Montanaro, Ashley; Osborne, Tobias J.
2008-01-01
In this paper we introduce the study of quantum boolean functions, which are unitary operators f whose square is the identity: f^2 = I. We describe several generalisations of well-known results in the theory of boolean functions, including quantum property testing; a quantum version of the Goldreich-Levin algorithm for finding the large Fourier coefficients of boolean functions; and two quantum versions of a theorem of Friedgut, Kalai and Naor on the Fourier spectra of boolean functions. In o...
International Nuclear Information System (INIS)
Monotone Boolean functions are an important object in discrete mathematics and mathematical cybernetics. Topics related to these functions have been actively studied for several decades. Many results have been obtained, and many papers published. However, until now there has been no sufficiently complete monograph or survey of results of investigations concerning monotone Boolean functions. The object of this survey is to present the main results on monotone Boolean functions obtained during the last 50 years
Geometric Operators on Boolean Functions
Frisvad, Jeppe Revall; Falster, Peter
2007-01-01
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propo...
Computational complexity of Boolean functions
International Nuclear Information System (INIS)
Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Cryptographic Boolean functions and applications
Cusick, Thomas W
2009-01-01
Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...
Evolutionary Design of Boolean Functions
Institute of Scientific and Technical Information of China (English)
WANG Zhang-yi; ZHANG Huan-guo; QIN Zhong-ping; MENG Qing-shu
2005-01-01
We use evolutionary computing to synthesize Boolean functions randomly. By using specific crossover and mutation operator in evolving process and modifying search space and fitness function, we get some high non-linearity functions which have other good cryptography characteristics such as autocorrelation etc. Comparing to other heuristic search techniques, evolutionary computing approach is more effective because of global search strategy and implicit parallelism.
A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas
Morizumi, Hiroki
2008-01-01
In this note, we consider the minimum number of NOT operators in a Boolean formula representing a Boolean function. In circuit complexity theory, the minimum number of NOT gates in a Boolean circuit computing a Boolean function $f$ is called the inversion complexity of $f$. In 1958, Markov determined the inversion complexity of every Boolean function and particularly proved that $\\lceil \\log_2(n+1) \\rceil$ NOT gates are sufficient to compute any Boolean function on $n$ variables. As far as we...
Progress in Applications of Boolean Functions
Sasao, Tsutomu
2010-01-01
This book brings together five topics on the application of Boolean functions. They are 1. Equivalence classes of Boolean functions: The number of n-variable functions is large, even for values as small as n = 6, and there has been much research on classifying functions. There are many classifications, each with their own distinct merit. 2. Boolean functions for cryptography: The process of encrypting/decrypting plain text messages often depends on Boolean functions with specific properties. For example, highly nonlinear functions are valued because they are less susceptible to linear attacks.
Quantum algorithms for testing Boolean functions
Directory of Open Access Journals (Sweden)
Erika Andersson
2010-06-01
Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.
Version Spaces and Generalized Monotone Boolean Functions
J.C. Bioch (Cor); T. Ibaraki
2002-01-01
textabstractWe consider generalized monotone functions f: X --> {0,1} defined for an arbitrary binary relation <= on X by the property x <= y implies f(x) <= f(y). These include the standard monotone (or positive) Boolean functions, regular Boolean functions and other interesting functions as speci
Local Correction of Boolean Functions
Alon, Noga
2011-01-01
A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is "close" to an isomorphism f_sigma of f, we can compute f_sigma(x) for any x in Z_2^n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O(2^k)-locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O(k log k) queries suffice.
Sensitivity versus block sensitivity of Boolean functions
Virza, Madars
2010-01-01
Determining relationship between sensitivity and block sensitivity of Boolean functions is of interest for computational complexity theory. We construct a sequence of Boolean functions with bs(f) = 1/2 (s(f))^2+ 1/2 s(f). The best known separation previously was bs(f) = 1/2 (s(f))^2 due to Rubinstein (1995). We also report results of computer search for functions with at most 12 variables.
Boolean-Valued Belief Functions
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
2002-01-01
Roč. 31, č. 2 (2002), s. 153-181. ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002
Boolean nested canalizing functions: a comprehensive analysis
Li, Yuan; Murrugarra, David; Aguilar, Boris; Laubenbacher, Reinhard
2012-01-01
Boolean network models of molecular regulatory networks have been used successfully in computational systems biology. The Boolean functions that appear in published models tend to have special properties, in particular the property of being nested canalizing, a property inspired by the concept of canalization in evolutionary biology. It has been shown that networks comprised of nested canalizing functions have dynamic properties that make them suitable for modeling molecular regulatory networks, namely a small number of (large) attractors, as well as relatively short limit cycles. This paper contains a detailed analysis of this class of functions, based on a novel normal form as polynomial functions over the Boolean field. The concept of layer is introduced that stratifies variables into different classes depending on their level of dominance. Using this layer concept a closed form formula is derived for the number of nested canalizing functions with a given number of variables. Additional metrics analyzed in...
Algorithms for Boolean Function Query Properties
Aaronson, Scott
2001-01-01
We present new algorithms to compute fundamental properties of a Boolean function given in truth-table form. Specifically, we give an O(N^2.322 log N) algorithm for block sensitivity, an O(N^1.585 log N) algorithm for `tree decomposition,' and an O(N) algorithm for `quasisymmetry.' These algorithms are based on new insights into the structure of Boolean functions that may be of independent interest. We also give a subexponential-time algorithm for the space-bounded quantum query complexity of...
Learning Boolean functions with concentrated spectra
Mixon, Dustin G.; Peterson, Jesse
2015-08-01
This paper discusses the theory and application of learning Boolean functions that are concentrated in the Fourier domain. We first estimate the VC dimension of this function class in order to establish a small sample complexity of learning in this case. Next, we propose a computationally efficient method of empirical risk minimization, and we apply this method to the MNIST database of handwritten digits. These results demonstrate the effectiveness of our model for modern classification tasks. We conclude with a list of open problems for future investigation.
Representations of Boolean Functions by Perceptron Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
Prague : Institute of Computer Science AS CR, 2014 - (Kůrková, V.; Bajer, L.; Peška, L.; Vojtáš, R.; Holeňa, M.; Nehéz, M.), s. 68-70 ISBN 978-80-87136-19-5. [ITAT 2014. European Conference on Information Technologies - Applications and Theory /14./. Demänovská dolina (SK), 25.09.2014-29.09.2014] R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : perceptron networks * model complexity * Boolean functions Subject RIV: IN - Informatics, Computer Science
Representing Boolean Functions by Decision Trees
Chikalov, Igor
2011-01-01
A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.
Stratification and enumeration of Boolean functions by canalizing depth
He, Qijun; Macauley, Matthew
2016-01-01
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively "picked off", until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.
Stratification and enumeration of Boolean functions by canalizing depth
He, Qijun
2015-01-01
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.
Constructions of vector output Boolean functions with high generalized nonlinearity
Institute of Scientific and Technical Information of China (English)
KE Pin-hui; ZHANG Sheng-yuan
2008-01-01
Carlet et al. recently introduced generalized nonlinearity to measure the ability to resist the improved correlation attack of a vector output Boolean function. This article presents a construction of vector output Boolean functions with high generalized nonlinearity using the sample space. The relation between the resilient order and generalized nonlinearity is also discussed.
Polynomial threshold functions and Boolean threshold circuits
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.
2013-01-01
secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two threshold circuits. Our main results in regard to this connection are: PTFs of polynomial length and polynomial degree compute exactly the functions computed by THRMAJ circuits. An exponential length lower...... bound for PTFs that holds regardless of degree, thereby extending known lower bounds for THRMAJ circuits. We generalize two-party unbounded error communication complexity to the multi-party number-on-the-forehead setting, and show that communication lower bounds for 3-player protocols would yield size...... lower bounds for THRTHR circuits. We obtain several other results about PTFs. These include relationships between weight and degree of PTFs, and a degree lower bound for PTFs of constant length. We also consider a variant of PTFs over the max-plus algebra. We show that they are connected to PTFs over...
Inadmissible Class of Boolean Functions under Stuck-at Faults
Das, Debesh K.; Chowdhury, Debabani; Bhattacharya, Bhargab B; Sasao, Tsutomu
2013-01-01
Many underlying structural and functional factors that determine the fault behavior of a combinational network, are not yet fully understood. In this paper, we show that there exists a large class of Boolean functions, called root functions, which can never appear as faulty response in irredundant two-level circuits even when any arbitrary multiple stuck-at faults are injected. Conversely, we show that any other Boolean function can appear as a faulty response from an irredundant realization ...
Boolean functions with a vertex-transitive group of automorphisms
Czech Academy of Sciences Publication Activity Database
Savický, Petr
-, submitted 2015 (2016) R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : Boolean Functions * hypercube * isometric transformation * vertex-transitive group of automorphisms Subject RIV: BA - General Mathematics
Optimal Computation of Symmetric Boolean Functions in Collocated Networks
Kowshik, Hemant
2011-01-01
We consider collocated wireless sensor networks, where each node has a Boolean measurement and the goal is to compute a given Boolean function of these measurements. We first consider the worst case setting and study optimal block computation strategies for computing symmetric Boolean functions. We study three classes of functions: threshold functions, delta functions and interval functions. We provide exactly optimal strategies for the first two classes, and a scaling law order-optimal strategy with optimal preconstant for interval functions. We also extend the results to the case of integer measurements and certain integer-valued functions. We use lower bounds from communication complexity theory, and provide an achievable scheme using information theoretic tools. Next, we consider the case where nodes measurements are random and drawn from independent Bernoulli distributions. We address the problem of optimal function computation so as to minimize the expected total number of bits that are transmitted. In ...
On Kolmogorov's superpositions and Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Beiu, V.
1998-12-31
The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.
New Considerations for Spectral Classification of Boolean Switching Functions
Directory of Open Access Journals (Sweden)
J. E. Rice
2011-01-01
Full Text Available This paper presents some new considerations for spectral techniques for classification of Boolean functions. These considerations incorporate discussions of the feasibility of extending this classification technique beyond n=5. A new implementation is presented along with a basic analysis of the complexity of the problem. We also note a correction to results in this area that were reported in previous work.
Constant communication complexity protocols for multiparty accumulative boolean functions
pal, S P; Kumar, S; Das, Sima; Kumar, Somesh; pal, Sudebkumar Prasant
2005-01-01
Generalizing a boolean function from Cleve and Buhrman \\cite{cb:sqec}, we consider the class of {\\it accumulative boolean functions} of the form $f_B(X_1,X_2,..., X_m)=\\bigoplus_{i=1}^n t_B(x_i^1x_i^2... x_i^m)$, where $X_j=(x^j_1,x^j_2,..., x^j_n), 1\\leq j\\leq m$ and $t_B(x_i^1x_i^2... x_i^m)=1$ for input $m$-tuples $x_i^1x_i^2...x_i^m\\in B\\subseteq A\\subseteq \\{0,1\\}^n$, and 0, otherwise. Here the set $A$ is the promise set for function $f_B$. The input vectors $X_j, 1\\leq j\\leq m$ are given to the $m\\geq 2$ parties respectively, who communicate classical bits in a distributed environment so that one of them (say Alice) comes up with the value of the function. We algebraically characterize entanglement assisted LOCC protocols requiring only $m-1$ cbits of communication, for certain classes of such multiparty boolean functions for $m\\geq 2$ parties under appropriate uniform parity promise restrictions on input $m$-tuples $x_i^1x_i^2...x_i^m, 1\\leq i\\leq n$. In contrast, for certain $m$-party accumulative boo...
Complexity of Propositional Abduction for Restricted Sets of Boolean Functions
Creignou, Nadia; Thomas, Michael
2009-01-01
Abduction is a fundamental and important form of non-monotonic reasoning. Given a knowledge base explaining how the world behaves it aims at finding an explanation for some observed manifestation. In this paper we focus on propositional abduction, where the knowledge base and the manifestation are represented by propositional formulae. The problem of deciding whether there exists an explanation has been shown to be SigmaP2-complete in general. We consider variants obtained by restricting the allowed connectives in the formulae to certain sets of Boolean functions. We give a complete classification of the complexity for all considerable sets of Boolean functions. In this way, we identify easier cases, namely NP-complete and polynomial cases; and we highlight sources of intractability. Further, we address the problem of counting the explanations and draw a complete picture for the counting complexity.
Worst-Case Groundness Analysis Using Definite Boolean Functions
Genaim, Samir; Codish, Michael; Howe, Jacob M.
2004-01-01
This note illustrates theoretical worst-case scenarios for groundness analyses obtained through abstract interpretation over the abstract domains of definite (Def) and positive (Pos) Boolean functions. For Def, an example is given for which any Def-based abstract interpretation for groundness analysis follows a chain which is exponential in the number of argument positions as well as in the number of clauses but sub-exponential in the size of the program. For Pos, we strengthen a previous res...
Boolean Functions, Projection Operators and Quantum Error Correcting Codes
Aggarwal, Vaneet; Calderbank, A. Robert
2006-01-01
This paper describes a fundamental correspondence between Boolean functions and projection operators in Hilbert space. The correspondence is widely applicable, and it is used in this paper to provide a common mathematical framework for the design of both additive and non-additive quantum error correcting codes. The new framework leads to the construction of a variety of codes including an infinite class of codes that extend the original ((5,6,2)) code found by Rains [21]. It also extends to o...
Boolean Functions with a Simple Certificate for CNF Complexity
Czech Academy of Sciences Publication Activity Database
Čepek, O.; Kučera, P.; Savický, Petr
2012-01-01
Roč. 160, 4-5 (2012), s. 365-382. ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant ostatní: GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012
Binary higher order neural networks for realizing Boolean functions.
