the laser scanning and imaging sensor data. However, there are known challenges in maintaining accurate positioning when GNSS signal is weak or even absent over long periods of time. The duration of the signal loss affects the severity of degradation of the positioning solution depending on the quality/performance level of the IMU in use. The situation could be improved to a certain extent with higher performance IMUs, but increasing system expenses make such approach unsustainable in general. Another way to tackle the problem is to attach additional sensors to the system to overcome the degrading position accuracy: such that observe features from the environment to solve for short term system movements accurately enough to prevent the IMU solution to drift. This results in more complex system integration with need for more calibration and synchronization of multiple sensors into an operational approach. In this paper we study operation of an ATV (All -terrain vehicle) mounted, GNSS-IMU based single scanner MLS system in boreal forest conditions. The data generated by RoamerR2 system is targeted for generating 3D terrain and tree maps for optimizing harvester operations and forest inventory purposes at individual tree level. We investigate a process-flow and propose a graph optimization based method which uses data from a single scanner MLS for correcting the post

  17. Drivers of lignin composition in boreal forest organic soils across a climate gradient

    Science.gov (United States)

    Myers-Pigg, A.; Kaiser, K.; Benner, R. H.; Ziegler, S. E.

    2017-12-01

    Lignin diagenesis in soils, including the cumulative effects of degradation and leaching, increases with experimental warming, signifying a potentially important change relevant to soil organic matter accumulation and fate. However, decadal to centennial climatic effects including changes in precipitation, litterfall inputs, and understory sources, on lignin composition are poorly constrained. We examined the lignin content and composition, via cupric oxide oxidation (CuO), within the organic layers of podzolic soils under similar balsam fir forests across a latitudinal climate gradient in Atlantic Canada. By exploring variation in lignin by both soil depth and climate region, this study informs on the climate drivers of lignin stability within boreal forest soil. A two-way analysis of variance (ANOVA) revealed significant variations in common signatures of CuO by-products with depth and/or site, indicating source and/or diagenetic controllers. Importantly, none of these signatures, with the exception of p-hydroxyphenols, exhibited a site by depth interaction indicating a similar degree of diagenetic alternation with depth across climates. The site by depth interaction for p-hydroxyphenols is a result of greater moss input in the northernmost site. To better elucidate this climate-induced source variation on our interpretation of lignin diagenesis, a principle component (PCA) model was built using signatures varying by site (pforest soils. A lignin diagenesis PCA model was built using (1) all non-moss related signatures identified in the first PCA model, and (2) scores for additional sites within each region, calculated from modeled lignin composition based on 13C-NMR spectra. The combined results indicate that the lignin diagenetic states among soils is similar, despite the large increase in soil C turnover with climate warming across this transect. Thus our results indicate that shifts in moss contribution, and not increased diagenesis, controls CuO by

  18. Forest transitions in Eastern Europe and their effects on carbon budgets

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Kaplan, Jed O.; Prishchepov, Alexander

    2015-01-01

    Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio......-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest...... carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable...

  19. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Science.gov (United States)

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  20. Bushy-tailed woodrat abundance in dry forests of eastern Washington.

    Science.gov (United States)

    John F. Lehmkuhl; Keith D. Kistler; James S. Begley

    2006-01-01

    We studied bushy-tailed woodrats (Neotonza cinerea occidentalis) in the eastern Washington Cascade Range to estimate their density and survival in 3 typical dry forest cover types. We predicted woodrat density to be high, moderate, and low in mature mixed-conifer forests, young mixed-conifer forests, and open ponderosa pine forests, respectively....

  1. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  2. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    International Nuclear Information System (INIS)

    Kang, Sinkyu; Kimball, John S.; Running, Steven W.

    2006-01-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km 2 portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO 2 , climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO 2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T a ), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 o C for T a and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO 2 , climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  3. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    Science.gov (United States)

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  4. Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zicheng; Apps, M.J.; Bhatti, J.S. [Canadan Forest Service, Edmonton (Canada). Northern Forestry Centre

    2002-06-01

    Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43,530 kg-C/ha) than either Populus (25,500 kg-C/ha) or Pinus (19,400 kg-C/ha). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic-matter decomposition, which in turn affect the ecosystem C-dynamics. During forest succession after a stand-replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C-transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.

  5. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  6. The field-irradiator gamma study: Fourteen years of irradiation of the boreal forest

    International Nuclear Information System (INIS)

    Amiro, B.D.; Hawkins, J.L.; Laverock, M.J.; Sheppard, S.C.

    1996-01-01

    The Field-Irradiator Gamma (FIG) project is a long-term experiment on the response of boreal forest vegetation to chronic ionizing radiation. The forest was irradiated from 1973 to 1986 by a 370 TBq point source of 137 Cs placed at a height of 20 m. The forest is now in the recovery phase. The irradiated forest included several different community types, and each of these was affected differently by the radiation stress. New vegetation zones have now been created because of the selective tolerance to radiation along a gradient from background dose rates to a maximum of 65 mGy h -1 . One of the easiest measured indicators of the radiation stress has been photographic documentation of changes in forest communities over time. Measured changes in species composition and the decrease in tree canopy cover at dose rates >2 Gy h -1 have also helped quantify radiation effects. Indicators such as trends in annual growth rings have been less satisfactory. Our experiment suggests that there are no visible impacts at chronic dose rates less than 0.1 mGy h -1 and the threshold for effects likely is between 0.1 and 1 mGy h -1 . The experimental area has been preserved to allow measurements of long-term recovery of the site

  7. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  8. Evaluating forest land development effects on private forestry in eastern Oregon.

    Science.gov (United States)

    Jeffrey D. Kline; David L. Azuma

    2007-01-01

    Research suggests that forest land development can reduce the productivity of remaining forest land because private forest owners reduce their investments in forest management. We developed empirical models describing forest stocking, thinning, harvest, and postharvest tree planting in eastern Oregon, as functions of stand and site characteristics, ownership, and...

  9. Atmospheric mercury deposition to forests in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  10. Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available Boreal deforestation plays an important role in affecting regional and global climate. In this study, the regional temperature variation induced by future boreal deforestation in European Russia boreal forest region was simulated based on future land cover change and the Weather Research and Forecasting (WRF model. This study firstly tested and validated the simulation results of the WRF model. Then the land cover datasets in different years (2000 as baseline year, 2010, and 2100 was used in the WRF model to explore the impacts of boreal deforestation on the near-surface temperature. The results indicated that the WRF model has good ability to simulate the temperature change in European Russia. The land cover change in European Russia boreal forest region, which will be characterized by the conversion from boreal forests to croplands (boreal deforestation in the future 100 years, will lead to significant change of the near-surface temperature. The regional annual temperature will decrease by 0.58°C in the future 100 years, resulting in cooling effects to some extent and making the near-surface temperature decrease in most seasons except the spring.

  11. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  12. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    Science.gov (United States)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  13. Influence of Fuel Load Dynamics on Carbon Emission by Wildfires in the Clay Belt Boreal Landscape

    Directory of Open Access Journals (Sweden)

    Aurélie Terrier

    2016-12-01

    Full Text Available Old-growth forests play a decisive role in preserving biodiversity and ecological functions. In an environment frequently disturbed by fire, the importance of old-growth forests as both a carbon stock as well as a source of emissions when burnt is not fully understood. Here, we report on carbon accumulation with time since the last fire (TSF in the dominant forest types of the Clay Belt region in eastern North America. To do so, we performed a fuel inventory (tree biomass, herbs and shrubs, dead woody debris, and duff loads along four chronosequences. Carbon emissions by fire through successional stages were simulated using the Canadian Fire Effects Model. Our results show that fuel accumulates with TSF, especially in coniferous forests. Potential carbon emissions were on average 11.9 t·ha−1 and 29.5 t·ha−1 for old-growth and young forests, respectively. In conclusion, maintaining old-growth forests in the Clay Belt landscape not only ensures a sustainable management of the boreal forest, but it also optimizes the carbon storage.

  14. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  15. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  16. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  17. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Palo, T.

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactive caesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report

  18. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Nylen, T.; Palo, T

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactivecaesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report.

  19. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    Science.gov (United States)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  20. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko

    2016-01-01

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current......, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future....

  1. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Directory of Open Access Journals (Sweden)

    Zhaosheng Fan

    Full Text Available Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC into soil-water systems can stimulate the decomposition of soil OC (SOC via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude in boreal ecosystems. In this study, a coupled dissolved OC (DOC transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration, highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  2. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Science.gov (United States)

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  3. Mammalian Herbivores in the Boreal Forests: Their Numerical Fluctuations and Use by Man

    Directory of Open Access Journals (Sweden)

    Kjell Danell

    1998-12-01

    Full Text Available Within the boreal zone, there are about 50 native mammalian herbivore species that belong to the orders Artiodactyla, Rodentia, and Lagomorpha. Of these species, 31 occur in the Nearctic and 24 in the Palaearctic. Only six species occur in both regions. Species of the family Cervidae have probably been, and still are, the most important group for man, as they provide both meat and hides. Pelts from squirrels, muskrats, and hares were commercially harvested at the beginning of the century, but have less value today. The semi-domestic reindeer in the Palaearctic produces meat and hides on a commercial basis. It is also used for milking, to a limited extent, as is the semi-domestic moose in Russia. The Siberian musk deer is used for its musk and is raised in captivity in China. All species heavier than 1 kg are utilized by man, those with a body mass in the range 1 kg - 1 hg are sometimes used, and species lighter than 1 hg are rarely used. Here, we review the numerical fluctuations in terms of periodicity and amplitude, based on an extensive data set found in the literature, especially from the former Soviet Union. Current understanding of the underlying factors behind the population fluctuations is briefly reviewed. Management and conservation aspects of the mammalian herbivores in the boreal zone are also discussed. We conclude that there is a challenge to manage the forests for the mammalian herbivores, but there is also a challenge to manage the populations of mammalian herbivores for the forests.

  4. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    Science.gov (United States)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  5. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    Science.gov (United States)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  6. Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics

    Science.gov (United States)

    Chen, Y.; Veraverbeke, S.; Randerson, J. T.

    2017-12-01

    Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.

  7. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion

    Directory of Open Access Journals (Sweden)

    Michael Alonzo

    2018-03-01

    Full Text Available The vast extent and inaccessibility of boreal forest ecosystems are barriers to routine monitoring of forest structure and composition. In this research, we bridge the scale gap between intensive but sparse plot measurements and extensive remote sensing studies by collecting forest inventory variables at the plot scale using an unmanned aerial vehicle (UAV and a structure from motion (SfM approach. At 20 Forest Inventory and Analysis (FIA subplots in interior Alaska, we acquired overlapping imagery and generated dense, 3D, RGB (red, green, blue point clouds. We used these data to model forest type at the individual crown scale as well as subplot-scale tree density (TD, basal area (BA, and aboveground biomass (AGB. We achieved 85% cross-validation accuracy for five species at the crown level. Classification accuracy was maximized using three variables representing crown height, form, and color. Consistent with previous UAV-based studies, SfM point cloud data generated robust models of TD (r2 = 0.91, BA (r2 = 0.79, and AGB (r2 = 0.92, using a mix of plot- and crown-scale information. Precise estimation of TD required either segment counts or species information to differentiate black spruce from mixed white spruce plots. The accuracy of species-specific estimates of TD, BA, and AGB at the plot scale was somewhat variable, ranging from accurate estimates of black spruce TD (+/−1% and aspen BA (−2% to misallocation of aspen AGB (+118% and white spruce AGB (−50%. These results convey the potential utility of SfM data for forest type discrimination in FIA plots and the remaining challenges to develop classification approaches for species-specific estimates at the plot scale that are more robust to segmentation error.