Zhang, Chao; Yang, Jie; Wu, Wei
2011-05-01
In order to more efficiently realize Boolean functions by using neural networks, we propose a binary product-unit neural network (BPUNN) and a binary π-ς neural network (BPSNN). The network weights can be determined by one-step training. It is shown that the addition " σ," the multiplication " π," and two kinds of special weighting operations in BPUNN and BPSNN can implement the logical operators " ∨," " ∧," and " ¬" on Boolean algebra 〈Z(2),∨,∧,¬,0,1〉 (Z(2)={0,1}), respectively. The proposed two neural networks enjoy the following advantages over the existing networks: 1) for a complete truth table of N variables with both truth and false assignments, the corresponding Boolean function can be realized by accordingly choosing a BPUNN or a BPSNN such that at most 2(N-1) hidden nodes are needed, while O(2(N)), precisely 2(N) or at most 2(N), hidden nodes are needed by existing networks; 2) a new network BPUPS based on a collaboration of BPUNN and BPSNN can be defined to deal with incomplete truth tables, while the existing networks can only deal with complete truth tables; and 3) the values of the weights are all simply -1 or 1, while the weights of all the existing networks are real numbers. Supporting numerical experiments are provided as well. Finally, we present the risk bounds of BPUNN, BPSNN, and BPUPS, and then analyze their probably approximately correct learnability. PMID:21427020
Deutsch-Jozsa Algorithm Revisited in the Domain of Cryptographically Significant Boolean Functions
Maitra, S; Maitra, Subhamoy; Mukhopadhyay, Partha
2004-01-01
Boolean functions are important building blocks in cryptography for their wide application in both stream and block cipher systems. For cryptanalysis of such systems one tries to find out linear functions that are correlated to the Boolean functions used in the crypto system. Let $f$ be an $n$-variable Boolean function and its Walsh spectra is denoted by $W_f(\\omega)$ at the point $\\omega \\in \\{0, 1\\}^n$. The Boolean function is available in the form of an oracle. We like to find an $\\omega$ such that $W_f(\\omega) \
Boolean Functions, Quantum Gates, Hamilton Operators, Spin Systems and Computer Algebra
Hardy, Yorick; Steeb, Willi-Hans
2014-01-01
We describe the construction of quantum gates (unitary operators) from boolean functions and give a number of applications. Both non-reversible and reversible boolean functions are considered. The construction of the Hamilton operator for a quantum gate is also described with the Hamilton operator expressed as spin system. Computer algebra implementations are provided.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.
2016-07-01
We present a characterization of short-term stability of Kauffman's N K (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.
Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions
DEFF Research Database (Denmark)
Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne
2005-01-01
We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....
Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables
Chikalov, Igor
2013-01-01
In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.
Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology
Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal
2014-01-01
Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...
Automated Method for Building CNOT Based Quantum Circuits for Boolean Functions
Younes, A; Younes, Ahmed; Miller, Julian
2003-01-01
In this paper we discuss an efficient technique that can implement any given Boolean function as a quantum circuit. The method converts a truth table of a Boolean function to the corresponding quantum circuit using a minimal number of auxiliary qubits. We give examples of some circuits synthesized with this technique. A direct result that follows from the technique is a new way to convert any classical digital circuit to its classical reversible form.
Influence and interaction indexes for pseudo-Boolean functions: a unified least squares approach
Marichal, Jean-Luc
2012-01-01
The Banzhaf power and interaction indexes for a pseudo-Boolean function (or a cooperative game) appear naturally as leading coefficients in the standard least squares approximation of the function by a pseudo-Boolean function of a specified degree. We first observe that this property still holds if we consider approximations by pseudo-Boolean functions depending only on specified variables. We then show that the Banzhaf influence index can also be obtained from the latter approximation problem. Considering certain weighted versions of this approximation problem, we introduce a class of weighted Banzhaf influence indexes, analyze their most important properties, and point out similarities between the weighted Banzhaf influence index and the corresponding weighted Banzhaf interaction index.
DEFF Research Database (Denmark)
Andersen, Henrik Reif; Hulgaard, Henrik
2002-01-01
This paper presents a new data structure called boolean expression diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of binary decision diagrams (BDDs) which can represent any Boolean circuit in linear space. Two algorithms are described for transforming...
Computing Symmetric Boolean Functions by Circuits with Few Exact Threshold Gates
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2007-01-01
We consider constant depth circuits augmented with few exact threshold gates with arbitrary weights. We prove strong (up to exponential) size lower bounds for such circuits computing symmetric Boolean functions. Our lower bound is expressed in terms of a natural parameter, the balance, of symmetr...
From Boolean Network Model to Continuous Model Helps in Design of Functional Circuits
Bin Shao; Xiang Liu; Dongliang Zhang; Jiayi Wu; Qi Ouyang
2015-01-01
Computational circuit design with desired functions in a living cell is a challenging task in synthetic biology. To achieve this task, numerous methods that either focus on small scale networks or use evolutionary algorithms have been developed. Here, we propose a two-step approach to facilitate the design of functional circuits. In the first step, the search space of possible topologies for target functions is reduced by reverse engineering using a Boolean network model. In the second step, ...
Simple Max-Min Ant Systems and the Optimization of Linear Pseudo-Boolean Functions
Kötzing, Timo; Sudholt, Dirk; Wagner, Markus
2010-01-01
With this paper, we contribute to the understanding of ant colony optimization (ACO) algorithms by formally analyzing their runtime behavior. We study simple MAX-MIN ant systems on the class of linear pseudo-Boolean functions defined on binary strings of length 'n'. Our investigations point out how the progress according to function values is stored in pheromone. We provide a general upper bound of O((n^3 \\log n)/ \\rho) for two ACO variants on all linear functions, where (\\rho) determines the pheromone update strength. Furthermore, we show improved bounds for two well-known linear pseudo-Boolean functions called OneMax and BinVal and give additional insights using an experimental study.
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
On a hierarchy of Boolean functions hard to compute in constant depth
Bernasconi, Anna
2001-01-01
Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models of computation.\\par This work represents a step in this direction: we define a combinatorial property that makes Boolean functions ''\\emphhard'' to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new lower bounds ...
A quantum speedup in machine learning: Finding a N-bit Boolean function for a classification
Yoo, Seokwon; Bang, Jeongho; Lee, Changhyoup; Lee, Jinhyoung
2013-01-01
We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate sol...
DEFF Research Database (Denmark)
Andersen, Henrik Reif; Hulgaard, Henrik
This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable...... properties of BDDs. Two algorithms are described for transforming a BED into a reduced ordered BDD. One closely mimics the BDD apply-operator while the other can exploit the structural information of the Boolean expression. The efficacy of the BED representation is demonstrated by verifying that the...
On bent and semi-bent quadratic Boolean functions
DEFF Research Database (Denmark)
Charpin, P.; Pasalic, Enes; Tavernier, C.
2005-01-01
correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize their...... results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified....... The treatment of semi-bent functions is then presented in a much wider framework. We show how bent and semi-bent functions are interlinked, that is, the concatenation of two suitably chosen semi-bent functions will yield a bent function and vice versa. Finally, this approach is generalized so that the...
Detecting small attractors of large Boolean networks by function-reduction-based strategy.
Zheng, Qiben; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin
2016-04-01
Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean functions by extending a partial gene activity profile (GAP). Not only does this process delete inconsistent subsequences in truth tables, it also directly determines values for some nodes not extended, which means it can abandon the partial GAPs that cannot lead to an attractor as early as possible. The results of simulation show that the proposed algorithm can detect small attractors with length p = 4 in BNs of up to 200 nodes with average indegree K = 2. PMID:26997659
bent-negabent 函数的构造%Constructions of bent-negabent Boolean functions
Institute of Scientific and Technical Information of China (English)
卓泽朋; 崇金凤; 魏仕民
2015-01-01
给出了一种新的 negabent 函数的构造，基于此构造和已有的 bent 函数的构造，得到了一种 bent-negabent 函数的构造；分析了一类由4个函数级联所得函数的性质，给出了这类函数为 negabent 函数的必要条件；给出了bent-negabent 函数的一种直和构造。%A new method to construct negabent function was provided.Based on it,a construction of bent-negabent function was obtained.And then,the special Boolean function by concatenation was investigated.A necessary condi-tions for this Boolean function to be a negabent function was presented.Finally,the direct sum construction of bent-negabent function is given.
Gavinsky, D; Kempe, J; Gavinsky, Dmitry; Kempe, Julia; Wolf, Ronald de
2006-01-01
We give an exponential separation between one-way quantum and classical communication complexity for a Boolean function. Earlier such a separation was known only for a relation. A very similar result was obtained earlier but independently by Kerenidis and Raz [KR06]. Our version of the result gives an example in the bounded storage model of cryptography, where the key is secure if the adversary has a certain amount of classical storage, but is completely insecure if he has a similar amount of quantum storage.
A quantum speedup in machine learning: finding an N-bit Boolean function for a classification
International Nuclear Information System (INIS)
We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)
A quantum speedup in machine learning: finding an N-bit Boolean function for a classification
Yoo, Seokwon; Bang, Jeongho; Lee, Changhyoup; Lee, Jinhyoung
2014-10-01
We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution.
Quantum-state filtering applied to the discrimination of Boolean functions
International Nuclear Information System (INIS)
Quantum-state filtering is a variant of the unambiguous state discrimination problem: the states are grouped in sets and we want to determine to which particular set a given input state belongs. The simplest case, when the N given states are divided into two subsets and the first set consists of one state only while the second consists of all of the remaining states, is termed quantum-state filtering. We derived previously the optimal strategy for the case of N nonorthogonal states, { vertical bar ψ1>,..., vertical bar ψN>}, for distinguishing vertical bar ψ1> from the set { vertical bar ψ2>,..., vertical bar ψN>} and the corresponding optimal success and failure probabilities. In a previous paper [Phys. Rev. Lett. 90, 257901 (2003)], we sketched an application of the results to probabilistic quantum algorithms. Here we fill the gaps and give the complete derivation of the probabilistic quantum algorithm that can optimally distinguish between two classes of Boolean functions, that of the balanced functions and that of the biased functions. The algorithm is probabilistic, it fails sometimes but when it does it lets us know that it did. Our approach can be considered as a generalization of the Deutsch-Jozsa algorithm that was developed for the discrimination of balanced and constant Boolean functions
Quantum tests for the linearity and permutation invariance of Boolean functions
International Nuclear Information System (INIS)
The goal in function property testing is to determine whether a black-box Boolean function has a certain property or is ε-far from having that property. The performance of the algorithm is judged by how many calls need to be made to the black box in order to determine, with high probability, which of the two alternatives is the case. Here we present two quantum algorithms, the first to determine whether the function is linear and the second to determine whether it is symmetric (invariant under permutations of the arguments). Both require order ε-2/3 calls to the oracle, which is better than known classical algorithms. In addition, in the case of linearity testing, if the function is linear, the quantum algorithm identifies which linear function it is. The linearity test combines the Bernstein-Vazirani algorithm and amplitude amplification, while the test to determine whether a function is symmetric uses projective measurements and amplitude amplification.
Directory of Open Access Journals (Sweden)
Yih-Lon Lin
2013-01-01
Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.
Stoyanov, B. P.; Kordov, K. M.
2013-10-01
We propose a modified encryption scheme based on 256 bit bent Boolean function and Feedback with Carry Shift Register. We estimated the output bits properties by the NIST, DIEHARD and ENT test packages. The results of the cryptanalysis show that the new cryptographic scheme provides an exclusive level of data security.
A solution to the surface intersection problem. [Boolean functions in geometric modeling
Timer, H. G.
1977-01-01
An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.
On the Extension of Pseudo-Boolean Functions for the Aggregation of Interacting Criteria
Grabisch, Michel; Vansnick, Jean-Claude
2008-01-01
The paper presents an analysis on the use of integrals defined for non-additive measures (or capacities) as the Choquet and the \\Sipos{} integral, and the multilinear model, all seen as extensions of pseudo-Boolean functions, and used as a means to model interaction between criteria in a multicriteria decision making problem. The emphasis is put on the use, besides classical comparative information, of information about difference of attractiveness between acts, and on the existence, for each point of view, of a ``neutral level'', allowing to introduce the absolute notion of attractive or repulsive act. It is shown that in this case, the Sipos integral is a suitable solution, although not unique. Properties of the Sipos integral as a new way of aggregating criteria are shown, with emphasis on the interaction among criteria.
布尔函数的迹单项式逼近%Trace Function Monomials Approximation of Boolean Functions
Institute of Scientific and Technical Information of China (English)
祁传达; 袁小转; 邵辉
2014-01-01
A new spectrum of Boolean function was presented by monomial trace function instead of linear func -tion.The new spectrum was called as d-Walsh cyclic spectrum .Trace function monomials best approximation of Boole-an function was investigated and found by computing d-Walsh cyclic spectrum and the computational complexity was just 22n/n .By monomial trace function approximating the feedforward function of stream cipher , it is possible to com-mit a decimation attack on stream cipher , which may have important implications for cipher design and analysis .%提出了用单项迹函数代替线性函数来定义的布尔函数一种新的谱值，称之为布尔函数的d-Walsh循环谱，通过计算d-Walsh循环谱来研究布尔函数的最佳单项迹函数逼近，使用该方法的计算复杂性仅为22n/n 。利用单项迹函数逼近序列密码的前馈函数可实现对序列密码的采样攻击，对序列密码设计与分析具有重要意义。
A new class of hyper-bent Boolean functions in binomial forms
Wang, Baocheng; Qi, Yanfeng; Yang, Yixian; Xu, Maozhi
2011-01-01
Bent functions, which are maximally nonlinear Boolean functions with even numbers of variables and whose Hamming distance to the set of all affine functions equals $2^{n-1}\\pm 2^{\\frac{n}{2}-1}$, were introduced by Rothaus in 1976 when he considered problems in combinatorics. Bent functions have been extensively studied due to their applications in cryptography, such as S-box, block cipher and stream cipher. Further, they have been applied to coding theory, spread spectrum and combinatorial design. Hyper-bent functions, as a special class of bent functions, were introduced by Youssef and Gong in 2001, which have stronger properties and rarer elements. Many research focus on the construction of bent and hyper-bent functions. In this paper, we consider functions defined over $\\mathbb{F}_{2^n}$ by $f_{a,b}:=\\mathrm{Tr}_{1}^{n}(ax^{(2^m-1)})+\\mathrm{Tr}_{1}^{4}(bx^{\\frac{2^n-1}{5}})$, where $n=2m$, $m\\equiv 2\\pmod 4$, $a\\in \\mathbb{F}_{2^m}$ and $b\\in\\mathbb{F}_{16}$. When $a\\in \\mathbb{F}_{2^m}$ and $(b+1)(b^4+b...
Minimal Sign Representation of Boolean Functions: Algorithms and Exact Results for Low Dimensions.
Sezener, Can Eren; Oztop, Erhan
2015-08-01
Boolean functions (BFs) are central in many fields of engineering and mathematics, such as cryptography, circuit design, and combinatorics. Moreover, they provide a simple framework for studying neural computation mechanisms of the brain. Many representation schemes for BFs exist to satisfy the needs of the domain they are used in. In neural computation, it is of interest to know how many input lines a neuron would need to represent a given BF. A common BF representation to study this is the so-called polynomial sign representation where [Formula: see text] and 1 are associated with true and false, respectively. The polynomial is treated as a real-valued function and evaluated at its parameters, and the sign of the polynomial is then taken as the function value. The number of input lines for the modeled neuron is exactly the number of terms in the polynomial. This letter investigates the minimum number of terms, that is, the minimum threshold density, that is sufficient to represent a given BF and more generally aims to find the maximum over this quantity for all BFs in a given dimension. With this work, for the first time exact results for four- and five-variable BFs are obtained, and strong bounds for six-variable BFs are derived. In addition, some connections between the sign representation framework and bent functions are derived, which are generally studied for their desirable cryptographic properties. PMID:26079754
Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell
Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng
2016-06-01
Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis
Quantum-state filtering applied to the discrimination of Boolean functions
Bergou, J A; Bergou, Janos A.; Hillery, Mark
2005-01-01
Quantum state filtering is a variant of the unambiguous state discrimination problem: the states are grouped in sets and we want to determine to which particular set a given input state belongs.The simplest case, when the N given states are divided into two subsets and the first set consists of one state only while the second consists of all of the remaining states, is termed quantum state filtering. We derived previously the optimal strategy for the case of N non-orthogonal states, {|\\psi_{1} >, ..., |\\psi_{N} >}, for distinguishing |\\psi_1 > from the set {|\\psi_2 >, ..., |\\psi_N >} and the corresponding optimal success and failure probabilities. In a previous paper [PRL 90, 257901 (2003)], we sketched an appplication of the results to probabilistic quantum algorithms. Here we fill in the gaps and give the complete derivation of the probabilstic quantum algorithm that can optimally distinguish between two classes of Boolean functions, that of the balanced functions and that of the biased functions. The algor...
Cardinal invariants on Boolean algebras
Monk, J Donald
2014-01-01
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...
Boolean Differential Operators
Catumba, Jorge; Diaz, Rafael
2012-01-01
We consider four combinatorial interpretations for the algebra of Boolean differential operators. We show that each interpretation yields an explicit matrix representation for Boolean differential operators.
Cottrell, Seth S.
In previous papers about searches on star graphs several patterns have been made apparent; the speed up only occurs when graphs are ''tuned'' so that their time step operators have degenerate eigenvalues, and only certain initial states are effective. More than that, the searches are never faster than order square root of N time. In this thesis the problem is defined rigorously, the causes for all of these patterns are identified, sufficient and necessary conditions for quadratic-speed searches for any connected subgraph are demonstrated, the tolerance of these conditions is investigated, and it is shown that (unfortunately) we can do no better than order square root of N time. Along the way, a useful formalism is established that may be useful in future work involving highly symmetric graphs. The tools and techniques so derived are then used to demonstrate that tree graphs can be used for the computation of Boolean functions. The philosophy of Farhi's work on the continuous-time NAND tree is applied to a discrete-time walk with any (AND, OR, NAND, or NOR) gate at each vertex. Tentative results show that the vast majority of possible Boolean functions on N bits can be calculated in order square root of N time.
Characterization Of any Non-linear Boolean function Using A Set of Linear Operators
Sahoo, Sudhakar; Choudhury, Pabitra Pal; Chakraborty, Mithun
2008-01-01
Global dynamics of a non-linear Cellular Automata is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In the past efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian Matrices. In this paper two different efforts have been made: first we try to systematize non-linear CA evolution in the light of deviant states and non-deviant states. For all the non-devian...
布尔函数与形态算子关系的研究%On the Relationship between Boolean Function and Morphology Operator
Institute of Scientific and Technical Information of China (English)
段汕; 罗敬; 徐文; 贺兴
2013-01-01
以布尔代数理论和欧式空间中二值形态变换理论为基础，通过布尔函数引入一个结构化映射，对二值形态变换的基本运算(腐蚀、膨胀)进行了描述，探讨了布尔函数与形态变换的关系，以期为二值形态变换的扩展提供新的途径。%This paper presents binary morphological transformation ( corrosion and expansion) on the basis of the Boolean algebra theory and the theory of binary morphological transformation in Euclidean space, and introduces a structural mapping resting on Boolean function, then researches the relationship between Boolean function and morphological transformation, which will provide a new way for extending morphological transformation.
Method of Transfer from Logical Schemes of Algorithms to Boolean Functions
Dyachenko, V. F.
1964-01-01
The author discusses a method for obtaining the Boolean functions describing the structure of a control circuit by means of AS operators whose sequence of operations is given in the form of a logical scheme or matrix scheme for an algorithm. An example of AS synthesis is given.
A finite alternation result for reversible boolean circuits
Selinger, Peter
2016-01-01
We say that a reversible boolean function on n bits has alternation depth d if it can be written as the sequential composition of d reversible boolean functions, each of which acts only on the top n-1 bits or on the bottom n-1 bits. We show that every reversible boolean function of n >= 4 bits has alternation depth 9.
Boolean reasoning the logic of boolean equations
Brown, Frank Markham
2012-01-01
A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.
Semenov, Alexander; Zaikin, Oleg
2016-01-01
In this paper we propose an approach for constructing partitionings of hard variants of the Boolean satisfiability problem (SAT). Such partitionings can be used for solving corresponding SAT instances in parallel. For the same SAT instance one can construct different partitionings, each of them is a set of simplified versions of the original SAT instance. The effectiveness of an arbitrary partitioning is determined by the total time of solving of all SAT instances from it. We suggest the approach, based on the Monte Carlo method, for estimating time of processing of an arbitrary partitioning. With each partitioning we associate a point in the special finite search space. The estimation of effectiveness of the particular partitioning is the value of predictive function in the corresponding point of this space. The problem of search for an effective partitioning can be formulated as a problem of optimization of the predictive function. We use metaheuristic algorithms (simulated annealing and tabu search) to move from point to point in the search space. In our computational experiments we found partitionings for SAT instances encoding problems of inversion of some cryptographic functions. Several of these SAT instances with realistic predicted solving time were successfully solved on a computing cluster and in the volunteer computing project SAT@home. The solving time agrees well with estimations obtained by the proposed method. PMID:27190753
Boolean Orthogonalizing Combination Methods
Directory of Open Access Journals (Sweden)
Yavuz Can
2015-05-01
Full Text Available In this paper a new logical operation method called “ presented. It is used to calculate the difference, but also the complement of a function as well as the EXOR and EXNOR of two minterms respectively two ternary respectively two ternary-vector logical operation method called “orthogonal OR advantages of both methods are their results, which are already available form that has an essential advantage for continuing calculations. Since it applies, an orthogonal disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean differential calculus will be simplified.
Cardinal invariants on Boolean algebras
Monk, J Donald
2009-01-01
Deals with cardinal number valued functions defined for any Boolean algebra. This title considers the behavior of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. It covers topics such as ultraproducts and Fedorchukis theorem
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Research on non-line Boolean function realization technology%非线性布尔函数实现技术研究
Institute of Scientific and Technical Information of China (English)
常忠祥; 戴紫彬; 李伟; 刘楠; 戴强
2014-01-01
To improve the processing efficiency of nonline Boolean function in processor,a non-line Boolean function model was established based on extract shift and and-XOR.The model used the decimation shift operation for selecting the variables in-volved in operations,and-XOR operation was utilized to achieve different times and XOR between items.Finally,performances evaluation and adaptation functions were presented.The results showed that computational model of non-line Boolean function could significantly reduce the number of operations required by the non-line Boolean function.%为了提升处理器中非线性布尔函数处理效率，建立了以抽取移位和与-异或为基础的非线性布尔函数计算模型。利用抽取移位操作选择非线性布尔函数中参与运算的变量，利用与-异或操作实现不同次数与项之间的异或运算。对设计的单元进行了性能评估和函数适配，测试结果表明，设计的非线性布尔函数计算模型能够大幅降低实现非线性布尔函数所需的运算次数。
Construction of 1-Resilient Boolean Functions with Optimal Algebraic Immunity and Good Nonlinearity
Institute of Scientific and Technical Information of China (English)
Sen-Shan Pan; Xiao-Tong Fu; Wei-Guo Zhangx
2011-01-01
This paper presents a construction for a class of 1-resilient functions with optimal algebraic immunity on an even number of variables. The construction is based on the concatenation of two balanced functions in associative classes. For some n, a part of 1-resilient functions with maximum algebraic immunity constructed in the paper can achieve almost optimal nonlinearity. Apart from their high nonlinearity, the functions reach Siegenthaler's upper bound of algebraic degree. Also a class of 1-resilient functions on any number n ＞ 2 of variables with at least sub-optimal algebraic immunity is provided.
Methods for the Analysis of Evolutionary Algorithms on Pseudo-Boolean Functions
Wegener, Ingo
2001-01-01
Many experiments ave shown that evolutionary algorithms are useful randomized search heuristics for optimization problems. In order to learn more about the reasons for their efficiency and in order to obtain proven results on evolutionary algorithms it is necessary to develop a theory of evolutionary algorithms. Such a theory is still in its infancy. A major part of a theory is the analysis of different variants of evolutionary algorithms on selected functions. Several results of this kind ha...
Effect of memory in non-Markovian Boolean networks
Ebadi, Haleh; Ausloos, Marcel; Jafari, GholamReza
2016-01-01
One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.
Boolean filters of distributive lattices
Directory of Open Access Journals (Sweden)
M. Sambasiva Rao
2013-07-01
Full Text Available In this paper we introduce the notion of Boolean filters in a pseudo-complemented distributive lattice and characterize the class of all Boolean filters. Further a set of equivalent conditions are derived for a proper filter to become a prime Boolean filter. Also a set of equivalent conditions is derived for a pseudo-complemented distributive lattice to become a Boolean algebra. Finally, a Boolean filter is characterized in terms of congruences.
Combinational Logic-Level Verification using Boolean Expression Diagrams
DEFF Research Database (Denmark)
Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif
1997-01-01
Boolean Expression Diagrams (BEDs) is a new data structure for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) that are capable of representing any Boolean circuit in linear space and still maintain many of the desirable properties of...... BDDs. This paper demonstrates that BEDs are well suited for solving the combinational logic-level verification problem which is, given two combinational circuits, to determine whether they implement the same Boolean functions. Based on all combinational circuits in the ISCAS 85 and LGSynth 91...
Algebraic Degree of a Class Boolean Function Annihilators%一类布尔函数零化子的代数次数
Institute of Scientific and Technical Information of China (English)
祁传达; 俞迎达
2012-01-01
The effectiveness of algebraic attacks of stream ciphers depends on the algebraic degrees of annihilators of nonlinear Boolean functions.But it remains a difficult problem to construct annihilators with low degree for a given Boolean function. In this paper, we give a new proof of a result on the existence of the n-k degree annihilators formulated by Zhang Wenying,et al,and correct an error in their original proof.%序列密码代数攻击的成效取决于所使用的非线性布尔函数零化子的代数次数,但如何构造一个给定函数的低次数零化子仍是一个难题.本文对张文英等人提出的关于一类布尔函数存在n-k次零化子的结论给出了新的证明,弥补了原文证明不严密的缺陷.
A complexity theory based on Boolean algebra
DEFF Research Database (Denmark)
Skyum, Sven; Valiant, Leslie
1985-01-01
A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...
Drossel, Barbara
2007-01-01
This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.
Boolean networks with reliable dynamics
Peixoto, Tiago P
2009-01-01
We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen...
Fault Tolerant Boolean Satisfiability
Roy, A
2011-01-01
A delta-model is a satisfying assignment of a Boolean formula for which any small alteration, such as a single bit flip, can be repaired by flips to some small number of other bits, yielding a new satisfying assignment. These satisfying assignments represent robust solutions to optimization problems (e.g., scheduling) where it is possible to recover from unforeseen events (e.g., a resource becoming unavailable). The concept of delta-models was introduced by Ginsberg, Parkes and Roy (AAAI 1998), where it was proved that finding delta-models for general Boolean formulas is NP-complete. In this paper, we extend that result by studying the complexity of finding delta-models for classes of Boolean formulas which are known to have polynomial time satisfiability solvers. In particular, we examine 2-SAT, Horn-SAT, Affine-SAT, dual-Horn-SAT, 0-valid and 1-valid SAT. We see a wide variation in the complexity of finding delta-models, e.g., while 2-SAT and Affine-SAT have polynomial time tests for delta-models, testing w...
Algorithms for Weighted Boolean Optimization
Manquinho, Vasco; Marques-Silva, Joao; Planes Cid, Jordi
2009-01-01
The Pseudo-Boolean Optimization (PBO) and Maximum Satisfiability (MaxSAT) problems are natural optimization extensions of Boolean Satisfiability (SAT). In the recent past, different algorithms have been proposed for PBO and for MaxSAT, despite the existence of straightforward mappings from PBO to MaxSAT and viceversa. This papers proposes Weighted Boolean Optimization (WBO), a new uni- fied framework that aggregates and extends PBO and MaxSAT. In addition, the paper proposes...
IMS Algorithm for Learning Representations in Boolean Neural Networks
Biswas, Nripendra N; Murthy, TVMK; Chandrasekhar, M.
1991-01-01
A new algorithm for learning representations in Boolean neural networks, where the inputs and outputs are binary bits, is presented. The algorithm has become feasible because of a newly discovered theorem which states that any non-linearly separable Boolean function can be expressed as a convergent series of linearly separable functions connected by the logical OR (+) and the logical INHIBIT (-) operators. The formation of the series is carried out by many important properties exhibited by th...
Institute of Scientific and Technical Information of China (English)
陈银冬; 陆佩忠
2009-01-01
A second order recursive construction of even variables Boolean function with optimum algebraic immunity was proposed. It could be observed that the constructed Boolean functions have well cryptographic properties, such as good balance, high algebraic degree and high nonlinearity. Further more, it was generalized to a class of constructions for Boolean functions with optimum algebraic immunity.%提出了构造偶数变元代数免疫最优的布尔函数的方法,这是一个二阶的递归构造方法.分析表明,利用该方法构造而得到的布尔函数具有优良的密码学特性,比如具有较好的平衡性,较高的代数次数和非线性度等.最后,还对该构造方法进行了推广,进一步导出了递归构造偶数变元代数免疫最优布尔函数的一类方法.
Symmetry in Boolean Satisfiability
Directory of Open Access Journals (Sweden)
Fadi A. Aloul
2010-06-01
Full Text Available This paper reviews recent approaches on how to accelerate Boolean Satisfiability (SAT search by exploiting symmetries in the problem space. SAT search algorithms traverse an exponentially large search space looking for an assignment that satisfies a set of constraints. The presence of symmetries in the search space induces equivalence classes on the set of truth assignments. The goal is to use symmetries to avoid traversing all assignments by constraining the search to visit a few representative assignments in each equivalence class. This can lead to a significant reduction in search runtime without affecting the completeness of the search.
Investigating Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Neruda, Roman; Frolov, A. A.