  8. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sinkyu [Department of Environmental Science, Kangwon National University, Chunchon, Kangwon-do 200-701 (Korea, Republic of); Kimball, John S.; Running, Steven W. [Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences, The University of Montana, Missoula, MT 59812 (United States)

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km{sup 2} portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO{sub 2}, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO{sub 2} resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T{sub a}), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 {sup o}C for T{sub a} and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO{sub 2}, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  9. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  10. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.

    Science.gov (United States)

    Iwański, Michał; Rudawska, Maria

    2007-07-01

    We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.

  11. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    Directory of Open Access Journals (Sweden)

    M. Jung

    2007-08-01

    Full Text Available Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP across European forests. Simulated GPP and leaf area index (LAI were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR and radiation use efficiency (RUE, the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern.

    On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental

  12. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  13. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  14. Impacts of climate and insect defoliators on productivity and function of trembling aspen (Populus tremuloides) in Alaskan boreal forests

    Science.gov (United States)

    Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.

    2017-12-01

    Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This

  15. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S; Haenninen, H; Karjalainen, T [Joensuu Univ. (Finland). Faculty of Forestry; and others

    1997-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  16. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  17. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  18. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2013-10-01

    Full Text Available We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6 observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE inventory

  19. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    2013-10-01

    We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio - that is, in this case equivalent to the emission ratio (ERC2H6/CO) - was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the

  20. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  2. Diagnosing injury to eastern forest trees

    Science.gov (United States)

    John M. Skelly; Donald D. Davis; William Merrill; E. Alan Cameron; H. Daniel Brown; David B. Drummond; Leon S., eds. Dochinger

    1987-01-01

    The purpose of this manual is to assist members of the National Vegetation Survey in recognizing air pollutant-induced injury and in identifying disease and insect damage that may be confused with air pollutant-induced injury to forest vegetation in the eastern United States. Ozone, sulfur dioxide, and, to a limited geographic extent, hydrogen fluoride, are all...

  3. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    Science.gov (United States)

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  4. Sublimation From Snow in Northern Environments

    Science.gov (United States)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  5. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae, a parasite of reindeer in Finland

    Directory of Open Access Journals (Sweden)

    Kuusela Jussi

    2009-01-01

    Full Text Available Abstract Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles. We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C, but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective larvae were elongated (mean length 1411 μm (SD 207, and width 28 μm (SD 2. The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers

  6. Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Gower, Stith T.; Amiro, Brian; Ewers, Brent

    2011-01-19

    The effects of changing climate and disturbance on forest water cycling are not well understood. In particular bryophytes contribute significantly to forest evapotranspiration (ET) in poorly-drained boreal forests, but few studies have directly measured this flux and how it changes with stand age and soil drainage. We used large chambers to measure bryophyte evaporation (E) in Canadian Picea mariana forests of varying ages and soil drainages, as well under controlled laboratory conditions, and modeled daily E using site-specific meteorological data to drive a Penman-Monteith-based model. Field measurements of E averaged 0.37 mm day-1, and ranged from 0.03 (Pleurozium schreberii in a 77-year-old dry stand) to 1.43 mm day-1 (Sphagnum riparium in a 43-year-old bog). canopy resistance ranged from ~0 (at 25 °C, some values were <0) to ~1500 s m-1 for dry, cold (5 °C) mosses. In the laboratory, moss canopy resistance was constant until a moss water content of ~6 g g-1 and then climbed sharply with further drying; no difference was observed between the three moss groups (feather mosses, hollow mosses, and hummock mosses) tested. Modeled annual E fluxes from bryophytes ranged from 0.4 mm day-1, in the well-drained stands, to ~1 mm day-1 in the 43-year-old bog, during the growing season. Eddy covariance data imply that bryophytes contributed 18-31% and 49-69% to the total ET flux, at the well- and poorly-drained stands respectively. Bryophyte E was greater in bogs than in upland stands, was driven by low-lying mosses, and did not vary with stand age; this suggests that shifts in forest age due to increasing fire will have little effect on the bryophyte contribution to ET.

  7. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  8. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  9. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  10. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    Science.gov (United States)

    Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.

    2017-12-01

    Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.

  11. Paludification and forest retreat in northern oceanic environments.

    Science.gov (United States)

    Crawford, R M M; Jeffree, C E; Rees, W G

    2003-01-01

    Examination of temperature variations over the past century for Europe and the Arctic from northern Norway to Siberia suggests that variations in the North Atlantic Oscillation are associated with an increase in oceanicity in certain maritime regions. A southward depression of the tree line in favour of wet heaths, bogs and wetland tundra communities is also observed in northern oceanic environments. The physiological basis for this change in ecological succession from forest to bog is discussed in relation to the long-term effects of flooding on tree survival. The heightened values currently detected in the North Atlantic Oscillation Index, together with rising winter temperatures, and increased rainfall in many areas in northern Europe, presents an increasing risk of paludification with adverse consequences for forest regeneration, particularly in areas with oceanic climates. Climatic warming in oceanic areas may increase the area covered by bogs and, contrary to general expectations, lead to a retreat rather than an advance in the northern limit of the boreal forest. High water-table levels are not automatically detrimental to forest survival as can be seen in swamp, bottom land and mangrove forests. Consequently, the inhibitory effects of flooding on tree survival and regeneration in northern regions should not be uncritically accepted as merely due to high water levels. Evidence is discussed which suggests that physiological and ecological factors may interact to inhibit forest regeneration in habitats where there is a risk of prolonged winter-flooding combined with warmer winters and cool moist summers.

  12. Quantifying the Impact of BOReal Forest Fires on Tropospheric Oxidants Over the Atlantic Using Aircraft and Satellites (BORTAS) Experiment: Design, Execution, and Science Overview

    Science.gov (United States)

    Palmer, Paul I.; Parrington, Mark; Lee, James D.; Lewis, Alistair C.; Richard, Andrew R.; Bernath, Peter F.; Pawson, Steven; daSilva, Arlindo M.; Duck, Thomas J.; Waugh, David L.; hide

    2013-01-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallaj¨okull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. Integrating these data helped us to describe pyrogenic plumes from wildfires on a wide spectrum of temporal and spatial scales. We interpret these data using a range of chemistry models, from a near-explicit gas-phase chemical mechanism to regional and global models of atmospheric transport and lumped chemistry. We also present an overview of some of the new science that has originated from this project.

  13. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  14. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  15. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Science.gov (United States)

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  16. Influence of Time since Fire and Micro-Habitat Availability on Terricolous Lichen Communities in Black Spruce (Picea mariana Boreal Forests

    Directory of Open Access Journals (Sweden)

    Saliha Zouaoui

    2014-11-01

    Full Text Available Terricolous lichens are an important component of boreal forest ecosystems, both in terms of function and diversity. In this study, we examined the relative contribution of microhabitat characteristics and time elapsed since the last fire in shaping terricolous lichen assemblages in boreal forests that are frequently affected by severe stand-replacing fires. We sampled 12 stands distributed across five age classes (from 43 to >200 years. In each stand, species cover (% of all terricolous lichen species and species richness were evaluated within 30 microplots of 1 m2. Our results show that time elapsed since the last fire was the factor that contributed the most to explaining terricolous lichen abundance and species composition, and that lichen cover showed a quadratic relationship with stand age. Habitat variables such as soil characteristics were also important in explaining lichen richness. These results suggest that the presence of suitable substrates is not sufficient for the conservation of late-successional terricolous lichen communities in this ecosystem, and that they also need relatively long periods of times for species dispersal and establishment.

  17. Towards lidar-based mapping of tree age at the Arctic forest tundra ecotone.

    Science.gov (United States)

    Jensen, J.; Maguire, A.; Oelkers, R.; Andreu-Hayles, L.; Boelman, N.; D'Arrigo, R.; Griffin, K. L.; Jennewein, J. S.; Hiers, E.; Meddens, A. J.; Russell, M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    Climate change may cause spatial shifts in the forest-tundra ecotone (FTE). To improve our ability to study these spatial shifts, information on tree demography along the FTE is needed. The objective of this study was to assess the suitability of lidar derived tree heights as a surrogate for tree age. We calculated individual tree age from 48 tree cores collected at basal height from white spruce (Picea glauca) within the FTE in northern Alaska. Tree height was obtained from terrestrial lidar scans (= 3 m), yielding strong predictive relationships between height and age (R2 = 0.86, RMSE 12.21 years, and R2 = 0.93, RMSE = 25.16 years, respectively). The slope coefficient for small and large tree models (16.83 and 12.98 years/m, respectively) indicate that small trees grow 1.3 times faster than large trees at these FTE study sites. Although a strong, predictive relationship between age and height is uncommon in light-limited forest environments, our findings suggest that the sparseness of trees within the FTE may explain the strong tree height-age relationships found herein. Further analysis of 36 additional tree cores recently collected within the FTE near Inuvik, Canada will be performed. Our preliminary analysis suggests that lidar derived tree height could be a reliable proxy for tree age at the FTE, thereby establishing a new technique for scaling tree structure and demographics across larger portions of this sensitive ecotone.

  18. Proceedings of a symposium on the reclamation and restoration of boreal peatland and forest ecosystems : towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. [Natural Resources Canada, Ottawa, ON (Canada); Foote, L.; Moran, S. [Alberta Univ., Edmonton, AB (Canada); Nadeau, L. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Rochefort, L. [Laval Univ., Quebec City, PQ (Canada); Short, P. [Canadian Sphagnum Peat Moss Association, St. Albert, AB (Canada); Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States); Wieder, K. [Villanova Univ., Villanova, PA (United States)] (comps.)

    2010-07-01

    Disturbances in Canada's boreal forest occur in both upland forests and in peatlands. These disturbances originate from both anthropogenic and natural causes, particularly fire. Techniques for the restoration, as well as the reclamation of peatlands and forests impacted by agriculture, urban development, or oil and gas activities, have made significant advancement over the last decade and these techniques need to be incorporated into the regulation and management of peatland and forest ecosystems. This symposium addressed the issue of how this research is affected by climate change. The sessions were entitled: (1) reclaiming forest and forest soils impacted by oil and gas production, (2) influence of oil sands development on forest communities, (3) understanding the importance of peatland and forest carbon in the twenty-first century, (4) reclaiming wetlands on mined oil sands tailing, (5) disturbance in peatlands and its relevance to minimizing disturbance footprints and informing reclamation efforts, and (6) restoration and management of harvested peatlands. The symposium featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  19. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  20. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    Science.gov (United States)

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  1. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  2. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  3. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  4. Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?

    Directory of Open Access Journals (Sweden)

    Fedrowitz Katja

    2012-05-01

    Full Text Available Abstract Clear-felling is one of the main methods used in many parts of the world for the production of pulp, timber and bioenergy, leading to a simplified forest structure and species composition. One of the measures to mitigate the impact of logging on biodiversity is the retention of trees at final harvest. Tree retention approaches in forestry are still rather new, although widely distributed across different continents. Several studies have been performed on the effects of retention trees on biodiversity but to date there is no evidence on the relation between the amounts of trees, i.e. the number, volume or area per ha retained, and the response of biodiversity. The overall aim of our review will be to provide forest practitioners and conservationists in temperate and boreal forests with more detailed recommendations regarding the amount of trees that should be retained in order to achieve positive effects for biodiversity compared to traditional clear-cutting.