- : ACM, 2008 - (Ding, C.; Li, T.; Zhu, S.), s. 18-25 ISBN 978-1-60558-307-5. [DMMT'08. Workshop in Conjunction with SIGKDD 2008 /14./. Las Vegas (US), 24.08.2008-24.08.2008] Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * nonnegative matrix factorization * neural networks * information retrieval * data mining * binary data Subject RIV: BB - Applied Statistics, Operational Research http://users.cs.fiu.edu/~taoli/kdd08-workshop/DMMT08-Proceedings.pdf
Fault Tolerant Boolean Satisfiability
Roy, A
2011-01-01
A delta-model is a satisfying assignment of a Boolean formula for which any small alteration, such as a single bit flip, can be repaired by flips to some small number of other bits, yielding a new satisfying assignment. These satisfying assignments represent robust solutions to optimization problems (e.g., scheduling) where it is possible to recover from unforeseen events (e.g., a resource becoming unavailable). The concept of delta-models was introduced by Ginsberg, Parkes and Roy (AAAI 1998...
Approximate Reasoning with Fuzzy Booleans
Broek, van den P.M.; Noppen, J.A.R.
2004-01-01
This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante
Cho Kwang-Hyun; Choi Sun; Kwon Yung-Keun
2007-01-01
Abstract Background A number of studies on biological networks have been carried out to unravel the topological characteristics that can explain the functional importance of network nodes. For instance, connectivity, clustering coefficient, and shortest path length were previously proposed for this purpose. However, there is still a pressing need to investigate another topological measure that can better describe the functional importance of network nodes. In this respect, we considered a fee...
Uezu, Tatsuya; Kiyokawa, Shuji
2016-06-01
We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α {C})bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.
Techniques for solving Boolean equation systems
Keinänen, Misa
2006-01-01
Boolean equation systems are ordered sequences of Boolean equations decorated with least and greatest fixpoint operators. Boolean equation systems provide a useful framework for formal verification because various specification and verification problems, for instance, μ-calculus model checking can be represented as the problem of solving Boolean equation systems. The general problem of solving a Boolean equation system is a computationally hard task, and no polynomial time solution technique ...
The Influence of Canalization on the Robustness of Boolean Networks
Kadelka, Claus; Laubenbacher, Reinhard
2016-01-01
Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by $k$-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to $c$-sensitivity and provides formulas for the activities and $c$-sensitivity of general $k$-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the $c$-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally eff...
Institute of Scientific and Technical Information of China (English)
厉晓华; 赵建华
2016-01-01
To simplify the process for calculating c‐derivative of Boolean function with don't‐care‐terms in the Boole‐an logic algebra system based on AND‐OR‐NOT operation ,the K‐map method for calculating the first and second‐order c‐derivative of Boolean function with don't‐care‐terms is proposed according to the definition of c‐derivative . The c‐derivative is calculated by folding the square corresponds of the K‐map ,and then conducts OR operation .The application results show that the presented method is simple and convenient for operation .The simplest AND/OR expansion of c‐derivative of Boolean function with don't‐care‐terms can also be obtained from K‐map .%为简化与‐或‐非代数系统中含无关项逻辑函数布尔c‐导数的计算过程，从逻辑函数布尔c‐导数的定义出发，提出了计算含无关项一阶布尔c‐导数和二阶布尔c‐导数的K图方法。该方法通过折叠映射K图中的填入格值，并对相应格值进行“或”运算以计算含无关项布尔c‐导数。应用实例表明，该方法直观有效，且能直接得到布尔c‐导数的最简与／或式。
Generalized join-hemimorphisms on Boolean algebras
Sergio Celani
2003-01-01
We introduce the notions of generalized join-hemimorphism and generalized Boolean relation as an extension of the notions of join-hemimorphism and Boolean relation, respectively. We prove a duality between these two notions. We will also define a generalization of the notion of Boolean algebra with operators by considering a finite family of Boolean algebras endowed with a generalized join-hemimorphism. Finally, we define suitable notions of subalgebra, congruences, Boole...
Boolean Operations on Conic Polygons
Institute of Scientific and Technical Information of China (English)
Yong-Xi Gong; Yu Liu; Lun Wu; Yu-Bo Xie
2009-01-01
An algorithm for Boolean operations on conic polygons is proposed. Conic polygons are polygons consisting of conic segments or bounded conics with directions. Preliminaries of Boolean operations on general polygons are presented. In our algorithm, the intersection points and the topological relationships between two conic polygons are computed. Boundaries are obtained by tracking path and selecting uncrossed boundaries following rule tables to build resulting conic polygons.We define a set of rules for the intersection, union, and subtraction operations on conic polygons. The algorithm considers degeneration cases such as homology, complement, interior, and exterior. The algorithm is also evaluated and implemented.
Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Zakarias, Sarah Nouhad Haddad
We present a protocol for securely computing a Boolean circuit $C$ in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming access to a preprocessing functionality that is not given the inputs to compute on. For a large number of players the work done by...... each player is the same as the work needed to compute the circuit in the clear, up to a constant factor. Our protocol is the first to obtain these properties for Boolean circuits. On the technical side, we develop new homomorphic authentication schemes based on asymptotically good codes with an...
Constant-overhead secure computation of Boolean circuits using preprocessing
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Zakarias, S.
2013-01-01
We present a protocol for securely computing a Boolean circuit C in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming a preprocessing functionality that is not given the inputs. For a large number of players the work for each player is the same as...
Construction of Generalized Bent Function Based on Boolean Function Normality%基于布尔函数正规性的广义Bent函数构造
Institute of Scientific and Technical Information of China (English)
许广魁; 李远华; 马凤丽
2012-01-01
基于广义Bent函数的正规性,结合子空间上的特征函数,分析广义正规Bent函数的Chrestenson谱特征.利用间接构造Bent函数的方法,在整数模m的剩余类环Zm以及p元域Zp上,给出2类新的n元广义Bent函数.理论分析结果表明,与传统构造方法相比,该方法可构造出更多的n元广义Bent函数.%This paper is based on the normality of generalized Bent functions, combines the characteristic functions of linear subspace. The Chrestenson spectral characteristics of generalized nonnal Bent functions are studied. According to the indirect construction method, two new classes of generalized Bent functions of n variables over integers module m residue class Zm and p meta-field Zp are presented. Theory analysis result shows that more generalized Bent functions can be constructed by using the proposed construction method compared with the traditional construction method.
Terse Integer Linear Programs for Boolean Optimization
Directory of Open Access Journals (Sweden)
Christoph Buchheim
2009-05-01
Full Text Available We present a new polyhedral approach to nonlinear Boolean optimization. Compared to other methods, it produces much smaller integer programming models, making it more efficient from a practical point of view. We mainly obtain this by two different ideas: first, we do not require the objective function to be in any normal form. The transformation into a normal form usually leads to the introduction of many additional variables or constraints. Second, we reduce the problem to the degree-two case in a very efficient way, by slightly extending the dimension of the original variable space. The resulting model turns out to be closely related to the maximum cut problem; we show that the corresponding polytope is a face of a suitable cut polytope in most cases. In particular, our separation problem reduces to the one for the maximum cut problem. In practice, the approach appears to be very competitive for unconstrained Boolean optimization problems. First experimental results, which have been obtained for some particularly hard instances of the Max-SAT Evaluation 2007, show that our very general implementation can outperform even special-purpose Max-SAT solvers. The software is accessible online under “we.logoptimize.it”.
Improving the User Query for the Boolean Model Using Genetic Algorithms
Nassar, Mohammad Othman; Mashagba, Eman Al
2011-01-01
The Use of genetic algorithms in the Information retrieval (IR) area, especially in optimizing a user query in Arabic data collections is presented in this paper. Very little research has been carried out on Arabic text collections. Boolean model have been used in this research. To optimize the query using GA we used different fitness functions, different mutation strategies to find which is the best strategy and fitness function that can be used with Boolean model when the data collection is the Arabic language. Our results show that the best GA strategy for the Boolean model is the GA (M2, Precision) method.
Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators
Drucker, Andrew
2012-01-01
We study the circuit complexity of Boolean operators, i.e., collections of Boolean functions defined over a common input. Our focus is the well-studied model in which arbitrary Boolean functions are allowed as gates, and in which a circuit's complexity is measured by its depth and number of wires. We show sharp limitations of several existing lower-bound methods for this model. First, we study an information-theoretic lower-bound method due to Cherukhin, that yields bounds of form $\\Omega_d(n...
Improving the User Query for the Boolean Model UsingGenetic Algorithms
Directory of Open Access Journals (Sweden)
Mohammad Othman Nassar
2011-09-01
Full Text Available The Use of genetic algorithms in the Information retrieval (IR area, especially in optimizing a user query in Arabic data collections is presented in this paper. Very little research has been carried out on Arabic text collections. Boolean model have been used in this research. To optimize the query using GA we used different fitness functions, different mutation strategies to find which is the best strategy and fitness function that can be used with Boolean model when the data collection is the Arabic language. Our results show that the best GA strategy for the Boolean model is the GA (M2, Precision method.
Boolean Reasoning with Graphs of Partitions
Goossens, Daniel
2010-01-01
version longue du papier court "A Dynamic Boolean Knowledge Base" accepté à ICTAI 2010. This paper presents an implemented architecture for easy learning, reorganizing and navigation into a Boolean knowledge base. As the base grows with new definitions and constraints, it is normalized by the closure of a completion operator. This normalization allows arbitrary formats for Boolean expressions. It ensures basic reasoning abilities and spontaneously organizes intermingled taxonomies of conce...
Model Checking of Boolean Process Models
Schneider, Christoph; Wehler, Joachim
2011-01-01
In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to mode...
Boolean networks as modelling framework
Directory of Open Access Journals (Sweden)
Florian eGreil
2012-08-01
Full Text Available In a network, the components of a given system are represented as nodes, the interactions are abstracted as links between the nodes. Boolean networks refer to a class of dynamics on networks, in fact it is the simplest possible dynamics where each node has a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by numerical experiments. The present article focuses on the theoretical concept of relevant components and the immediate application in plant biology, references for more in-depths treatment of the mathematical details are also given.
Boolean Search: Current State and Perspectives.
Frants, Valery I.; Shapiro, Jacob; Taksa, Isak; Voiskunskii, Vladimir G.
1999-01-01
Discusses the use of Boolean logic in information-retrieval systems and analyzes existing criticisms of operational systems. Considers users' ability to use and understand Boolean operators, ranking, the quality of query formulations, and negative effects of criticism; and concludes that criticism is directed at the methodology employed in…
Boolean gates on actin filaments
Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew
2016-01-01
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.
Mining TCGA data using Boolean implications.
Directory of Open Access Journals (Sweden)
Subarna Sinha
Full Text Available Boolean implications (if-then rules provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression from the glioblastoma (GBM and ovarian serous cystadenoma (OV data sets from The Cancer Genome Atlas (TCGA. We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/.
Generalizing Boolean Satisfiability II: Theory
Dixon, H E; Luks, E M; Parkes, A J; 10.1613/jair.1555
2011-01-01
This is the second of three planned papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal is to define a representation in which this structure is apparent and can easily be exploited to improve computational performance. This paper presents the theoretical basis for the ideas underlying ZAP, arguing that existing ideas in this area exploit a single, recurring structure in that multiple database axioms can be obtained by operating on a single axiom using a subgroup of the group of permutations on the literals in the problem. We argue that the group structure precisely captures the general structure at which earlier approaches hinted, and give numerous examples of its use. We go on to extend the Davis-Putnam-Logemann-...
Densities of mixed volumes for Boolean models
Weil, Wolfgang
2001-01-01
In generalization of the well-known formulae for quermass densities of stationary and isotropic Boolean models, we prove corresponding results for densities of mixed volumes in the stationary situation and show how they can be used to determine the intensity of non-isotropic Boolean models Z in d-dimensional space for d = 2, 3, 4. We then consider non-stationary Boolean models and extend results of Fallert on quermass densities to densities of mixed volumes. In particular, we present explicit...
Translating Pseudo-Boolean Constraints into CNF
Aavani, Amir
2011-01-01
A Pseudo-Boolean constraint is a linear constraint over Boolean variables. This kind of constraints has been widely used in expressing NP-complete problems. This paper introduces a new algorithm for translating Pseudo-Boolean constraints into CNF clauses. The CNF produced by the proposed encoding has small size, and we also characterize the constraints for which one can expect the SAT solvers to perform well on the produced CNF. We show that there are many constraints for which the proposed encoding has a good performance.
Institute of Scientific and Technical Information of China (English)
杜蛟; 温巧燕; 张劼; 庞善起
2013-01-01
通过对素数元旋转对称弹性布尔函数特征矩阵的研究，给出了其特征矩阵的若干性质，得到了素数元旋转对称布尔函数为弹性函数的一个充要条件，由此完全决定了旋转对称弹性函数的构造以及这类函数的精确计数公式，最后还给出了所有的三元、五元、七元旋转对称弹性布尔函数的构造方案与精确计数。%The characteristic matrix of the resilient rotation symmetric Boolean functions (RSBF) with prime number variables were explored. Some properties about characteristic matrix of them were given. A necessary and sufficient con-dition on the construction of resilient RSBF with prime number variables was derived. So construction and count formula of all the resilient RSBF with prime number variables were determined by this way. At last, all the resilient RSBF with 3, 5 or 7 variables were given.
Combinatorics of Boolean automata circuits dynamics
Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain
2012-01-01
International audience In line with fields of theoretical computer science and biology that study Boolean automata networks to model regulation networks, we present some results concerning the dynamics of networks whose underlying structures are oriented cycles, that is, Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain them. Our work fo...
Boolean Logic with Fault Tolerant Coding
Alagoz, B. Baykant
2009-01-01
Error detectable and error correctable coding in Hamming space was researched to discover possible fault tolerant coding constellations, which can implement Boolean logic with fault tolerant property. Basic logic operators of the Boolean algebra were developed to apply fault tolerant coding in the logic circuits. It was shown that application of three-bit fault tolerant codes have provided the digital system skill of auto-recovery without need for designing additional-fault tolerance mechanisms.
Boolean Models of Biological Processes Explain Cascade-Like Behavior.
Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen
2016-01-01
Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940
Forced synchronization of autonomous dynamical Boolean networks
International Nuclear Information System (INIS)
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics
Forced synchronization of autonomous dynamical Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)
2015-08-15
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Duality theories for Boolean algebras with operators
Givant, Steven
2014-01-01
In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
New Measure of Boolean Factor Analysis Quality
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
Vol. 1. Heidelberg: Springer, 2011 - (Dobnikar, A.; Lotrič, U.; Šter, B.), s. 100-109. (Lecture Notes in Computer Science. 6593). ISBN 978-3-642-20281-0. ISSN 0302-9743. [ICANNGA'2011. International Conference /10./. Ljubljana (SI), 14.04.2011-16.04.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * information gain * expectation-maximization * associative memory * neural network application * Boolean matrix factorization * bars problem * Hopfield neural network Subject RIV: IN - Informatics, Computer Science
Fast Gr\\"obner Basis Computation for Boolean Polynomials
Hinkelmann, Franziska
2010-01-01
We introduce the Macaulay2 package BooleanGB, which computes a Gr\\"obner basis for Boolean polynomials using a binary representation rather than symbolic. We compare the runtime of several Boolean models from systems in biology and give an application to Sudoku.