  5. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    Science.gov (United States)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  6. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  7. Competition for tracer 15N in tussock tundra ecosystems

    International Nuclear Information System (INIS)

    Marion, G.M.; Miller, P.C.; Black, C.H.

    1987-01-01

    The objectives of this study were to assess the roles of plant species, time, and site on competition for tracer 15 N (without carrier) in tussock tundra ecosystems. Six experimental sites were located in northern Alaska. After one year across the experimental sites, the recovery of 15 N by litter (11.3-16.3%) and mosses (5.4-16.4%) was significantly greater than for aboveground vascular plants (2.6-5.0%). 15 N recoveries by tundra vascular plants (2.6-5.0%) were low when compared to forest trees (9-25%) which suggst that competition for nitrogen is particularly severe in these colddominated tundra ecosystems. There were no significant differences among sites in 15 N recoveries by vascular plants, by mosses, or by litter. There was a statistically significant decline in 15 N recovery with time for Vaccinium vitis-idaea and Eriophoum vaginatum between the second and third year. The shallow rooted Vaccinium vitis-ideae was more highly labeled than the deep rooted Eriophorum vaginatum. Nearness to the source of the applied 15 N played a critical role in competition for surface applied nitrogen. (author)

  8. Paludisphaera borealis

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Ivanova, A.; Suzina, N.E.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Dedysh, S.N.

    2016-01-01

    Two isolates of aerobic, budding, pink-pigmented bacteria, designated strains PX4T and PT1, were isolated from a boreal Sphagnum peat bog and a forested tundra wetland. Cells of these strains were non-motile spheres that occurred singly or in short chains. Novel isolates were capable of growth at pH

  9. Spatiotemporal variability and modeling of the solar irradiance transmissivity through a boreal forest

    Science.gov (United States)

    Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.

    2017-12-01

    Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We

  10. The effect to the water stress to soil CO2 efflux in the Siberian boreal forest

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.

    2017-12-01

    The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more

  11. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  12. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    Science.gov (United States)

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  13. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Science.gov (United States)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist

  14. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  15. FOREST ECOSYSTEM DYNAMICS ASSESSMENT AND PREDICTIVE MODELLING IN EASTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. S. Kushwaha

    2012-09-01

    Full Text Available This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM. The exercise highlighted large-scale deforestation in the study area during 1975–1990 as well as 1990–2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975–1990 and 1990–2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97% between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81% during same period with further chances of depletion to 2,288.81 km2 (56.05% by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  16. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    Science.gov (United States)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  17. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    Betson, N.R.; Gottlicher, S.G.; Hogberg, P.; Hall, M.; Wallin, G.; Richter, A.

    2007-01-01

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta) 13 C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta) 13 C of soil-respired carbon dioxide (CO 2 ) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO 2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO 2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta) 13 C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta) 13 C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  18. Harvesting Carbon from Eastern US Forests: Opportunities and Impacts of an Expanding Bioenergy Industry

    Directory of Open Access Journals (Sweden)

    Sarah C. Davis

    2012-06-01

    Full Text Available Eastern forests of the US are valued both as a carbon sink and a wood resource. The amount of biomass that can be harvested sustainably from this biome for bioenergy without compromising the carbon sink is uncertain. Using past literature and previously validated models, we assessed four scenarios of biomass harvest in the eastern US: partial harvests of mixed hardwood forests, pine plantation management, short-rotation woody cropping systems, and forest residue removal. We also estimated the amount and location of abandoned agricultural lands in the eastern US that could be used for biomass production. Greater carbon storage was estimated to result from partial harvests and residue removals than from plantation management and short-rotation cropping. If woody feedstocks were cultivated with a combination of intensive management on abandoned lands and partial harvests of standing forest, we estimate that roughly 176 Tg biomass y−1 (~330,000 GWh or ~16 billion gallons of ethanol could be produced sustainably from the temperate forest biome of the eastern US. This biomass could offset up to ~63 Tg C y−1 that are emitted from fossil fuels used for heat and power generation while maintaining a terrestrial C sink of ~8 Tg C y−1.

  19. The role of entrainment in surface-atmosphere interactions over the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.J. [Minnesota Univ., St. Paul, MN (United States). Dept. of Soil Science; Lenschow, D.H.; Oncley, S.P. [National Center for Atmospheric Research, Boulder, Colorado (United States); Kiemle, C.; Ehret, G.; Giez, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Mann, J. [Risoe National Lab., Roskilde (Denmark)

    1997-07-01

    We present a description of the evolution of the convective boundary layer (CBL) over the boreal forests of Saskatchewan and Manitoba, as observed by the national center for atmospheric research (NCAR) Electra research aircraft during the 1994 boreal ecosystem-atmosphere study (BOREAS). All observations were made between 1530 and 2230 UT (0930-1630 local solar time, LST). We show that the CBL flux divergence often led to drying of the CBL over the course of the day, with the greatest drying (approaching 0.5 gkg{sup -1}hr{sup -1}) observed in the morning, 1000-1200 LST, and decreasing over time to nearly no drying (0 to 0.1 gkg{sup -1}hr{sup -1}) by midafternoon (1500-1600 LST). The maximum warming (0.45 Khr{sup -1}) also occurred in the morning and decreased slightly to about 0.4 Khr{sup -1} by midafternoon. The CBL vapor pressure deficit (VPD) increases over the course of the day. A significant portion of this increase can be explained by the vertical flux divergence, though horizontal advection also appears to be important. We suggest a linkage between boundary layer growth, the vertical flux divergences, and boundary layer cloud formation, with cloud activity peaking at midday in response to rapid CBL growth, then decreasing somewhat later in the day in response to CBL warming and decreased growth. We also see evidence of feedback between increasing VPD and stomatal control. (orig.) 39 refs.

  20. Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.

    Science.gov (United States)

    Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M

    2016-11-15

    The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    Science.gov (United States)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  2. Evaluation of a new battery of toxicity tests for boreal forest soils: assessment of the impact of hydrocarbons and salts.

    Science.gov (United States)

    Princz, Juliska I; Moody, Mary; Fraser, Christopher; Van der Vliet, Leana; Lemieux, Heather; Scroggins, Rick; Siciliano, Steven D

    2012-04-01

    The ability to assess the toxic potential of soil contamination within boreal regions is currently limited to test species representative of arable lands. This study evaluated the use of six boreal plant species (Pinus banksiana, Picea glauca, Picea mariana, Populus tremuloides, Calamagrostis Canadensis, and Solidago canadensis) and four invertebrate species (Dendrodrilus rubidus, Folsomia nivalis, Proisotoma minuta, and Oppia nitens) and compared their performance to a suite of standard agronomic soil test species using site soils impacted by petroleum hydrocarbon (PHC) and salt contamination. To maintain horizon-specific differences, individual soil horizons were collected from impacted sites and relayered within the test vessels. Use of the boreal species was directly applicable to the assessment of the contaminated forest soils and, in the case of the hydrocarbon-impacted soil, demonstrated greater overall sensitivity (25th percentile of estimated species sensitivity distribution [ESSD25] = 5.6% contamination: 10,600 mg/kg fraction 3 [F3; equivalent hydrocarbon range of >C16 to C34] Of/Oh horizon, and 270 mg/kg F3 Ahg horizon) relative to the standard test species (ESSD25 = 23% contamination: 44,000 mg/kg F3 Of/Oh horizon, and 1,100 mg/kg F3 Ahg horizon). For salinity, there was no difference between boreal and standard species with a combined ESSD25 = 2.3%, equating to 0.24 and 0.25 dS/m for the Ah and Ck horizons. The unequal distribution of soil invertebrates within the layered test vessels can confound test results and the interpretation of the toxic potential of a site. The use of test species relevant to boreal eco-zones strengthens the applicability of the data in support of realistic ecological risk assessments applicable to the boreal regions. Copyright © 2012 SETAC.

  3. Mapping boreal forest biomass with imagery from polarimetric and semi-polarimetric SAR sensors / Mapeamento da biomassa fl orestal boreal com imagens dos sensores SAR polarimétricos e semi-polarimétricos

    Directory of Open Access Journals (Sweden)

    Yrjo Rauste

    2008-09-01

    Full Text Available Data from ALOS/Palsar and TerraSAR-X were used to estimate forest biomass in Boreal forest zone in Finland. In the study site in Heinavesi (forest biomass between 0 and 255 tons/ha, the HH-polarised componentof dual-polarised ALOS/Palsar produced biomass estimation accuracies (RMSE between 35 and 42 tons/ha. In the Kuortane site (biomass0…188 tons/ha the RMSE varied between 25 and 28 tons/ha. Since onlytwo winter-time scenes from TerraSAR-X were available, TerraSAR-X results were very preliminary. The phase of the HH-VV cross-coherenceproduced the highest biomass-correlations among the TerraSAR-X derived features. This produced a biomass estimation accuracy (RMSE of 49 tons/ha in the Heinavesi study site.

  4. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  5. The role of fire in the boreal carbon budget

    Science.gov (United States)

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  6. Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation

    Science.gov (United States)

    Lawler, Michael J.; Rissanen, Matti P.; Ehn, Mikael; Mauldin, R. Lee; Sarnela, Nina; Sipilä, Mikko; Smith, James N.

    2018-02-01

    New particle formation (NPF) is an important contributor to particle number in many locations, but the chemical drivers for this process are not well understood. Daytime NPF events occur regularly in the springtime Finnish boreal forest and strongly impact aerosol abundance. In April 2014 size-resolved chemical measurements of ambient nanoparticles were made using the Time-of-Flight Thermal Desorption Chemical ionization Mass Spectrometer and we report results from two NPF events. While growth overall was dominated by terpene oxidation products, newly formed 20-70 nm particles showed enhancement in apparent alkanoic acids. The events occurred on days with rapid transport of marine air, which correlated with low background aerosol loading and higher gas phase methanesulfonic acid levels. These results are broadly consistent with previous studies on Nordic NPF but indicate that further attention should be given to the sources and role of non-terpenoid organics and the possible contribution of transported marine compounds in this process.

  7. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem (subarctic...

  8. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem...

  9. Humus layer is the main locus of secondary SO4 production in boreal forests

    Science.gov (United States)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  10. Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forest-tundra ecotone.

    Science.gov (United States)

    Vowles, Tage; Lindwall, Frida; Ekblad, Alf; Bahram, Mohammad; Furneaux, Brendan R; Ryberg, Martin; Björk, Robert G

    2018-01-01

    Mycorrhizal associations are widespread in high-latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16-year-old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest-tundra ecotone. We also used high-throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m 2 ) than in ambient conditions (0.66 ± 0.17 g C/m 2 ) and was positively influenced by soil thawing degree-days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m 2 ; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near-significant positive effect of herbivore exclusion ( p  = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context-dependent ways in subarctic ecosystems. Considering the importance of root-associated fungi for ecosystem carbon balance, these findings could have far-reaching implications.