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
International Nuclear Information System (INIS)
The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ting; Xu, Jian-yi [Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Cheng, Ying, E-mail: chengying@nju.edu.cn; Liu, Xiao-jun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Guo, Jian-zhong [School of Physics and Information Technology, Shaanxi Normal University, Xian 710119 (China)
2015-03-16
The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.
Symmetric Groups and Quotient Complexity of Boolean Operations
Bell, Jason; Brzozowski, Janusz; Moreira, Nelma; Reis, Rogério
2013-01-01
The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n ...
Graphical interpretation of Boolean operators for protein NMR assignments.
Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy
2008-09-01
We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. PMID:18762868
Some Aspects of Boolean Valued Analysis
Kusraev, A. G.; Kutateladze, S. S.
2015-01-01
This is a survey of some recent applications of Boolean valued analysis to operator theory and harmonic analysis. Under consideration are pseudoembedding operators, the noncommutative Wickstead problem, the Radon-Nikodym Theorem for JB-algebras, and the Bochner Theorem for lattice-valued positive definite mappings on locally compact groups.
Demonstrating Boolean Logic Using Simple Electrical Circuits
McElhaney, Kevin W.
2004-01-01
While exploring the subject of geometric proofs, boolean logic operators AND and OR can be used to allow students to visualize their true-or-false patterns. An activity in the form of constructing electrical circuits is illustrated to explain the concept.
Boolean Queries Optimization by Genetic Algorithms
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav
2005-01-01
Roč. 15, - (2005), s. 395-409. ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research
Evolutionary Algorithms for Boolean Queries Optimization
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.
2006-01-01
Roč. 3, č. 1 (2006), s. 15-20. ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics
A Boolean Map Theory of Visual Attention
Huang, Liqiang; Pashler, Harold
2007-01-01
A theory is presented that attempts to answer two questions. What visual contents can an observer consciously access at one moment? Answer: only one feature value (e.g., green) per dimension, but those feature values can be associated (as a group) with multiple spatially precise locations (comprising a single labeled Boolean map). How can an…
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations
Heckel, Reinhard; Bossert, Martin
2011-01-01
Consider a large Boolean network with a feed forward structure. Given a probability distribution for the inputs, can one find-possibly small-collections of input nodes that determine the states of most other nodes in the network? To identify these nodes, a notion that quantifies the determinative power of an input over states in the network is needed. We argue that the mutual information (MI) between a subset of the inputs X = {X_1, ..., X_n} of node i and the function f_i(X)$ associated with node i quantifies the determinative power of this subset of inputs over node i. To study the relation of determinative power to sensitivity to perturbations, we relate the MI to measures of perturbations, such as the influence of a variable, in terms of inequalities. The result shows that, maybe surprisingly, an input that has large influence does not necessarily have large determinative power. The main tool for the analysis is Fourier analysis of Boolean functions. Whether a function is sensitive to perturbations or not...
Evolution of a designless nanoparticle network into reconfigurable Boolean logic.
Bose, S K; Lawrence, C P; Liu, Z; Makarenko, K S; van Damme, R M J; Broersma, H J; van der Wiel, W G
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures. PMID:26389658
Evolution and Controllability of Cancer Networks: A Boolean Perspective.
Srihari, Sriganesh; Raman, Venkatesh; Leong, Hon Wai; Ragan, Mark A
2014-01-01
Cancer forms a robust system capable of maintaining stable functioning (cell sustenance and proliferation) despite perturbations. Cancer progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer progression and to develop effective anti-cancer therapies. In this work, we propose a novel model for the `cancer system' as a Boolean state space in which a Boolean network, built from protein-interaction and gene-expression data from different stages of cancer, transits between Boolean satisfiability states by "editing" interactions and "flipping" genes. Edits reflect rewiring of the PPI network while flipping of genes reflect activation or silencing of genes between stages. We formulate a minimization problem min flip to identify these genes driving the transitions. The application of our model (called BoolSpace) on three case studies-pancreatic and breast tumours in human and post spinal-cord injury (SCI) in rats-reveals valuable insights into the phenomenon of cancer progression: (i) interactions involved in core cell-cycle and DNA-damage repair pathways are significantly rewired in tumours, indicating significant impact to key genome-stabilizing mechanisms; (ii) several of the genes flipped are serine/threonine kinases which act as biological switches, reflecting cellular switching mechanisms between stages; and (iii) different sets of genes are flipped during the initial and final stages indicating a pattern to tumour progression. Based on these results, we hypothesize that robustness of cancer partly stems from "passing of the baton" between genes at different stages-genes from different biological processes and/or cellular components are involved in different stages of tumour progression thereby allowing tumour cells to evade targeted therapy, and therefore an effective therapy should target a "cover set" of
The value of less connected agents in Boolean networks
Epstein, Daniel; Bazzan, Ana L. C.
2013-11-01
In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality
Analysis and control of Boolean networks a semi-tensor product approach
Cheng, Daizhan; Li, Zhiqiang
2010-01-01
This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.
Boolean representations of simplicial complexes and matroids
Rhodes, John
2015-01-01
This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context. Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...
Fast Vertical Mining Using Boolean Algebra
Directory of Open Access Journals (Sweden)
Hosny M. Ibrahim
2015-01-01
Full Text Available The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The sizes of bit vectors for itemsets are the main space expense of the algorithm that restricts its expansibility. Therefore, in this paper, a proposed algorithm that compresses the bit vectors of frequent itemsets will be presented. The new bit vector schema presented here depends on Boolean algebra rules to compute the intersection of two compressed bit vectors without making any costly decompression operation. The experimental results show that the proposed algorithm, Vertical Boolean Mining (VBM algorithm is better than both Apriori algorithm and the classical vertical association rule mining algorithm in the mining time and the memory usage.
Boolean network robotics: a proof of concept
Roli, Andrea; Pinciroli, Carlo; Birattari, Mauro
2011-01-01
Dynamical systems theory and complexity science provide powerful tools for analysing artificial agents and robots. Furthermore, they have been recently proposed also as a source of design principles and guidelines. Boolean networks are a prominent example of complex dynamical systems and they have been shown to effectively capture important phenomena in gene regulation. From an engineering perspective, these models are very compelling, because they can exhibit rich and complex behaviours, in spite of the compactness of their description. In this paper, we propose the use of Boolean networks for controlling robots' behaviour. The network is designed by means of an automatic procedure based on stochastic local search techniques. We show that this approach makes it possible to design a network which enables the robot to accomplish a task that requires the capability of navigating the space using a light stimulus, as well as the formation and use of an internal memory.
Efficient Analog Circuits for Boolean Satisfiability
Yin, Xunzhao; Sedighi, Behnam; Varga, Melinda; Ercsey-Ravasz, Maria; Toroczkai, Zoltan; Hu, Xiaobo Sharon
2016-01-01
Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nature Physics, 7(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial ana...
Using Genetic Algorithms for Boolean Queries Optimization
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Snášel, Václav; Owais, S.S.J.; Krömer, P.
Calgary: ACTA Press, 2005 - (Hamza, M.), s. 178-184 ISBN 0-88986-510-8. [IASTED International Conference on Internet and Multimedia Systems and Applications /9./. Honolulu (US), 15.08.2005-17.08.2005] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : genetic algorithms * information retrieval * Boolean query * genetic programming Subject RIV: BA - General Mathematics
On the Implementation of Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Snášel, V.; Krömer, P.; Platoš, J.; Húsek, Dušan
Los Alamitos: IEEE, 2008, s. 554-558. ISBN 978-0-7695-3299-8. [ETID '08. International Workshop on Evolutionary Techniques /2./, in collocation with DEXA 2008 International Conference /19./. Turin (IT), 01.09.2008-05.09.2008] Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science
Direct relations between morphology and transport in Boolean models.
Scholz, Christian; Wirner, Frank; Klatt, Michael A; Hirneise, Daniel; Schröder-Turk, Gerd E; Mecke, Klaus; Bechinger, Clemens
2015-10-01
We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold. PMID:26565348
Direct relations between morphology and transport in Boolean models
Scholz, Christian; Wirner, Frank; Klatt, Michael A.; Hirneise, Daniel; Schröder-Turk, Gerd E.; Mecke, Klaus; Bechinger, Clemens
2015-10-01
We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.
Boolean Logic Optimization in Majority-Inverter Graphs
Amarù, Luca; Gaillardon, Pierre-Emmanuel; De Micheli, Giovanni
2015-01-01
We present a Boolean logic optimization framework based on Majority-Inverter Graph (MIG). An MIG is a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. Current MIG optimization is supported by a consistent algebraic framework. However, when algebraic methods cannot improve a result quality, stronger Boolean methods are needed to attain further optimization. For this purpose, we propose MIG Boolean methods exploiting the error masking property of m...
ON REDUCED SCALAR EQUATIONS FOR SYNCHRONOUS BOOLEAN NETWORKS
Ali Muhammad Ali Rushdi; Adnan Ahmad Alsogati
2013-01-01
A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more instances of a single scalar variable and some Boolean operator(s). Further simplification is possible in terms of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean operators and equates the value of a scalar variable a...
Using Boolean Constraint Propagation for Sub-clause Deduction
Darras, Sylvain; Dequen, Gilles; Devendeville, Laure; Mazure, Bertrand; Ostrowski, Richard; Sais, Lahkdar
2005-01-01
Boolean Constraint Propagation (BCP) is recognized as one of the most use- ful technique for efficient satisfiability checking. In this paper a new extension of the scope of boolean constraint propagation is proposed. It makes an original use of BCP to achieve further reduction of boolean formulas. Considering the impli- cation graph generated by the constraint propagation process as a resolution tree, sub-clauses from the original formula can be deduced. Then, we show how such extension can ...
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707. ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Neural Network Boolean Factor Analysis and Applications
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Frolov, A.; Polyakov, P.Y.; Snášel, V.
-: WSEAS Press, 2007 - (Katehakis, M.; And ina, D.; Mastorakis, M.), s. 30-35. (Electrical and Computer Engineering Series). ISBN 978-960-6766-21-3. [CIMMACS'07. WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics. Tenerife (ES), 14.12.2007-16.12.2007] R&D Projects: GA MŠk 1M0567; GA AV ČR 1ET100300414; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hopfield neural network * boolean factor analysis * unsupervised learning * dimension reduction * data mining Subject RIV: BB - Applied Statistics, Operational Research
Towards boolean operations with thermal photons
Ben-Abdallah, Philippe
2016-01-01
The Boolean algebra is the natural theoretical framework for a classical information treatment. The basic logical operations are usually performed using logic gates. In this Letter we demonstrate that NOT, OR and AND gates can be realized exploiting the near-field radiative interaction in N-body systems with phase change materials. With the recent development of a photon thermal transistor and thermal memory, this result paves the way for a full information treatment and smart solutions for active thermal management at nanoscale with photons.
Solving the Satisfiability Problem Through Boolean Networks
Roli, Andrea; Milano, Michela
2011-01-01
In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework f...
Solving the Satisfiability Problem Through Boolean Networks
Roli, Andrea
2011-01-01
In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework for local search algorithms.
E-Referencer: Transforming Boolean OPACs to Web Search Engines.
Khoo, Christopher S. G.; Poo, Danny C. C.; Toh, Teck-Kang; Hong, Glenn
E-Referencer is an expert intermediary system for searching library online public access catalogs (OPACs) on the World Wide Web. It is implemented as a proxy server that mediates the interaction between the user and Boolean OPACs. It transforms a Boolean OPAC into a retrieval system with many of the search capabilities of Web search engines.…
Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles
Directory of Open Access Journals (Sweden)
Shah Imran
2011-07-01
Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our
Ordered Boolean List (OBL): reducing the footprint for evaluating Boolean expressions.
Rossignac, Jaroslaw Jarek
2011-09-01
An Expanded Boolean Expression (EBE) does not contain any XOR or EQUAL operators. The occurrence of each variable is a different literal. We provide a linear time algorithm that converts an EBE of n literals into a logically equivalent Ordered Boolean List (OBL) and show how to use the OBL to evaluate the EBE in n steps and O(log log n) space, if the values of the literals are each read once in the order prescribed by the OBL. (An evaluation workspace of 5 bits suffices for all EBEs of up to six billion literals.) The primary application is the SIMD architecture, where the same EBE is evaluated in parallel for different input vectors when rendering solid models on the GPU directly from their Constructive Solid Geometry (CSG) representation. We compare OBL to the Reduced Ordered Binary Decision Diagram (ROBDD) and suggest possible applications of OBL to logic verification and to circuit design. PMID:21737862
A short Boolean derivation of mean failure frequency for any (also non-coherent) system
International Nuclear Information System (INIS)
For stationary repairable systems it is shown that the probabilistic weights for the individual components' mean failure frequencies (MFFs) that can be added to yield the system's MFF are found easily from the first step of the Boolean fault tree function's Shannon decomposition. This way one finds a general theory of a system's MFF and the case of coherence covered in standard textbooks is shown to be a subcase. Unfortunately, elegant rules for calculating system MFF from any polynomial form of the fault tree's Boolean function are only known for the coherent case, but repeated here, because they are not yet found in many textbooks. An example known from literature is treated extensively with great care.
Schmalz, Mark S.
1993-09-01
The processing of Boolean imagery compressed by runlength encoding (RLE) frequently exhibits greater computational efficiency than the processing of uncompressed imagery, due to the data reduction inherent in RLE. In a previous publication, we outlined general methods for developing operators that compute over RLE Boolean imagery. In this paper, we present sequential and parallel algorithms for a variety of operations over RLE imagery, including the customary arithmetic and logical Hadamard operations, as well as the global reduce functions of image sum and maximum. RLE neighborhood-based operations, as well as the more advanced RLE operations of linear transforms, connected component labelling, and pattern recognition are presented in the companion paper.
Robust Boolean Operation for Sculptured Models
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
To enhance the ability of current modeling system, an uniformed representation is designed to represent wire-frame, solid, surface models. We present an algorithm for Boolean operation between the models under this representation. Accuracy, efficiency and robustness are the main consideration. The geometric information is represented with trimmed parametric patches and trimmed parametric splines. The topological information is represented with an extended half-edge data structure. In the process of intersection calculation, hierarchy intersection method is applied for unified classification. Tracing the intersection curve to overcome degenerate cases that occur frequently in practice. The algorithm has been implemented as the modeling kernel of a feature based modeling system named GS-CAD98, which was developed on Windows/NT platform.