  11. Ecology and silviculture of the spruce-fir forests of eastern North America

    Science.gov (United States)

    Marinus. Westveld

    1953-01-01

    Using the climax forest as a guide to growing the species best suited to the climate and the site, the author offers a silvicultural system for managing the spruce-fir forests of eastern North America. Based on ecological principles, such silviculture is aimed to bring about forests that are inherently healthy and have a natural resistance to insects and disease.

  12. Ice age distriutions of European small mammals: insights from species distribution modelling

    DEFF Research Database (Denmark)

    Fløjgaard, Camilla; Normand, Signe; Skov, Flemming

    2009-01-01

    limits corresponding to the limits of temperate or boreal forest or arctic tundra were used in the analysis. We developed predictive distribution models based on the species present-day European distributions and validated these against their present-day Siberian ranges. The models with the best...... lemmus and Microtus oeconomus), suitable climate was predicted from the Atlantic coast eastward across central Europe and into Russia. Main conclusions. Our results support the idea of more northerly refuge areas in Europe, indicating that boreal species would have found suitable living conditions over...

  13. Fire impacts on European Boreal soils: A review

    Science.gov (United States)

    Pereira, Paulo; Oliva, Marc; Cerda, Artemi

    2016-04-01

    Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research

  14. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East

    Directory of Open Access Journals (Sweden)

    Lodygin Evgeny

    2017-06-01

    Full Text Available Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs, extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.

  15. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  16. Forest transitions in Eastern Europe and their effects on carbon budgets.

    Science.gov (United States)

    Kuemmerle, Tobias; Kaplan, Jed O; Prishchepov, Alexander V; Rylsky, Ilya; Chaskovskyy, Oleh; Tikunov, Vladimir S; Müller, Daniel

    2015-08-01

    Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700-2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization. © 2015 John Wiley & Sons Ltd.

  17. REAL AND SIMULATED WAVEFORM RECORDING LIDAR DATA IN BOREAL JUVENILE FOREST VEGETATION

    Directory of Open Access Journals (Sweden)

    A. Hovi

    2013-05-01

    Full Text Available Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.

  18. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Science.gov (United States)

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Drivers of variability in tree transpiration in a Boreal Black Spruce Forest Chronosequence

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.

    2009-12-01

    Boreal forests are of particular interest in climate change studies because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through the impact of more frequent wildfires, warmer, longer growing seasons, and potential drainage of forested wetlands. This study aims to quantify the influence of stand age, drainage condition, and species on tree transpiration and its drivers in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 113 trees (69 Picea mariana (black spruce), 25 Populus tremuloides (trembling aspen), and 19 Pinus banksiana (jack pine) at four stand ages, each containing a well- and poorly-drained site over three growing seasons (2006-2008). Sap flux per unit xylem area, JS, was expressed as transpiration per unit ground area, EC, and transpiration per unit leaf area, EL, using site- and species-specific allometry to obtain sapwood area (AS)and leaf area(AL)per unit ground area. Well-drained, younger Picea mariana daily JS was 47-64% greater than the older well-drained burn ages and younger poorly-drained stands were 64-68% greater than the two oldest poorly-drained stands. Daily EL in the well-drained Picea mariana stands was on average 12-33% higher in younger stand than in the two oldest stands whereas young, poorly-drained Picea mariana had 71% greater daily EL than the older stands. Well-drained Picea mariana trees had 52% higher daily EC than older trees and poorly-drained Picea mariana in the 1964 burn had 42-81% higher daily EC than the oldest stands. Populus tremuloides located in the two youngest stands had daily JS 38-58% greater rates than the 1930 burn, whereas daily EL and EC had no distint differences due to high interannual variability. Pinus banksiana experienced 21-33% greater daily JS in the 1989 burn than in the older 1964 burn for well- and poorly-drained sites

  20. STRUCTURE AND DYNAMICS OF BOREAL ECOSYSTEMS: ANOTHER APPROACH TO LANDSAT IMAGERY CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Litinsky

    2017-01-01

    Full Text Available An alternative approach to information extraction from Landsat TM/ETM+ imagery is proposed. It involves transformation the image space into visible 3D form and comparing location in this space the segments of the ecosystem types with expressed graphically typology of forest and mire cover (biogeocenotic scheme. The model is built in LC1-LC2-MSI axis (the two first principal components of the image matrix in logarithmic form and moisture stress index. Comparing to Tasseled Cap, this transformation is more suitable for study area (north taiga zone of Eastern Fennoscandia. The spectral segments of mature and old-growth forests line up from the ecological optimum (moraine hills along two main environmental gradients: i lack of water and nutrition (fluvioglacial sands bedrock and ii degree of paludication (lacustrine plains. Thus, the biogeocenotic complexes are identified. The succession trajectories of forest regeneration through spectral space are also associated with the type of Quaternary deposits. For mire ecosystems spectral classes accurately reflect the type of water and mineral nutrition (ombrotrophic or mesotrophic. Spectral space model created using measured by the scanner physical ecosystem characteristics can be the base for developing objective classification of boreal ecosystems, where one of the most significant clustering criterions is the position in the spectral space.

  1. 2007 accomplishment report for the Eastern and Western forest environmental threat assessment centers

    Science.gov (United States)

    Danny C. Lee; Jerome S. Beatty

    2008-01-01

    As chance would have it, the Eastern Forest and Western Wildland Environmental Threat Assessment Centers were created the same year (2005) that the Forest Service celebrated its centennial anniversary as an agency of the U.S. Department of Agriculture. The historic birth of the Forest Service provides a nice backdrop to view our own more modest beginnings. Both events...

  2. Spatial and temporal trends in distribution of forest fires in Central and Eastern Europe

    Science.gov (United States)

    Ryszard Szczygieł; Barbara Ubysz; Tomasz. Zawiła-Niedźwiecki

    2009-01-01

    Forest in Central and Eastern Europe (CEE) covers 56,285,000 ha (5% of European total forested area). Forest cover in CEE makes 30% of land use. Almost 50% of the forest under study is formed by coniferous species and only 30% by deciduous ones. Forest younger than 60 years old grows on 57% of that area. These factors, together with climate conditions cause that on the...

  3. C2-C10 hydrocarbon emissions from a boreal wetland and forest floor

    Directory of Open Access Journals (Sweden)

    H. Hellén

    2006-01-01

    Full Text Available Emissions of various C2-C10 hydrocarbons (VOCs and halogenated hydrocarbons (VHOCs from a boreal wetland and a Scots pine forest floor in south-western Finland were measured by the static chamber technique. Isoprene was the main non-methane hydrocarbon emitted by the wetland, but small emissions of ethene, propane, propene, 1-butene, 2-methylpropene, butane, pentane and hexane were also detected. The isoprene emission from the wetland was observed to follow the commonly-used isoprene emission algorithm. The mean emission potential of isoprene was 224 µg m-2 h-1 for the whole season. This is lower than the emission potentials published earlier; that is probably at least partly due to the cold and cloudy weather during the measurements. No emissions were detected of monoterpenes or halogenated hydrocarbons from the wetland. The highest hydrocarbon emissions from the Scots pine forest floor were measured in spring and autumn. However, only a few measurements were conducted during summer. The main compounds emitted were monoterpenes. Isoprene emissions were negligible. The total monoterpene emission rates varied from zero to 373 µg m-2 h-1. The results indicated that decaying plant litter may be the source for these emissions. Small emissions of chloroform (100-800 ng m-2 h-1, ethene, propane, propene, 2-methylpropene, cis-2-butene, pentane, hexane and heptane were detected. Comparison with Scots pine emissions showed that the forest floor may be an important monoterpene source, especially in spring.

  4. Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada

    Directory of Open Access Journals (Sweden)

    Scott E. Nielsen

    2016-11-01

    Full Text Available Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors relate to historic patterns of wildfire over a 35-year period (1980–2014 for the boreal forest of Saskatchewan, Canada. This includes the amount of water in different-sized neighborhoods, the presence of islands, and the direction, distance, and shape of nearest lake of different sizes. All individual factors affected wildfire presence, with lake sizes ≥5000 ha and amount of water within a 1000-ha surrounding area the most supported spatial scales. Overall, wildfires were two-times less likely on islands, more likely further from lakes that were circular in shape, and in areas with less surrounding water. Interactive effects were common, including the effect of direction to lake as a function of distance from lakeshore and amount of surrounding water. Our results point to a strong, but complex, bottom-up control of local wildfire activity based on the configuration of natural firebreaks. In fact, fire rotation periods predicted for one area varied more than 15-fold (<47 to >700 years depending on local patterns in lakes. Old-growth forests within this fire-prone ecosystem are therefore likely to depend on the surrounding configuration of larger lakes.

  5. Tree roosting by male and female eastern pipistrelles in a forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2007-01-01

    Little information has been published on selection of tree roosts by eastern pipistrelles (Perimyotis subflavus) in forested environments, and no radiotelemetry-based studies have been conducted on males in forested settings. Therefore, we used radiotelemetry to characterize summer roost selection by 21 male (33 roosts) and 7 female (14 roosts)...

  6. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    Science.gov (United States)

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  7. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  8. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  9. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  10. Application of boreal forest toxicity data in the decision-making process for contaminated soil clean-up remediation at oil and gas fields in Western Canada

    International Nuclear Information System (INIS)

    Scroggins, R.; Princz, J.; Moody, M.; Olsgard-Dumanski, M.; Haderlein, L.; Moore, B.

    2010-01-01

    This presentation reported on a multi-year research project in which a broad range of boreal forest test methods for assessing petroleum hydrocarbon (PHC) toxicity in contaminated soil were used to show that clean-up decisions can be made on a field-wide basis through focused biological testing of typical drill sump and flare pit locations within an oil and gas field. Remediation at most sites will likely be limited to the Alberta soil eco-contact guidelines for PHC F2 and F3 fractions. Since Tier 1 eco-contact guidelines are derived using toxicity data from fresh crude and using agricultural plant species, it was more logical to follow a Tier 2 eco-contact pathway approach because most contamination was related to drilling sumps and flare pits containing highly weathered PHCs and species native to the boreal eco-zone of Canada. The site-specific remedial objective (SSRO) option within the Tier 2 guideline was used because of the large number of sites requiring remediation, and the similarity of sites within pre-determined Risk Assessment Zones. For representative contaminated soils, a SSRO was derived from the twenty-fifth percentile of the estimated species sensitivity distribution of all acceptable boreal plant, earthworm, springtail and mite test endpoints. The purpose of the project was to reduce soil volumes sent to landfill during site remediation by showing that residual impacts from weathered PHC in soil do not have damaging effects on boreal forest receptors following remediation. Data was included to show the value of this approach and the variability between sites and their effect on regionalizing a Tier 2 eco-contact guideline.

  11. Application of boreal forest toxicity data in the decision-making process for contaminated soil clean-up remediation at oil and gas fields in Western Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scroggins, R.; Princz, J. [Environment Canada, Ottawa, ON (Canada); Moody, M. [Saskatchewan Research Council, Regina, SK (Canada); Olsgard-Dumanski, M.; Haderlein, L. [WorleyParsons Canada, Calgary, AB (Canada); Moore, B. [Devon Canada Corp., Calgary, AB (Canada)

    2010-07-01

    This presentation reported on a multi-year research project in which a broad range of boreal forest test methods for assessing petroleum hydrocarbon (PHC) toxicity in contaminated soil were used to show that clean-up decisions can be made on a field-wide basis through focused biological testing of typical drill sump and flare pit locations within an oil and gas field. Remediation at most sites will likely be limited to the Alberta soil eco-contact guidelines for PHC F2 and F3 fractions. Since Tier 1 eco-contact guidelines are derived using toxicity data from fresh crude and using agricultural plant species, it was more logical to follow a Tier 2 eco-contact pathway approach because most contamination was related to drilling sumps and flare pits containing highly weathered PHCs and species native to the boreal eco-zone of Canada. The site-specific remedial objective (SSRO) option within the Tier 2 guideline was used because of the large number of sites requiring remediation, and the similarity of sites within pre-determined Risk Assessment Zones. For representative contaminated soils, a SSRO was derived from the twenty-fifth percentile of the estimated species sensitivity distribution of all acceptable boreal plant, earthworm, springtail and mite test endpoints. The purpose of the project was to reduce soil volumes sent to landfill during site remediation by showing that residual impacts from weathered PHC in soil do not have damaging effects on boreal forest receptors following remediation. Data was included to show the value of this approach and the variability between sites and their effect on regionalizing a Tier 2 eco-contact guideline.

  12. ESTABLISHING THE PAN-EURASIAN EXPERIMENT (PEEX LAND-ATMOSPHERE IN SITU OBSERVATION NETWORK ACROSS THE NORTHERN EURASIAN ARCTIC-BOREAL REGIONS ‒ INTRODUCTION TO THE RUSSIAN STATIONS’ METADATA ENQUIRY

    Directory of Open Access Journals (Sweden)

    H. K. Lappalainen

    2017-01-01

    Full Text Available Pan-Eurasian Experiment (PEEX initiative (https://www.atm.helsinki.fi/peex/, initiated in 2012, is an international, multidisciplinary, multiscale program focused on solving interlinked global challenges influencing societies in the Northern Eurasian region and in China. As a part of the program, PEEX is aimed to establish an in situ observation network, which would cover environments from the Arctic coastal regions, tundra to boreal forests, from pristine to urban megacities. The PEEX network will be based on two components: (i the existing stations activities and (ii establishing new stations. The upgrading plans of the existing stations as well as the new stations will be based on a SMEAR (Stations for Measuring Earth surface ‒ Atmosphere Relations concept. The development of the coordinated, comprehensive PEEX observation network is contributing to the sustainable development of the Northern Eurasian regions. It is aimed at providing quantified information on climate relevant variables for the research communities and for constructing services, such as early warning systems, for the society.

  13. Responses of small mammals to clear-cutting in temperate and boreal forests of Europe: a meta-analysis and review

    OpenAIRE

    Bogdziewicz, Michał; Zwolak, Rafał

    2013-01-01

    We analyzed the responses of small mammals to clear-cutting in temperate and boreal forests in Europe. We conducted a meta-analysis of published research on most often studied small mammal species (the striped field mouse, the yellow-necked mouse, the wood mouse, the field vole, the common vole, the bank vole, the Eurasian harvest mouse, the common shrew and the Eurasian pygmy shrew), comparing their abundance on clear-cuts and in unharvested stands. For four other species (the gray-sided vol...

  14. Atmospheric mercury deposition to forests in the eastern USA.

    Science.gov (United States)

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  15. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Lab., Woods Hole, MA (United States); Clark, James S. [Duke Univ., Durham, NC (United States); Mohan, Jacqueline [Univ. of Georgia, Athens, GA (United States)

    2015-03-25

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperate tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research

  16. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon.

    Science.gov (United States)

    Michael Keller; Michael Palace; Gregory P. Asner; Rodrigo Jr. Pereira; Jose Natalino M. Silva

    2004-01-01

    Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were...

  17. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  18. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.

    Science.gov (United States)

    Kim, Youngil; Ullah, Sami; Roulet, Nigel T; Moore, Tim R

    2015-04-01

    The inundation of boreal forests and peatlands through the construction of hydroelectric reservoirs can increase carbon dioxide (CO2) and methane (CH4) emission. To establish controls on emission rates, we incubated samples of forest and peat soils, spruce litter, forest litter and peatland litter collected from boreal ecosystems in northern Quebec for 16 weeks and measured CO2 and CH4 production rates under flooded or non-flooded conditions and varying oxygen concentration and temperature. CO2 production under flooded conditions was less than under non-flooded conditions (5-71 vs. 5-85 mg Cg(-1) C), but CH4 production under flooded conditions was larger than under non-flooded conditions (1-8158 vs. 0-86 μg Cg(-1) C). The average CO2 and CH4 production rate factor for flooded:non-flooded conditions was 0.76 and 1.32, respectively. Under flooded conditions, high oxygen concentrations increased CO2 production in peat soils but decreased CH4 production in forest and peat soils and spruce litter. Warmer temperatures (from 4 to 22°C) raised both CO2 production in peat soils and peatland litter, and CH4 production in peat soils and spruce litter. This study shows that the direction and/or strength of CO2 and CH4 fluxes change once boreal forests and peatlands are inundated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2017-09-01

    Full Text Available The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The

  20. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000...

  1. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  2. NPP Boreal Forest: Kuusamo, Finland, 1967-1971, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal...

  3. Effects of ionizing radiation on the boreal forest: Canada's FIG experiment, with implications for radionuclides

    International Nuclear Information System (INIS)

    Amiro, B.D.; Sheppard, S.C.

    1994-01-01

    The Field-Irradiator Gamma (FIG) experiment chronically irradiated a section of the Canadian boreal forest over a period of 14 years. Forest trees were affected at dose rates >0.1 mGy·h -1 , but a berbaceous plant community thrived at dose rates up to 65 mGy·h -1 . Irradiation resulted in the establishment of four zones of vegetation: a herbaceous community, a shrub community, a narrow zone of dying trees, and a zone with no apparent impacts. Concentrations of 14 C, 99 Tc, 129 I, 137 Cs and 226 Ra that could cause a dose rate of 0.1 mGy·h -1 within vegetation were calculated. Chemical toxic effects on plants would be caused by 99 Tc and 129 I before radiological effects are predicted to occur. The calculated 226 Ra concentration is about a factor of 10 greater than that measured at some natural sites. Sufficiently high concentrations of 14 C and 137 Cs to cause an impact are unlikely unless a site is severely contaminated. (author)

  4. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests

    Science.gov (United States)

    M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny

    2000-01-01

    The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...

  5. Long-term trends in radial growth of Siberian spruce and Scots pine in Komi Republic (northwestern Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, E. (Univ. of Joensuu (Finland)); Kolstroem, T. (Russian Academy of Sciences, Syktyvkar (Russian Federation)); Spiecker, H. (Univ. of Freiburg (Germany))

    2008-07-01

    Komi is situated on the eastern boundary of the European part of Russia, in the boreal region where large areas of natural forest still exist. Using radial growth measurements it was possible to attain positive long-term trends of growth in Scots pine (Pinus sylvestris) and Siberian spruce (Picea obovata) in the Komi Republic. Increases in the radial growth of Siberian spruce in the forest-tundra were 134% and in the northern taiga zone 35% over successive 50-year periods from 1901 to 1950 and from 1951 to 2000. Respectively, in the middle taiga zone a 76% increase in radial growth was found (over 100 years), whilst in the southern taiga zone the changes were not statistically significant. The increase in radial growth of Scots pine in the northern taiga zone was 32%. In the middle taiga zone the radial growth increase in Scots pine was 55% and in the southern taiga zone the changes were not statistically significant. The long-term growth trends of Komi were compared with those in other parts of Europe. (orig.)

  6. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data

    International Nuclear Information System (INIS)

    Kasischke, E.S.; French, N.H.F.; Harrell, P.; Christensen, N.L. Jr.; Ustin, S.L.; Barry, D.

    1993-01-01

    Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5% of all fires with sizes greater than 2,000ha with no false alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61% of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used

  7. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Loranty, Michael M; Goetz, Scott J; Beck, Pieter S A

    2011-01-01

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m -2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  8. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  9. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    Science.gov (United States)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  10. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    Science.gov (United States)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact

  11. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses

    Science.gov (United States)

    Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee. Taylor

    2011-01-01

    The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera)...

  12. Fire in Eastern Hardwood Forests through 14,000 Years

    Science.gov (United States)

    Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark

    2011-01-01

    Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...

  13. Windthrow Dynamics in Boreal Ontario: A Simulation of the Vulnerability of Several Stand Types across a Range of Wind Speeds

    Directory of Open Access Journals (Sweden)

    Kenneth A. Anyomi

    2017-06-01

    Full Text Available In Boreal North America, management approaches inspired by the variability in natural disturbances are expected to produce more resilient forests. Wind storms are recurrent within Boreal Ontario. The objective of this study was to simulate wind damage for common Boreal forest types for regular as well as extreme wind speeds. The ForestGALES_BC windthrow prediction model was used for these simulations. Input tree-level data were derived from permanent sample plot (PSP data provided by the Ontario Ministry of Natural Resources. PSPs were assigned to one of nine stand types: Balsam fir-, Jack pine-, Black spruce-, and hardwood-dominated stands, and, Jack pine-, spruce-, conifer-, hardwood-, and Red and White pine-mixed species stands. Morphological and biomechanical parameters for the major tree species were obtained from the literature. At 5 m/s, predicted windthrow ranged from 0 to 20%, with damage increasing to 2 to 90% for winds of 20 m/s and to 10 to 100% for winds of 40 m/s. Windthrow varied by forest stand type, with lower vulnerability within hardwoods. This is the first study to provide such broad simulations of windthrow vulnerability data for Boreal North America, and we believe this will benefit policy decisions regarding risk management and forest planning.

  14. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  15. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  16. Succession after fire: variation in \\delta13C of organic tissues and respired CO2 in boreal forests

    Science.gov (United States)

    Fessenden, J. E.; Li, H.; Mack, M.; Schuur, T.; Warren, S.; Randerson, J. T.

    2001-12-01

    Isotope ratios of carbon dioxide and leaf organic matter were measured in 5 neighboring forests of varying ages: 7, 14, 45, 140, and 160 years. These forests are composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce 50 years after fire disturbance. Research on the carbon isotope ratios of leaf material and CO2 was conducted to look for influences from species composition, forest age, and time after most recent burn. Samples of organic \\delta13C in whole leaf tissue were collected from the dominant species of each forest. Concurrent aboveground NPP measurements allowed us to estimate total ecosystem \\delta13C by providing a method for weighting \\delta13C of individual species and plant tissues. \\delta13CO2 and [CO2] were measured on canopy CO2 to determine the isotopic ratio of ecosystem respiration. The atmospheric results indicated that the \\delta13C of ecosystem respiration changes with successional stage. Specifically, the aspen dominating forests showed 13C depleted values relative to the spruce dominated forests. Organic results showed more 13C-enriched values with increased forest age and vegetation functional type. Specifically, oldest trees within the coniferous species had the most 13C-enriched values in leaf tissues. These results suggest that increases in the disturbance regime of northern boreal forests will lead to a decrease in the \\delta13C of ecosystem carbon with consequences for the atmospheric \\delta13C budget.

  17. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.

    Science.gov (United States)

    Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard

    2017-03-07

    Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R 2 = 0.94, p millennial time scales in the prolonged absence of fire.

  18. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  19. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  20. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  1. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.