Consistent stabilizability of switched Boolean networks.
Li, Haitao; Wang, Yuzhen
2013-10-01
This paper investigates the consistent stabilizability of switched Boolean networks (SBNs) by using the semi-tensor product method, and presents a number of new results. First, an algebraic expression of SBNs is obtained by the semi-tensor product, based on which the consistent stabilizability is then studied for SBNs and some necessary and sufficient conditions are presented for the design of free-form and state-feedback switching signals, respectively. Finally, the consistent stabilizability of SBNs with state constraints is considered and some necessary and sufficient conditions are proposed. The study of illustrative examples shows that the new results obtained in this paper are very effective in designing switching signals for the consistent stabilizability of SBNs. PMID:23787170
Relative stability of network states in Boolean network models of gene regulation in development.
Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier; Price, Nathan D; Huang, Sui
2016-01-01
Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols. PMID:26965665
Approximate Counting for Complex-Weighted Boolean Constraint Satisfaction Problems
Yamakami, Tomoyuki
2010-01-01
Constraint satisfaction problems (or CSPs) have been extensively studied in AI, database theory, graph theory, etc. From an approximation viewpoint, it has been important to approximate the total number of assignments that satisfy all given Boolean constraints. There is a trichotomy theorem for such approximate counting for (non-weighted) Boolean CSPs; namely, all such counting problems are neatly classified into three categories under polynomial-time approximation-preserving reductions [Dyer, Goldberg, and Jerrum, 2010]. We extend this result to approximate counting for complex-weighted Boolean CSPs, provided that all arity-1 constraints are freely available to use. This makes a significant progress in the quest for the approximation classification of all counting Boolean CSPs in the most general form. To deal with complex weights, we employ proof techniques along the line of solving Holant problems [Valiant, 2002, 2008]. Our result also gives an approximation version of the dichotomy theorem of the complexi...
Automatic Ranked Output from Boolean Searches in SIRE
Noreault, Terry; And Others
1977-01-01
This study examined the effectiveness using an automatic algorithm to rank the results of Boolean searches of an inverted file design document retrieval system. Relevant documents were ranked significantly higher than nonrelevant documents on output lists. (Author/KP)
Boolean Burritos: How the Faculty Ate Up Keyword Searching.
York, Sherry
1999-01-01
Describes an activity that librarians can use to acquaint teachers with keyword searching and Boolean operators to more successfully use the library's online catalog. Uses food ingredients to represent various possible combinations. (LRW)
Linear Programming Formulation of the Boolean Satisfiability Problem
Diaby, Moustapha
2008-01-01
In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.
Directory of Open Access Journals (Sweden)
Claudia Stötzel
Full Text Available In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations.
On the number of attractors of Boolean automata circuits
Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain
2009-01-01
In line with fields of theoretical computer science and biology that study Boolean automata networks often seen as models of regulation networks, we present some results concerning the dynamics of networks whose underlying interaction graphs are circuits, that is Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain them. Our work focuses on th...
Boolean Equi-propagation for Optimized SAT Encoding
Metodi, Amit; Lagoon, Vitaly; Stuckey, Peter J
2011-01-01
We present an approach to propagation based solving, Boolean equi-propagation, where constraints are modelled as propagators of information about equalities between Boolean literals. Propagation based solving applies this information as a form of partial evaluation resulting in optimized SAT encodings. We demonstrate for a variety of benchmarks that our approach results in smaller CNF encodings and leads to speed-ups in solving times.
Enhancing Boolean networks with fuzzy operators and edge tuning
Poret, Arnaud; Monteiro Sousa, Claudio; Boissel, Jean-Pierre
2014-01-01
Quantitative modeling in systems biology can be difficult due to the scarcity of quantitative details about biological phenomenons, especially at the subcellular scale. An alternative to escape this difficulty is qualitative modeling since it requires few to no quantitative information. Among the qualitative modeling approaches, the Boolean network formalism is one of the most popular. However, Boolean models allow variables to be valued at only true or false, which can appear too simplistic ...
Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements
Audemard, Gilles; Bertoli, Piergiorgio; Cimatti, Alessandro; Kornilowicz, Artur; Sebastiani, Roberto
2002-01-01
In the last years we have witnessed an impressive advance in the efficiency of boolean solving techniques, which has brought large previously intractable problems at the reach of state-of-the-art solvers. Unfortunately, simple boolean expressions are not expressive enough for representing many real-world problems, which require handling also integer or real values and operators. On the other hand, mathematical solvers, like computer-algebra systems or constraint solvers, cannot handle efficie...
Boolean network model predicts knockout mutant phenotypes of fission yeast.
Directory of Open Access Journals (Sweden)
Maria I Davidich
Full Text Available BOOLEAN NETWORKS (OR: networks of switches are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.
PARAMETER ESTIMATION IN NON-HOMOGENEOUS BOOLEAN MODELS: AN APPLICATION TO PLANT DEFENSE RESPONSE
Directory of Open Access Journals (Sweden)
Maria Angeles Gallego
2014-11-01
Full Text Available Many medical and biological problems require to extract information from microscopical images. Boolean models have been extensively used to analyze binary images of random clumps in many scientific fields. In this paper, a particular type of Boolean model with an underlying non-stationary point process is considered. The intensity of the underlying point process is formulated as a fixed function of the distance to a region of interest. A method to estimate the parameters of this Boolean model is introduced, and its performance is checked in two different settings. Firstly, a comparative study with other existent methods is done using simulated data. Secondly, the method is applied to analyze the longleaf data set, which is a very popular data set in the context of point processes included in the R package spatstat. Obtained results show that the new method provides as accurate estimates as those obtained with more complex methods developed for the general case. Finally, to illustrate the application of this model and this method, a particular type of phytopathological images are analyzed. These images show callose depositions in leaves of Arabidopsis plants. The analysis of callose depositions, is very popular in the phytopathological literature to quantify activity of plant immunity.
Efficient Analog Circuits for Boolean Satisfiability
Yin, Xunzhao; Varga, Melinda; Ercsey-Ravasz, Maria; Toroczkai, Zoltan; Hu, Xiaobo Sharon
2016-01-01
Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nature Physics, 7(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark $k$-SAT ($k \\geq 3$) formulas, but at an energy cost through exponentially driven auxiliary variables. With some modifications to the CTDS equations, here we present a novel analog hardware SAT solver, AC-SAT, implementing the CTDS. AC-SAT is intended to be used as a co-processor, and with its modular design can be readily extended to different problem sizes. The circuit is designed and simulated based on a 32nm CMOS technology. SPICE simulation results show speedup factor...
Measuring Mutual Information in Random Boolean Networks
Luque, B; Luque, Bartolo; Ferrera, Antonio
1999-01-01
During the last few years an area of active research in the field of complex systems is that of their information storing and processing abilities. Common opinion has it that the most interesting beaviour of these systems is found ``at the edge of chaos'', which would seem to suggest that complex systems may have inherently non-trivial information proccesing abilities in the vicinity of sharp phase transitions. A comprenhensive, quantitative understanding of why this is the case is however still lacking. Indeed, even ``experimental'' (i.e., often numerical) evidence that this is so has been questioned for a number of systems. In this paper we will investigate, both numerically and analitically, the behavior of Random Boolean Networks (RBN's) as they undergo their order-disorder phase transition. We will use a simple mean field approximation to treat the problem, and without lack of generality we will concentrate on a particular value for the connectivity of the system. In spite of the simplicity of our argume...
Second moment method for a family of boolean CSP
Boufkhad, Yacine
2011-01-01
The estimation of phase transitions in random boolean Constraint Satisfaction Problems (CSP) is based on two fundamental tools: the first and second moment methods. While the first moment method on the number of solutions permits to compute upper bounds on any boolean CSP, the second moment method used for computing lower bounds proves to be more tricky and in most cases gives only the trivial lower bound 0. In this paper, we define a subclass of boolean CSP covering the monotone versions of many known NP-Complete boolean CSPs. We give a method for computing non trivial lower bounds for any member of this subclass. This is achieved thanks to an application of the second moment method to some selected solutions called characteristic solutions that depend on the boolean CSP considered. We apply, as an example, this method to establish that the threshold r_{k} of monotone 1-in-k-SAT is \\log k/k\\leq r_{k}\\leq\\log^{2}k/k
Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages
Glasser, Christian; Selivanov, Victor
2008-01-01
The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level $\\Sigma_1$ of the dot-depth hierarchy are decidable in $NL$ (previously only the decidability was known). The same remains true if predicates mod $d$ for fixed $d$ are allowed. - If modular predicates for arbitrary $d$ are allowed, then the classes of the Boolean hierarchy over level $\\Sigma_1$ are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level $\\Sigma_2$ of the Straubing-Th\\'erien hierarchy are decidable in $NL$. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for $NL$. - T...
A more robust Boolean model describing inhibitor binding
Institute of Scientific and Technical Information of China (English)
Zhaoqian Steven XIE; Chao TANG
2008-01-01
From the first application of the Boolean model to the cell cycle regulation network of budding yeast, new regulative pathways have been discovered, par-ticularly in the G1/S transition circuit. This discovery called for finer modeling to study the essential biology, and the resulting outcomes are first introduced in the ar-ticle. A traditional Boolean network model set up for the new G1/S transition circuit shows that it cannot correctly simulate real biology unless the model parameters are fine tuned. The deficiency is caused by an overly coarse-grained description of the inhibitor binding process, which shall be overcome by a two-vector model proposed whose robustness is surveyed using random perturba-tions. Simulations show that the proposed two-vector model is much more robust in describing inhibitor binding processes within the Boolean framework.
Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.
Zhang, Jianming; Sclaroff, Stan
2016-05-01
We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets. PMID:26336114
A Boolean Approach to Airline Business Model Innovation
DEFF Research Database (Denmark)
Hvass, Kristian Anders
Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....
Experimental Comparison of Schemes for Interpreting Boolean Queries
Lee, Whay C.; Edward A Fox
1988-01-01
The standard interpretation of the logical operators in a Boolean retrieval system is in general too strict. A standard Boolean query rarely comes close to retrieving all and only those documents which are relevant to the user. An AND query is often too narrow and an OR query is often too broad. The choice of the AND results in retrieving on the left end of a typical average recall-precision graph, while the choice of the OR results in retrieving on the right end, implying a tradeoff between ...
ON REDUCED SCALAR EQUATIONS FOR SYNCHRONOUS BOOLEAN NETWORKS
Directory of Open Access Journals (Sweden)
Ali Muhammad Ali Rushdi
2013-01-01
Full Text Available A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more instances of a single scalar variable and some Boolean operator(s. Further simplification is possible in terms of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean operators and equates the value of a scalar variable at a latter instance t2 to its value at an earlier instance t1. This equation remains valid when the times t1 and t2 are both augmented by any integral multiple of the underlying time period. In other words, there are infinitely many versions of a reduced scalar equation, any of which is useful for deducing information about the cyclic behavior of the network. However, to obtain correct information about the transient behavior of the network, one must find the true reduced scalar equation for which instances t1 and t2 are minimal. This study investigates the nature, derivation and utilization of reduced scalar equations. It relies on Boolean-algebraic manipulations for the derivation of such equations and suggests that this derivation can be facilitated by seeking certain orthogonality relations among certain successive (albeit not necessarily consecutive instances of the same scalar variable. We demonstrate, contrary to previously published assumptions or assertions, that there is typically no common reduced scalar equation for all the scalar variables. Each variable usually satisfies its own distinct reduced scalar equation. We also demonstrate that the derivation of a reduced scalar equation is achieved not only by proving it but also by disproving an immediately preceding version of it when such a version might exist. We also demonstrate that, despite the useful insight supplied by the reduced scalar equations, they do not provide a total solution like the
Some Properties of Inclusions of Multisets and Contractive Boolean Operators
Hyvernat, Pierre
2011-01-01
10 pages, including appendix Consider the following curious puzzle: call an n-tuple X=(X_1, ..., X_n) of sets smaller than another n-tuple Y if it has fewer //unordered sections//. We show that equivalence classes for this preorder are very easy to describe and characterize the preorder in terms of the simpler pointwise inclusion and the existence of a special increasing boolean operator f:B^n -> B^n. We also show that contrary to increasing boolean operators, the relevant operators are no...
Boolean Logic: An Aid for Searching Computer Databases in Special Education and Rehabilitation.
Summers, Edward G.
1989-01-01
The article discusses using Boolean logic as a tool for searching computerized information retrieval systems in special education and rehabilitation technology. It includes discussion of the Boolean search operators AND, OR, and NOT; Venn diagrams; and disambiguating parentheses. Six suggestions are offered for development of good Boolean logic…
Generalizations of Boolean imaging operations to the continuous-tone domain
Harrington, Steven J.
1992-07-01
In black-and-white printing the page image can be represented within a computer as an array of binary values indicating whether or not pixels should be inked. The Boolean operators of AND, OR, and EXCLUSIVE-OR are often used when adding new objects to the image array. For color printing the page may be represented as an array of `continuous-tone' color values, and the generalization of these logic functions to gray-scale or full-color images is, in general, not defined or understood. When incrementally composing a page image, new colors can replace old in an image buffer, or new colors and old can be combined according to some mixing function to form a composite color, which is stored. This paper examines the properties of the Boolean operations and suggests full-color functions that preserve the desired properties. These functions can be used to combine colored images in ways that preserve information about object shapes when the shapes overlap. The relationships between the proposed functions and physical models of color mixing are also discussed.
Coevolution of Information Processing and Topology in Hierarchical Adaptive Random Boolean Networks
Gorski, Piotr J; Holyst, Janusz A
2015-01-01
Random Boolean networks (RBNs) are frequently employed for modelling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive RBN (HARBN) as a system consisting of distinct adaptive RBNs - subnetworks - connected by a set of permanent interlinks. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. We investigate mean node information, mean edge information as well as a mean node degree as functions of model parameters and demonstrate HARBN's ability to describe complex hierarchical systems.
The one-way communication complexity of the Boolean Hidden Matching Problem
Kerenidis, I; Kerenidis, Iordanis; Raz, Ran
2006-01-01
We give a tight lower bound of Omega(\\sqrt{n}) for the randomized one-way communication complexity of the Boolean Hidden Matching Problem [BJK04]. Since there is a quantum one-way communication complexity protocol of O(\\log n) qubits for this problem, we obtain an exponential separation of quantum and classical one-way communication complexity for partial functions. A similar result was independently obtained by Gavinsky, Kempe, de Wolf [GKdW06]. Our lower bound is obtained by Fourier analysis, using the Fourier coefficients inequality of Kahn Kalai and Linial [KKL88].