    Science.gov (United States)

    Hauglin, Marius; Bollandsås, Ole Martin; Gobakken, Terje; Næsset, Erik

    2017-12-08

    Monitoring of forest resources through national forest inventory programmes is carried out in many countries. The expected climate changes will affect trees and forests and might cause an expansion of trees into presently treeless areas, such as above the current alpine tree line. It is therefore a need to develop methods that enable the inclusion of also these areas into monitoring programmes. Airborne laser scanning (ALS) is an established tool in operational forest inventories, and could be a viable option for monitoring tasks. In the present study, we used multi-temporal ALS data with point density of 8-15 points per m 2 , together with field measurements from single trees in the forest-tundra ecotone along a 1500-km-long transect in Norway. The material comprised 262 small trees with an average height of 1.78 m. The field-measured height growth was derived from height measurements at two points in time. The elapsed time between the two measurements was 4 years. Regression models were then used to model the relationship between ALS-derived variables and tree heights as well as the height growth. Strong relationships between ALS-derived variables and tree heights were found, with R 2 values of 0.93 and 0.97 for the two points in time. The relationship between the ALS data and the field-derived height growth was weaker, with R 2 values of 0.36-0.42. A cross-validation gave corresponding results, with root mean square errors of 19 and 11% for the ALS height models and 60% for the model relating ALS data to single-tree height growth.

  2. Detecting Arctic Climate Change Using Koeppen Climate Classification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. [Joint Institute for the Study of Atmosphere and Oceans, University of Washington, Seattle, Washington (United States); Overland, J.E. [NOAA/Pacific Marine Environmental Laboratory, Sand Point Way NE, Seattle, Washington (United States)

    2004-11-01

    Ecological impacts of the recent warming trend in the Arctic are already noted as changes in tree line and a decrease in tundra area with the replacement of ground cover by shrubs in northern Alaska and several locations in northern Eurasia. The potential impact of vegetation changes to feedbacks on the atmospheric climate system is substantial because of the large land area impacted and the multi-year persistence of the vegetation cover. Satellite NDVI estimates beginning in 1981 and the Koeppen climate classification, which relates surface types to monthly mean air temperatures from 1901 onward, track these changes on an Arctic-wide basis. Temperature fields from the NCEP/NCAR reanalysis and CRU analysis serve as proxy for vegetation cover over the century. A downward trend in the coverage of tundra group for the first 40 yr of the twentieth century was followed by two increases during 1940s and early 1960s, and then a rapid decrease in the last 20 yr. The decrease of tundra group in the 1920-40 period was localized, mostly over Scandinavia; whereas the decrease since 1990 is primarily pan-Arctic, but largest in NW Canada, and eastern and coastal Siberia. The decrease in inferred tundra coverage from 1980 to 2000 was 1.4 x 106 km{sup 2}, or about a 20% reduction in tundra area based on the CRU analyses. This rate of decrease is confirmed by the NDVI data. These tundra group changes in the last 20 yr are accompanied by increase in the area of both the boreal and temperate groups. During the tundra group decrease in the first half of the century boreal group area also decreased while temperate group area increased. The calculated minimum coverage of tundra group from both the Koeppen classification and NDVI indicates that the impact of warming on the spatial coverage of the tundra group in the 1990s is the strongest in the century, and will have multi-decadal consequences for the Arctic.

  3. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    Science.gov (United States)

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  4. Thermal Acclimation of Photosynthesis and Respiration Differ Across Mature Conifer Species in a Boreal Forest Peatland

    Science.gov (United States)

    Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.

    2017-12-01

    Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.

  5. Geographic variation in migration chronology and winter distribution of midcontinent greater white-fronted geese

    Science.gov (United States)

    Ely, Craig R.; Nieman, Daniel J.; Alisauskas, Ray T.; Schmutz, Joel A.; Hines, James E.

    2013-01-01

    We evaluated spatial and temporal differences in migratory behavior among different breeding groups of midcontinent greater white-fronted geese (Anser albifrons) using band-recovery data and observations of neck collared geese during migration and winter. Birds from different breeding areas were initially delineated by geographic distance into 6 banding reference areas (BRAs): 1) interior Alaska, 2) North Slope of Alaska, 3) western Northwest Territories (NWT), 4) western Nunavut, 5) central Nunavut, and 6) eastern Nunavut. The banding groups also differed by breeding habitat, with geese from interior Alaska nesting in the boreal forest (taiga), and all other groups breeding in tundra habitats. Geese from interior Alaska migrated earlier during autumn, and were more likely to winter farther south (in Mexico) than geese from other breeding areas. Geese banded in central and eastern Nunavut (Queen Maud Gulf and Inglis River) wintered farther east (in Louisiana) than geese from other breeding areas. Small-scale (within-state) geographic segregation of wintering flocks was evidenced by the recent (post-1990) nearly exclusive use of a new wintering area in north central Texas by geese from interior Alaska. Segregation among BRAs was also apparent in Mexico, where taiga geese were found predominantly in the central Highlands (states of Zacatecas and Durango), whereas tundra geese mostly used states along the Gulf Coast (primarily Tamaulipas). Interior Alaska birds initiated spring migration earlier than geese from other areas, and were more likely than others to stop in the Rainwater Basin of Nebraska, a region where cholera outbreaks periodically kill thousands of geese. Geese from interior Alaska were the first to arrive at spring staging areas in prairie Canada where BRAs exhibited spatial delineation (a longitudinal cline) in relation to breeding areas. Our results show significant geographic and temporal variation among taiga and tundra breeding cohorts during

  6. Biological pathways of radionuclides originating from the Chernobyl fallout in a boreal forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Guillitte, O. (Unite de Radioecologie, Faculte des Sciences Agronomiques, Gembloux (Belgium)); Melin, J.; Wallberg, L. (Swedish Radiation Protection Institute, Stockholm (Sweden))

    1994-10-14

    In an attempt to understand the mechanisms governing the transfer and retention of radiocaesium in the understorey vegetation, 39 macromycetes species and 33 plant species, together with humus samples, were systematically collected from the undercover vegetation in a boreal coniferous forest. The results indicate that the main factors determining interspecific differences in contamination level are the rooting depth in plants, the depth of mycelium in fungi, and the ecophysiological behaviour of fungi, mycotrophism or plant parasitism. A comparison between the investigated species and the same species growing in similar ecosystems, albeit under different climatic conditions, resulted in an almost identical ranking in terms of radiocaesium contamination levels; the contamination ratios between species were also relatively constant. From an experiment involving humus samples, it was shown that up to 40% of the radiocaesium could be retained by the microflora, particularly by mycelia.

  7. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  8. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  9. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands.

    Science.gov (United States)

    Dedysh, Svetlana N; Berestovskaya, Yulia Y; Vasylieva, Lina V; Belova, Svetlana E; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Liesack, Werner; Zavarzin, George A

    2004-01-01

    A novel species, Methylocella tundrae, is proposed for three methanotrophic strains (T4T, TCh1 and TY1) isolated from acidic Sphagnum tundra peatlands. These strains are aerobic, Gram-negative, non-motile, dinitrogen-fixing rods that possess a soluble methane monooxygenase and utilize the serine pathway for carbon assimilation. Strains T4T, TCh1 and TY1 are moderately acidophilic organisms capable of growth between pH 4.2 and 7.5 (optimum 5.5-6.0) and between 5 and 30 degrees C (optimum 15 degrees C). The major phospholipid fatty acid is 18:1omega7c. The DNA G+C content of strain T4T is 63.3 mol%. The three strains possess almost identical 16S rRNA gene sequences and are most closely related to two previously identified species of Methylocella, Methylocella palustris (97% similarity) and Methylocella silvestris (97.5% similarity). DNA-DNA hybridization values of strain T4T with Methylocella palustris KT and Methylocella silvestris BL2T were respectively 27 and 36%. Thus, the tundra strains represent a novel species, for which the name Methylocella tundrae sp. nov. is proposed. Strain T4T (=DSM 15673T=NCIMB 13949T) is the type strain.

  10. Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA : implications for ecosystem-level effects of hemlock woolly adelgid

    International Nuclear Information System (INIS)

    Hadley, J.L.; Kuzeja, P.S.; Singh, S.

    2008-01-01

    This study used the eddy flux method to measure water use and carbon exchange of a red oak forest and an eastern hemlock-dominated forest located in north-central Massachusetts over a period of 2 years. The study demonstrated that water use by the red oak reached approximately 4 mm per day -1 . A maximum rate of 2 mm per day -1 was used by the eastern hemlock forest. Carbon (C) uptake rates were higher in the red oak forest than in the eastern hemlock forest. Measurements of sap flux suggested that transpiration of red oak and black birches in the eastern hemlock forest were approximately twice as high as transpiration rates observed for eastern hemlock. However, annual C storage of eastern hemlock was almost equal to C storage rates of the red oak forest, due to net C uptake by the hemlock during an unusually warm fall and spring. The study showed that C storage by eastern hemlock forests will increase as a result of climatic warming. Although forest water use will decrease as a result of eastern hemlock due to insect disturbances, the replacement of eastern hemlock by deciduous species such as red oak will increase water use during the summer-time in areas where hemlock is a predominant species. 24 refs., 5 tabs., 11 figs

  11. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  12. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397

  13. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats' total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation.

  14. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska

    International Nuclear Information System (INIS)

    Andreu-Hayles, Laia; D'Arrigo, Rosanne; Anchukaitis, Kevin J; Beck, Pieter S A; Goetz, Scott; Frank, David

    2011-01-01

    The response of boreal forests to anthropogenic climate change remains uncertain, with potentially significant impacts for the global carbon cycle, albedo, canopy evapotranspiration and feedbacks into further climate change. Here, we focus on tree-ring data from the Firth River site at treeline in northeastern Alaska, in a tundra–forest transition region where pronounced warming has already occurred. Both tree-ring width (TRW) and maximum latewood density (MXD) chronologies were developed to identify the nature of tree growth and density responses to climatic and environmental changes in white spruce (Picea glauca), a dominant Arctic treeline species. Good agreement was found between the interannual fluctuations in the TRW chronology and summer temperatures from 1901 to 1950, whereas no significant relationships were found from 1951 to 2001, supporting evidence of significant divergence between TRW and summer temperature in the second half of the 20th century. In contrast to this unstable climatic response in the TRW record, the high frequency July–August temperature signal in the MXD series seems reasonably stable through the 20th century. Wider and denser rings were more frequent during the 20th century, particularly after 1950, than in previous centuries. Finally, comparison between the tree-ring proxies and a satellite-derived vegetation index suggests that TRW and MXD correlate with vegetation productivity at the landscape level at different times of the growing season.

  15. Effects of ionizing radiation on the boreal forest: Canada's FIG experiment, with implications for radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Amiro, B D; Sheppard, S C

    1994-07-01

    The Field-Irradiator Gamma (FIG) experiment chronically irradiated a section of the Canadian boreal forest over a period of 14 years. Forest trees were affected at dose rates >0.1 mGy{center_dot}h{sup -1}, but a berbaceous plant community thrived at dose rates up to 65 mGy{center_dot}h{sup -1}. Irradiation resulted in the establishment of four zones of vegetation: a herbaceous community, a shrub community, a narrow zone of dying trees, and a zone with no apparent impacts. Concentrations of {sup 14}C, {sup 99}Tc, {sup 129}I, {sup 137}Cs and {sup 226}Ra that could cause a dose rate of 0.1 mGy{center_dot}h{sup -1} within vegetation were calculated. Chemical toxic effects on plants would be caused by {sup 99}Tc and {sup 129}I before radiological effects are predicted to occur. The calculated {sup 226}Ra concentration is about a factor of 10 greater than that measured at some natural sites. Sufficiently high concentrations of {sup 14}C and {sup 137}Cs to cause an impact are unlikely unless a site is severely contaminated. (author)

  16. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    Science.gov (United States)

    Färber, Leonie; Sølhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.

  17. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest.

    Directory of Open Access Journals (Sweden)

    Teresa N Hollingsworth

    Full Text Available Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type- black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites and for a reduced subset of sites (n = 49 that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest

  18. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Science.gov (United States)

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  19. Classification of boreal forest by satellite and inventory data using neural network approach

    Science.gov (United States)

    Romanov, A. A.

    2012-12-01

    The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of

  20. Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    Science.gov (United States)

    Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.

    2015-04-01

    Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national

  1. Calcareous nannofossils from the Boreal upper Campanian-Maastrichtian Chalk of Denmark

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph

    2010-01-01

    Boreal calcareous nannofossil assemblages have been documented from three sections in Denmark. from the Upper Campanian to Upper Maastrichtian (nannofossil zones UC16a(BP) to UC20d(BP)): the Stevns-1 borehole, next to the Cretaceous/Palaeogene boundary section of Stevns Klint, eastern Sjaelland...

  2. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  3. Deciduous birch canopy as unexpected contributor to stand level atmospheric reactivity in boreal forests

    Science.gov (United States)

    Bäck, Jaana; Taipale, Ditte; Aalto, Juho

    2017-04-01

    In boreal forests, deciduous trees such as birches may in future climate become more abundant due to their large biomass production capacity, relatively good resource use ability and large acclimation potential to elevated CO2 levels and warmer climate. Increase in birch abundance may lead to unpredicted consequences in atmospheric composition. Currently it is acknowledged that conifers such as Scots pine and Norway spruce are important sources for volatile organic compounds (VOCs), especially monoterpenes, throughout the year, although the strong temperature relationships implies that emissions are highest in summertime. However, the dynamics of the deciduous birch foliage VOC emissions and their relationship with environmental drivers during the development, maturation and senescence of foliage has not been well analyzed. Long-term measurements of birch, which are unfortunately very sparse, can provide very useful information for the development of biosphere-atmosphere models that simulate boreal and subarctic forested areas where birch is often a sub-canopy species, occurs as a mixture among conifers or forms even pure stands in the higher latitudes. We measured the branch level VOC emissions from a mature Silver birch with proton transfer reaction mass spectrometer during 2014 and 2015 at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations), southern Finland. Our results showed that the Silver birch foliage is a huge source for both short-chained volatiles such as methanol, acetaldehyde and acetone, as well as for monoterpenes. The mean emission rates from birch leaves were 5 to 10 times higher than the corresponding emissions from Scots pine shoots. We compared several semi-empirical model approaches for determining the birch foliage monoterpene standardized emission potentials, and utilized the continuous emission measurements from the two growing seasons for development of a novel algorithm which accounts for the leaf development and

  4. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  5. Forests of the tropical eastern Andean flank during the middle Pleistocene

    NARCIS (Netherlands)

    Cárdenas, M.L.; Gosling, W.D.; Pennington, R.T.; Poole, I.; Sherlock, S.C.; Mothes, P.

    2014-01-01

    Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar-39Ar) obtained from the volcanic ash indicate that deposition occurred between 620,000 and

  6. Climate, trees, pests, and weeds: Change, uncertainty, and biotic stressors in eastern US national park forests

    Science.gov (United States)

    Nicholas A. Fisichelli; Scott R. Abella; Matthew Peters; Frank J. Krist

    2014-01-01

    The US National Park Service (NPS) manages over 8900 km2 of forest area in the eastern United States where climate change and nonnative species are altering forest structure, composition, and processes. Understanding potential forest change in response to climate, differences in habitat projections among models (uncertainty), and nonnative biotic...

  7. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    Science.gov (United States)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  8. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  9. Climate change in Eastern Taimyr over the last 80 years and the warming impact on biodiversity and ecosystem processes in its territory

    Directory of Open Access Journals (Sweden)

    Elena B. Pospelova

    2017-10-01

    Full Text Available The analysis of long-term changes of mean annual temperatures and the active temperature sum over 80 years was carried out using data of the Khatanga meteorological station. Since the 1990s, an essential warming was observed, especially after 2000. The warming influence on vegetation takes place immediately (the ecosystem composition changes due to the degradation of cryogenic processes as well as directly by increasing the time of the vegetation period and the total amount of heat on plants. As a result, in the last few years, the lead of phenological phenomena terms is observed – the time of foliage expansion and efflorescence of plants-indicators, geese arriving, mosquitos appearance, ice thawing. By long term monitoring data, the moving of some north-taiga plant species to forest tundra and tundra is observed, as well as their establishing in vegetation communities. However, at this moment, the character of the vegetation is stable. The occurrence of taiga animals is increased in tundra and forest tundra. An active revival of larch is observed in forest tundra and north sparse forests. A removing forest border to the north is not observed, but in the southern mountains of Taimyr its replacing on higher levels could be seen. A decreasing summer precipitation quantity increases the possibility of forest fires, spring and bog drying. It influences negatively on bog flora and near-water fauna. It is possible, that the main reason of the local climate change at the East of Taimyr is less connected to the global planet change, but much more to pulsations of the strong Siberian anticyclone.

  10. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.

    Science.gov (United States)

    Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus

    2016-02-01

    The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.

  11. Long-term change in limnology and invertebrates in Alaskan boreal wetlands

    Science.gov (United States)

    Corcoran, R.M.; Lovvorn, J.R.; Heglund, P.J.

    2009-01-01

    Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985-1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001-2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985-1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002-2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002-2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest. ?? 2008 Springer Science+Business Media B.V.

  12. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    Science.gov (United States)

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with

  13. Direct measurement of NO3 radical reactivity in a boreal forest

    Science.gov (United States)

    Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quéléver, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N.

    2018-03-01

    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s-1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s-1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s-1 compared to a daytime value of 0.04 s-1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % missing during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.

  14. [Specific manifestations of polyvariant life cycles in ground beetles (Coleoptera, Carabidae) along latitudinal gradient].

    Science.gov (United States)

    Matalin, A V

    2014-01-01

    The life cycles of Carabidae are highly diverse, and 25 variants of these cycles are realized In the European part of Russia, from semideserts to continental tundras. The diversity of the life cycle spectrum sharply decreases (by more than half) upon transition from nemoral to boreal forest communities, and its phenological unification takes place at high latitudes. The greatest proportion of species with polyvariant development (25%) is characteristic of temporal latitudes, which may be explained by relatively long growing season and considerable cenotic diversity. In both southern (semidesert and steppe) and northern regions (middle and northern boreal forests), this proportion does not exceed 5%. At low latitudes, the polyvariant pattern of development is often manifested in the form of facultative bivoltine life cycles or as facultative biennial life cycles in species with the initial "spring" breeding type.

  15. Delineation of Tundra Swan Cygnus c. columbianus populations in North America: geographic boundaries and interchange

    Science.gov (United States)

    Ely, Craig R.; Sladen, William J. L.; Wilson, Heather M.; Savage, Susan E.; Sowl, Kristine M.; Henry, Bill; Schwitters, Mike; Snowden, James

    2014-01-01

    North American Tundra Swans Cygnus c. columbianus are composed of two wellrecognised populations: an Eastern Population (EP) that breeds across northern Canada and north of the Brooks Range in Alaska, which migrates to the eastern seaboard of the United States, and a Western Population (WP) that breeds in coastal regions of Alaska south of the Brooks Range and migrates to western North America. We present results of a recent major ringing effort from across the breeding range in Alaska to provide a better definition of the geographic extent of the migratory divide in Alaska. We also reassess the staging and winter distributions of these populations based on locations of birds tracked using satellite transmitters, and recent recoveries and sightings of neck-collared birds. Summer sympatry of EP and WP Tundra Swans is very limited, and largely confined to a small area in northwest Alaska. Autumn migration pathways of EP and WP Tundra swans abut in southwest Saskatchewan, a region where migrating WP birds turn west, and EP birds deviate abruptly eastward. Overall, from 1989 to 2013 inclusive, 2.6% of recoveries or resightings reported to the USGS Bird Banding Laboratory were of birds that moved from the domain of the population in which they were initially captured to within the range of the other population; a proportion roughly comparable to the results of Limpert et al. (1991) for years before 1990. Of the 70 cross-boundary movements reported since 1989, 39% were of birds marked on breeding areas and 61% were of birds marked on wintering areas. Dispersing swans (i.e. those that made crossboundary movements) did not differ with respect to age or sex from those that did not move between populations. The Brooks Range in northern Alaska effectively separates the two populations within Alaska, but climate-induced changes in tundra breeding habitats and losses of wetlands on staging areas may alter the distribution for both of these populations.

  16. Simulating topographic controls on the abundance of larch forest in eastern Siberia, and its consequences under changing climate

    Science.gov (United States)

    Sato, H.; Kobayashi, H.

    2017-12-01

    In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. Our previous studies tried to reconstruct this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 × 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. In our preliminary analysis, we found a quantitative pattern that topographic properties controls the abundance of larch forest via both drought and flooding stresses in eastern Siberia. We, therefore, refined the hydrological sub-model of our dynamic vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct the pattern, examined its impact on the estimation of biomass and vegetation productivity under the current and forecasted future climatic conditions. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311. 2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution

  17. Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest

    Directory of Open Access Journals (Sweden)

    Ahmed El-Guellab

    2015-05-01

    Full Text Available Background Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts, forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guide to determine sustainable forest harvesting levels, by reconstructing the Holocene fire history at the northern limit of commercial forestry in Quebec using charcoal particles preserved in lake sediments. Methods Sediment cores were sampled from four lakes located close to the northern limit of commercial forestry in Quebec. The cores were sliced into consecutive 0.5 cm thick subsamples from which 1 cm3 was extracted to count and measure charcoal particles larger than 150 microns. Age-depth models were obtained for each core based on accelerator mass spectroscopy (AMS radiocarbon dates. Holocene fire histories were reconstructed by combining charcoal counts and age-depth models to obtain charcoal accumulation rates and, after statistical treatment, long-term trends in fire occurrence (expressed as number of fires per 1000 years. Results Fire occurrence varied between the four studied sites, but fires generally occurred more often during warm and dry periods of the Holocene, especially during the Holocene Thermal Maximum (7000–3500 cal. BP, when fire occurrence was twice as high as at present. Conclusions The current fire regime in the study area is still within the natural range of variability observed over the Holocene. However, climatic conditions comparable to the Holocene Thermal Maximum could be reached within the next few decades, thus substantially reducing the amount of wood available to the forest industry.