The receptor mosaic hypothesis of the engram: possible relevance of Boolean network modeling.
Zoli, M; Guidolin, D; Fuxe, K; Agnati, L F
1996-09-01
In the past 15 years, several lines of evidence have shown that receptors for chemical signals can interact in domains of the plasma membrane and possibly form molecular circuits encoding logical operators. In this frame, the receptor mosaic hypothesis of the engram was advanced. According to this proposal, aggregates of different receptor species (mosaics) may form in neuronal membranes (typically synapses) and constitute a memory trace (engram) of its activity. In the present paper, we present an attempt to model the functioning of aggregates of interacting receptors in membrane domains by means of random Boolean networks. PMID:8968825
Security analysis of boolean algebra based on Zhang-Wang digital signature scheme
International Nuclear Information System (INIS)
In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software
Boolean approaches to graph embeddings related to VLSI
Institute of Scientific and Technical Information of China (English)
刘彦佩
2001-01-01
This paper discusses the development of Boolean methods in some topics on graph em-beddings which are related to VLSI. They are mainly the general theory of graph embeddability, the orientabilities of a graph and the rectilinear layout of an electronic circuit.
On the Road to Genetic Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.
2007-01-01
Roč. 17, č. 6 (2007), s. 675-688. ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007
On the Road to Genetic Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.
2007-01-01
Roč. 17, č. 6 (2007), s. 675-688. ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithm s * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007
Boolean linear differential operators on elementary cellular automata
Martín Del Rey, Ángel
2014-12-01
In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.
Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators
Institute of Scientific and Technical Information of China (English)
HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei
2013-01-01
In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.
Graphical interpretation of Boolean operators for protein NMR assignments
Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy
2008-01-01
We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-
On the Prime Whales of a Boolean Algebra
Holland, Jason
2013-01-01
In this note, we introduce objects called prime whales and use them to represent a Boolean algebra as an algebra of sets in a way that is analogous to Stone's Representation Theorem. We also characterize the existence of prime whales in terms of the existence of prime ideals.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Directory of Open Access Journals (Sweden)
Natalie Berestovsky
Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them
borealis - A generalized global update algorithm for Boolean optimization problems
Zhu, Zheng; Katzgraber, Helmut G
2016-01-01
Optimization problems with Boolean variables that fall into the nondeterministic polynomial (NP) class are of fundamental importance in computer science, mathematics, physics and industrial applications. Most notably, solving constraint-satisfaction problems, which are related to spin-glass-like Hamiltonians in physics, remains a difficult numerical task. As such, there has been great interest in designing efficient heuristics to solve these computationally difficult problems. Inspired by parallel tempering Monte Carlo in conjunction with the rejection-free isoenergetic cluster algorithm developed for Ising spin glasses, we present a generalized global update optimization heuristic that can be applied to different NP-complete problems with Boolean variables. The global cluster updates allow for a wide-spread sampling of phase space, thus considerably speeding up optimization. By carefully tuning the pseudo-temperature (needed to randomize the configurations) of the problem, we show that the method can efficie...
High Quality Test Pattern Generation and Boolean Satisfiability
Eggersglüß, Stephan
2012-01-01
This book provides an overview of automatic test pattern generation (ATPG) and introduces novel techniques to complement classical ATPG, based on Boolean Satisfiability (SAT). A fast and highly fault efficient SAT-based ATPG framework is presented which is also able to generate high-quality delay tests such as robust path delay tests, as well as tests with long propagation paths to detect small delay defects. The aim of the techniques and methodologies presented in this book is to improve SAT-based ATPG, in order to make it applicable in industrial practice. Readers will learn to improve the performance and robustness of the overall test generation process, so that the ATPG algorithm reliably will generate test patterns for most targeted faults in acceptable run time to meet the high fault coverage demands of industry. The techniques and improvements presented in this book provide the following advantages: Provides a comprehensive introduction to test generation and Boolean Satisfiability (SAT); Describes a...
Algorithms for Finding Small Attractors in Boolean Networks
Directory of Open Access Journals (Sweden)
Hayashida Morihiro
2007-01-01
Full Text Available A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.
Boolean network representation of contagion dynamics during a financial crisis
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-01-01
This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.
Estimation of Boolean Factor Analysis Performance by Informational Gain
Czech Academy of Sciences Publication Activity Database
Frolov, A.; Húsek, Dušan; Polyakov, P.Y.
Berlin : Springer, 2010 - (Snášel, V.; Szczepaniak, P.; Abraham, A.; Kacprzyk, J.), s. 83-94 ISBN 978-3-642-10686-6. - (Advances in Intelligent and Soft Computing. 67). [AWIC 2009. Atlantic Web Intelligence Conference /6./. Prague (CZ), 09.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * informational gain * Hopfield-like network Subject RIV: IN - Informatics, Computer Science
Reduction of Database Independence to Dividing in Atomless Boolean Algebras
Hyttinen, Tapani; Paolini, Gianluca
2014-01-01
We prove that the form of conditional independence at play in database theory and independence logic is reducible to the first-order dividing calculus in the theory of atomless Boolean algebras. This establishes interesting connections between independence in database theory and stochastic independence. As indeed, in light of the aforementioned reduction and recent work of Ben-Yaacov [4], the former case of independence can be seen as the discrete version of the latter.
Yes/No/Maybe: A Boolean attempt at feedback
12130478 - Louw, Henk; 10095519 - Van Rooy, Albertus Jacobus
2010-01-01
This paper describes an experiment in which Boolean feedback (a kind of checklist) was used to provide feedback on the paragraph structures of first year students in an Academic Literacy course. We begin by introducing the major problems with feedback on L2 writing and establishing why a focus on paragraph structures in particular is of importance. The experiment conducted was a two-draft assignment in which three different kinds of feedback (technique A: handwritten comments, B: consciousnes...
A Boolean Approach to Airline Business Model Innovation
Hvass, Kristian
2012-01-01
Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities le...
A Boolean algebra approach to the construction of snarks
Fiol Mora, Miquel Àngel
1991-01-01
This work deals with the construction of snarks, that is, cubic graphs that cannot be 3-edge-colored. A natural generalization of the concept of "color", that describes in a simple way the coloring ("0" or "1") of any set of (semi)edges, is introduced. This approach allows us to apply the Boolean logic theory to find an ample family of snarks, which includes many of the previous known constructions and also some interesting ones. Peer Reviewed
Boolean logic device done with DFB laser diode
Hurtado Villavieja, Antonio; González Marcos, Ana; Martín Pereda, José Antonio
2004-01-01
We present simulation results on how power output-input characteristic Instability in Distributed FeedBack -DFB semiconductor laser diode SLA can be employed to implemented Boolean logic device. Two configurations of DFB Laser diode under external optical injection, either in the transmission or in the reflective mode of operation, is used to implement different Optical Logic Cells (OLCs), called the Q- and the P-Device OLCs. The external optical injection correspond to two inputs data plus a...
Mapping Complex Networks: Exploring Boolean Modeling of Signal Transduction Pathways
Bhardwaj, Gaurav; Wells, Christine P.; Albert, Reka; van Rossum, Damian B.; Patterson, Randen L
2009-01-01
In this study, we explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signaling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP3R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomization of ...
Matroids, hereditary collections and simplicial complexes having boolean representations
Rhodes, John; Silva, Pedro V.
2012-01-01
Inspired by the work of Izakhian and Rhodes, a theory of representation of hereditary collections by boolean matrices is developed. This corresponds to representation by finite $\\vee$-generated lattices. The lattice of flats, defined for hereditary collections, lattices and matrices, plays a central role in the theory. The representations constitute a lattice and the minimal and strictly join irreducible elements are studied, as well as various closure operators.
Soft Rough Approximation Operators on a Complete Atomic Boolean Lattice
Heba I. Mustafa
2013-01-01
The concept of soft sets based on complete atomic Boolean lattice, which can be seen as a generalization of soft sets, is introduced. Some operations on these soft sets are discussed, and new types of soft sets such as full, keeping infimum, and keeping supremum are defined and supported by some illustrative examples. Two pairs of new soft rough approximation operators are proposed and the relationship among soft set is investigated, and their related properties are given. We show that Järvin...
MILES FORMULAE FOR BOOLEAN MODELS OBSERVED ON LATTICES
Directory of Open Access Journals (Sweden)
Joachim Ohser
2011-05-01
Full Text Available The densities of the intrinsic volumes – in 3D the volume density, surface density, the density of the integral of the mean curvature and the density of the Euler number – are a very useful collection of geometric characteristics of random sets. Combining integral and digital geometry we develop a method for efficient and simultaneous calculation of the intrinsic volumes of random sets observed in binary images in arbitrary dimensions. We consider isotropic and reflection invariant Boolean models sampled on homogeneous lattices and compute the expectations of the estimators of the intrinsic volumes. It turns out that the estimator for the surface density is proved to be asymptotically unbiased and thusmultigrid convergent for Boolean models with convex grains. The asymptotic bias of the estimators for the densities of the integral of the mean curvature and of the Euler number is assessed for Boolean models of balls of random diameters. Miles formulae with corresponding correction terms are derived for the 3D case.
Image Restoration Research Based on Boolean Cloud Model Algorithm%基于布尔云模型算法的图像修复研究
Institute of Scientific and Technical Information of China (English)
王宝红; 郭水旺; 季钢
2013-01-01
Aiming at the deficiencies of the existing image restoration algorithm,Boolean cloud model algorithm is used.First the cloud model is constructed,cloud entropy to determine cloud Boolean relations,clouds appear,Boolean logic to calculate each cloud droplet collection of mutual information entropy,entropy of different results to determine value.Followed by the input and Boolean cloud state function determines the cloud model decision by input Boolean function can produce new clouds again,optimize cloud states choose different cloud entropy dynamic changes.Finally,the algorithm processes.simulation results show operator to connect natural repair image,smoothness,to maintain the overall continuous,and PSNR value.%针对现有图像修复算法的不足,采用布尔云模型算法.首先构造云模型,利用云熵确定云布尔关系.不同的云团值出现时,布尔逻辑计算每个云滴集合的互信息熵.通过比较熵的不同来确定结果值；接着在受输入和布尔函数决定后产生云态,云模型在受输入和布尔函数决定后,可以再次产生新的云团.对云态进行选择优化,其不同的云熵动态变化,最后给出了算法流程.仿真结果显示算法对修复图像连接自然,有光滑性,保持了整体连续,并且PSNR值较大.
Expectation-Maximization Approach to Boolean Factor Analysis
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
Piscataway: IEEE, 2011, s. 559-566. ISBN 978-1-4244-9636-5. [IJCNN 2011. International Joint Conference on Neural Networks. San Jose (US), 31.07.2011-05.08.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * bars problem * dendritic inhibition * expectation-maximization * neural network application * statistics Subject RIV: IN - Informatics, Computer Science
Neural Network Based Boolean Factor Analysis of Parliament Voting
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Polyakov, P.Y.; Húsek, Dušan; Řezanková, H.
Heidelberg : Springer, 2006 - (Rizzi, A.; Vichi, M.), s. 861-868 ISBN 3-7908-1708-2. [COMPSTAT 2006. Symposium /17./. Rome (IN), 28.08.2006-01.09.2006] R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Grant ostatní: RFBR(RU) 05-07-90049 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * neural networks * social networks Subject RIV: BB - Applied Statistics, Operational Research
Self-organized networks of competing boolean agents
Paczuski; Bassler; Corral
2000-04-01
A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths. PMID:11019043
Dimensionality Reduction in Boolean Data: Comparison of Four BMF Methods
Czech Academy of Sciences Publication Activity Database
Bartl, E.; Bělohlávek, R.; Osicka, P.; Řezanková, Hana
Berlin: Springer, 2015 - (Masulli, F.; Petrosino, A.; Rovetta, S.), s. 118-133. (Lecture Notes in Computer Science. 7627). ISBN 978-3-662-48576-7. ISSN 0302-9743. [CHDD 2012. Clustering High-Dimensional Data. International Workshop /1./. Naples (IT), 15.05.2012-15.05.2012] R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk CZ.1.07/2.3.00/20.0059 Keywords : binary data * dimensionality reduction * Boolean factor analysis * matrix decomposition Subject RIV: BB - Applied Statistics, Operational Research
Two Expectation-Maximization Algorithms for Boolean Factor Analysis
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
2014-01-01
Roč. 130, 23 April (2014), s. 83-97. ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014
C*-algebras associated to Boolean dynamical systems
Pardo Espino, Enrique
2016-01-01
The goal of this talk is to present the C*-algebra $C^*(\\mathcal{B}, \\mathcal{L}, \\theta)$ of a Boolean dynamical system $(\\mathcal{B}, \\mathcal{L}, \\theta)$, that generalizes the $C^*$-algebra associated to a labelled graph introduced by Bates and Pask, and to determine its simplicity, its gauge invariant ideals, as well as compute its K-Theory. This is a joint work with Toke Meier Carlsen (Department of Science and Technology, University of the Faroe Islands) and Eduard Ortega (Departme...
Comparison of Two Neural Networks Approaches to Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Polyakov, P.Y.; Frolov, A. A.; Húsek, Dušan
Los Alamitos: IEEE Computer Society, 2009 - (Snášel, V.; Pokorný, J.; Pichappan, P.; El-Qawasmeh, E.), s. 316-321 ISBN 978-1-4244-4614-8. [NDT 2009. International Conference on Networked Digital Technologies /1./. Ostrava (CZ), 29.07.2009-31.07.2009] R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * artificial inteligence * neural networks * multivariate statistics * Boolean factor analysis * Hopfield-like neural networks * feed forward neural network Subject RIV: BB - Applied Statistics, Operational Research
Boolean approaches to graph embeddings related to VLSI
Institute of Scientific and Technical Information of China (English)
LIU; Yanpei(
2001-01-01
［1］Hu, T. C., Kuh, S. E., Theory and concepts of circuit layout, in VLSI Circuit Layout: Theory and Design, New York:IEEE Press, 1985, 3-18.［2］Liu Yanpei, Embeddability in Graphs, Boston-Beijing: Kluwer Science, 1995.［3］Liu Yanpei, Some combinatorial optimization problems arising from VLSI circuit design, Applied Math. -JCU, 1993, 38:218-235.［4］Liu Yanpei, Marchioro, P. , Petreschi, R., At most single bend embeddings of cubic graphs, Applied Math. -CJU, 1994,39: 127-142.［5］Liu Yanpei, Marchioro, P. , Petreschi, R. et al. , Theoretical results on at most 1-bend embeddability of graphs, Acta Math.Appl. Sinica, 1992, 8: 188-192.［6］Liu Yanpei, Morgana, A., Simeone, B., General theoretical results on rectilinear embeddability of graphs, Acta Math. Ap- pl. Simca, 1991, 7: 187-192.［7］Calamoneri, T., Petreschi, R., Liu Yanpei, Optimally Extending Bistandard Graphs on the Orthogonal Grid, ASCM2000 Symposium, Tailand, Dec.17-21, 2000.［8］Liu Yanpei, Morgana, A., Simeone, B., A graph partition problem, Acta Math. Appl. Sinica, 1996, 12: 393-400.［9］Liu Yanpei, Morgana, A. , Simeone, B. , A linear algorithm for 2-bend embeddings of planar graphs in the two dimensional grid, Discrete Appl. Math., 1998, 81: 69-91.［10］Liu Yanpei, Boolean approach to planar embeddings of a graph, Acta Math. Sinica, New Series, 1989, 5: 64-79.［11］Hammer, P. L., Liu Yanpei, Simeone, B., Boolean approaches to combinatorial optimization, J. Math. Res. Expos.,1990, 10: 300-312, 455-468, 619-628.［12］Liu Yanpei, Boolean planarity characterization of graphs, Acta Math. Sinica, New Series, 1988, 4: 316-329.［13］Liu Yanpei, Boolean characterizations of planarity and planar embeddings of graphs, Ann. O. R., 1990, 24: 165-174.
Soft Rough Approximation Operators on a Complete Atomic Boolean Lattice
Directory of Open Access Journals (Sweden)
Heba I. Mustafa
2013-01-01
Full Text Available The concept of soft sets based on complete atomic Boolean lattice, which can be seen as a generalization of soft sets, is introduced. Some operations on these soft sets are discussed, and new types of soft sets such as full, keeping infimum, and keeping supremum are defined and supported by some illustrative examples. Two pairs of new soft rough approximation operators are proposed and the relationship among soft set is investigated, and their related properties are given. We show that Järvinen's approximations can be viewed as a special case of our approximation. If , then our soft approximations coincide with crisp soft rough approximations (Feng et al. 2011.
The number system hidden inside the Boolean satisfiability problem
Cho, Keum-Bae
2014-01-01
The Boolean satisfiability (SAT) problem is the first known example of an NP-complete problem, and thousands of NP-compete problems have been identified by reducing the SAT to the problems. Researchers have tried to find a definite mathematical expression that distinguishes among NL-complete, P-complete, and NP-complete problems such as 2-SAT, Horn-SAT, and 3-SAT. In this paper, we introduce the natural number system hidden inside the SAT structure. We reduce a SAT instance to an integer-prog...
The behavior of noise-resilient Boolean networks with diverse topologies
International Nuclear Information System (INIS)
The dynamics of noise-resilient Boolean networks with majority functions and diverse topologies is investigated. A wide class of possible topological configurations is parametrized as a stochastic blockmodel. For this class of networks, the dynamics always undergoes a phase transition from a non-ergodic regime, where a memory of its past states is preserved, to an ergodic regime, where no such memory exists and every microstate is equally probable. Both the average error on the network and the critical value of noise where the transition occurs are investigated analytically, and compared to numerical simulations. The results for 'partially dense' networks, comprising relatively few, but dynamically important nodes, which have a number of inputs that greatly exceeds the average for the entire network, give very general upper bounds on the maximum resilience against noise attainable on globally sparse systems
Directory of Open Access Journals (Sweden)
Jean-Marc Roussel
2014-01-01
Full Text Available Formal methods can strongly contribute to improve dependability of controllers during design, by providing means to avoid flaws due to designers' omissions or specifications misinterpretations. This paper presents a synthesis method dedicated to logic controllers. Its goal is to obtain the control laws from specifications given in natural language by symbolic computation. The formal framework that underlies this method is the Boolean algebra of n-variable switching functions. In this algebra, thanks to relations and theorems presented in this paper, it is possible to formally express logical controllers specifications, to automatically detect inconsistencies in specifications, and to obtain automatically the set of solutions or to choose an optimal solution according to given optimization criteria. The application of this synthesis method to an example allows illustrating its main advantages.
16 Boolean logics in three steps with two anti-serially connected memristors
Zhou, Yaxiong; Li, Yi; Xu, Lei; Zhong, Shujing; Sun, Huajun; Miao, Xiangshui
2015-06-01
Memristor based logic gates that can execute memory and logic operations are regarded as building blocks for non Von Neumann computation architecture. In this letter, Ta/GeTe/Ag memristors were fabricated and showed reproducible binary switches between high-resistance and low-resistance states. Utilizing a structure with two anti-serially connected memristors, we propose a logic operation methodology, based on which arbitrary Boolean logic can be realized in three steps, and the logic result can be nonvolatilely stored. A functionally complete logic operation: NAND is further verified by HSPICE simulation and experiments. The implementation of logic-in-memory unit may stimulate the development of future massive parallel computing.
Boolean Operators and the Naive End-User: Moving to AND.
Proctor, Edward
2002-01-01
Discusses the confusion among end users in using Boolean operators when searching electronic resources. Highlights include search engines; site-specific search engines; the counterintuitive nature of Boolean logic; hidden defaults; the problem of conceptualization; reprogramming defaults; and a lack of user education. (LRW)
Young, Degi; Shneiderman, Ben
1993-01-01
Literature showing the disadvantages of Boolean logic in online searching is reviewed, and research comparing the Filter/Flow visual interface (i.e., a graphical representation of Boolean operators) with a text-only interface is described. A significant difference in the total number of correct queries is reported that favored Filter/Flow. (16…
Disjunctive normal forms for any class of Boolean algebras with operators
Khaled, Mohamed
2015-01-01
Disjunctive normal forms can provide elegant and constructive proofs of many standard results such as completeness, decidability and so on. They were also used to show non atomicity of some free algebras of specific Boolean algebras with operators. Here, we generalize the normal forms for any class of Boolean algebras with operators.
Radecki, Tadeusz
1985-01-01
Reports research results into a methodology for determining similarity between queries characterized by Boolean search request formulations and discusses similarity measures for Boolean combinations of index terms. Rationale behind these measures is outlined, and conditions ensuring their equivalence are identified. Results of an experiment…
Boolean Models of Biosurfactants Production in Pseudomonas fluorescens
Richard, Adrien; Rossignol, Gaelle; Comet, Jean-Paul; Bernot, Gilles; Guespin-Michel, Jannine; Merieau, Annabelle
2012-01-01
Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained. PMID:22303435
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Directory of Open Access Journals (Sweden)
Gijs Kant
2012-10-01
Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.
Boolean modeling in systems biology: an overview of methodology and applications
International Nuclear Information System (INIS)
Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)
Chaos synchronization of two stochastically coupled random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Hung, Y.-C. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China) and Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: d9123801@student.nsysu.edu.tw; Ho, M.-C. [Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: t1603@nknucc.nknu.edu.tw; Lih, J.-S. [Department of Physics and Geoscience, National Pingtung University of Education, Pingtung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Jiang, I-M. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)
2006-07-24
In this Letter, we study the chaos synchronization of two stochastically coupled random Boolean networks (RBNs). Instead of using the 'site-by-site and all-to-all' coupling, the coupling mechanism we consider here is that: the nth cell in a network is linked by an arbitrarily chosen cell in the other network with probability {rho}, and it possesses no links with probability 1-{rho}. The mechanism is useful to investigate the coevolution of biological species via horizontal genetic exchange. We show that the density evolution of networks can be described by two deterministic coupled polynomial maps. The complete synchronization occurs when the coupling parameter exceeds a critical value. Moreover, the reverse bifurcations in inhomogeneous condition are observed and under our discussion.
Boolean Algebra Application in Analysis of Flight Accidents
Directory of Open Access Journals (Sweden)
Casandra Venera BALAN
2015-12-01
Full Text Available Fault tree analysis is a deductive approach for resolving an undesired event into its causes, identifying the causes of a failure and providing a framework for a qualitative and quantitative evaluation of the top event. An alternative approach to fault tree analysis methods calculus goes to logical expressions and it is based on a graphical representation of the data structure for a logic - based binary decision diagram representation. In this analysis, such sites will be reduced to a minimal size and arranged in the sense that the variables appear in the same order in each path. An event can be defined as a statement that can be true or false. Therefore, Boolean algebra rules allow restructuring of a Fault Tree into one equivalent to it, but simpler.
Complete Boolean Satisfiability Solving Algorithms Based on Local Search
Institute of Scientific and Technical Information of China (English)
Wen-Sheng Guo; Guo-Wu Yang; William N.N.Hung; Xiaoyu Song
2013-01-01
Boolean satisfiability (SAT) is a well-known problem in computer science,artificial intelligence,and operations research.This paper focuses on the satisfiability problem of Model RB structure that is similar to graph coloring problems and others.We propose a translation method and three effective complete SAT solving algorithms based on the characterization of Model RB structure.We translate clauses into a graph with exclusive sets and relative sets.In order to reduce search depth,we determine search order using vertex weights and clique in the graph.The results show that our algorithms are much more effective than the best SAT solvers in numerous Model RB benchmarks,especially in those large benchmark instances.
Optimization, Randomized Approximability, and Boolean Constraint Satisfaction Problems
Yamakami, Tomoyuki
2011-01-01
We give a unified treatment to optimization problems that can be expressed in the form of nonnegative-real-weighted Boolean constraint satisfaction problems. Creignou, Khanna, Sudan, Trevisan, and Williamson studied the complexity of approximating their optimal solutions whose optimality is measured by the sums of outcomes of constraints. To explore a wider range of optimization constraint satisfaction problems, following an early work of Marchetti-Spaccamela and Romano, we study the case where the optimality is measured by products of constraints' outcomes. We completely classify those problems into three categories: PO problems, NPO-hard problems, and intermediate problems that lie between the former two categories. To prove this trichotomy theorem, we analyze characteristics of nonnegative-real-weighted constraints using a variant of the notion of T-constructibility developed earlier for complex-weighted counting constraint satisfaction problems.
Boolean Factor Analysis by Expectation-Maximization Method
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
Heidelberg : Springer, 2013 - (Kudělka, M.; Pokorný, J.; Snášel, V.; Abraham, A.), s. 243-254 ISBN 978-3-642-31602-9. ISSN 2194-5357. - (Advances in Intelligent Systems and Computing. 179). [IHCI 2011. International Conference on Intelligent Human Computer Interaction /3./. Prague (CZ), 29.08.2011-31.08.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural networks * hidden pattern search * Boolean factor analysis * generative model * information redundancy * exceptation-maximization Subject RIV: IN - Informatics, Computer Science
A Boolean delay equation model of ENSO variability
Saunders, Amira; Ghil, Michael
2001-12-01
Boolean delay equations (BDEs) provide a mathematical framework to formulate and analyze conceptual models of complex multi-component systems. This framework is used here to construct a simple conceptual model for the El-Niño/Southern Oscillation (ENSO) phenomenon. ENSO involves the coupling of atmospheric and oceanic processes that are far from being completely understood. Our BDE model uses Boolean variables to represent key atmospheric and oceanic quantities and equations that involve logical operators to describe their evolution. Two distinct time-delay parameters, one for the local atmosphere-ocean coupling effects and the other for oceanic wave propagation, are introduced. Over a range of physically relevant delay values, this truly minimal model captures two essential features of ENSO’s interannual variability - its regularity and its tendency to phase-lock to the annual cycle. Oscillations with average cycle length that is an integer multiple of the seasonal cycle are prevalent and range from 2 to 7 years. Transition zones - where the average period lengths are noninteger rational multiples of the forcing period - exhibit Devil’s staircases, a signature of the quasi-periodic (QP) route to chaos. Our BDE model thus validates results from previous studies of the interaction of the seasonal cycle with ENSO’s “delayed oscillator”. It gives therewith support to the view that the observed irregularity results predominantly from low-order chaotic processes rather than from stochastic weather noise. Moreover, in the transition zone between the two integer periodicities of 2 and 3 years, a heretofore unsuspected, self-similar “fractal sunburst” pattern emerges in phase-parameter space. This pattern provides a distinct and more complex scenario than the QP route to chaos found in earlier, more detailed ENSO models. Period selection in this 2-3-year transitional region seems to play a key role in ENSO’s irregularity, as well as in the appearance of
Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach
International Nuclear Information System (INIS)
Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering. (paper)
Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach
Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru
2014-12-01
Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.
Parameter Learning of Boolean Bayesian Networks%布尔型贝叶斯网络参数学习
Institute of Scientific and Technical Information of China (English)
吴永广; 周兴旺
2015-01-01
布尔型贝叶斯网络是一类由布尔型变量组成的网络，它能够以线性多变量函数描述，使计算和处理上灵活高效。通过运用连接树算法对络进行分块化处理的方法，可以提高算法的效率，然后以传统的最大似然估计方法对布尔型网络的参数进行学习。服从同一分布律的贝叶斯网络参数学习算法发展比较成熟，这类以狄利克雷或者高斯分布为基础的算法在应用领域中难以发挥其应有的价值。相比之下，基于布尔型贝叶斯网络下的参数学习更贴近于应用，在人工智能和数据挖掘等领域有很好的发展前景。%Boolean Bayesian network is a class of Bayesian networks which are made up of Boolean varia-bles. The method to describe the network with a multi-linear function is flexible and efficient to compute and process variables. By introducing Junction Tree algorithm,the network can be divided into blocks which can make it easy to calculate. Then the traditional maximum likelihood estimation method was used for learning Boolean networks. Parameter learning algorithm following the same distribution is more ma-ture,but this kind of algorithm based on Dirichlet or Gaussian distribution is difficult to play its proper val-ue in practice. In contrast,parameter learning based on Boolean networks gets close to applications. It has good prospects for development in areas such as artificial intelligence and data mining.
A SAT-based algorithm for finding attractors in synchronous Boolean networks.
Dubrova, Elena; Teslenko, Maxim
2011-01-01
This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible. PMID:21778527
Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem
Directory of Open Access Journals (Sweden)
Vladimir A. Emelichev
2002-11-01
Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.
A novel generalized design methodology and realization of Boolean operations using DNA.
Zoraida, B S E; Arock, Michael; Ronald, B S M; Ponalagusamy, R
2009-09-01
The biological deoxyribonucleic acid (DNA) strand has been increasingly seen as a promising computing unit. A new algorithm is formulated in this paper to design any DNA Boolean operator with molecular beacons (MBs) as its input. Boolean operators realized using the proposed design methodology is presented. The developed operators adopt a uniform representation for logical 0 and 1 for any Boolean operator. The Boolean operators designed in this work employ only a hybridization operation at each stage. Further, this paper for the first time brings out the realization of a binary adder and subtractor using molecular beacons. Simulation results of the DNA-based binary adder and subtractor are given to validate the design. PMID:19505531