  18. Effect of Organic Layer Thickness on Black Spruce Aging Mistakes in Canadian Boreal Forests

    Directory of Open Access Journals (Sweden)

    Ahmed Laamrani

    2016-03-01

    Full Text Available Boreal black spruce (Picea mariana forests are prone to developing thick organic layers (paludification. Black spruce is adapted to this environment by the continuous development of adventitious roots, masking the root collar and making it difficult to age trees. Ring counts above the root collar underestimate age of trees, but the magnitude of age underestimation of trees in relation to organic layer thickness (OLT is unknown. This age underestimation is required to produce appropriate age-correction tools to be used in land resource management. The goal of this study was to assess aging errors that are done with standard ring counts of trees growing in sites with different degrees of paludification (OLT; 0–25 cm, 26–65 cm, >65 cm. Age of 81 trees sampled at three geographical locations was determined by ring counts at ground level and at 1 m height, and real age of trees was determined by cross-dating growth rings down to the root collar (root/shoot interface. Ring counts at 1 m height underestimated age of trees by a mean of 22 years (range 13–49 and 52 years (range 14–112 in null to low vs. moderately to highly paludified stands, respectively. The percentage of aging-error explained by our linear model was relatively high (R2adj = 0.71 and showed that OLT class and age at 0-m could be used to predict total aging-error while neither DBH nor geographic location could. The resulting model has important implications for forest management to accurately estimate productivity of these forests.

  19. Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest

    International Nuclear Information System (INIS)

    Nichol, C.J.; Grace, J.; Shibistova, O.; Matsubara, S.

    2002-01-01

    The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 deg C) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectro radiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale

  20. Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data

    DEFF Research Database (Denmark)

    Virtanen, Tarmo; Mikkola, Kari; Nikula, Ari

    2004-01-01

    GIS-based data sets were used to analyze the structure of the forest line at the landscape level in the lowlands of the Usa River Basin, in northeast European Russia. Vegetation zones in the area range from taiga in the south to forest-tundra and tundra in the north. We constructed logistic...

  1. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-03-01

    Full Text Available Background Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross- and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross- and autocorrelated temporal terms. Results Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions Adaptive optimization and management led to 6%–14% higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  2. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  3. Chemical and physical drivers of the evolution of organic aerosols over forests

    NARCIS (Netherlands)

    Janssen, R.H.H.

    2013-01-01

    Diurnal evolution of organic aerosol over boreal and tropical forests

    The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This

  4. Xenomonitoring of Mosquitoes (Diptera: Culicidae for the Presence of Filarioid Helminths in Eastern Austria

    Directory of Open Access Journals (Sweden)

    Sarah Susanne Übleis

    2018-01-01

    Full Text Available Information on mosquito-borne filarioid helminths in Austria is scarce, but recent discoveries of Dirofilaria repens indicate autochthonous distribution of this parasite in Eastern Austria. In the current xenomonitoring study, more than 48,000 mosquitoes were collected in Eastern Austria between 2013 and 2015, using different sampling techniques and storage conditions, and were analysed in pools with molecular tools for the presence of filarioid helminth DNA. Overall, DNA of D. repens, Setaria tundra, and two unknown filarioid helminths were documented in twenty mosquito pools within the mitochondrial cox1 gene (barcode region. These results indicate that S. tundra, with roe deer as definite hosts, is common in Eastern Austria, with most occurrences in floodplain mosquitoes (e.g., Aedes vexans. Moreover, DNA of D. repens was found in an Anopheles plumbeus mosquito close to the Slovakian border, indicating that D. repens is endemic in low prevalence in Eastern Austria. This study shows that xenomonitoring is an adequate tool to analyse the presence of filarioid helminths, but results are influenced by mosquito sampling techniques, storage conditions, and molecular protocols.

  5. Eastern hemlock response to even- and uneven-age management in the Acadian forest: results from the Penobscot Experimental Forest long-term silviculture study

    Science.gov (United States)

    John C. Brissette; Laura S. Kenefic

    2000-01-01

    Eastern hemlock (Tsuga canadensis (L.) Carr.) is an important tree species in the mixed-species conifer forests of northern New England and adjacent Canada. Hemlock is very tolerant of understory conditions; consequently, it responds differently to various silvicultural treatments. In a long-term study at the Penobscot Experimental Forest in east-...

  6. Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5)

    Science.gov (United States)

    He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif

    2018-02-01

    The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.The nonlim approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit and explicit approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also

  7. An Evaluation of the Role of Ozone, Acid Deposition, and other Airborne Pollutants in the Forests of Eastern North America

    Science.gov (United States)

    J.H.B. Garner; Terry Pagano; Ellis B. Cowling

    1989-01-01

    Existing knowledge on air pollutants that occur in the forests of eastern North America is summarized and interpreted.Resolution is sought to the conflict between the prevailing scientific judgment that ozone and other oxidants are most likely to be damaging eastern forests and the prevailing public perception that acidic and acidifying substances are the most likely...

  8. Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest

    Directory of Open Access Journals (Sweden)

    T. Vesala

    2008-12-01

    Full Text Available The seasonality of the NEE of the northern boreal coniferous forests was investigated by means of inversion modelling using eddy covariance data. Eddy covariance data was used to optimize the biochemical model parameters. Our study sites consisted of three Scots pine (l. Pinus sylvestris forests and one Norway spruce (l. Picea abies forest that were located in Finland and Sweden. We obtained temperature and seasonal dependence for the biochemical model parameters: the maximum rate of carboxylation (Vc(max and the maximum rate of electron transport (Jmax. Both of the parameters were optimized without assumptions about their mutual magnitude. The values obtained for the biochemical model parameters were similar at all the sites during summer time. To describe seasonality, different temperature fits were made for the spring, summer and autumn periods. During summer, average Jmax across the sites was 54.0 μmol m−2 s−1 (variance 31.2 μmol m−2 s−1 and Vc(max was 12.0 μmol m−2 s−1 (variance 6.6 μmol m−2 s−1 at 17°C. The sensitivity of the model to LAI and atmospheric soil water stress was also studied. The impact of seasonality on annual GPP was 17% when only summertime parameterization was used throughout the year compared to seasonally changing parameterizations.

  9. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Goldblum, D. [Wisconsin-Whitewater Univ., Whitewater, WI (United States). Dept. of Geography and Geology; Rigg, L.S. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geography

    2005-11-01

    Recent interest in the impact that future climate change may have on forest communities can be attributed to the fact that migration of tree species has been slow with respect to past climate changes and also because of the high degree of habitat fragmentation that has occurred in the recent past. For that reason, this study examined the implications of climate change on the future of sugar maple, white spruce and balsam fir. These trees represent the 3 dominant forest species at the deciduous-boreal forest ecotone in Ontario, Canada. The analysis was based on the responses of individual species to past monthly temperature and precipitation conditions as well as simulated monthly temperature and precipitation conditions in the study area for the 2080s. The sensitivity of the tree species to past climate with predicted conditions for the 2080 period was also considered. In particular, tree-ring analysis was used to compare local species-specific growth responses with instrumental climate records since 1900 to determine which climate variables control growth rates of these 3 species. Present temperature and precipitation averages were compared with general circulation model (GCM) predictions of monthly temperature and monthly precipitation to evaluate the potential benefit or harm to the dominant tree species over the next 80 years. It was concluded that sugar maple may persist in the medium term up to several centuries, as existing trees pass through their natural life-span without reproductive replacement. However, with extreme climate change, over many centuries, even the sugar maple at this northern range limit might be in jeopardy. White spruce is likely to benefit less, and the dominant balsam fir is likely to experience a decrease in growth potential. These projected changes would enhance the future status of sugar maple at its northern limit and facilitate range expansion northward in response to global warming. Although the study concerns only a small area

  10. Late Quaternary vegetation and climate history of the central Bering land bridge from St. Michael Island, western Alaska

    Science.gov (United States)

    Ager, T.A.

    2003-01-01

    Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ???30,000 14C yr B.P. During the late middle Wisconsin interstadial (???30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ???30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca. 11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  11. Radionuclides in a deciduous forest surrounding a shallow-land-burial site in the eastern United States

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.; McShane, M.C.

    1981-06-01

    The objective of this study was to determine if radioactive materials buried in trenches at the Maxey Flats burial ground in eastern Kentucky have migrated into the surrounding oak-hickory forest. Forest floor litter, minearl soil, and tree leaves were sampled and the radionuclide content measured

  12. Drivers of forest cover change in Eastern Europe and European Russia, 1985–2012

    DEFF Research Database (Denmark)

    Alix-Garcia, Jennifer; Munteanu, Catalina; Zhao, Na

    2016-01-01

    to explain variation in forest loss between countries, nor does trade and price liberalization policy. None of our covariates explain forest regrowth on non-forested land over the period. We conclude that history and land privatization drove important cross-country variation in forest dynamics in the region......The relative importance of geography, history, and policy in driving forest cover change at broad scales remains poorly understood. We examine variation in forest cover dynamics over the period 1985–2012 across 19 countries in Eastern Europe and European Russia in order to shed light on the role...... of these in driving forest cover change after the collapse of socialism. Using a combination of cross-section and panel regression methods, we find that privatization of forest lands increased forest cover loss due to logging, as did increases in agricultural land between 1850 and 1900. Land quality has no power...

  13. Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada

    Science.gov (United States)

    Helbig, M.; Pappas, C.; Sonnentag, O.

    2016-02-01

    Boreal forests cover vast areas of the permafrost zones of North America, and changes in their composition and structure can lead to pronounced impacts on the regional and global climate. We partition the variation in regional boreal tree cover changes between 2000 and 2014 across the Taiga Plains, Canada, into its main causes: permafrost thaw, wildfire disturbance, and postfire regrowth. Moderate Resolution Imaging Spectroradiometer Percent Tree Cover (PTC) data are used in combination with maps of historic fires, and permafrost and drainage characteristics. We find that permafrost thaw is equally important as fire history to explain PTC changes. At the southern margin of the permafrost zone, PTC loss due to permafrost thaw outweighs PTC gain from postfire regrowth. These findings emphasize the importance of permafrost thaw in controlling regional boreal forest changes over the last decade, which may become more pronounced with rising air temperatures and accelerated permafrost thaw.

  14. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options.

    Science.gov (United States)

    Nieminen, Mika; Piirainen, Sirpa; Sikström, Ulf; Löfgren, Stefan; Marttila, Hannu; Sarkkola, Sakari; Laurén, Ari; Finér, Leena

    2018-03-27

    The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.

  15. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  16. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Directory of Open Access Journals (Sweden)

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  17. Forest Dynamics in the Eastern Ghats of Tamil Nadu, India

    Science.gov (United States)

    Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The

  18. Regional coherency of boreal forest growth defines Arctic driftwood provenancing

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Churakova (Sidorova), O.; Düthorn, E.; Eggertsson, O.; Esper, J.; Kirdyanov, A. V.; Knorre, A. A.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 39, sep (2016), s. 3-9 ISSN 1125-7865 Institutional support: RVO:67179843 Keywords : mackenzie river driftwood * tree-ring data * central siberia * origin * archipelago * holocene * ocean * sea * ice * circulation * Driftwood * Arctic * Dendro-provenancing * Boreal Subject RIV: EF - Botanics Impact factor: 2.259, year: 2016

  19. Abundance of juvenile eastern box turtles in manages forest stands

    Science.gov (United States)

    Z. Felix; Y. Wang; H. Czech; C. Schweitzer

    2008-01-01

    Between 2002 and 2005, we used drift fences and artificial pools to sample juvenile eastern box turtles (Terrapene carolina) in northeastern Alabama in forest stands experimentally treated to retain various amounts of overstory trees—clear-cuts and those with 25%–50% and 75%–100% of trees retained.We captured juvenile turtles only in clear-cut and 25%–50% retention...

  20. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat