WorldWideScience

Sample records for book uranium resource

  1. Uranium resources production and demand: a forty years evaluation 'Red book retrospective'

    International Nuclear Information System (INIS)

    2007-01-01

    Uranium Resources, Production and Demand, also familiarly known as the ''Red Book'' is a biennial publication produced jointly by the NEA and the IAEA under the auspices of the joint NEA/IAEA Uranium Group. The first edition was published in 1965. The red book retrospective was undertaken to collect, analyse and publish all of the key information collected in the 20 editions of the Red Book published between 1965 and 2004. The red book gives a full historical profile of the world uranium industry in the areas of exploration, resources, reactor-related requirements, inventories and price. It provides in depth information relating to the histories of the major uranium producing countries. Thus for the first time a comprehensive look at annual and cumulative production and demand of uranium since the inception of the atomic age is possible. Expert analysis provide fresh insights into important aspects of the industry including the cost of discovery, resources to production ratios and the time to reach production after discovery. (A.L.B.)

  2. Uranium. Resources, production, and market - 2009 Red Book

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The ''Red Book'' has been compiled since the mid-1960s as a joint OECD/NEA and IAEA publication. The analysis presents an overview of present uranium supply and demand with perspectives reaching as far as 2035. Data from 35 countries were accumulated about exploration, resources, production, and prices. The 23 rd edition contains the most recent basic evaluations of the world uranium market, providing a profile of nuclear fuel supply. Forecasts of nuclear generating capacity and uranium requirement for reactor use up until 2035 are presented along with a discussion of uranium supplies and aspects of demand beyond that time frame. Worldwide expenditures for the exploration of uranium resources in 2008 totaled more than US $1.6 billion, which is a 133% increase over expenses in 2006. Most of the important producer countries reported rising expenses for exploration as well as for commissioning new production centers. The total ''identified'' (=reasonably assured and inferred) reserves as of January 1, 2009 in the 3 O 8 ) category decreased slightly to 5,404,000 t U while a clear increase to 6,306,300 t U was seen in the re-introduced ''high cost'' category ( 3 O 8 ). Uranium production in 2008 amounted to 43,880 t U, which is an increase of 6% over 2007 (41,244 t U), and of 11% over 2006 (39,617 t U). In 2008, worldwide uranium production (43,880 t U) covered roughly 74% of the worldwide requirement for use in reactors (59,065 t U). The balance was met out of secondary sources. (orig.)

  3. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1985-05-01

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.) [pt

  4. Uranium resources, production and demand 1993

    International Nuclear Information System (INIS)

    1994-10-01

    This book is the Japanese edition of 'Uranium Resources, Production and Demand, 1993' published by OECD/NEA-IAEA in 1994. It contains data on uranium exploration activities, resources and production for about 50 countries. (K.I.)

  5. Uranium supply/demand projections to 2030 in the OECD/NEA-IAEA ''Red Book''. Nuclear growth projections, global uranium exploration, uranium resources, uranium production and production capacity

    International Nuclear Information System (INIS)

    Vance, Robert

    2009-01-01

    World demand for electricity is expected to continue to grow rapidly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by many governments that nuclear power can produce competitively priced, base load electricity that is essentially free of greenhouse gas emissions, combined with the role that nuclear can play in enhancing security of energy supplies, has increased the prospects for growth in nuclear generating capacity. Since the mid-1960s, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every 2 years) on world uranium resources, production and demand. These updates have been published by the OECD/NEA in what is commonly known as the ''Red Book''. The 2007 edition replaces the 2005 edition and reflects information current as of 1 st January 2007. Uranium 2007: Resources, Production and Demand presents, in addition to updated resource figures, the results of a recent review of world uranium market fundamentals and provides a statistical profile of the world uranium industry. It contains official data provided by 40 countries (and one Country Report prepared by the IAEA Secretariat) on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements to 2030 as well as a discussion of long-term uranium supply and demand issues are also presented. (orig.)

  6. Uranium resource processing. Secondary resources

    International Nuclear Information System (INIS)

    Gupta, C.K.; Singh, H.

    2003-01-01

    This book concentrates on the processing of secondary sources for recovering uranium, a field which has gained in importance in recent years as it is environmental-friendly and economically in tune with the philosophy of sustainable development. Special mention is made of rock phosphate, copper and gold tailings, uranium scrap materials (both natural and enriched) and sea water. This volume includes related area of ore mineralogy, resource classification, processing principles involved in solubilization followed by separation and safety aspects

  7. Present status of development of uranium resources in foreign countries

    International Nuclear Information System (INIS)

    1983-10-01

    The book with the same title as this was published in 1981. Thereafter, the necessity to correct the contents arose, such as the remarkable change in uranium market condition and the change of uranium resource policy in Australia accompanying the change of regime, accordingly, the revision was carried out by adding more new information. As the main sources of the information collected in this book, 25 materials are shown. The confirmed resources of uranium in the free world as of the beginning of 1981 amounted to 2,293,000 t U, and the estimated additional resources were 2,720,000 t U. The political system and uranium policy, the present status of uranium export, the quantity of resources and the estimated amount of deposits, the uranium production and the status of uranium exploration and development of 25 foreign countries are reported. Japan has carried out uranium development activities in Australia, Canada, Niger, Gabon, Zambia and so on. (Kako, I.)

  8. Uranium 2003: resources, production and demand

    International Nuclear Information System (INIS)

    2004-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. This edition, the 20., presents the results of a thorough review of world uranium supplies and demand as of 1 January 2003 based on official information received from 43 countries. Uranium 2003: Resources, Production and Demand paints a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. The long lead times required to bring resources into production underscore the importance of making timely decisions to pursue production capability well in advance of any supply shortfall. (author)

  9. The Joint NEA/IAEA Uranium Group -- its role in assessing world uranium resources, production, demand and environmental activities and issues

    International Nuclear Information System (INIS)

    Barthel, F.H.; Vera, I.

    2002-01-01

    In 1965 a 20-page report entitled World Uranium and Thorium Resources was published by the OECD-European Nuclear Energy Agency. Today, 35 years later, the report is jointly prepared by the OECD/Nuclear Energy Agency and the IAEA and published by the OECD. The report: Uranium Resources, Production and Demand also known as the Red Book is in its 18th edition. It is the only official publication on world uranium statistics and provides information from 45 or more countries. One aim of the Red Book is to obtain a uniform, worldwide acceptable classification of uranium resources. The Red Book provides statistics and analyses for resources, exploration, production, demand, secondary sources, surplus defence material and the supply and demand relationship. The sales records indicate that it is used as reference material for various purposes including public and private libraries, energy companies, uranium production companies, national and international organisation, universities and other research and business institutions. In 1996 a study was started which led to the 1999 report: Environmental Activities in Uranium Mining and Milling, a companion to the Red Book. This complementary report provides information on the site characterization, dismantling and decommissioning, waste management, water remediation, long term monitoring policies and regulations for 29 countries. A second report entitled 'Environmental Remediation of Uranium Production Facilities' is being prepared. (author)

  10. World uranium exploration, resources, production and related activities

    International Nuclear Information System (INIS)

    Hanly, A.

    2014-01-01

    A Nuclear Energy Series publication entitled “World Uranium Exploration, Resources, Production and Related Activities” (WUERPRA) will soon be published by the IAEA. The objective of the publication is to provide a comprehensive compilation of historic uranium exploration, resources, production and related activities based primarily on information from the 1966 to 2009 editions of the publication “Uranium Resources, Production and Demand”, a joint publication of the International Atomic Energy Agency and the Nuclear Energy Agency/Organization for Economic Cooperation and Development commonly known as the ‘Red Book’. This has been supplemented by historic information from other reliable sources. The publications also include, where enough information was available, descriptions of the relative potential for discovery of new uranium resources on a per country basis. To recover complete historic information it is frequently necessary to refer to earlier editions of the Red Book, many of which may not be readily available. This publication aims to provide one comprehensive source for much of this type of information which will reduce the effort required to prepare future editions of the Red Book, as well as make the historic Red Book information, together with select related information from other sources, more readily available to all users with an interest in uranium. WUERPRA comprises 6 volumes containing 164 country reports, each organized by region; Volume 1: Africa (53 countries); Volume 2: Central, Eastern and Southeastern Europe (25 countries); Volume 3: Southeastern Asia, Pacific, East Asia (18 countries); Volume 4: Western Europe (22 countries); Volume 5: Middle East, Central and Southern Asia (19 countries), and; Volume 6: North America, Central America and South America (27 countries). The report also contains information on countries that have not reported to the Red Book. The poster will summarize select major highlights from each volume

  11. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  12. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  13. Uranium Resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1988, was based on data collected mainly in early 1987. Most of the data for 1987 were therefore provisional. The STATISTICAL UPDATE 1988 provides updated 1987 data collected in 1988 and provisional data for 1988. The publication, which covers OECD Countries and gives Secretariat estimates for the rest of the World Outside Centrally Planned Economies (WOCA), is being issued every second year, between publications of more complete Red Books

  14. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1986-01-01

    Periodic assessments of world uranium supply have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report Uranium resources, production and demand, commonly referred to as the red book, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest red book, published in 1986, was based on data collected mainly in early 1985. Most of the data for 1985 were therefore provisional. The statistical update 1986 provides updated 1985 data collected in 1986 and provisional data for 1986. This is the first time such an annual update of key Red Book statistical data has been prepared. This year it covers only OECD countries with a secretariat estimate for the rest of Woca

  15. Present status of uranium resource development in foreign countries, 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The book of the same title as this one was published in 1983. Since then, the situation requiring the correction of the contents, such as the correction of uranium resource policy in various countries accompanying the change of uranium market condition and the change of uranium policy in Australia due to the political situation, has occurred, consequently, the revision has been made adding these new information. The confirmed resources of uranium and the resources of uranium to be added by estimation in the free world are tabulated. About each country, the organization and policy, the policy of exporting uranium and the present status of the export, the quantity of uranium resources, the production of uranium, the state of exploration and development and so on are reported. Japan has taken part in the development of uranium resources in Australia, Canada, Gabon, Zambia, Morocco, Guinea, Mali and so on. (Kako, I.)

  16. Uranium 1990 resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1990, was based on data collected mainly in early 1989. Most of the data for 1989 were therefore provisional. The STATISTICAL UPDATE 1990 provides updated 1989 data collected in 1990 and provisional for 1990 [fr

  17. Uranium 2011: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, are also featured, along with an analysis of long-term uranium supply and demand issues

  18. South African uranium resource and production capability estimates

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.; Toens, P.D.

    1980-09-01

    South Africa, along with Canada and the United States, submitted forecasts of uranium capacities and capabilites to the year 2025 for the 1979 'Red Book' edition. This report deals with the methodologies used in arriving at the South African forecasts. As the future production trends of the South African uranium producers cannot be confidently defined, chiefly because uranium is extracted as a by-product of the gold mining industry and is thus highly sensitive to market fluctuations for both uranium and gold, the Evaluation Group of the Atomic Energy Board has carried out numerous forecast exercises using current and historical norms and assuming various degrees of 'adverse', 'normal' and 'most favourable' conditions. The two exercises, which were submitted for the 'Red Book', are shown in the Appendices. This paper has been prepared for presentation to the Working Group on Methodologies for Forecasting Uranium Availability of the NEA/IAEA Steering Group on Uranium Resources [af

  19. Uranium 2009: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry - the first critical link in the fuel supply chain for nuclear reactors - is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23. edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres around the world, as well as from countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also featured, along with an analysis of long-term uranium supply and demand issues

  20. Uranium 2001: resources, production and demand

    International Nuclear Information System (INIS)

    2002-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. Its contents are based on official information received from 45 countries, supplemented by unofficial information for two others. This edition, the 19., presents the results of a thorough review of world uranium supply and demand as of 1 January 2001 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and, for the first time, includes a report on Tajikistan. This edition also features international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. (authors)

  1. Uranium 2009 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  2. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  3. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    Vance, Robert

    2014-01-01

    Since the mid-1960's, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every two years) on world uranium resources, production and demand. Published by the OECD/NEA in what is commonly known as the 'Red Book', the 25. edition, released in September 2014, contains 45 national reports covering uranium producing and consuming countries and those with plans to do so. The uranium resource figures presented in the 25. edition of the Red Book are a snapshot of the situation as of 1 January 2013. Resource figures are dynamic and related to commodity prices. Despite less favourable market conditions, continued high levels of investment and associated exploration efforts have resulted in the identification of additional resources of economic interest, just as in past periods of intense exploration activity. Total identified resources (reasonably assured and inferred) as of 1 January 2013 amounted to 5 902 900 tonnes of uranium metal (tU) in the 3 O 8 ) category, an increase of 10.8% compared to 1 January 2011. In the highest cost category ( 3 O 8 ) which was reintroduced in 2009, total identified resources amounted to 7 635 200 tU, an increase of 7.6% compared to the total reported in 2011. The majority of the increases are a result of re-evaluations of previously identified resources and additions to known deposits, particularly in Australia, Canada, the People's Republic of China, the Czech Republic, Greenland, Kazakhstan and South Africa. Worldwide exploration and mine development expenditures in 2012 totalled USD 1.92 billion, a 21% increase over updated 2010 figures, despite declining market prices. Production in 2012 increased by 7.4% from 2011 to 58 816 tU and is expected to increase to over 59 500 tU in 2013. This recent growth is principally the result of increased production in Kazakhstan, which remains the world

  4. World uranium resources

    International Nuclear Information System (INIS)

    Deffeyes, K.S.; MacGregor, I.D.

    1980-01-01

    To estimate the total resource availability of uranium, the authors' approach has been to ask whether the distribution of uranium in the earth's crust can be reasonably approximated by a bell-shaped log-normal curve. In addition they have asked whether the uranium deposits actually mined appear to be a portion of the high-grade tail, or ascending slope, of the distribution. This approach preserves what they feel are the two most important guiding principles of Hubbert's work, for petroleum, namely recognizing the geological framework that contains the deposits of interest and examining the industry's historical record of discovering those deposits. Their findings, published recently in the form of a book-length report prepared for the US Department of Energy, suggest that for uranium the crustal-distribution model and the mining-history model can be brought together in a consistent picture. In brief, they conclude that both sets of data can be described by a single log-normal curve, the smoothly ascending slope of which indicates approximately a 300-fold increase in the amount of uranium recoverable for each tenfold decrease in ore grade. This conclusion has important implications for the future availability of uranium. They hasten to add, however, that this is only an approximative argument; no rigorous statistical basis exists for expecting a log-normal distribution. They continue, pointing out the enormously complex range of geochemical behavior of uranium - and its wide variety of different binds of economic deposit. Their case study, supported by US mining records, indicates that the supply of uranium will not be a limiting factor in the development of nuclear power

  5. Are world uranium resources sufficient to fuel global growth in nuclear generating capacity?

    International Nuclear Information System (INIS)

    Cameron, R.; Vance, R.E.

    2012-01-01

    Increased uranium prices since 2003 have produced more activity in the sector than the previous 20 years. Nuclear reactor construction is proceeding in some countries, ambitious expansion plans have been announced in others and several, particularly in the developing world, are considering introducing nuclear power as a means of meeting rising electricity demand without increasing greenhouse gas emissions. Others have recently decided to either withdraw from the use of nuclear power or not proceed with development plans following the accident at the Fukushima Dai-ichi nuclear power plant in Japan in March 2011. Since the mid-1960, the OECD Nuclear Energy Agency and the International Atomic Energy Agency have jointly prepared a comprehensive update of global uranium resources, production and demand (commonly known as the 'Red Book'. The Red Book is based on government responses to a questionnaire that requests information on uranium exploration and mine development activity, resources and plans for nuclear development to 2035. This presentation provides an overview of the global situation based on the recently published 2011 edition. It features a compilation of global uranium resources, projected mine development and production capability in all the countries currently producing uranium or with plans to do so in the near future. This is compared to updated, post-Fukushima demand projections, reflecting nuclear phase-out plans announced in some countries and ambitious expansion plans of others. The 2011 Red Book shows that currently defined uranium resources are sufficient to meet high case projections of nuclear power development to 2035. (authors)

  6. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This 22. edition provides a comprehensive review of world uranium supply and demand as of 1. January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  7. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This second edition provides a comprehensive review of world uranium supply and demand as of first January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  8. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  9. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  10. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  11. Uranium resources and supply - demand to 2030

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    Recent fluctuations in the market price for uranium have resulted in more activity in this sector over the past few years than in the preceding 20 years. Amidst this background, uranium demand is increasing. Construction of nuclear reactors is proceeding in some countries, ambitious expansion plans have been announced in others and the development of nuclear power programs to meet electricity demand and minimize greenhouse emissions in a cost effective manner is under consideration in many others. This paper reviews projections of nuclear growth and uranium demand and assesses the challenges faced by the uranium mining sector in meeting rising demand. Since the mid-1960 s, an international expert committee (the 'Uranium Group') formed by the OECD Nuclear Energy Agency and the International Atomic Energy Agency has published biennially comprehensive updates on global uranium resources, production and demand (the 'Red Book'). The most recent in this series, based on 2007 data and published in June 2008, includes a supply/demand projection to 2030. However, much has changed since the data were collected for this projection and an assessment of these changes and their impact on uranium production is included in this presentation. It is concluded that world identified uranium resources (5.45 million t U recoverable at costs up to US$130/kg U, or US$50/lb U 3 O 8 ) are adequate to meet projected future high case nuclear power requirements. However, recent financial market turmoil and lower uranium prices, the opaque nature of the uranium market itself, increased regulatory requirements, a scarcity of the required specialized labour and the fluctuating costs of raw materials makes the process of turning uranium resources in the ground into yellowcake in the can increasingly more challenging, particularly for new entrants. Considerable investment and expertise will be required to bring about the substantial increase in mine production required to meet future demand

  12. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  13. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  14. Uranium 1999. Resources, production and demand

    International Nuclear Information System (INIS)

    2000-01-01

    In recent years, the world uranium market has been characterised by an imbalance between demand and supply and persistently depressed uranium prices. World uranium production currently satisfies between 55 and 60 per cent of the total reactor-related requirements, while the rest of the demand is met by secondary sources including the conversion of excess defence material and stockpiles, primarily from Eastern Europe. Although the future availability of these secondary sources remains unclear, projected low-cost production capability is expected to satisfy a considerable part of demand through to 2015. Information in this report provides insights into changes expected in uranium supply and demand over the next 15 years. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost world reference on uranium. It is based on official information from 49 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1999. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States. It also contains an international expert analysis of industry statistics and world-wide projections of nuclear energy growth, uranium requirements and uranium supply. (authors)

  15. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  16. Uranium mining, atomic weapons testing, nuclear waste storage: A global survey. World Uranium Hearing grey book 1992

    International Nuclear Information System (INIS)

    Krumbholz, E.; Kressing, F.

    1992-09-01

    The first edition of the 'World Uranium Hearing Grey Book' for the World Uranium Hearing in Salzburg, 13-19 September 1992 is meant to be a reference for people involved in the World Uranium Hearing. It is mostly made up to country by country surveys giving background information on the testimonies presented at the Hearing, and on many more cases. Included are two short articles: One on 'nukespeak' to make the reader aware of how the language of the nuclear industry influences our speaking and thinking; and an article on the wastes produced by uranium mines. Due to limited time and resources this documentation is not complete. Many questions remain. For example, information is rare about conditions in Eastern Europe. Also, some countries are given much more space than others, which does not indicate importance or seriousness of implications of uranium mining, weapons testing or nuclear waste storage in this particular country. (orig./HP)

  17. Australian uranium resources

    International Nuclear Information System (INIS)

    Battey, G.C.; Miezitis, Y.; McKay, A.D.

    1987-01-01

    Australia's uranium resources amount to 29% of the WOCA countries (world outside centrally-planned-economies areas) low-cost Reasonably Assured Resources and 28% of the WOCA countries low-cost Estimated Additional Resources. As at 1 January 1986, the Bureau of Mineral Resources estimated Australia's uranium resources as: (1) Cost range to US$80/kg U -Reasonably Assured Resources, 465 000 t U; Estimated Additional Resources, 256 000 t U; (2) Cost range US$80-130/kg U -Reasonably Assured Resources, 56 000 t U; Estimated Additional Resources, 127 000 t U. Most resources are contained in Proterozoic unconformity-related deposits in the Alligator Rivers uranium field in the Northern Territory (Jabiluka, Ranger, Koongarra, Nabarlek deposits) and the Proterozoic stratabound deposit at Olympic Dam on the Stuart Shelf in South Australia

  18. Speculative resources of uranium. A review of International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983

    International Nuclear Information System (INIS)

    1983-01-01

    On a country by country basis the International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983 are reviewed. Information provided includes exploration work, airborne survey, radiometric survey, gamma-ray spectrometric survey, estimate of speculative resources, uranium occurrences, uranium deposits, uranium mineralization, agreements for uranium exploration, feasibilities studies, geological classification of resources, proposed revised resource range, production estimate of uranium

  19. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  20. Uranium resources potential for Asia and the Pacific

    International Nuclear Information System (INIS)

    Tauchid, M.

    1988-01-01

    Only four countries in Asia, India, Japan, the Republic of Korea and Turkey, reported having uranium resources in response to a Nuclear Energy Agency of the OECD/International Atomic Energy Agency questionnaire circulated before preparation of the report on Uranium: Resources, Production and Demand (the 'Red Book'). The reasonably assured resources (RAR) of these countries, which are recoverable at costs of up to US $130/kg U, amount to 67,690 t U or 3% of the total for the World Outside the Centrally Planned Economies Area (WOCA). It is believed that the largest uranium resources in Asia are in China; however, no official published figures are available to substantiate this fact. Within the framework of the International Uranium Resources Evaluation Project (IUREP) it was estimated that the speculative resources (SR) for Asia and the Far East outside the Centrally Planned Economies Area (CPEA) are of the order of 300,000 t U. This is 4.7% of the total for WOCA. With the exception of Proterozoic unconformity related deposits, all types of uranium deposits and occurrences are known to exist in Asia. Most deposits are of the vein and sandstone hosted types. Several published reports indicate that deposits in China are mainly of the volcanic type and those associated with granitic intrusion. For undiscovered deposits, probably India and China have the best possibility of finding deposits of the Precambrian quartz-pebble conglomerate and Proterozoic unconformity related types. In South-East Asia the deposits most likely to be found are those associated with Mesozoic granites and those in the intramontane basin sediments adjacent to these intrusions. The less known acid volcanic type is also a possibility. Only in China, India and Pakistan does there appear to be the possibility of finding calcrete type deposits. Uranium can still be recovered as a by-product of the phosphate rocks, monazite placer deposits and carbonatite known in many parts of Asia. (author). 21 refs

  1. Uranium 2014: Resources, Production and Demand - Executive Summary

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  2. Unconventional uranium resources in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; Wang Zhiming; He Zhongbo; Wang Wenquan

    2011-01-01

    Unconventional uranium resources in China mainly include black-rock series, peat, salt lake and evaporitic rocks. Among them, uraniferous black-rock series, uraniferous phosphorite and uranium-polymetallic phosphorite connected with black-rock series are important types for the sustainable support of uranium resources in China. Down-faulting and epocontinental rift in continental margin are the most important and beneficial ore-forming environment for unconventional uranium resources of black-rock series in China and produced a series of geochemistry combinations, such as, U-Cd, U-V-Mo, U-V-Re, U-V-Ni-Mo and U-V-Ni-Mo-Re-Tl. Unconventional uranium resources of black-rock series in China is related to uranium-rich marine black-rock series which are made up of hydrothermal sedimentary siliceous rocks, siliceous phospheorite and carbonaceous-siliceous-pelitic rock and settled in the continental margin down-faulting and epicontinental rift accompanied by submarine backwash and marine volcano eruption. Hydrothermal sedimentation or exhalation sedimentary is the mechanism to form unconventional uranium resources in black-rock series or large scale uranium-polymetallic mineralization in China. (authors)

  3. Maintaining the Uranium Resources Assessment Data System and assessing the 1990 US uranium potential resources

    International Nuclear Information System (INIS)

    McCammon, R.B.; Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1991-01-01

    The Energy Information Administration's (EIA) Uranium Resource Assessment Data System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the Uranium Resource Assessment Data (URAD) System, (2) to assess the 1990 US uranium potential resources in various cost categories, and (3) to identify problems and to recommend changes that are needed to improve the URAD System. 13 refs., 5 figs., 4 tabs

  4. Classification of uranium reserves/resources

    International Nuclear Information System (INIS)

    1998-08-01

    Projections of future availability of uranium to meet present and future nuclear power requirements depend on the reliability of uranium resource estimates. Lack of harmony of the definition of the different classes of uranium reserves and resources between countries makes the compilation and analysis of such information difficult. The problem was accentuated in the early 1990s with the entry of uranium producing countries from the former Soviet Union, eastern Europe and China into the world uranium supply market. The need for an internationally acceptable reserve/resource classification system and terminology using market based criteria is therefore obvious. This publication was compiled from participant's contributions and findings of the Consultants Meetings on Harmonization of Uranium Resource Assessment Concepts held in Vienna from 22 to 25 June 1992, and two Consultants Meetings on the Development of a More Meaningful Classification of Uranium Resources held in Kiev, Ukraine on 24-26 April 1995 and 20-23 August 1996. This document includes 11 contributions, summary, list of participants of the Consultants Meetings. Each contribution has been indexed and provided with an abstract

  5. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  6. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel

    International Nuclear Information System (INIS)

    Hore-Lacy, Ian

    2016-01-01

    Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas: • Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle • Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects • Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

  7. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, T.

    2005-01-01

    Under the combined effect of various factors, such as interrogations related to facing the climatic changes, the increasing prices of oil versus announced decrease of its resources, the major geopolitical evolution and the remarkable development of Asia, we live nowadays a revival of nuclear power in the very front of stage. In tis context, the following question is posed: could the nuclear fission be a sustainable source of energy when taking into consideration the availability of uranium resources? The article aims at pinpointing the knowledge we have about the world uranium resources, their limits of uncertainty and the relation between knowledge resources and market evolution. To conclude, some susceptible tracks are proposed to improve the using process of uranium resources particularly in softening the impact of high prices

  8. Maintaining the uranium resources data system and assessing the 1991 US uranium potential resources

    Energy Technology Data Exchange (ETDEWEB)

    McCammon, R.B. (Geological Survey, Reston, VA (United States)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (United States))

    1992-12-31

    The Energy Information Administration's (EIA) Uranium Resource Assessment Data (URAD) System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the URAD system; (2) to assess the 1991 U.S. uranium potential resources in various cost categories; and (3) to describe the progress that has been made to automate the generation of the assessment reports and their subsequent transmittal by diskette.

  9. National uranium resource evaluation, preliminary report

    International Nuclear Information System (INIS)

    1976-06-01

    The results of the initial phase of the National Uranium Resource Evaluation (NURE) are reported. NURE is a comprehensive nationwide program to evaluate uranium resources and to identify areas favorable for uranium exploration. Part I presents estimates of uranium ore reserves and potential resources available at costs (not prices) of $10, $15, and $30 per pound U 3 O 8 (uranium oxide). These estimates comprise the national uranium resource position. They are, however, preliminary because limitations of time and available geologic data prevented adequate assessment of some areas that may be favorable for potential resources. Part II presents the potential uranium resources for each of 13 regions, whose boundaries have been drawn chiefly on geologic considerations. The general geology is summarized, and the types of uranium deposits are described. Although limited geologic reconnaissance was done in various parts of the country, the report is based primarily on the compilation and evaluation of data in ERDA files. Mining companies furnished a substantial amount of information on exploration results, development, production, and future plans. Published, manuscript, and open-file reports by government agencies, universities, and research organizations were reviewed. In addition, many individuals affiliated with universities and with state and federal agencies provided supplemental geologic information. This was particularly helpful in the eastern and central states and in Alaska, where information on uranium occurrences is limited

  10. Uranium resource technology, Seminar 3, 1980

    International Nuclear Information System (INIS)

    Morse, J.G.

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining. 16 papers are indexed separately

  11. Fossile fuel and uranium resources

    International Nuclear Information System (INIS)

    Gorkum, A.A. van.

    1975-01-01

    The world's resources of coal, lignite, oil, natural gas, shale oil and uranium are reviewed. These quantities depend on the prices which make new resources exploitable. Uranium resources are given exclusively for the USSR, Eastern Europe and China. Their value in terms of energy depends heavily on the reactor type used. All figures given are estimated to be conservative

  12. Uranium resources in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.; Chenoweth, W.L.

    1989-01-01

    For nearly three decades (1951-1980), the Grants uranium district in northwestern New Mexico produced more uranium than any other district in the world. The most important host rocks containing economic uranium deposits in New Mexico are sandstones within the Jurassic Morrison Formation. Approximately 334,506,000 lb of U 3 O 8 were produced from this unit from 1948 through 1987, accounting for 38% of the total uranium production from the US. All of the economic reserves and most of the resources in New Mexico occur in the Morrison Formation. Uranium deposits also occur in sandstones of Paleozoic, Triassic, Cretaceous, Tertiary, and Quaternary formations; however, only 468,680 lb of U 3 O 8 or 0.14% of the total production from New Mexico have been produced from these deposits. Some of these deposits may have a high resource potential. In contrast, almost 6.7 million lb of U 3 O 8 have been produced from uranium deposits in the Todilto Limestone of the Wanakah Formation (Jurassic), but potential for finding additional economic uranium deposits in the near future is low. Other uranium deposits in New Mexico include those in other sedimentary rocks, vein-type uranium deposits, and disseminated magmatic, pegmatitic, and contact metasomatic uranium deposits in igneous and metamorphic rocks. Production from these deposits have been insignificant (less than 0.08% of the total production from New Mexico), but there could be potential for medium to high-grade, medium-sized uranium deposits in some areas. Total uranium production from New Mexico from 1948 to 1987 amounts to approximately 341,808,000 lb of U 3 O 8 . New Mexico has significant uranium reserves and resources. Future development of these deposits will depend upon an increase in price for uranium and lowering of production costs, perhaps by in-situ leaching techniques

  13. Maintaining the uranium resources data system and assessing the 1991 US uranium potential resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McCammon, R.B. [Geological Survey, Reston, VA (United States); Finch, W.I.; Grundy, W.D.; Pierson, C.T. [Geological Survey, Denver, CO (United States)

    1992-12-31

    The Energy Information Administration`s (EIA) Uranium Resource Assessment Data (URAD) System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the URAD system; (2)to assess the 1991 U.S. uranium potential resources in various cost categories; and (3) to describe the progress that has been made to automate the generation of the assessment reports and their subsequent transmittal by diskette.

  14. URANIUM 1991 resources, production and demand

    International Nuclear Information System (INIS)

    1992-01-01

    The uranium supply aspects of the nuclear fuel cycle have undergone considerable change during the last few years. Nuclear power generating capacity can continue to expand only if there is confidence in the final supply of uranium. This report presents governmental compilations of uranium resource and production data, as established in 1991. It also presents short-term projections of the nuclear industry future natural uranium requirements and reviews the status of uranium exploration, resources and production throughout the world. 10 refs., 14 figs., 15 tabs., 6 appendices

  15. Uranium 2003 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2004-01-01

    Uranium 2003: Resources, Production and Demand paints a detailed statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020.

  16. Uranium resources in the United States

    International Nuclear Information System (INIS)

    Grenon, Michel.

    1975-01-01

    The United States are certainly the country which is the most concerned by a better evaluation of uranium resources. This is so because of the importance of the American nuclear program and because of a certain number of doubts in their uranium supply. This is probably why studies concerning American uranium resources have been very frequent in recent months. Although, most of these studies are not yet finished it is perhaps possible to draw a few conclusions in order to better see the framework of this important uranium resources problem. This is what this article attempts, using among other studies, the one carried-out for the National Science Foundation which is among the most complete, especially concerning the complete range of resources [fr

  17. Uranium mines of Tajikistan

    International Nuclear Information System (INIS)

    Razykov, Z.A; Gusakov, E.G.; Marushenko, A.A.; Botov, A.Yu.; Yunusov, M.M.

    2002-12-01

    The book describes location laws, the main properties of geological structure and industrial perspectives for known uranium mines of the Republic of Tajikistan. Used methods of industrial processing of uranium mines are described. The results of investigations of technological properties of main types of uranium ores and methods of industrial processing of some of them are shown. Main properties of uranium are shortly described as well as problems, connected with it, which arise during exploitation, mining and processing of uranium ores. The main methods of solution of these problems are shown. The book has interest for specialists of mining, geological, chemical, and technological fields as well as for students of appropriate universities. This book will be interested for usual reader, too, if they are interested in mineral resources of their country [ru

  18. Uranium resources evaluation model as an exploration tool

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1976-01-01

    Evaluation of uranium resources, as conducted by the Uranium Resources Evaluation Section of the Geological Survey of Canada, comprises operations analogous with those performed during the preparatory stages of uranium exploration. The uranium resources evaluation model, simulating the estimation process, can be divided into four steps. The first step includes definition of major areas and ''unit subdivisions'' for which geological data are gathered, coded, computerized and retrieved. Selection of these areas and ''unit subdivisions'' is based on a preliminary appraisal of their favourability for uranium mineralization. The second step includes analyses of the data, definition of factors controlling uranium minearlization, classification of uranium occurrences into genetic types, and final delineation of favourable areas; this step corresponds to the selection of targets for uranium exploration. The third step includes geological field work; it is equivalent to geological reconnaissance in exploration. The fourth step comprises computation of resources; the preliminary evaluation techniques in the exploration are, as a rule, analogous with the simplest methods employed in the resource evaluation. The uranium resources evaluation model can be conceptually applied for decision-making during exploration or for formulation of exploration strategy using the quantified data as weighting factors. (author)

  19. Copper Mountain, Wyoming, intermediate-grade uranium resource assessment project. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Madson, M.E.; Ludlam, J.R.; Fukui, L.M.

    1982-11-01

    Intermediate-grade uranium resources were delineated and estimated for Eocene and Precambrian host rock environments in the 39.64 mi 2 Copper Mountain, Wyoming, assessment area. Geologic reconnaissance and geochemical, geophysical, petrologic, borehole, and structural data were interpreted and used to develop a genetic model for uranium mineralization in these environments. Development of a structural scoring system and application of computer graphics in a high-confidence control area established the basis for estimations of uranium resources in the total assessment area. 8 figures, 5 tables

  20. The new UN international framework classification for reserves/resources and its relation to uranium resource classification

    International Nuclear Information System (INIS)

    Barthel, F.H.; Kelter, D.

    2001-01-01

    Resources traditionally are classified according to the degree of geological confidence and economic attractiveness. Various names are in use to describe nationally the different resource categories. Commonly, proven, probable or A+B are terms for the category RESERVES, meaning the recoverable portion of a resource under prevailing economic conditions. Since 1965 uranium resources are classified by the Nuclear Energy Agency of OECD and International Atomic Energy Agency using the terms Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) in combination with cost categories. The definitions for RAR and EAR have been refined over the time and cost categories have been adapted according to market developments. For practical purposes a comparison of RAR and EAR with major national classification systems is provided in each of the NEA-IAEA publication on 'Uranium Resources Production and Demand' (Red Book). RAR of uranium are defined as quantities recoverable at given production costs with proven mining and processing technology, commonly RAR of the lowest cost category are referred to as Reserves. In 1992 the Committee on Energy - Working Party on Coal of the UN Economic Commission for Europe (UN/ECE) started to develop a new scheme for resource classification under the coordination of one of the authors (Kelter). The main purpose was to create an instrument permitting the classification of reserves and resources on an internationally consistent and uniform basis using market economic criteria. In April 1997 the UN/ECE approved the new 'United Nations International Framework Classification for Reserves/Resources-Solid Fuels and Mineral Commodities' at its 50th Anniversary Session. The new classification will enable the incorporation of national systems into an unified framework in order to make them compatible and comparable. Assistance will be given to economies in transition in reassessing their deposits according to market economy criteria and

  1. Critical analysis of world uranium resources

    Science.gov (United States)

    Hall, Susan; Coleman, Margaret

    2013-01-01

    The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and considered to be economically feasible to mine. Such resources include uranium resources from mines currently in production as well as resources that are in the stages of feasibility or of being permitted. Sources of secondary supply for uranium, such as stockpiles and reprocessed fuel, were also examined. To evaluate long-term primary supply, estimates of uranium from unconventional and from undiscovered resources were analyzed. At 2010 rates of consumption, uranium resources identified in operating or developing mines would fuel the world nuclear fleet for about 30 years. However, projections currently predict an increase in uranium requirements tied to expansion of nuclear energy worldwide. Under a low-demand scenario, requirements through the period ending in 2035 are about 2.1 million tU. In the low demand case, uranium identified in existing and developing mines is adequate to supply requirements. However, whether or not these identified resources will be developed rapidly enough to provide an uninterrupted fuel supply to expanded nuclear facilities could not be determined. On the basis of a scenario of high demand through 2035, 2.6 million tU is required and identified resources in operating or developing mines is inadequate. Beyond 2035, when requirements could exceed resources in these developing properties, other sources will need to be developed from less well-assured resources, deposits not yet at the prefeasibility stage, resources that are currently subeconomic, secondary sources, undiscovered conventional resources, and unconventional uranium supplies. This

  2. Uranium resources and requirements

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1975-08-01

    Australia has about 19% of the reasonably assured resources of uranium in the Western World recoverable at costs of less than $A20 per kilogram, or about 9% of the resources (reasonably assured and estimated additional) recoverable at costs of less than $A30 per kilogram. Australia's potential for further discoveries of uranium is good. Nevertheless, if Australia did not export any of these resources it would probably have only a marginal effect on the development of nuclear power; other resources would be exploited earlier and prices would rise, but not sufficiently to make the costs of nuclear power unattractive. On the other hand, this policy could deny to Australia real benefits in foreign currency earnings, employment and national development. (author)

  3. Review of international classification systems for uranium resources

    International Nuclear Information System (INIS)

    Wang Wenyou

    2007-01-01

    The two primary classification systems for uranium resources in common use in the whole world are described. These uranium resource classification systems were developed under two distinct philosophies, it implies two very different processes, criteria, terms and definitions from which the systems evolved and were implemented. However, the two primary systems are all based on two considerations: the degree of geological confidence and the degree of economic attractiveness based on cost of producing the resource. The uranium resource classification methods currently used in most major uranium producing countries have all a bearing on the two aforesaid classification systems. The disparity exists only in the way or practice of classifying and estimating the uranium resources for reasons of different political and economical systems in various countries. The harmonization of these resource classification systems for uranium can be realized with the economic integration on a global scale. (authors)

  4. Uranium resources, production and demand in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brynard, H J; Ainslie, L C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  5. Uranium resources, production and demand in South Africa

    International Nuclear Information System (INIS)

    Brynard, H.J.; Ainslie, L.C.

    1990-01-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  6. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  7. Uranium: which resources for tomorrow?

    International Nuclear Information System (INIS)

    Bouisset, P.; Polak, Ch.; Milesi, J.P.

    2009-01-01

    The authors give an overview of the current uranium world mine production and indicate the consumption predictions by 2030 as well as the share of high grade and low grade deposits in the world production. They outline the challenges for future production: production costs of new mines, technological development for the identification of new resources, technological development of new, innovating and cost saving processes, and new exploration processes. They indicate and comment assessments made by the IAEA regarding conventional and non-conventional resources, i.e. reasonably assured resources and resources where uranium is a by-product

  8. Topical and working papers on uranium resources and availability

    International Nuclear Information System (INIS)

    Basic topics relative to world-wide resources and availability of uranium resources; potential for recovery of uranium from mill tailings in Canada; uranium from seawater; depleted uranium as an energy source; world uranium requirements in perspective

  9. World uranium resources, production and demand

    International Nuclear Information System (INIS)

    Lindholm, I.

    1988-01-01

    Reasonably assured resources of uranium in WOCA (World Outside the Centrally Planned Economies Area) countries recoverable at less than US $80/kg U increased by about 9% between 1983 and 1985 and currently stand at 1.5 million tonnes. Uranium also exists in significant quantities in higher cost resources or in less known resources. However, the annual exploration expenditure is less than 20% that of the 1979 level. Uranium production in WOCA countries was higher than consumption during the period 1965 to 1984 and considerable stocks were accumulated. However, the production figures for 1985 were estimated to be slightly less than those of consumption. Production from centres now on stand-by or new centres will probably be necessary around 1990. Analysis of the longer term production possibilities indicates that uranium supplies will probably not be constrained by an ultimate resource adequacy. Constraints, if any, are more likely to be of political nature. (author). 11 figs, 1 tab

  10. Assessment of South African uranium resources: methods and results

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.; De Klerk, W.J.; Van der Merwe, P.J.

    1985-01-01

    This paper deals primarily with the methods used by the Atomic Energy Corporation of South Africa, in arriving at the assessment of the South African uranium resources. The Resource Evaluation Group is responsible for this task, which is carried out on a continuous basis. The evaluation is done on a property-by-property basis and relies upon data submitted to the Nuclear Development Corporation of South Africa by the various companies involved in uranium mining and prospecting in South Africa. Resources are classified into Reasonably Assured (RAR), Estimated Additional (EAR) and Speculative (SR) categories as defined by the NEA/IAEA Steering Group on Uranium Resources. Each category is divided into three categories, viz, resources exploitable at less than $80/kg uranium, at $80-130/kg uranium and at $130-260/kg uranium. Resources are reported in quantities of uranium metal that could be recovered after mining and metallurgical losses have been taken into consideration. Resources in the RAR and EAR categories exploitable at costs of less than $130/kg uranium are now estimated at 460 000 t uranium which represents some 14 per cent of WOCA's (World Outside the Centrally Planned Economies Area) resources. The evaluation of a uranium venture is carried out in various steps, of which the most important, in order of implementation, are: geological interpretation, assessment of in situ resources using techniques varying from manual contouring of values, geostatistics, feasibility studies and estimation of recoverable resources. Because the choice of an evaluation method is, to some extent, dictated by statistical consderations, frequency distribution curves of the uranium grade variable are illustrated and discussed for characteristic deposits

  11. World uranium: resources, production and demand

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The OECD Nuclear Energy Agency recently announced the publication of a new edition of its report on Uranium resources, production and demand which has been published periodically since 1965, jointly with the International Atomic Energy Agency. In addition to bringing uranium resources and production estimates up-to-date, the new edition offers a more comprehensive treatment of exploration activity and uranium availability, and includes a greater number of countries within the scope of the survey. Information on uranium demand has also been revised, in the light of more recent forecasts of the growth of nuclear power. Finally, a comparison is made between uranium availability and requirements, and the implications of this comparison analysed. The main findings and conclusions of the report are summarized here. (author)

  12. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  13. Exhaustible-resource theory and the uranium market

    International Nuclear Information System (INIS)

    Hsieh, Y.L.

    1982-01-01

    Exhaustible-resource theory has been developed rapidly by economists since the OPEC shocks of 1973-1974 and the theory now provides a framework for analyzing the optimal production pattern for resource commodities. However, applications of the theory to particular markets, such as crude oil, have not provided accurate predictions due no doubt to theoretical problems in explaining exploration and discovery events, market organization changes, and uncertainty. This thesis investigated the uranium market in an effort to determine how well the exhaustible-resource theory explains the past price and quantity time paths of this energy resource, and what might be expected in the future. The exhaustible-resource theory was first developed in a form appropriate to an application to the uranium market. An econometric simulation model that combines the history of uranium price formation and the exhaustible-resource theory was developed to forecast future uranium prices. The model was designed not only to reflect the physical processes of drilling activities, changing reserves, production, and prices of uranium through individual equations, but also to account for the interaction of all these interrelationships at the same time

  14. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  15. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  16. The uranium resources and production of Namibia

    International Nuclear Information System (INIS)

    Palfi, A.G.

    1997-01-01

    The promulgation of the Minerals (Prospecting and Mining) Act, 1992, on 1 April 1994 and the simultaneous repeal of restrictive South African legislation on reporting uranium exploration and production results, allowed the Namibian Government for the first time to present information for publication of the report ''Uranium 1995 - Resource, Production and Demand'', by the OECD Nuclear Energy Agency and the IAEA. Namibia, one of the youngest independent nations in Africa, has a large number of uranium occurrences and deposits in several geological environments. The total estimated uranium resource amounts to about 299 thousand tonnes recoverable uranium at a cost of less than US$ 130/kg U, within the known conventional resources category. The most prominent geological type of these is the unique, granite-related uranium occurrences located in the central part of the Namib Desert. Permo-Triassic age Karoo sandstone-hosted uranium deposits were subject to only limited exploration due to the down-turn of uranium prices in the latter part of 1980s, despite they very encouraging exploration results. As only limited Karoo sandstone-covered areas were tested there is still great potential for further discoveries. The planned output of Roessing Uranium Mine at 40,000 tonnes of ore per day which results in an annual production of 4536 tonnes of uranium oxide, was achieved in 1979. In case of improved uranium market conditions, Namibia is in a strong position to increase uranium production and open up new production centres to strengthen the country's position as an important uranium producer in the world. 6 figs, 2 tabs

  17. Uranium resources and supply

    International Nuclear Information System (INIS)

    Cameron, J.

    1973-01-01

    The future supply of uranium has to be considered against a background of forecasts of uranium demand over the next decades which show increases of a spectacular nature. It is not necessary to detail these forecasts, they are well known. A world survey by the Joint NEA/IAEA Working Party on 'Uranium Resources, Production and Demand', completed this summer, indicates that from a present production level of just over 19,000 tonnes uranium per year, the demand will rise to the equivalent of an annual production requirement of 50,000 tonnes uranium by 1980, 100,000 by 1985 and 180,000 by 1990. Few, if any, mineral production industries have been called upon to plan for a near tenfold increase in production in a space of about 15 years as these forecasts imply. This might possibly mean that, perhaps, ten times the present number of uranium mines will have to be planned and engineered by 1990

  18. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  19. Western states uranium resource survey

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-01-01

    ERDA's National Uranium Resource Evaluation (NURE) program was established to provide a comprehensive description of uranium resources in the United States. To carry out this task, ERDA has contracted with various facilities, including universities, private companies, and state agencies, to undertake projects such as airborne radiometric surveys, geological and geochemical studies, and the development of advanced geophysical technology. LLL is one of four ERDA laboratories systematically studying uranium distribution in surface water, groundwater, and lake and stream sediments. We are specifically responsible for surveying seven western states. This past year we have designed and installed facilities for delayed-neutron counting and neutron-activation analysis, completed seven orientation surveys, and analyzed several thousand field samples. Full-scale reconnaissance surveys began last fall

  20. Assessment of uranium resources and supply

    International Nuclear Information System (INIS)

    1991-04-01

    Uranium as nuclear fuel is an important energy resource, which generates about one-sixth of the world's total electricity generated in 1989. The current nuclear electricity generating capacity of 318 GW(e) is expected to grow by over 38% to 440 GW(e) in the year 2005. The world's uranium requirements are expected to increase similarly from about 52,000 t U in 1989 to over 70,000 t U in 2005. Beyond this time the uranium requirements are projected to reach over 80,000 t U in 2030. It was the objective of the Technical Committee Meeting on Assessment of Uranium Resources and Supply, organized by the IAEA and held in Vienna, between 29 August - 1 September 1989, to attract specialists in this field and to provide a forum for the presentation of reports on the methodologies and actual projects carried out in the different countries. Of special interest was the participation of specialists from some countries which did not or only occasionally co-operate with the IAEA in the projects related to the assessment of uranium resources and supply. A separate abstract was prepared for each of the 19 papers. Refs, figs and tabs

  1. Uranium 2007 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  2. Estimating uranium resources and production. A guide to future supply

    International Nuclear Information System (INIS)

    Taylor, D.M.; Haeussermann, W.

    1983-01-01

    Nuclear power can only continue to grow if sufficient fuel, uranium, is available. Concern has been expressed that, in the not too distant future, the supply of uranium may be inadequate to meet reactor development. This will not be the case. Uranium production capability, actual and planned, is the main indicator of short- and medium-term supply. However, for the longer term, uranium resource estimates and projections of the possible rate of production from the resource base are important. Once an estimate has been made of the resources contained in a deposit, several factors influence the decision to produce the uranium and also the rates at which the uranium can be produced. The effect of these factors, which include uranium market trends and ever increasing lead times from discovery to production, must be taken into account when making projections of future production capability and before comparing these with forecasts of future uranium requirements. The uranium resource base has developed over the last two decades mainly in response to dramatically changing projections of natural uranium requirements. A study of this development and the changes in production, together with the most recent data, shows that in the short- and medium-term, production from already discovered resources should be sufficient to cover any likely reactor requirements. Studies such as those undertaken during the International Uranium Resources Evaluation Project, and others which project future discovery rates and production, are supported by past experience in resource development in showing that uranium supply could continue to meet demand until well into the next century. The uranium supply potential has lessened the need for the early large-scale global introduction of the breeder reactor

  3. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  4. Uranium resources and the scope for nuclear power

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1975-01-01

    The subject is discussed under the following headings: uranium resources, forecast on nuclear programme, avenues for reduction in uranium consumption, uranium consumption for fixed programme with various breeders, possible nuclear growth determined by uranium supply. (U.K.)

  5. Canadian uranium policy and resource appraisal

    International Nuclear Information System (INIS)

    Merlin, H.B.

    1976-01-01

    This paper reviews the history of uranium production in Canada, leading up to the turn-around from a buyer's to a seller's market in early 1974. The specific objectives of Canada's new uranium policy, announced in that year, are then spelled out and explained. The paper also describes the producing uranium deposits in Canada, the definition of uranium resources and projected production capacity. Finally, there is a section on the proposed laws governing non-resident ownership provisions in the industry. (author)

  6. Patterns and Features of Global Uranium Resources and Production

    Science.gov (United States)

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  7. Long-term availability of global uranium resources

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2016-01-01

    From a global perspective, a low-carbon path to development driven by a growth of nuclear power production raises issues about the availability of uranium resources. Future technologies allowing nuclear reactors to overcome the need for natural uranium will take time to fully deploy. To address these issues, we analyze the conditions of availability of uranium in the 21. century. The first two conditions are technical accessibility and economic interest, both related to the cost of production. We study them using a model that estimates the ultimate uranium resources (amounts of both discovered and undiscovered resources) and their costs. This model splits the world into regions and the resource estimate for each region derives from the present knowledge of the deposits and economic filtering. The output is a long-term supply curve that illustrates the quantities of uranium that are technically accessible as a function of their cost of production. We identify the main uncertainties of these estimates and we show that with no regional breakdown, the ultimate resources are underestimated. The other conditions of availability of uranium covered in our study are related to the market dynamics, i.e. they derive from the supply and demand clearing mechanism. To assess their influence, they are introduced as dynamic constraints in a partial equilibrium model. This model of the uranium market is deterministic, and market players are represented by regions. For instance, it takes into account the short-term correlation between price and exploration expenditures, which is the subject of a dedicate econometric study. In the longer term, constraints include anticipation of demand by consumers and a gradual depletion of the cheapest ultimate resources. Through a series of prospective simulations, we demonstrate the strong influence on long-term price trends of both the growth rate of demand during the 21. century and its anticipation. Conversely, the uncertainties related to the

  8. Uranium resources: the Canadian status

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1976-01-01

    The history of the uranium industry in Canada is reviewed beginning with the first discoveries and progressing through the booming years of the 1950's, the doldrums of the 1960's, to the present bouyant seller's market and the promising prospects for new discoveries. The upsurge in demand has led to the establishment of a uranium export policy which is described in detail. Recent estimates of resources, production capacity, and domestic demand are also outlined. Finally, a brief description of the utilization of natural uranium in CANDU power reactors is presented

  9. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    International Nuclear Information System (INIS)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables

  10. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables.

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Australia

    International Nuclear Information System (INIS)

    1977-08-01

    In Australia most exploration for uranium has been conducted by companies and individuals. The geological mapping and airborne radiometric surveying conducted by the BMR is made available to interested persons. Exploration for uranium in Australia can be divided into two periods - 1947 to 1961 and 1966-1977. During the first period the Commonwealth Government introduced measures to encourage uranium exploration including a system of rewards for the discovery of uranium ore. This reward system resulted in extensive activity by prospectors particularly in the known mineral fields. Equipped with a Geiger counter or scintillometer, individuals with little or no experience in prospecting could compete with experienced prospectors and geologists. During this period several relative small uranium deposits were discovered generally by prospectors who found outcropping mineralisation. The second phase of uranium exploration in Australia began in 1966 at which time reserves amounted to only 6,200 tonnes of uranium and by 3 977 reserves had been increased to 289,000 tonnes. Most of the exploration was done by companies with substantial exploration budgets utilising more advanced geological and geophysical techniques. In the field of airborne radiometer the development of multi-channel gamma ray spectrometers with large volume crystal detectors increased the sensitivity of the tool as a uranium detector and resulted in several major discoveries. Expenditure or exploration for uranium increased from 1966 to 1971 but has declines in recent years. After listing the major geological elements of Australia, its uranium production and resources are discussed. During the period 1954-71 the total production of uranium concentrate in Australia amounted to 7,780 tonnes of uranium, and was derived from deposits at Rum Jungle (2,990 tonnes U) and the South Alligator River (610 tonnes U) in the Northern Territory, Mary Kathleen (3,460 tonnes U) in Queensland and Radium Hill (720 tonnes U

  12. National Uranium Resource Evaluation: intermediate-grade uranium resource assessment project for part of the Maybell District, Sand Wash Basin, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.

    1983-04-01

    Intermediate-grade uranium resources in the Miocene Browns Park Formation were assessed for part of the Maybell district in the Sand Wash Basin, Colorado, as part of the National Uranium Resource Evaluation program conducted by Bendix Field Engineering Corporation for the US Department of Energy. Two sites, each 2 mi 2 (5 km 2 ) in size, in the district were selected to be assessed. Site selection was based on evaluation of geologic, geophysical, and geochemical data that were collected from a larger project area known to contain uranium enrichment. The assessment of the sites was accomplished primarily by drilling 19 holes through the Browns Park Formation and by using the geophysical and geochemical data from those holes and from a larger number of industry-drilled holes. Analytical results of samples from uranium prospects, mainly along faults in the sites, were also used for the assessment. Data from surface samples and from drill-hole samples and logs of the site south of Lay Creek indicate that no intermediate-grade uranium resources are present. However, similar data from the site north of Lay Creek verify that approximately 25 million lb (11.2 million kg) of intermediate-grade uranium resources may be present. This assessment assumes that an average uranium-enriched thickness of 10 ft (3 m) at a grade of 0.017% U 3 O 8 is present in at least two thirds of the northern site. Uranium enrichment in this site occurs mainly in the lower 150 ft (45 m) of the Browns Park Formation in fine- to medium-grained sandstone that contains abundant clay in its matrix. Facies variations within the Browns Park preclude correlation of individual beds or zones of uranium enrichment between closely spaced drill holes

  13. Australia's Uranium and thorium resources and their global significance

    International Nuclear Information System (INIS)

    Lambert, I.B.; McKay, A.; Miezitis, Y.

    2006-01-01

    Full text: Full text: Australia's world-leading uranium endowment appears to result from the emplacement of uranium enriched felsic igneous rocks in three major periods during the geological evolution of the continent. Australia has over 27% of the world's total reasonably assured uranium resources (RAR) recoverable at < US$80/kgU (which approximates recent uranium spot prices). Olympic Dam is the largest known uranium deposit, containing approximately 19% of global RAR (and over 40% of global inferred resources) recoverable at < US$80/kg U; the uranium is present at low concentrations and the viability of its recovery is underpinned by co-production of copper and gold. Most of Australia's other identified resources are within Ranger, Jabiluka, Koongarra, Kintyre and Yeelirrie, the last four of which are not currently accessible for mining. In 2004, Australia's three operating uranium mines - Ranger, Olympic Dam, and Beverley -produced 22% of global production. Canada was the only country to produce more uranium (29%) and Kazakhstan (9%) ranked third. Considerably increased uranium production has been recently foreshadowed from Australia (through developing a large open pit at Olympic Dam), Canada (mainly through opening of the Cigar Lake mine), and Kazakhstan (developing several new in situ leach mines). These increases should go a long way towards satisfying demand from about 2010. Olympic Dam has sufficient resources to sustain such increased production over many decades. Thorium is expected to be used in some future generations of nuclear reactors. Australia also has major (but incompletely quantified) resources of this commodity, mainly in heavy mineral sands deposits and associated with alkaline igneous rocks. It is inevitable that the international community will be looking increasingly to Australia to sustain its vital role in providing fuels for future nuclear power generation, given its world-leading identified resources, considerable potential for new

  14. South African uranium resources - 1997 assessment methodology and results

    International Nuclear Information System (INIS)

    Ainslie, L.C.

    2001-01-01

    The first commercial uranium production in South Africa started in 1953 to meet the demand for British/US nuclear weapons. This early production reached its peak in 1959 and began to decline with the reduced demand. The world oil crisis in the 1970s sparked a second resurgence of increased uranium production that peaked in 1980 to over 6,000 tonnes. Poor market condition allied with increasing political isolation resulted in uranium production declining to less than a third of the levels achieved in the early 1980s. South Africa is well endowed with uranium resource. Its uranium resources in the RAR and EAR-I categories, extractable at costs of less than $80/kg U, as of 1 January 1997, are estimated to 284 400 tonnes U. Nearly two thirds of these resources are associated with the gold deposits in the Witwatersrand conglomerates. Most of the remaining resources occur in the Karoo sandstone and coal deposits. (author)

  15. World uranium resources and Japan's status on its procurement

    International Nuclear Information System (INIS)

    Imaizumi, Tsunemasa

    1979-01-01

    The features of uranium are that it is not versatile in use, that its substitutes as nuclear fuel cannot be found, that it cannot be used as fuel unless the processing is made, that it has the nuclear fission property, and that there is some time limit in its value. Therefore uranium lacks charm as the object of resource industries. The market of uranium started as military procurement, and its effects still remain now in some extent. Many mines were closed when the oversupply and the rapid drop of price of uranium occurred once, and such fear is felt even now. The relationship between the suppliers and the consumers of uranium is one to one correspondence, accordingly the mutual cooperation is necessary. One problem is that the intervention by governments into uranium market is unavoidable. In order to bring up the sound and stable market, the obstructing factors must be eliminated. The uranium resources in the free world are about 4.4 million tons. The import of uranium resources is carried out according to the long term procurement contracts. For the consumer countries, there are the risk of embargo, the problems related to the cartel, and the restriction based on nuclear non-proliferation. The trade by establishing the multi-lateral organization, the independent development of foreign mines, and the exploration of resources in Japan are discussed. (Kako, I.)

  16. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    1984-06-01

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  17. Evaluation of uranium resources. Problems and constraints

    International Nuclear Information System (INIS)

    Williams, R.M.

    1979-01-01

    Growing awareness that the era of cheap energy is over has led to current efforts by governments and international organizations to examine the question of the adequacy of energy resources on a global scale. Despite the relative success of the NEA and the IAEA efforts in the study of world uranium supply, there is a need for such studies to become still more comprehensive and broader in scope. A basic problem exists with respect to the lack of a universally accepted set of resource terms by which to classify resource estimates once they are made. Often voids exist in international assessments because of insufficient data with respect to known resources and occasionally because of a lack of expertise to make the required estimates. With respect to the assessment of undiscovered uranium resources, major constraints are the relatively embryonic state of methodology for assessment of undiscovered resources and the fact that the inventory of basic geology, geochemical, and geophysical data is either incomplete or non-existent in many parts of the world. Finally, once resource estimates are made, there is often an unclear understanding about when and at what rate the resources can be made available. Hopefully, current efforts will lead to a solution to some of the principal problems and constraints which may be impeding progress toward an expansion and improvement of world uranium resource assessments. (author)

  18. United States uranium resources: an analysis of historical data

    International Nuclear Information System (INIS)

    Lieberman, M.A.

    1976-01-01

    Using historical data, a study of U.S. uranium resources was performed with emphasis on discovery and drilling rates for the time interval from 1948 until the present. The ultimate recoverable resource up to a forward cost category of $30 or less per pound is estimated to be 1,134,000 short tons--about one third the estimate offered by ERDA. A serious shortfall in uranium supply is predicted for the late 1980's if nuclear power proceeds as planned; and courses of action are recommended for uranium resource management

  19. Data on foreign regions where uranium resources are developed, 2 and 3

    International Nuclear Information System (INIS)

    1982-07-01

    This book was published in July, 1976, before, and the revised edition was published at the beginning of 1982 as Part 1, Asia and Africa. This is Part 2, in which the regions of North America, Central and South America are reported, and Part 3 concerning Australian regions. The state of resource exploration and development, the policy of uranium mining, Japanese policy to advance in, the geological features and deposits, and the promising regions in Canada, USA, various countries in Central America and South America and Australia are described. Canada is one of the promising regions in the world regarding uranium deposits, and the exploration activity is brisk. In USA, the joint exploration with US persons having the mining right is the main method, and the companies must be established to develop mines. In Australia, P.N.C. Exploration P/L continues the exploration. (Kako, I.)

  20. Current status and future prospects of uranium resources

    International Nuclear Information System (INIS)

    Kuronuma, Chosuke

    1997-01-01

    Uranium is contained in various things in natural world, for example, 3 ppm in granite and 3x10 -3 ppm in seawater. Uranium exists in the state of tetra, penta and hexa-valence in nature, and in oxidizing environment, it exists as uranyl radical of hexa-valence, forms soluble complexes, and easily moves with water. In reducing environment, it becomes insoluble state of tetra-valence and precipitates. This property of uranium is deeply related to the way of forming the deposit, and it is explained. The uranium resources of the recovery cost being 80 dollars per kg U or less are 2,120,000 t, and 60% of the total exists in Australia, Kazakstan and Canada. The cumulative production of uranium in the world from 1945 to 1995 was 1,810,000 t. Of the total production, 875,000 t was used for civil purpose, and 750,000 t was used for military purpose. The uranium deposits in Canada are very high quality, and produce 1/3 of the world uranium production. There are the inventories of 150,000-200,000 t U. The diversion of military high enriched uranium to civil purpose is reported. The state of uranium market, the prospect of demand and supply of uranium, and the exploration and development of uranium resources are described. (K.I.)

  1. Standard classification of uranium resources-an illustrative example

    International Nuclear Information System (INIS)

    Krishna, P.M.; Babitzke, H.R.; Curry, D.; Masters, C.D.; McCammon, R.B.; Noble, R.B.; Rodriguez, J.A.; Schanz, J.J.; Schreiber, H.W.

    1983-01-01

    An example illustrates the use of ASTM Standard E901-82, Classification System for Uranium Resources. The example demonstrates the dynamic nature of the process of classification and attests to the necessity of addressing both the aggregate needs of broad-scale resource planning and the specific needs of individual property evaluation. Problems that remain in fixing the classification of a given uranium resource include the uncertainty in estimating the quantity of undiscovered resources and resolving the differences that may exist in deciding when the drill-hole spacing is adequate to determine the tonnage and grade of discovered resources

  2. Australia's uranium resources and production in the world context

    International Nuclear Information System (INIS)

    McKay, A.; Lambert, I.; Miezitis, Y.

    2001-01-01

    Australia has 654 000 tonnes uranium (U) in Reasonably Assured Resources (RAR) recoverable at ≤US$40/kg U, which is the largest of all national resource estimates reported in this category. Australia also has the world's largest resources in RAR recoverable at ≤US$80/kg U, with 29% of world resources in this category. Other countries that have large resources in this category include Kazakhstan (19%), Canada (14%), South Africa (10%), Brazil (7%), Namibia (6%), Russian Federation (6%), and United States (5%). In 2000, the main developments in Australia's uranium mining industry were that production reached a record level of 8937 t U 3 O 8 (7579 t U), and commercial operations commenced at the new in situ leach operation at Beverley during November. Australia's total production for 2000 was 27% higher than for 1999. Uranium oxide was produced at the Olympic Dam (4500 t U 3 O 8 ), Ranger (4437 t U 3 O 8 ) and Beverley operations, although production from Beverley for the year was not reported. Australia's share of the world's annual uranium production has increased steadily from about 10.8% (3,712 tonnes U) in 1995 to 21.9% in 2000. Throughout this period Australia has maintained its position as the world's second-largest producer of uranium, behind Canada

  3. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    The thirteenth edition of the report looks at recent developments and their impact on the short term (i.e. to the year 2005) and presents a longer term (to 2030) analysis of supply possibilities in the context of a range of requirement scenarios. It presents results of a 1989 review of uranium supply and demand in the World Outside Centrally Planned Economies Areas. It contains updated information on uranium exploration activities, resources and production for over 40 countries including a few CPEs, covering the period 1987 and 1988

  4. Present state and problems of the measures for securing stable supply of uranium resources

    International Nuclear Information System (INIS)

    Yoneda, Fumishige

    1982-01-01

    The long-term stable supply of uranium resources must be secured in order to accelerate the development and utilization of nuclear power in Japan. All uranium required in Japan is imported from foreign countries, and depends on small number of suppliers. On the use of uranium, various restrictions have been imposed by bilateral agreements from the viewpoint of nuclear non-proliferation policy. At present, the demand-supply relation in uranium market is not stringent, but in the latter half of 1980s, it is feared that it will be stringent. The prospect of the demand and supply of uranium resources, the state of securing uranium resources, the present policy on uranium resources, the necessity of establishing the new policy, and the active promotion of uranium resource measures are described. The measures to be taken are the promotion of exploration and development of mines, the participation in the management of such foreign projects, the promotion of diversifying the supply sources, the establishment of the structure to accept uranium resources, the promotion of the storage of uranium, and the rearrangement of general coordination and promotion functions for uranium resource procurement. (Kako, I.)

  5. New information on world uranium resource, production, supply and demand

    International Nuclear Information System (INIS)

    Zhang Jianguo; Meng Jin

    2006-01-01

    New information on world uranium resource, production, supply and demand is introduced. Up to now, explored uranium resources at production cost < USD 40/kg U has 2523257 t uranium; production cost < USD 80/kg U has 5911514 t uranium; production cost < USD130/kg U has 11280488 t uranium; and cost range unassigned has 3102000 t uranium. At moment, the demand uranium of each year is about 67000 t U. After 2020, world uranium demand will rise well above 100000 t per annum with sharp revival of nuclear power plants. With three kinds of economic growth the cumulative requirement of the uranium in low demand case, middle demand case and high demand case from 2000 to 2050 is 3390000, 5394100 and 7577300 t respectively. In the world market uranium price rises from 20 years lowest 18.2 USD/kg U to 75.4 USD/kg U. In 2003, global uranium product is about 35385 t U, and 2004, global uranium product is about 40475 t U. In 2004's world uranium production underground mining, open pit, in situ, by product, and combination account for 39%, 27%, 19%, 11% and 4% respectively. (authors)

  6. Australian uranium resources and production in a world context

    International Nuclear Information System (INIS)

    Cleary, B.

    2003-01-01

    The aim of the paper is to discuss Australian uranium resources and production from the perspective of ERA, the world's third-largest uranium producer, and one of only three producing uranium mining companies in Australia. ERA is a long-term supplier of uranium concentrates for the nuclear power generation industry overseas, a key part of clean global energy supply. ERA's Ranger plant was designed to produce 3,000t U 3 Og/yr, with expansion of the plant hi the early 90s to a 5,700t U 3 O 8 /yr capacity. Australia continues to have the worlds' largest reserves of uranium recoverable at costs of US$40 kg or less, but lags behind Canada in primary production of uranium. This paper discusses some of the reasons for the gap between resources and production, with examples from the company's own experience. Political, social and environmental factors have played a big role in the development of the uranium industry - ERA has been in the forefront of these issues as it pursues sustainable development practices

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Thailand

    International Nuclear Information System (INIS)

    1977-08-01

    Thailand is a country with an area of 514?000 square kilometres situated in the centre of continental south-east Asia, The geology of Thailand is very varied with sedimentary formations ranging from Cambrian to Quaternary in age and including sandstones, shales, limestones of many varieties. Among the igneous rocks, granites are very important and rhyolites, tuffs diorites, basalts and ultrabasic rocks also exist. Tin is the most important mineral occurrence. Available information on the geology and mineral resources suggests that the country may contain significant resources of radioactive minerals. Favourable potential host types are; 1) uranium and thorium in monazite in beach sands and tin placer deposits; 2) uranium in sandstones, principally in Jurassic sandstones of the Khorat Plateau; 3) uranium in Tertiary lignite deposits; 4) uranium in veins in granites; 5) uranium related to fluorite deposits; 6) uranium in black shales and phosphates. Uranium mineralization in sedimentary rocks at Phu Wieng was discovered in 1970. The area has been radiometrically grid mapped and limited shallow drilling has shown continuity.of the narrow, carbonaceous, conglomeratic sandstone host bed. No uranium reserves or resources can be stated at the present time, but the favourable geology of the Khorat Plateau, the known uranium occurrence and the very small exploration coverage is possibly indicative of a good future potential. The Speculative Potential is estimated to be between 1000 and 10,000 tonnes uranium. (author)

  8. Uranium exploration (2004-2014): New discoveries, new resources

    International Nuclear Information System (INIS)

    Polack, C.

    2014-01-01

    The last decade has demonstrated the dynamic of the mining industry to respond of the need of the market to explore and discover new deposits. For the first time in the uranium industry, the effort was conducted not only by the majors but by numerous junior mining companies, more than 800 companies where involved. Junior miners introduced new methodologies, innovations and fresh approach. Working mainly on former prospects of the 70’s and 80’s they discovered new deposits, transformed historical resources into compliant resources and reserves and developed new large resources in Africa, North America and Australia. In Australia, the Four Mile, Mt Gee, Samphire (SA), Mount Isa (Qld), Mulga Rock, Wiluna-Lake Maitland, Carley Bore-Yanrey-Manyingee (WA) projects were all advanced to compliant resources or reserves by junior mining companies. In Canada, activity was mainly focused on Athabasca basin, Newfoundland and Québec, the results are quite amazing. In the Athabasca 2 new deposits were identified, Roughrider and Patterson South Lake, Whilst in Québec the Matouch project and in New Foundland the Michelin project are showing good potential. In Namibia, alaskite and surficial deposits, extended the model of the Dalmaradian Central belt with the extension of rich alaskite of Z20, Husab, Omahola and large deposits of Etango and Norasa. A new mine commenced production Langer Heinrich and two are well advanced on way to production: Trekkopje and Husab. The ISL model continues its success in Central Asia with large discoveries in Mongolia and China. Europe has been revisited by some juniors with an increase of resources in Spain (Salamanca) and Slovakia (Kuriskova). Some countries entered into the uranium club with maiden resources namely Mali (Falea), Mauritania and Peru (Macusani caldeira). The Karoo formation revitalised interest for exploration within Paraguay, South Africa (Rieskuil), Botswana (Lethlakane), Zambia (Mutanga, Chirundu) and the exploitation

  9. Evaluation of uranium resources in Antarctica

    International Nuclear Information System (INIS)

    Zeller, E.J.; Dreschhoff, G.A.M.

    1980-01-01

    The continent of Antarctica comprises roughly nine per cent of the total land surface of the earth and is the only large land area that has been left almost totally unexplored for uranium resources. In 1976 the first systematic uranium resource evaluation, entitled Antarctica International Radiometric Survey, was started as a part of the US Antarctic Research Program. This project was staffed jointly by scientists from the University of Kansas and the Bundesanstalt fuer Geowissenschaften und Rohstoffe of the Federal Republic of Germany. The survey has continued for three antarctic field seasons and an extension of operations for the next four years has been approved. Two areas in the Transantarctic Mountains and one part of Marie Byrd Land have been surveyed by airborne gamma-ray spectrometric methods. The work that has been conducted demonstrates clearly that radiometric surveys can be performed successfully under the rigorous climatic conditions in Antarctica, and that significant and reproducible data can be obtained. So far no substantial concentrations of uranium have been detected but deposits of thorium minerals have been found. (author)

  10. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Syria

    International Nuclear Information System (INIS)

    1977-11-01

    Very little information is available to IAEA on the geology and uranium potential of Syria. In 1975 a contract was awarded to Huntings Geology and Geophysics Ltd by the Ministry of Petroleum and Mineral Resources to carry out a study of the country's mineral resources with particular reference to phosphate uranium, chrome and industrial materials. The results of this survey are not known. Apart from the assumption of some possibility of uranium recovery as a by-product from phosphate production it is assumed that the Speculative Potential is likely to be less than 1000 tonnes uranium. (author)

  11. Kintyre uranium project

    International Nuclear Information System (INIS)

    1988-04-01

    This project book is designed to outline the nature of the Kintyre uranium project for those associated with the project as employees, contractors and consultants and others. It explains why Canning Resources Pty Limited and CRA Exploration believe this resource and other resources in the Rundall region should be developed. It also outlines the environmental and social issues involved and the proposed means of addressing those issues. The Kintyre resource and associated areas of geological prospectivity are located in the Rundall region on the edge of the Great Sandy Desert, in the East Pilbara region of Western Australia. Canning Resources with CRA Exploration has spent over $20 million in the past two years in intensive drilling and exploration efforts in the Kintyre area and intends to spend a further $10 million in 1988. Investigations so far reveal that the resource has features which make it competitive with the best uranium mines in the world

  12. Uranium market remains steady

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Little change in the world uranium market is reported in the new edition of the NEA/IAEA Red Book published in March. However, the agencies still expect new production capacity to be required by the mid-1990s. Topics covered include: resources, exploration, production and demand. (author)

  13. Statistical model of global uranium resources and long-term availability

    International Nuclear Information System (INIS)

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: India

    International Nuclear Information System (INIS)

    1977-08-01

    Physiographically India has a total area of 3,268,010 km 2 in three distinct regions. 1. The Peninsular shield in the south with an area of 823,310 km 2 . 2. The Himalayan mountain system with an area of 1,797,200 km 2 . 3. The Indo-Gangetic alluvial plain with an area of 647,500 km 2 . The three presently recognised major uranium provinces in India are: 1. The Singhbhum uranium province; 2. The Rajasthan uranium province, 3. The Madhya Pradesh uranium province. The Atomic Minerals Division of the Department of Atomic Energy has carried out a vigorous exploration programme since 1949 but despite their efforts a great deal of ground has still to be explored. At present, structurally controlled deposits account for most of the uranium resources of India. Uranium occurrences and deposits have been outlined in (1) Vein type deposits (the Singhbhum belt), (2) Conglomerate (Karnataka and Udaipur area, Raiasthan), (3) Sandstones (Madhra Pradesh and Swaliks, Himachal Pradesh, (4) Others such as carbonatites, marine phosphates, etc, (Mussorrie - Sahasradhara In Uttar Pradesh and Chatterpur-Saucur in Madhya Pradesh), (5) By-product Uranium in copper tailings and beach sands. India's total resources are listed as 52,538 tonnes uranium (68,300 short tons U 3 O 8 ) with additional resources from monazite of 12700 tonnes uranium. In view of the wide geological favourability, the many types of occurrences already known and the vast areas of unexplored ground it is estimated that the Speculative Potential may be between 150,000 and 250,000 tonnes uranium which is Category 5. (author)

  15. Long term adequacy of uranium resources

    International Nuclear Information System (INIS)

    Steyn, J.

    1990-01-01

    This paper examines the adequacy of world economic uranium resources to meet requirements in the very long term, that is until at least 2025 and beyond. It does so by analysing current requirements forecasts, existing and potential production centre supply capability schedules and national resource estimates. It takes into account lead times from resource discovery to production and production rate limitations. The institutional and political issues surrounding the question of adequacy are reviewed. (author)

  16. Uranium Exploration, Resources and Production in South Africa 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, L.C., E-mail: lee.ainslie@necsa.co.za [South African Nuclear Energy Agency (Necsa), Pretoria (South Africa)

    2014-05-15

    The paper gives a brief history of uranium mining in South Africa. The types of uranium deposits in South Africa are described and their distribution given. The majority of uranium is hosted as a by-product in the quartz-pebble conglomerates of the Witwatersrand Basin with lesser amounts in tabular sandstone and coal hosted deposits. The exploration activities of companies operating in South Africa are discussed and the reserves and resources identified are presented. A substantial increase in reserves has been recorded over the last two years because of intensive investigation of known deposits. Only a marginal increase in total resources was reported because of a lack of “greenfield” exploration. Production is far down from the levels achieved in the 1970s and 1980s. The surge in the uranium market resulted in a number of companies investigating their production options. The recent decline in the market has slowed down some of these activities and forced the closure of an operating mine. However a new mine has come into production and feasibility studies are being carried out on other deposits. The recently promulgated Nuclear Energy Policy for the Republic of South Africa defines Necsa’s role in nuclear fuel cycle and the uranium mining industry emphasizing security of supply. South African uranium resources will be able to supply all local needs for the foreseeable future. (author)

  17. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Bolivia. Draft

    International Nuclear Information System (INIS)

    Leroy, Jacques; Mueller-Kahle, Eberhard

    1982-08-01

    The uranium exploration done so far in Bolivia has been carried out by COBOEN, partly with IAEA support, and AGIP S.p.A. of Italy, which between 1974 and 1978 explored four areas in various parts of Bolivia under a production sharing contract with COBOEN. The basic objective of the International Uranium Resources Evaluation Project (IUREP) is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploitation efforts which might be carried out in promising areas in collaboration with the country concerned'. Following the initial bibliographic study which formed Phase I of IUREP, it was envisaged that a further assessment in cooperation with, and within, the country concerned would provide a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country concerned and that these field missions and the resulting report would be known as the Orientation Phase of IUREP. The purpose of the Orientation Phase mission to Bolivia was a) to develop a better understanding of the uranium potential of the country, b) to make an estimate of the Speculative Resources of the country, c) to delineate areas favourable for the discovery of these uranium resources, d) to make recommendations as appropriate on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, e) to develop the logistical data required to carry out any possible further work, and f) to compile a report which would be immediately available to the Bolivian authorities. The mission reports contains information about a general introduction, non-uranium exploration and mining in Bolivia, manpower in exploration, geological review of Bolivia, past uranium

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  20. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  1. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  3. Depending on scientific and technological progress to prospect for superlarge uranium deposits. Across-century target for uranium resources exploration work in China

    International Nuclear Information System (INIS)

    Shen Feng

    1995-01-01

    After over 30 years' development, uranium resources exploration work in China has resulted in the discovery of more than 10 economic types of uranium deposits in 23 provinces (regions) of the whole country and large quantities of uranium reserves have been submitted which guarantee the development of nuclear industry in China. However, characteristics such as smaller size of deposits and ore bodies, and lower ore grade of discovered China's uranium deposits have brought about a series of problems on how to economically exploit and utilize these uranium resources. To prospect for superlarge uranium deposits is a guarantee of making uranium resources essentially meet the demand for the long-term development of nuclear industry in China, and is an important way of improving economic benefits in mining China's uranium resources. It is an important mark for uranium geological exploration work to go up a new step as well. China exhibits the geological environment in which various types of superlarge uranium deposits can be formed. Having the financial support from the state to uranium resources exploration work, having professional uranium exploration teams well-experienced in ore prospecting, having modernized uranium exploration techniques and equipment and also having foreign experience in prospecting for superlarge uranium deposits as reference, it is entirely possible to find out superlarge uranium deposits in China at the end of this century and at the beginning of next century. In order to realize the objective, the most important prerequisite is that research work on metallogenetic geological theory and exploration techniques and prospecting methodology for superlarge uranium deposits must be strengthened, and technical quality of the geological teams must be improved. Within this century, prospect targets should be selected and located accurately to carry out the emphatic breakthrough in exploration strategy

  4. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  5. 1998 Pacific Northwest Loads and Resources Study: The White Book

    International Nuclear Information System (INIS)

    1998-01-01

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for inventory planning to determine BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The 1998 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1997 Pacific Northwest Loads and Resources Study

  6. 1998 Pacific Northwest Loads and Resources Study: The White Book.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-12-01

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for inventory planning to determine BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The 1998 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1997 Pacific Northwest Loads and Resources Study.

  7. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  8. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  9. 2012 White Book, Pacific Northwest Loads and Resources Study

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-06

    The White Book is a planning analysis produced by BPA that informs BPA of its load and resource conditions for sales and purchases. The White Book provides a 10-year look at the expected obligations and resources in the Federal system and PNW region. The White Book is used as a planning tool for the Columbia River Treaty (Treaty) studies, as an information tool for customers and regional interests, and as a publication of information utilized by other planning entities for their analyses. The White Book is not used to guide day-to-day operations of the Federal Columbia River Power System (FCRPS) or determine BPA revenues or rates.

  10. Nutrition Books and Resources 1971.

    Science.gov (United States)

    Hawaii Dietetic Association, Honolulu.

    This is an annotated bibliography listing books, resources, and films and filmstrips on the subject of nutrition. Sections include: Food Sense; Controlling Your Weight; Feeding Your Family; Food for Teens; Learning and Teaching Nutrition; Other Sources; and Films and Filmstrips. The material is in pamphlet form. (LK)

  11. National uranium resource evaluation Prescott Quadrangle Arizona

    International Nuclear Information System (INIS)

    May, R.T.; White, D.L.; Nystrom, R.J.

    1982-01-01

    The Prescott Quadrangle was evaluated for uranium favorability by means of a literature search, examination of uranium occurrences, regional geochemical sampling of Precambrian rocks, limited rubidium-strontium studies, scintillometer traverses, measurement of stratigraphic sections, subsurface studies, and an aerial radiometric survey. A limited well-water sampling program for Cenozoic basins was also conducted. Favorability criteria used were those developed for the National Uranium Resource Evaluation. Five geologic environments are favorable for uranium. Three are in Tertiary rocks of the Date Creek-Artillery Basin, Big Sandy Valley, and Walnut Grove Basin. Two are in Precambrian rocks in the Bagdad and Wickenburg areas. Unfavorable areas include the southwestern crystalline terrane, the Paleozoic and Mesozoic beds, and metamorphic and plutonic Precambrian rocks of the Bradshaw and Weaver Mountains. Unevaluated areas are the basalt-covered mesas, alluvium-mantled Cenozoic basins, the Hualapai Mountains, and the Kellwebb Mine

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Taiwan

    International Nuclear Information System (INIS)

    1977-12-01

    Taiwan is an island of 36,000 sq km located 160 km east of mainland China. Geologically, the oldest rocks are Tertiary, and the only igneous rocks on the island are Quaternary andesites and basalts. Copper, gold, and silver are the only known metallic minerals produced. Uranium occurrences and exploration efforts are unknown. The potential uranium resource of Taiwan is considered a category 1 resource. (author)

  13. Energy analysis applied to uranium resource estimation

    International Nuclear Information System (INIS)

    Mortimer, N.D.

    1980-01-01

    It is pointed out that fuel prices and ore costs are interdependent, and that in estimating ore costs (involving the cost of fuels used to mine and process the uranium) it is necessary to take into account the total use of energy by the entire fuel system, through the technique of energy analysis. The subject is discussed, and illustrated with diagrams, under the following heads: estimate of how total workable resources would depend on production costs; sensitivity of nuclear electricity prices to ore costs; variation of net energy requirement with ore grade for a typical PWR reactor design; variation of average fundamental cost of nuclear electricity with ore grade; variation of cumulative uranium resources with current maximum ore costs. (U.K.)

  14. The latest figures on uranium

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    According to the latest figures on uranium, soon to be published by the NEA, uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown and are now sufficient to cover 100 years of supply at 2008 rates of consumption. Costs of production have, however, also increased. This article is based on the latest edition of the 'Red Book', Uranium 2009: Resources, Production and Demand, which presents the results of the most recent biennial review of world uranium market fundamentals and a statistical profile of the world uranium industry as of 1 January 2009. It contains official data provided by OECD Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) member countries on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also provided as well as a discussion of long-term uranium supply and demand issues. Despite recent declines stemming from the global financial crisis, world demand for electricity is expected to continue to grow significantly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by an increasing number of governments that nuclear power can produce competitively priced, base-load electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. Regardless of the role that nuclear energy ultimately plays in meeting rising electricity demand, the uranium resource base is more than adequate to meet projected requirements. Meeting even high-case requirements to 2035 would consume less

  15. Investigation on uranium resources of Qinling region

    International Nuclear Information System (INIS)

    Peng Daming

    1999-01-01

    The Qinling Mountains straddle China from the west to the east with the length of more than 1300 km covering Anhui, Hubai, Hunan, Shanxi, Guansu, Qinghai and Sichuan provinces. Up to now, 20 uranium deposits have been discovered in the region and all discovered deposits can be classified into 3 type (granite type, sedimentation-reworking type and hydrothermal alteration type) and 9 subtypes including 15 uranium deposits discovered in Qinling geosyncline area. Main uranium deposits are concentrated in Danfeng and Shangnan counties, southern Shanxi, lantian county, central Shanxi and Lixian County, Southern Gansu. Of the above listed uranium deposits, the granite-hosted deposits are most important, and characterized by large resources, high grade of ore and easiness in hydrometallurgy. Sedimentation-reworking type deposits are less important. The main U-metallogenic epoch is the Caledonian and the Yanshanian is the second. A prognosis for uranium deposits in Qinling region is made in the paper which proposes that the belt from Dangchuan in the west, via Jiamusi, Gepai and Fenshuling to Longquanping in the east is a most favorable area for location granite type uranium deposits

  16. Autonomous Learner Model Resource Book

    Science.gov (United States)

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  17. Development growth of uranium reserves during mining

    International Nuclear Information System (INIS)

    Giroux, M.

    1989-01-01

    According to the 1988 issue of the Nuclear Energy Agency report 'Uranium Resources, Production and Demand' (the Red Book), total uranium resources remained constant, and compare with those given in the 1986 issue. However, the low cost category of the Reasonably Assured Resources (RAR), that is to say potentially mineable reserves under present market conditions, presents a different picture. These show a decrease of 54 000 tonnes U, or about 3.5%, from the 1 January 1985 level. It seems insignificant until compared with what was removed from the ground - only a quarter of the 71 500 tonnes U of the low cost uranium that was extracted during 1985 and 1986 was renewed by the industry. This is probably related to the low level of exploration activity since 1983. Moreover, new uranium might be not as easy to find as some past discoveries have led us to believe. While in 1988 it appears there is enough low cost uranium to supply existing reactors, the picture quickly changes. From 1991 onwards, for 30 years' supply for existing reactors, uranium will have to come from RAR in the higher cost category. (author)

  18. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  19. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.; Barnes, C.W.; Smouse, D.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluated using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Republic of Burundi. Draft

    International Nuclear Information System (INIS)

    Gehrisch, W.; Chaigne, M.

    1983-06-01

    The basic objective of the International Uranium Resources Evaluation project lUREP is to 'Review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional uranium resources and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned'. Therefore, the scope of the IUREP orientation phase Mission to Burundi was to review all data on past exploration in Burundi, to develop a better understanding of the uranium potential of the country, to make an estimate of the speculative resources of the country, to make recommendation as appropriate on the best methods or techniques for evaluating the resources in the favourable areas and for estimating possible costs as well, to compile a report which could be immediately available to the Burundian authorities. This mission gives a general introduction, a geological review of Burundi, information on non-uranium mining in Burundi, the history of uranium exploration, occurrences of uranium IUREP mission field reconnaissance, favourable areas for speculative potential, the uranium resources position and recommendations for future exploration. Conclusions are the following. The IUREP Orientation -phase mission to Burundi believes that the Speculative Resources of that country fall b etween 300 and 4100 tons uranium oxide but a less speculative appraisal is more likely between 0 and 1000 tons. There has been no uranium production and no official estimates of Uranium Resources in Burundi. Past exploration mainly dating from 1969 onwards and led the UNDP Mineral project has indicated a limited number of uranium occurrences and anomalies. The speculative uranium resources are thought to be possibly associated with potential unconformity related vein-like deposits of the Lower Burundian. Other speculative uranium resources could be associated with granitic or peribatholitic

  1. Uranium Newsletter. No. 1

    International Nuclear Information System (INIS)

    1987-03-01

    The new Uranium Newsletter is presented as an IAEA annual newsletter. The organization of the IAEA and its involvement with uranium since its founding in 1957 is described. The ''Red Book'' (Uranium Resources, Production and Demand) is mentioned. The Technical Assistance Programme of the IAEA in this field is also briefly mentioned. The contents also include information on the following meetings: The Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks, Advisory Group Meeting on the Use of Airborne Radiometric Data, and the Technical Committee Meeting on Metallogenesis. Recent publications are listed. Current research contracts in uranium exploration are mentioned. IAEA publications on uranium (in press) are listed also. Country reports from the following countries are included: Australia, Brazil, Canada, China (People's Republic of), Denmark, Finland, Germany (Federal Republic of), Malaysia, Philippines, Portugal, South Africa (Republic of), Spain, Syrian Arab Republic, United Kingdom, United States of America, Zambia, and Greece. There is also a report from the Commission of European Communities

  2. Forty years of uranium resources, production and demand in perspective

    International Nuclear Information System (INIS)

    Price, R.; Barthel, F.; Blaise, J.R.; McMurray, J.

    2006-01-01

    The NEA has been collecting and analysing data on uranium for forty years. The data and experience provide a number of answers to the questions being asked today, as many countries begin to look at nuclear energy with renewed interest. In terms of uranium resources, the lessons of the past give confidence that uranium supply will remain adequate to meet demand. (authors)

  3. Data on foreign regions where uranium resources are developed, 1

    International Nuclear Information System (INIS)

    1982-01-01

    This book was published in July, 1976, before. But thereafter, the information increased enormously, therefore the revised edition is to be published this time. The Asian regions are divided into Asia and Middle and Near East. The African regions are divided into northern, eastern, central, western and southern Africa. The general situation, the policy of uranium mining, the history of uranium ore exploration, the geological features, the uranium deposits and indications, the promising regions, the room Japan can step in, and the drawing showing the outline of geological features in respective countries are shown. In Niger, Japanese companies have taken part in the development of mines, and in Mali, the Power Reactor and Nuclear Fuel Development Corp. has carried out the exploration work. Also in Zambia, it has participated in the exploration project. The Japanese cooperation with the People's Republic of China and Thailand in uranium exploration seems to be promising. (Kako, I.)

  4. Uranium resources, scenarios, nuclear and energy dynamics - 5200

    International Nuclear Information System (INIS)

    Bidaud, A.; Mima, S.; Criqui, P.; Gabriel, S.; Monnet, A.; Mathonniere, G.; Cuney, M.; Bruneton, P.

    2015-01-01

    In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. A dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Only two nuclear reactor types are modeled in POLES. Globally one has the characteristics of a Thermal Neutron Reactor (TR) and the other one has the ones of Fast Breeder Reactors (FBR). The results show that If both generations of nuclear reactors can be competitive with other sources, we see that in many countries their development would probably be limited by the availability of natural and recycled materials. Depending on the locally available alternative (hydro, coal) and local regulatory framework (safety and waste management for nuclear reactors but also environmental constraints such as CO 2 targets), both nuclear technologies could be developed. The advantage of the new model is that it avoids the difficult question of defining 'ultimate resources'. The drawback is that it needs a description of the volume of uranium resources but also of the link between the cost and the potential production capacities of these resources

  5. Geological 3-D modelling and resources estimation of the Budenovskoye uranium deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Boytsov, A.; Heyns, M.; Seredkin, M.

    2014-01-01

    The Budenovskoye deposit is the biggest sandstone-hosted, roll front type uranium deposit in Kazakhstan and in the world. Uranium mineralization occurs in the unconsolidated lacustrine-alluvial sediments of Late Cretaceous Mynkuduk and Inkuduk horizons. The Budenovskoye deposit was split into four areas for development with the present Karatau ISL Mine operating No. 2 area and Akbastau ISL Mine Nos. 1, 3 and 4 areas. Mines are owned by Kazatomprom and Uranium One in equal shares. CSA Global was retained by Uranium One to update in accordance with NI 43-101 the Mineral Resource estimates for the Karatau and Akbastau Mines. The modelling Reports shows a significant increase in total uranium resources tonnage at both mines when compared to the March 2012 NI 43-101 resource estimate: at Karartau measured and indicated resources increased by 586% while at Akbastau by 286%. It has also added a 55,766 tonnes U to the Karatau Inferred Mineral Resource category.The new estimates result from the application of 3-D modelling techniques to the extensive database of drilling information, new exploration activities.

  6. National Uranium Resource Evaluation: Lamar quadrangle, Colorado and Kansas

    International Nuclear Information System (INIS)

    Maarouf, A.M.; Johnson, V.C.

    1982-01-01

    Uranium resources of the Lamar Quadrangle, Colorado and Kansas, were evaluated using National Uranium Resource Evaluation criteria. The environment favorable for uranium is the Lower Cretaceous Dakota Sandstone in the area east of John Martin Reservoir for south Texas roll-type sandstone deposits. Carbonaceous trash and sulfides are abundant in the Dakota Sandstone. The unit underlies a thick Upper Cretaceous section that contains bentonitic beds and uraniferous marine black shale. Water samples from the Dakota Sandstone aquifer contain as much as 122 ppB U 3 O 8 . Geologic units considered unfavorable include most of the Paleozoic rocks, except in the Brandon Fault area; the Upper Cretaceous rocks; and the Ogallala Formation. The Dockum Group, Morrison Formation, and Lytle Member of the Purgatoire Formation are unevaluated because of lack of data

  7. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  9. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    International Nuclear Information System (INIS)

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1 0 x 2 0 ) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable

  10. Application of physical separation techniques in uranium resources processing

    International Nuclear Information System (INIS)

    Padmanabhan, N.P.H.; Sreenivas, T.

    2008-01-01

    The planned economic growth of our country and energy security considerations call for increasing the overall electricity generating capabilities with substantial increase in the zero-carbon and clean nuclear power component. Although India is endowed with vast resources of thorium, its utilization can commence only after the successful completion of the first two stages of nuclear power programme, which use natural uranium in the first stage and natural uranium plus plutonium in the second stage. For the successful operation of first stage, exploration and exploitation activities for uranium should be vigorously followed. This paper reviews the current status of physical beneficiation in processing of uranium ores and discusses its applicability to recover uranium from low grade and below-cut-off grade ores in Indian context. (author)

  11. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  12. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates

  13. The current situation of uranium resources exploration in East China: Problems, thought and countermeasure

    International Nuclear Information System (INIS)

    He Xiaomei; Mao Mengcai

    2014-01-01

    Based on analyzing the current situation of uranium resources and exploration effort in East China, the main existing problems, technical thought and countermeasure for the future exploration in East China are discussed in this paper. The degree of both uranium exploration and study in East China is relatively high, philosophy of scientific mineral-prospecting should be established in the new round of mineral prospecting. Under guidance of metallogenic theory of large mineralization cluster area and uranium metallogenic theory of multi-sources, previous data and research achievement should be analyzed and summarized. With the help of metallogenic model, useful methods and means should be applied to set up exploration model in order to realize news phase of model exploration, comprehensive exploration, 3D exploration and quantitative exploration. Efficiency of exploration of uranium resources should be strugglingly increased. High profitable uranium resources will be actively found with rich, shallow, near and easy features. The prospecting targets and strategy reserves of uranium resources will be increased in East China. (authors)

  14. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    1998-08-01

    This report was prepared to assess the changing uranium supply and demand situation as well as the adequacy of uranium resources and the production capability to supply uranium concentrate to meet reactor demand through 2020. Uranium production has been meeting only 50 to 60 percent of the world requirements with the balance met from sale of excess inventory offered on the market at low prices. It is generally agreed by most specialists that the end of the excess inventory is approaching. With inventory no longer able to meet the production shortfall it is necessary to significantly expand uranium production to fill an increasing share of demand. Non-production supplies of uranium, such as the blending of highly enriched uranium (HEU) warheads to produce low enriched reactor fuel and reprocessing of spent fuel, are also expected to grow in importance as a fuel source. This analysis addresses three major concerns as follows: adequacy of resources to meet projected demand; adequacy of production capability to produce the uranium; and market prices to sustain production to fill demand. This analysis indicates uranium mine production to be the primary supply providing about 76 to 78 percent of cumulative needs through 2020. Alternative sources supplying the balance, in order of relative importance are: (1) low enriched uranium (LEU) blended from 500 tonnes of highly enriched uranium (HEU) Russian weapons, plus initial US Department of Energy (US DOE) stockpile sales (11 to 13%); (2) reprocessing of spent nuclear fuel (6%) and; (3) utility and Russian stockpiles. Further this report gives uranium production profiles by countries: CIS producers (Kazakhstan, Russian Federation, Ukraine, Uzbekistan) and other producers (Australia, Canada, China, Gabon, Mongolia, Namibia, Niger, South Africa, United States of America)

  15. Uranium resource evaluation project quality assurance evaluation

    International Nuclear Information System (INIS)

    Grimes, J.G.

    1981-01-01

    This evaluation was conducted over an eight-month period from February 4 through October 1, 1980. During this time, field sampling was suspended for an indefinite time period while the National Uranium Resource Evaluation (NURE) Program underwent restructuring. In addition, the Uranium Resource Evaluation (URE) Project archives are being restructured. Since it is difficult to evaluate quality assurance needs of a program that is undergoing drastic change and because sections of the evaluation were well along before these changes were announced, this evaluation reflects the situation as it was during February 1980. The following quality assurance related programs are continuing to date: (1) periodic checks of field sampling procedures by the Supervising Field Geologist and the Director of Field Operations; (2) verification of field form information and laboratory analytical data verification for all geochemical surveys; (3) URE Project laboratory quality control program (all elements routinely analyzed); and (4) Ames interlaboratory quality control program (uranium only). UCC-ND was given the responsibility of conducting a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) survey in the Central United States (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, North Dakota, Oklahoma, Texas, South Dakota, and Wisconsin). During 1979 and 1980, 13 detailed surveys were conducted by the URE Project in the Central and Western United States to characterize the hydrogeochemistry, stream sediment geochemistry, and/or radiometric patterns of known or potential uranium occurrences. Beginning in 1980, the HSSR surveys were modified to the Regional Hydrogeochemical and Stream Sediment (RHSS) surveys

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Canada

    International Nuclear Information System (INIS)

    1977-08-01

    Exploration for mineral deposits in Canada resulted in the discovery of large uranium deposits, such as at Great. Bear Lake, Northwest Territories (1930), in the Elliot Lake area, Ontario (1949); Beaverlodge, Wollaston Lake Fold Belt and Carswell Structure in Saskatchewan (1946-1975) and many uranium occurrences in the Canadian Shield, in the Orogenic Belts and in the Platforms. Uranium output in Canada since 1942 until and including 1976 amounted to 112,000 tonnes U. Reasonably Assured uranium resources as of 1976 amounted to 167,000 tonnes U (at a price up to $40/lb. U 3 0 8 ) and 15,000 tonnes U (at a price more than $40 up to $60/lb. U 3 O 8 ). Estimated Additional uranium resources as of 1976 amounted to 392,000 tonnes U (at a price up to $40/lb. U-Og) and 264,000 tonnes U (at a price more than $40 up to $60/lb. U 3 0 8 ). Possible further potential beyond the above mentioned classes is tentatively estimated to be in the 6th category according to NEA/IAEA favourability classification. (author)

  17. National uranium resource evaluation, Dickinson quadrangle, North Dakota

    International Nuclear Information System (INIS)

    Lee, C.H.; Pack, D.D.; Galipeau, J.M.; Lawton, D.E.

    1982-05-01

    The Dickinson Quadrangle, North Dakota, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria used in the evaluation were developed for the National Uranium Resource Evaluation program. The evaluation primarily consisted of a surface study, subsurface investigation, and an in-house ground-water geochemical study. These studies were augumented by aerial radiometric and hydrogeochemical and stream-sediment studies. The evaluation results indicate that the Sentinel Butte and Tongue River Members of the Fort Union Formation have environments favorable for uraniferous lignite deposits. The Sentinel Butte, Tongue River, and Ludlow Members of the Fort Union Formation are favorable for sandstone uranium deposits. Environments unfavorable for uranium deposits are the remaining Cenozoic rocks and all the rocks of the Cretaceous

  18. World uranium reserves and assurance of energy supply

    International Nuclear Information System (INIS)

    Warnecke, S.J.

    1980-01-01

    This book deals mainly with those aspects of energy policy which concern uranium supply. A different complexion is put on the quantitative estimates of world uranium supplies available which are being overshadowed by political problems resulting from the special properties of this primary energy source as well as from its geographical distribution. The national policy of non-proliferation and the resource policy are demonstrated, taking the largest uranium supply countries as examples. The consumers' policy is explained, taking Europe and Japan as an example. Furthermore, a few possible political solutions are suggested. (UA) [de

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Belgium

    International Nuclear Information System (INIS)

    1977-12-01

    Uranium occurrences and resources - To date the uranium identified in Belgium is limited to a number of occurrences and none of these have as yet proved significant from a reserve or resource viewpoint. The main uranium occurrences ares (1) In the Upper Cambrian graphite schists corresponding to the culm of Sweden small zones are found (30 - 50 cm thick) with an average of 20 ppm uranium. (2) Near Vise at the base of the Carboniferous the Visean formation is discordantly superimposed on the Permian (Frasnian) and overlain by shales and phyllites. Solution pockets at the boundary contain phosphatic lenses that contain uranium values of up to 200 ppm. Autunite and Torbernite are the main uranium minerals associated with a number of complex phosphatic minerals. Within the Chalk (Maestrichtien) of the Mons basin, that is mainly in the Ciply - St. Symphorien and Baudow district. Here is found enrichment of uranium up to 140 ppm over large areas related to phosphatic chalk. The thickness of the zone varies from a few to 20 metres. However, as the P 2 O 5 content is not high enough for the deposits to be exploited at present for phosphate there is little possibility of the uranium being concentrated at high enough levels to be exploited for itself alone. (4) Near to Vielsalm (in the Stavelot Massif) are some thin quartz veins containing small amounts of copper and uranium minerals (Torbornite). Values of up to 70 ppm are recorded. (5) A number of low uranium values are recorded associated with phosphatic nodules and zones in the Lower Pleistocene and Tertiary

  20. Undiscovered resource evaluation: Towards applying a systematic approach to uranium

    International Nuclear Information System (INIS)

    Fairclough, M.; Katona, L.

    2014-01-01

    Evaluations of potential mineral resource supply range from spatial to aspatial, and everything in between across a range of scales. They also range from qualitative to quantitative with similar hybrid examples across the spectrum. These can compromise detailed deposit-specific reserve and resource calculations, target generative processes and estimates of potential endowments in a broad geographic or geological area. All are estimates until the ore has been discovered and extracted. Contemporary national or provincial scale evaluations of mineral potential are relatively advanced and some include uranium, such as those for South Australia undertaken by the State Geological Survey. These play an important role in land-use planning as well as attracting exploration investment and range from datato knowledge-driven approaches. Studies have been undertaken for the Mt Painter region, as well as for adjacent basins. The process of estimating large-scale potential mineral endowments is critical for national and international planning purposes but is a relatively recent and less common undertaking. In many cases, except at a general level, the data and knowledge for a relatively immature terrain is lacking, requiring assessment by analogy with other areas. Commencing in the 1980s, the United States Geological Survey, and subsequently the Geological Survey of Canada evaluated a range of commodities ranging from copper to hydrocarbons with a view to security of supply. They developed innovative approaches to, as far as practical, reduce the uncertainty and maximise the reproducibility of the calculations in information-poor regions. Yet the approach to uranium was relatively ad hoc and incomplete (such as the US Department of Energy NURE project). Other historic attempts, such as the IAEA-NEA International Uranium Resource Evaluation Project (IUREP) in the 1970s, were mainly qualitative. While there is still no systematic global evaluation of undiscovered uranium resources

  1. Estimation of potential uranium resources

    International Nuclear Information System (INIS)

    Curry, D.L.

    1977-09-01

    Potential estimates, like reserves, are limited by the information on hand at the time and are not intended to indicate the ultimate resources. Potential estimates are based on geologic judgement, so their reliability is dependent on the quality and extent of geologic knowledge. Reliability differs for each of the three potential resource classes. It is greatest for probable potential resources because of the greater knowledge base resulting from the advanced stage of exploration and development in established producing districts where most of the resources in this class are located. Reliability is least for speculative potential resources because no significant deposits are known, and favorability is inferred from limited geologic data. Estimates of potential resources are revised as new geologic concepts are postulated, as new types of uranium ore bodies are discovered, and as improved geophysical and geochemical techniques are developed and applied. Advances in technology that permit the exploitation of deep or low-grade deposits, or the processing of ores of previously uneconomic metallurgical types, also will affect the estimates

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Ghana. Draft

    International Nuclear Information System (INIS)

    Guelpa, Jean-Paul; Vogel, Wolfram

    1982-12-01

    The Republic of Ghana has no claimed uranium resources in the categories Reasonably Assured and Estimated Additional. The only occurrences known are within pegmatites and are of no economic importance. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of the country fall between 15,000 and 40,000 tonnes uranium. The IUREP Orientation Phase Mission to Ghana believes that the Panafrican Mobile Belt has the highest uranium potential of all geological units of the country. The Obosum beds are the priority number two target. A three years exploration programme is recommended for a total cost of US $ 5,000,000. The Ghana Atomic Energy Commission and the Ghana Geological Survey provide a basic infrastructure for uranium exploration. Any future uranium development in Ghana should be embedded in a well defined national uranium policy. It is recommended that such a policy be draw, up by the Ghanaian authorities

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Zambia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Zambia. The IUREP Orientation Phase mission to Zambia estimates that the Speculative Resources of that country fall within the range of 33 000 and 100 000 tonnes uranium. The majority of these resources are believed to exist in the Karoo sediments. Other potentially favourable geological environments are the Precambrian Katanga sediments, as well as intrusive rocks of different chemical compositions and surficial duricrusts. Previous unofficial estimates of Zambia's Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) are considered to be still valid: the total RAR amount to 6 000 tonnes uranium, located in Karoo (4 000 tonnes) and Katanga (2 000 tonnes) sediments, while the EAR are believed to total 4 000 tonnes being found only in Karoo sediments. The mission recommends that approximately US$ 40 million be spent on uranium exploration in Zambia over 10 years. The largest part of this expenditure would be for drilling, while the remainder should be spent on airborne and ground surveys, as well as on interpretative work on previous airborne data, Landsat imageries, etc. (author)

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Republic of Korea

    International Nuclear Information System (INIS)

    1977-12-01

    The Republic of Korea, occupies the southern end of the Korean peninsula. It has a long history of mining and mineral production, and has an active and fairly well equipped Geological Survey. The country in general is quite highly mineralized with many minerals including uranium although there has been no uranium production from it yet. Uranium occurs in granites, schists, and in black carbonaceous shales. The Korean Geological survey has estimated that one ore body contains 650 tonnes U in 1,600,000 tons of ore at an average grade of 0.047 percent U 3 O 8 . Many recent reports also indicate very large resources of uranium in very low grade ranges. The uranium potential for the Republic of Korea is considered in Category 2 (1,000 - 10,000 tonnes U) in the normal IUREP context. However, a very large resource may exist in the very low grades in black shales of the country. This resource is considered as in category 6 (500,000 to 1,000,000 tonnes U). (author)

  5. Uranium mining and production: A legal perspective on regulating an important resource

    International Nuclear Information System (INIS)

    Thiele, Lisa

    2013-01-01

    The importance of uranium can be examined from several perspectives. First, natural uranium is a strategic energy resource because it is a key ingredient for the generation of nuclear power and, therefore, it can affect the energy security of a state. Second, natural uranium is also a raw material in relative abundance throughout the world, which can, through certain steps, be transformed into nuclear explosive devices. Thus, there is both an interest in the trade of uranium resources and a need for their regulatory control. The importance of uranium to the worldwide civilian nuclear industry means that its extraction and processing - the so-called 'front end' of the nuclear fuel cycle - is of regulatory interest. Like 'ordinary' metal mining, which is generally regulated within a country, uranium mining must also be considered from the more particular perspective of regulation and control, as part of the international nuclear law regime that is applied to the entire nuclear fuel cycle. The present overview of the regulatory role in overseeing and controlling uranium mining and production will outline the regulation of this resource from an international level, both from early days to the present day. Uranium mining is not regulated internationally; rather, it is a state responsibility. However, developments at the international level have, over time, led to better national regulation. One can note several changes in the approach to the uranium industry since the time that uranium was first mined on a significant scale, so that today the mining and trade of uranium is a well-established and regulated industry much less marked by secrecy and Cold War sentiment. At the same time, it is informed by international standards and conventions, proliferation concerns and a modern regard for environmental protection and the health and safety of workers and the public. (author)

  6. National uranium resource evaluation, NURE 1979: annual activity report

    International Nuclear Information System (INIS)

    1980-03-01

    NURE is a DOE-directed program with the major goal of establishing reliable and timely comprehensive estimates of the uranium resources of the nation. To develop and compile geologic, geophysical, and other information which will contribute to assessing the distribution and magnitude of uranium resources and to determine areas favorable for the occurrence of uranium in the United States, NURE has been organized into the following elements: (1) quadrangle evaluation; (2) aerial radiometric reconnaissance; (3) subsurface investigations; (4) hydrogeochemical and stream-sediment reconnaissance; (5) geologic studies; (6) technology applications; and (7) information dissemination. The extensive effort now under way on each of these NURE program elements will result in a systematic collection and compilation of data which will be culminating in a comprehensive report covering certain priority areas of the United States. This report summarizes the technical activities undertaken during 1979 to support this program

  7. Investigation of uranium resources out of Japan. Summary on investigation techniques

    International Nuclear Information System (INIS)

    2001-03-01

    Investigation of uranium resources in Japan was begun on 1954 by inland survey of the Geological Survey Bureau in the Agency of Industrial Science and Technology, Ministry of Industrial Trade and Industry, and then it was inherited to the Atomic Fuel Corporation and the Power Reactor and Nuclear Fuel Development Corporation (PNC). Since 1960s, under expectation of rapid growth of nuclear power generation and increase of uranium demand, as it was elucidated to be impossible to fill to its inland demand in quality and quantity, investigation of uranium resources out of Japan by private companies and its basic survey out of Japan by government were promoted. However, in accompanying with revise of PNC to be Japan Nuclear Cycle Development Institute, withdraw of the ore mining business was determined. According to the determination, as a result of investigation on inheritance of right of mining out of Japan to inland companies, rights in Canada were finished to inherit on November, 2000. Here were described on outlines on investigation, investigative method, and investigative business on uranium resources. (G.K.)

  8. The main advance and achievements in the potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Zhang Jindai; Guo Qingyin; Li Youliang; Li Ziying; Cai Yuqi; Han Changqing

    2012-01-01

    The national uranium resources potential evaluation is one of the important national census in China. The evaluation is based on the data and results accomplished by nuclear geological industry in last decades and wholly performed on GIS platform by absorbing related technology and geological achievement in home and broad, and has figured out 329 uranium predicted mineralization areas and estimated more than 2000000 tones resource on a national scale. Innovative achievements has been made in the classification of uranium deposit type and mineralization belt, integration of geological-geophysical-geochemical-remote sensing information and research of uranium mineralization pattern. For the first time, the potential evaluation has been performed totally by digitalisation and information, the evaluation will provide important evidence for developing middle-long term planning of uranium exploration and laid good foundation to future dynamic and regular evaluation of uranium resource in China. (authors)

  9. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  10. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  11. Principles of economic evaluation of uranium resources in Canada

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1998-01-01

    The uranium resources of Canada occur in deposits associated with unconformities in Proterozoic basins and adjacent areas. Classification of the resources is based on the confidence in the estimates and on their economic viability. The system is fully compatible with IAEA/NEA classified systems. The methods of estimating and classifying the Canadian resources is described. (author)

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Cameroon

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Cameroon. The IUREP Orientation Phase Mission to Cameroon estimates the Speculative Resources of that country to be in the order of 10 000 tonnes uranium for syenite-associated U-deposits in southern Cameroon, and in the order of 5 000 tonnes uranium for uranium deposits associated with albitized and desilicified late tectonic Panafrican granites (episyenite) and Paleozoic volcanics in northern Cameroon. No specific tonnage is given for Francevillian equivalents (DJA-Series) and for Mesozoic and Cenozoic sedimentary basins, which are thought to hold limited potential for sandstone hosted uranium. However the Douala basin, consisting of mixed marine and continental sequences merits some attention. No specific budget and programme for uranium exploration are proposed for Cameroon. Instead specific recommendations concerning specific potential environments and general recommendation concerning the methodology of exploration are made. (author)

  13. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  14. Global Uranium Supply Ensured for Long Term, New Report Shows

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Uranium resources and production are on the rise with the security of uranium supply ensured for the long term, according to a new report by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). Uranium 2011: Resources, Production and Demand, commonly referred to as the ''Red Book'', shows that total identified uranium resources have grown 12.5% since 2008. However, the costs of production have also increased, leading to reductions in lower cost category resources. These figures, which reflect the situation as of 1 January 2011, mean that total identified resources are sufficient for over 100 years of supply based on current requirements. Global uranium mine production increased by over 25% between 2008 and 2010 because of significantly increased production in Kazakhstan, currently the world's leading producer. The increased resource base has been achieved thanks to a 22% increase in uranium exploration and mine development expenditures between 2008 and 2010, which in 2010 totalled over $2 billion. Demand for uranium is expected to continue to rise for the foreseeable future. Although the Fukushima Daiichi nuclear accident has affected nuclear power projects and policies in some countries, nuclear power remains a key part of the global energy mix. Several governments have plans for new nuclear power plant construction, with the strongest expansion expected in China, India, the Republic of Korea and the Russian Federation. The speed and magnitude of growth in generating capacity elsewhere is still to be determined. By the year 2035, according to the joint NEA-IAEA Secretariat, world nuclear electricity generating capacity is projected to grow from 375 GWe net (at the end of 2010) to between 540 GWe net in the low demand case and 746 GWe net in the high demand case, increases of 44% and 99% respectively. Accordingly, world annual reactor-related uranium requirements are projected to rise from 63 875 tonnes of uranium metal

  15. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Madagascar

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been made public which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Madagascar. The IUREP Orientation Phase Mission to Madagascar estimates the Speculative Resources of that country to be within the wide range of 4 000 to 38 000 tonnes uranium. Such resources could lie in areas with known occurrences (uranothorianite, Ft. Dauphin up to 5 000 t U, i.e. 'pegmatoids'; uranocircite, Antsirabe up to 3 000 t U in Neogene sediments; carnotiteautonite, Karoo area up to 30 000 t U in sandstones and in areas with as yet untested environments (e.g. related to unconformities and calcretes). Modifications to existing uranium exploration programmes are suggested and policy alternatives reviewed. No specific budget is proposed. (author)

  17. Estimation of intermediate grade uranium resources. Final report

    International Nuclear Information System (INIS)

    Lambie, F.W.; Kendall, G.R.; Klahn, L.J.; Davis, J.C.; Harbaugh, J.W.

    1980-12-01

    The purpose of this project is to analyze the technique currently used by DOE to estimate intermediate grade uranium (0.01 to 0.05% U 3 O 8 ) and, if possible, suggest alternatives to improve the accuracy and precision of the estimate. There are three principal conclusions resulting from this study. They relate to the quantity, distribution and sampling of intermediate grade uranium. While the results of this study must be validated further, they indicate that DOE may be underestimating intermediate level reserves by 20 to 30%. Plots of grade of U 3 O 8 versus tonnage of ore and tonnage U 3 O 8 indicate grade-tonnage relationships that are essentially log-linear, at least down to 0.01% U 3 O 8 . Though this is not an unexpected finding, it may provide a technique for reducing the uncertainty of intermediate grade endowment. The results of this study indicate that a much lower drill hole density is necessary for DOE to estimate uranium resources than for a mining company to calculate ore resources. Though errors in local estimates will occur, they will tend to cancel over the entire deposit

  18. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    Science.gov (United States)

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  19. Are uranium resources sufficient to face the expected revival of nuclear electricity production in the world?

    International Nuclear Information System (INIS)

    Seyve, C.

    2007-11-01

    This article proposes a table containing assessments of uranium resources in 2005 in different countries, and comments the evolution of uranium prices between 1968 and 2008. It discusses whether it would be possible to cope with a dramatic increase of uranium prices, whether it would be already possible to save uranium with the same level of electricity production, whether there is still some uranium resources to be discovered, whether we could rely on non conventional uranium sources (phosphates, sea water), and the role of future reactors

  20. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Science.gov (United States)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  1. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  2. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs

  3. National Uranium Resource Evaluation: Spartanburg Quadrangle, South Carolina and North Carolina

    International Nuclear Information System (INIS)

    Schot, E.H.; Galipeau, J.M.

    1980-11-01

    The Spartanburg Quadrangle, South Carolina and North Carolina, was evaluated for uranium favorability using National Uranium Resource Evaluation criteria. The evaluation included the study and analysis of published and collected geologic, geophysical, and geochemical data from subsurface, surface, and aerial studies. Five environments are favorable for uranium deposits. The Triassic Wadesboro Basin has ground waters with anomalously high uranium concentrations and uranium-to-conductivity ratios. The Upper Cretaceous Tuscaloosa-Middendorf Formation is near a uranium source and has sediments favorable for uranium deposition. The contact-metamorphic aureoles associated with the Liberty Hill-Kershaw and Winnsboro-Rion plutonic complexes are close to uranium sources and contain the reductants (sulfides, graphite) necessary for precipitation. The East Fork area in the Charlotte Belt has ground waters with uranium concentrations 4 to 132 times the mean concentration reported for the surrounding Piedmont area. Unfavorable environments include the Catawba Granite, the area west of the Winnsboro-Rion complex, gold-quartz veins, the vermiculite district, and the Western Monazite Belt

  4. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, C.; Slezak, J. [Divison of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Vienna (Austria)

    2014-05-15

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  5. Book Review: Current Issues in International Human Resource Management and Strategy Research

    DEFF Research Database (Denmark)

    Gretzinger, Susanne

    2009-01-01

    The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer.......The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer....

  6. National uranium resource evaluation: Lemmon quadrangle, South Dakota and North Dakota

    International Nuclear Information System (INIS)

    Sewell, J.M.; Pickering, L.A.

    1982-06-01

    The Lemmon Quadrangle was evaluated to identify and delineate geologic environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Surface studies included investigation of uranium occurrences, general surface reconnaissance, and detailed rock sampling in selected areas. In addition, followup studies were conducted on carborne spectrometric, aerial radiometric, and hydrogeochemical and stream-sediment surveys. Subsurface investigations included examination of geophysical well logs and ground-water geochemical data. These investigations indicate environments favorable for sandstone-type uranium deposits in the Upper Cretaceous strata and lignite-type deposits in the Paleocene strata. Environments unfavorable for uranium deposits include Tertiary sandstones and Jurassic and Cretaceous strata, exclusive of the Upper Cretaceous sandstones

  7. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  8. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  9. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  10. Yellowcake: the international uranium cartel

    International Nuclear Information System (INIS)

    Taylor, J.H.; Yokell, M.D.

    1979-01-01

    The dramatic events that occurred in the uranium market between 1972 and 1976, and their repercussions is discussed. In particular, the book concentrates on the international uranium cartel's attempt to fix yellowcake prices. The background of the yellowcake industry is discussed in Part I of the book, and the demand for uranium and the nuclear fuel cycle isdiscussed, along with a brief anecdotal history of the uranium industry. Part II describes the political conflicts in Australia which led to the public exposure of the uranium cartel and the situation in the world uranium market that led to the cartel's formation. The legal repercussions of the cartel's exposure are discussed in Part III, and in Part IV, the authors reflect on the ramifications of the events described in the book and some of the issues they raise

  11. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  12. Australia modifies resource rent, uranium mining policies

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Current Australian government business and economic policies as they affect the mining industry are discussed. The distribution of constitutional and taxing powers in Australia between state and commonwealth governments and possible inappropriate taxes and other policies can have an adverse effect on resource development. The effects of these policies on both coal and uranium mining are discussed

  13. Exhaustible resources and economic growth: the case of uranium mining in Saskatchewan

    International Nuclear Information System (INIS)

    Campbell, H.F.

    1984-09-01

    This study examines the effect of a booming natural resource sector on regional economic growth, with particular attention to the impact of regional government policy on mineral rent taxation and the allocation of resource revenues. The author's approach is first to document the relevant theory and then to apply it to the case of the uranium industry in Saskatchewan. Governments often hold the view that a significant portion of resource rents flowing from the boom should be appropriated by the public sector. The usual arguments of efficiency and equity are explained, as is their applicability to uranium in Saskatchewan. The model is extended to include provincial tax and expenditure policies. Chapter 2 concentrates on mineral taxes and examines their various effects on the behaviour of firms with respect to exploration and extraction. The theory about the effects of mineral taxes on exploration and extraction is reviewed and is subsequently used to anticipate the effect of taxes on uranium mining. The Saskatchewan Uranium Royalty is explicitly considered in a quantitative model to analyse the effect on the rate of extraction on the Key Lake Mine. It is agreed that taxes collected by the Saskatchewan government are corrective in nature in that they lower the rate of extraction and make up for certain market failures and improve efficiency of resource use. It is not accepted, however, that the allocation of these taxes contributes to economic efficiency. Plentiful low cost uranium reserves are predicted but government policy is likely to limit rapid expansion. Weighing these factors and the world uranium market, uranium production forecasts are derived and an estimate is made of the impact of the industry on economic growth in Saskatchewan. The contribution to Gross Domestic Provincial Product in 2000 could be as high as 10% of the 1980 GDPP level and the contribution to employment as high as 9% of 1980 nonagricultural employment. The reader is cautioned that the

  14. Uranium favourability and evaluation in Mongolia (phase II), recent events in uranium resources and production in Mongolia

    International Nuclear Information System (INIS)

    Batbold, T.

    2001-01-01

    Uranium exploration in Mongolia covered a period of over 5 decades. The main results of these activities were the discoveries of 6 uranium deposits and about 100 occurrences as well as numerous favourable indications. Sizable resources are found mainly in deposits of the sandstone, volcanic and alkaline intrusive types. Of these, the first two are considered to be of economic importance. Uranium production in Mongolia started in 1989 with the exploitation of volcanic type uranium deposits of the Mongol-Priargun metallogenic province, known as the Dornot Mine. Due to political and economic changes in the country and neighbouring areas of the Russian Federation, this uranium production was terminated in 1995. A new plan to restart production at the Mardai-gol deposits as a joint venture between Mongolia, the Russian Federation and a US company is being considered. (author)

  15. Activities in support of R and D work for safeguarding uranium supplies

    International Nuclear Information System (INIS)

    1988-01-01

    The activities of the Bundesanstalt fuer Geowissenschaften und Rohstoffe on behalf of the BMFT covered different tasks on the international level, as e.g. cooperative work in the uranium group of NEA, Paris, and of IAEA, Vienna, for publication of the world-wide survey of uranium resources, uranium production, and demand (Red Book). Cooperation with organisations abroad in the period under review included activities with the Australian Bureau for Mineral Resources and the BATAN authority of Indonesia. Contracts with other foreign organisations or boards were maintained and developed for cooperation in the field of uranium exploration, e.g. with the French CEA, the US Geological Survey, the Canadian Geological Survey, and the PNC of Japan. On the national level, work performed by the Bundesanstalt continued the survey of world-wide uranium exploration activities and trends in uranium prices; the records on uranium deposits in the world were updated, and supplementary data were delivered on current uranium reserves and stocks, as well as on the market situation. (orig./UA) [de

  16. Uranium production - needs and 'in the ground' resources, situation in 2007 and perspectives

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    Under the combined effect of energies price increase and of the worldwide growing fear of global warming effects, nuclear power is again entering a favorable era. The questions of how much and how long it might bring a significant contribution to global power supplies must be addressed. In particular, it is worth considering uranium production capability and its long term perspective, in accordance to the currently available knowledge about uranium resources. Also, the issue of world resources geographic distribution should be analyzed from a security of supply viewpoint. The careful analysis of all available information leads us to the following conclusive remarks. The current tension on uranium market prices is by no mean a signal of 'in the ground' resources depletion. It is just the temporary consequence of a too long depressed market. There are enough identified and foreseen uranium resources to quietly start a huge power plant fleet increase (a doubling or tripling the current installed capacity by 2030). Ultimately, several types within the generation 4 reactors allow us to envisage a very far extended use of currently available fissile and fertile nuclear material, along with a significant expansion of fission based nuclear power. (author)

  17. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1 0 x 2 0 quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author) [fr

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author)

  20. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  1. Production from new uranium mines a Cogema resources Saskatchewan perspective

    International Nuclear Information System (INIS)

    Pollock, B.

    2001-01-01

    The province of Saskatchewan is best known for the large flat tracts of land in the south that are primarily used for agricultural purposes. Less well known is the fact that the northern part of the province hosts the richest uranium mines in the world. In fact, to use a petroleum analogy, Saskatchewan has been referred to as the 'Saudi Arabia' of the uranium producing countries. The mining industry in Saskatchewan is a flourishing, high technology industry and supplies approximately one-third of the annual world primary production of uranium. The purpose of this paper is to examine the uranium mining industry in Saskatchewan and why this province stands alone as the dominant uranium producer in the world and will maintain that position into the foreseeable future. As well, an overview of the significant role played by COGEMA Resources in developing the Saskatchewan uranium industry will be undertaken. This company whose roots date back almost 40 years in the province, now holds significant interests in all four of the mines currently producing uranium. With investments of over one billion dollars (U.S.) in this province, COGEMA has established itself as a long-term player in the Saskatchewan Uranium Industry. (author)

  2. National Uranium Resource Evaluation: Wichita Falls Quadrangle, Texas and Oklahoma

    International Nuclear Information System (INIS)

    Edwards, M.B.; Andersen, R.L.

    1982-08-01

    The uranium favorability of the Wichita Falls Quadrangle, Texas and Oklahoma, was determined by using National Uranium Resource Evaluation criteria; by subsurface studies of structure, facies distribution, and gamma-ray anomalies in well logs to a depth of 1500 m; and by surface studies involving extensive field sampling and radiometric surveying. These were supplemented by both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies. Favorable environments were identified in fluviodeltaic to fan-delta sandstones in the upper Strawn, Canyon, and Cisco Groups (Pennsylvania to Lower Permian), which occur exclusively in the subsurface. Evaluation was based on the presence of a good uranium source, abundant feldspar, good hydrogeologic characteristics, association with carbonaceous shales, presence of coal and oil fields, and anomalies in gamma logs. Additional favorable environments include deltaic to alluvial sandstones in the Wichita-Albany Group (Lower Permian), which crops out widely and occurs in the shallow subsurface. Evaluation was based on high uranium values in stream-sediment samples, a small uranium occurrence located during the field survey, anomalous gamma logs, good uranium source, and hydrogeologic characteristics. Unfavorable environments include Cambrian to Permian limestones and shales. Pennsylvanian to Permian fluviodeltaic systems that have poor uranium sources, and Permian, Cretaceous, and Pleistocene formations that lack features characteristic of known uranium occurrences

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Venezuela. Draft

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Obellianne, Jean-marie

    1981-04-01

    The IUREP Orientation Phase Mission to Venezuela believes that the Speculative Uranium Resources of that country fall between 2,000 and 42,000 tonnes. This assumes that a part of the Speculative Resources would be extracted as by-product uranium from wet-process phosphoric acid production. Past exploration in Venezuela has resulted in the discovery of very few uranium occurrences and radioactive anomalies except for the many airborne anomalies recorded on the Guayana Shield. To date no economic deposits or significant uranium occurrences have been found in Venezuela except for the uraniferous phosphorites in the Cretaceous Navey Formation which are very low grade. The uranium occurrences and radioactive anomalies can be divided according to host rock into: (1) Precambrian crystalline and sedimentary rocks, (2) Cretaceous phosphorite beds, (3) continental sandstone, and (4) granitic rocks. The greatest geological potential for further uranium resources is believed to exist in the crystalline and sedimentary Precambrian rocks of the Guayana Shield, but favorable geological potential also exist in younger continental sandstones. Since the Guayana Shield is the most promising for the discovery of economic uranium deposits most of the proposed exploration effort is directed toward that area. Considerable time, effort and capital will be required however, because of the severe logistical problems of exploration in this vast, rugged and inaccessable area, Meager exploration work done to date has been relatively negative suggesting the area is more of a thorium rather than a uranium province. However because of the possibility of several types of uranium deposits and because so little exploration work has been done, the Mission assigned a relatively small speculative potential to the area, i.e. 0 to 25,000 tonnes uranium. A small speculative potential (0 to 2,000 tonnes) was assigned to the El Baul area in Cojedes State, in the Llanos Province. This potential is postulated

  4. Uranium deposit types and resources of Argentina

    International Nuclear Information System (INIS)

    Lopez, L.; Cuney, M.

    2014-01-01

    The uranium-related activities in Argentina begun in the 1950s and, as a result of the systematic exploration, several types of deposits have been discovered since then: volcanic and caldera-related, sandstone-hosted, vein spatially related to granite (intragranitic and perigranitic) and surficial. The deposits that have been the focus of the most important uranium exploitations are the ones that belong to the volcaniclastic type. These are localized in Permian formations associated with synsedimentary acid volcanism in the Sierra Pintada district (Mendoza province). The volcanic and caldera related type is also present in the Laguna Colorada deposit (Chubut province) located in the San Jorge basin (Cretaceous). Several important uranium mineralisations have been identified in Cretaceous fluvial sandstones and conglomerates, among which the most relevant is the Cerro Solo deposit (Chubut province) that corresponds to the paleochannel structure subtype. Other subtypes of sandstone model have been studied. For instance, the Don Otto deposit (Salta province), located in the Salta Group Basin (Cretaceous - Tertiary), belongs to the tabular U-V subtype. The roll front subtype can be also found in the Los Mogotes Colorados deposit (La Rioja province) which is hosted by Carboniferous continental sandstones. The uranium mineralisations in veins and disseminated episyenites within peraluminous leucogranites of the Sierras Pampeanas (Cordoba and San Luis provinces) represent other types of existing deposits. These granites are Devonian – Carboniferous and the related deposits are comparable to those from the Middle European Variscan. There are also other vein-type uranium deposits located in metamorphic basement in the periphery of high potassium calcalkaline granites (Sierras Pampeanas of Catamarca and La Rioja provinces), where the mineralisation control is mainly structural. The current uranium identified resources of the country are approximately 24,000 tU in the

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Nigaragua

    International Nuclear Information System (INIS)

    1977-08-01

    On invitation of the Nicaraguan Government, the U. S. Atomic Energy Commission conducted a reconnaissance for uranium in March, 1953. Operating and abandoned mines, as well as prospects, formations, contacts, dikes and sills enroute to these mines were tested by scintillometer. Reconnaissance included two mineralized areas exposed in windows within the volcanic belt but did not include the schists and granitic intrusions in the north eastern part of the country. No anomalous radioactivity was detected. No uranium occurrences were discovered during the 1953 reconnaissance and no uranium deposits or prospects are indicated on the metallogenetic map of Central America or in the bibliography of Nicaraguan geology. Information is net available on current exploration in Nicaragua. All subsoil mineral resources besides quarry materials belong to the state. In the interest of national defence, uranium, thorium, lithium and their derivatives, along with certain other mineral substances, may be classified as o f temporary strategic interest , and their exploration or exploitation would then be subject to special laws. The Ministry of Economy may establish permanent or temporary national reserves on which mining activities are essentially precluded. Foreign nationals and corporations may acquire mineral concessions although particular regulations may be applicable to such an acquisition. Exploration of any favourable formations has been hindered by volcanic ash cover in western Nicaragua and dense vegetation in the East. Little geologic work has been done on the Paleozoic metamorphic rocks or Todos Santos Formation of the Northern Highlands. These could possibly show some potential for discovery of uranium as might the alaskites near Siuna. The potential resources of Nicaragua are estimated at less than 1,000 tonnes uranium

  6. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Colombia. February - March 1980

    International Nuclear Information System (INIS)

    Cameron, J.; Meunier, A.R.; Tauchid, M.

    1980-01-01

    The basic objective of IUREP is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploration efforts which might be carried out in promising new areas in collaboration with the countries concerned'. Following the initial bibliographic study, which formed Phase I of IUREP, it was envisaged that a further assessment in co-operation with the country in question would lead to a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country and that these field missions and the resulting report would constitute the IUREP Orientation Phase. The purpose of the Orientation Mission to Colombia was (i) to develop a better understanding of the uranium potential of the country, (ii) to delineate areas favourable for the discovery of speculative uranium resources, (iii) to make recommendations, as appropriate, on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, (iv) to develop the logistical data required to carry out any possible further work, and (v) to compile a report that would be immediately available to the Colombian authorities. Uranium exploration in Colombia is of very recent date, with the majority of activities getting under way only after 1970. In spite of the limited work that has been done, however, over 1300 radioactive anomalies have been recorded. The total number of uranium mineral occurrences resulting from follow-up work is still very small, and some are unusual in world terms. Topographic and geographic conditions in Colombia make geological and exploration work very difficult and costly, especially in the Cordilleras and the Interior Zone (Llanos Orientales). There are, at

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Ghana

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Ghana. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of that country fall within the range of 15 000 to 40 000 tonnes of uranium. The majority of this potential is expected to be located in the Proterozoic Panafrican Mobile Belt (up to 17 000 tonnes uranium) and the Paleozoic Obosum Beds of the Voltaian basin (up to 15 000 tonnes uranium), the remainder being associated with various other geological environments. The mission recommends that over a period of three (3) years approximately U.S. $5 million) would be spent on exploration in Ghana. A major part of this (U.S $2 million) would be spent on an airborne spectrometer survey over the Voltaian basin (Obosum beds), much of the remainder being spent on ground surveys, trenching and percussion drilling. (author)

  8. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  9. National Uranium Resource Evaluation: Athens Quadrangle, Georgia and South Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1979-09-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Athens Quadrangle, Georgia and South Carolina, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys, emanometry studies and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate environments favorable for allogenic deposits in metamorphic rocks adjacent to granite plutons, and Texas roll-type sandstone deposits in the Coastal Plain Province. Environments considered unfavorable for uranium deposits are the placers of the Monazite Belt, pegmatites, and base- and precious-metal veins associated with faults and shear zones in metamorphic rocks

  10. New developments in uranium exploration, resources, production and demand

    International Nuclear Information System (INIS)

    1992-06-01

    In view of the economic importance, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD have had a long standing interest in uranium exploration, resources, production and demand. It was the objective of this Technical Committee Meeting to bring together specialists in the field and to collect information on new developments, especially from countries which in the past considered uranium a strategic commodity and the related information as confidential or even secret. Separate abstracts were prepared for each of the 29 papers in this volume. Refs, figs, tabs, charts and maps

  11. What do we know of world uranium resources?

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    The current trend, of a return to nuclear energy around the world, already appears to have had the effect of pushing up uranium prices. What are the facts, on the other hand, as to the physical resources for this raw material? Will identified resources, and those yet to be discovered, allow the demand to be met? This survey shows the energy potential from fission nuclear power, provided due planning is made for the required capital investment, remains considerable indeed. (author)

  12. Poison Awareness: A Resource Book for Teachers, Grades 7-9.

    Science.gov (United States)

    National Evaluation Systems, Inc., Amherst, MA.

    Because each year hundreds of thousands of children under five are poisoned by common household products, this book is designed as a resource of activities and guidelines for teaching poison prevention to older siblings. The book states three major objectives in teaching seventh through ninth graders: (1) to increase students' knowledge of hazards…

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: El Salvador

    International Nuclear Information System (INIS)

    1977-08-01

    No information is available on past uranium exploration in El Salvador. The foetallogenic map of Central America (ICAITI, 1970) shows no uranium occurrences, and no descriptions of occurrences are available for this study. Information on current uranium exploration in El Salvador is not available. The 1922 mining code, as amended, covers all minerals, with special rules applicable to phosphates, petroleum and other hydrocarbons. The state owns all minerals, including phosphates, except for salt and other common materials. Mineral and surface rights are distinct. Both citizens and aliens may acquire mineral rights. There is a possibility of uranium potential in the clastic sediments containing interbedded volcanics, particularly where the latter are tuffaceous. These rocks occur chiefly in the north western part of the country and are of limited areal extent. The possibility of uranium occurrences associated with acid volcanics cannot be discounted, but it is difficult to evaluate rocks of this type for uranium with the present state of knowledge. Accordingly, potential resources are estimated at between 0 and 1,000 tonnes uranium

  14. Data analysis and management for the Uranium Resource Evaluation Project

    International Nuclear Information System (INIS)

    Kane, V.E.

    1980-01-01

    The Department of Energy has funded a large data collection effort with the purpose of determining the US uranium resources. This Uranium Resource Evaluation (URE) Project required a large data management effort which involved collection, retrieval, processing, display, and analysis of large volumes of data. Many of the characteristics of this data processing system are relevant to other applications, particularly where routine processing involves analyses for input into numerous technical reports. The URE Project computing system has a modular program structure which has enabled a straightforward interface with both special and general graphics and analysis packages such as SAS, BMDP, and SURFACE II. Other topics include cost-effective computing, data quality, report quality computer output, and test versus production program development

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Guatemala

    International Nuclear Information System (INIS)

    1977-08-01

    Before 1959 a private individual (Mr. Rene Abularach) is reported to have made an airborne radiometric survey of the Sierra de las Minas and Sierra Madre Ranges. Although many anomalies were detected by this survey, none were verified in the ground survey followup, despite apparently adequate flight control. In 1968 a United Nations Special Fund Mineral Survey Project completed over 1,000 km of carborne radiometric survey with geiger counter readings at 500 m intervals. No anomalies were detected, but background radioactivity for several formations and geologic environments was established. In 1969 the Guatemalan government solicited the IAEA for technical assistance In conducting a preliminary uranium favorability study designed to formulate recommendations for a national radioactive ore prospecting program. A carborne radiometric survey was made of environments theoretically favorable for uranium deposition, with spot geological and radiometric examinations being .conducted in the more favorable areas. All Important mining regions of Guatemala except the leterites and the ultrabasics were visited. No evidence of a uranium province was observed 1n these field investigations and the recommendation was made that the government not embark on a more detailed national prospecting program at that time. At the time of completion of the IAEA-Guatemalan government (GOG) reconnaissance program in 1971, no uranium reserves or resources were known. More recent information on uranium occurrences and resources 1n Guatemala does not appear to be available. Information on more recent uranium reconnaissance than that undertaken during 1971 IAEA-GOG study is lacking. However, in more recent years the country's mineral potential has been generally evaluated with the aid of the UN and ICAITI (Central American Research Institute for Industry). Except for quarry materials, the state owns all minerals. The state has priority on purchase of any mineral production needed for the country

  16. Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2005-01-01

    Globalization has led to growing importance of the uranium production industries of the world's developing countries. Uranium supply from these countries could be increasingly important in satisfying worldwide reactor requirements over time. Along with the increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end-users of this supply, and from communities impacted by uranium mining and processing. The papers presented at the meeting on 'Developments in Uranium Resources, Production, Demand and the Environment' provide an important overview of uranium production operations and of their environmental consequences in developing countries, as well as offering insight into future production plans and potential. Along with their increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end users of this supply, and by communities impacted by uranium mining and processing. Therefore, the environmental consequences of uranium production were included in the meeting agenda as noted in the meeting title, 'Developments in uranium resources, production, demand and the environment'. Accordingly, the papers presented at this meeting are about evenly divided between discussions of known and potential uranium resources and uranium production technology and the environmental impact of uranium mining and processing, its related remediation technology and its costs. Though emphasis is placed on uranium programmes in developing countries, an overview of COGEMA's worldwide activities is also presented. This presentation provides insight into the strategies of arguably the Western world's most integrated and diversified uranium company, including the geographic diversity of its exploration and production

  17. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-02-06

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter.

  18. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    International Nuclear Information System (INIS)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-01-01

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter

  19. Uranium prospecting program: memorandum of request United Nations Assistance Rotatory Fund for Naturals resources in Uranium Prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguayan government required assistance to Unit Nations funds with the aim of studies the Natural resources in Uranium prospecting, their antecedent, actual and projected works, equipment and end considerations

  20. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  1. United States Geological Survey: uranium and thorium resource assessment and exploration research program, fiscal year 1979

    International Nuclear Information System (INIS)

    Offield, T.W.

    1978-01-01

    Objectives and current plans are given for the following projects: uranium geochemistry and mineralogy; uranium in sedimentary environments; uranium in igneous and metamorphic environments; geophysical techniques in uranium and thorium exploration; and thorium investigations and resource assessment. Selected noteworthy results of FY 1978 research are given

  2. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  3. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  4. The big book of special education resources

    CERN Document Server

    Giuliani, George

    2015-01-01

    There are abundant resource in the field of special education for professionals and parents of children with special needs. However, it can be a daunting task to navigate through this sea of organizations, Web sites, books, and other resources in order to find exactly what you need.Save time and take the guesswork out of your search for information and materials by turning to this definitive guide. Practical and easy to use, this ready-reference is borne out of extensive research and numerous interviews with parents and professionals to ensure selection of only the highest-caliber and most sou

  5. A new approach for geochemical surveys of large areas for uranium resource potential

    International Nuclear Information System (INIS)

    Arendt, J.W.; Butz, T.R.; Cagle, G.W.; Kane, V.E.; Nichols, C.E.

    1977-01-01

    The Grand Junction, Colorado office of the United States Energy Research and Development Administration (ERDA) is conducting the National Uranium Resource Evaluation Program to evaluate the uranium resources in the United States and Alaska. The program is designed to identify favorable areas for uranium exploration, to assess the supply of domestic resources, and to improve exploration technology. The Nuclear Division of the Union Carbide Corporation has been assigned the responsibility of conducting a hydrogeochemical and stream sediment survey of the mid-continental states in the United States. This survey covers approximately 2,500,000 km 2 (1,000,000 mi 2 ) and includes the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa. The uranium potential of sandstones, Precambrian conglomerates, veins, granites, and phosphorites is being assessed utliizing a three-part program consisting of pilot surveys in each geological province and two phases of reconnaissance sampling of drainage basins. Samples of stream sediment, stream water, groundwater, algae, and vegetation are analyzed for uranium and some 20 additional elements. Data resulting from this program is released to private industry by ERDA as it becomes available. Analysis of results from a typical three-part survey are given. For distinctive geological regions, the pilot survey will: (1) define characteristic concentration background levels of the elements of interest, (2) identify potential uranium pathfinder elements, (3) determine relationship between stream, stream sediment and botanical samples, (4) identify any necessary modification to field sampling techniques, and (5) determine necessary sensitivities required for chemical analysis. The first reconnaissance phase average sample spacing of one station per 250 km 2 (100 mi 2 ) drainage basin is shown to delineate general boundaries of uranium provinces, and the second

  6. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    International Nuclear Information System (INIS)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2 0 Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin

  7. Uranium from Coal Ash: Resource Assessment and Outlook on Production Capacities

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2014-01-01

    Conclusion: Uranium production from coal-ash is technically feasible: in some situations, it could reach commercial development, in such case, fast lead time will be a plus. Technically accessible resources are significant (1.1 to 4.5 MtU). Yet most of those are low grade. Potential reserves don’t exceed 200 ktU (cut-off grade = 200 ppm). • By-product uranium production => constrained production capacities; • Realistic production potential < 700 tU/year; • ~ 1% of current needs. → Coal ash will not be a significant source of uranium for the 21st century – even if production constrains are released (increase in coal consumption

  8. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Sudan. February-March 1981

    International Nuclear Information System (INIS)

    Kneupper, G.; Scivetti, N.

    1981-01-01

    The IUREP Orientation Phase Mission to the Democratic Republic of the Sudan believes that the Speculative Resources of the country might fall between 20,000 and 40,000 tonnes uranium and more. This indicates that the Speculative Resources of the Sudan could be significantly higher than previously estimated (7,500 tonnes uranium) by the NEA/IAEA Steering Group on the Uranium Resources - IUREP Phase I. The Government is willing to consider valid exploration programmes presented by prospective partners as long as they serve the interests of both parties. Within the general six-year (1977/78-1982/83) plan for development of the country's mineral resources, the Ministry of Energy and Mining has set up certain priorities which it would like to see expeditiously implemented: uranium exploration and production stands high on the list of priorities. On the basis of very limited information on regional geology and on previous exploration which was available to the Mission, it is estimated that the greatest potential for the Speculative Resources of possible economic significance will prove to occur in the following geological environments of the Sudan (Red Sea Hills area is not included): precambrian basement complex, palaeozoic-mesozoic-tertiary sedimentary basins and the tertiary to recent calcretes. The IUREP Orientation Phase Mission believes that some 20 Million US$ (very rough estimate) will be needed to (1) check the validity of the basic geological concepts formulated on the uranium potential of the selected areas, (2) accumulate diagnostic geological, geophysical, geochemical data indicative of a true uranium potential there, (3) study the basement complex rocks and the sedimentary formations at least on a broad structural-stratigraphic reconnaissance basis (a tremendous amount of valuable water drilling data has accumulated over the last years for some of the selected sedimentary basins) and (4) determine the most appropriate investigation techniques to be utilized

  10. Uranium Resources Modeling And Estimation In Lembah Hitam Sector, Kalan, West Kalimantan

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad; Bambang Soetopo

    2016-01-01

    Lembah Hitam Sector is part of Schwaner Mountains and Kalan Basin upper part stratigraphy. Uranium (U) mineralization layer is associated with metasiltstone and metapelites schistose heading to N 265° E/60° S. Evaluation drilling carried out with a distance of 50 m from an existing point (FKL 14 and FKL 13) to determine the model and the amount of U resources in measured category. To achieve these objectives some activities including reviewing the previous studies, geological and U mineralization data collecting, grades quantitative estimation using log gross-count gamma ray, database and modeling creation and resource estimation of U carried out. Based on modeling on ten drilling data and completed with drilled core observation, the average grade of U mineralization in Lembah Hitam Sector obtained. The average grade is ranging from 0.0076 - 0.95 % eU_3O_8, with a thickness of mineralization ranging from 0.1 - 4.5 m. Uranium mineralization present as fracture filling (veins) or groups of veins and as matrix filling in tectonic breccia, associated with pyrite, pyrrhotite, magnetite, molybdenite, tourmaline and quartz in metasiltstone and metapelites schistose. Calculation of U resources to 26 ores body using 25 m searching radius resulted in 655.65 tons ores. By using 0.01 % cut-off grade resulted in 546.72 tons ores with an average grade 0.101 % eU_3O_8. Uranium resource categorized as low-grade measured resources. (author)

  11. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Turkey

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Turkey. The IUREP Orientation Phase mission to Turkey estimates that the Speculative Resources of that country fall within the range of 21 000 to 55 000 tonnes of uranium. This potential is expected to lie in areas of Neogene and possibly other Tertiary sediments, in particular in the areas of the Menderes Massif and Central Anatolia. The mission describes a proposed exploration programme with expenditures over a five year period of between $80 million and $110 million, with nearly half of the amount being spent on drilling. (author)

  13. National Uranium Resource Evaluation: Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts

    International Nuclear Information System (INIS)

    Zollinger, R.C.; Blauvelt, R.P.; Chew, R.T. III.

    1982-09-01

    The Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria for this evaluation were developed by the National Uranium Resource Evaluation program. Environments were recognized after literature research, surface and subsurface geologic reconnaissance, and examination of known uranium occurrences and aeroradioactivity anomalies. Environments favorable for authigenic uranium deposits were found in the Quincy and Cowesett Granites. An environment favorable for contact-metasomatic deposits is in and around the borders of the Narragansett Pier Granite where it intrudes the Pennsylvanian sediments of the Narragansett Basin. An environment favorable for authigenic deposits in metamorphic rocks is in a migmatite on the eastern edge of the Scituate Granite Gneiss batholith. Environments favorable for contact-metasomatic deposits occur at the contacts between many of the granitic rocks and metamorphic rocks of the Blackstone Series. Results of this study also indicate environments favorable for sandstone-type uranium deposits are present in the rocks of the Narragansett Basin. Environments unfavorable for uranium deposits in the quadrangle include all granites not classified as favorable and the metamorphic rocks of eastern Connecticut. Glacial deposits and Cretaceous-Tertiary sediments remain unevaluated

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Colombia

    International Nuclear Information System (INIS)

    1984-01-01

    A full report has been released describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Colombia. The Mission suggests that the speculative uranium resources of the country could be within the very wide range of 20 000 tonnes of 220 000 tonnes of uranium metal. The Mission finds that the area with the highest potential is the Llanos Orientales (Interior Zone), which has the potential of hosting quartz-pebble conglomerate deposits, Proterozoic unconformity-related deposits and sandstone deposits. The Mission recommends that approximately US$80 million should be expended in a phased ten-year exploration programme. It is likely that the majority of the funds will be needed for drilling, followed by ground surveys and airborne radiometry. It is the opinion of the Mission that the considerable funds required for the proposed programme could most suitably be raised by inviting national or foreign commercial organizations to participate under a shared production agreement. (author)

  15. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Bolivia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Bolivia. The IUREP Orientation Phase mission to Bolivia estimates that the Speculative Uranium Resources of that country fall within the range of 100 to 107 500 tonnes uranium. The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the southwestern part of the Central Brazilian Shield. Other potentially favourable geologic environments include Palaeozoic two mica granites and their metasedimentary hosts, Mesozoic granites and granodiorites as well as the intruded formations and finally Tertiary acid to intermediate volcanics. The mission recommends that approximately US$ 13 million be spent on exploration in Bolivia over a five-year period. The majority of this expenditure would be for airborne and surface exploration utilising geologic, magnetometric, radiometric, and geochemical methods and some pitting, trenching, tunneling and drilling to further evaluate the discovered occurrences. (author)

  16. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  17. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  18. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  19. Uranium mining impacts on water resources in Brazil

    International Nuclear Information System (INIS)

    Simoes Filho, Francisco Fernando Lamego; Lauria, Dejanira C.; Vasconcellos, Luisa M.H.; Fernandes, Horst M.; Clain, Almir F.; Silva, Liliane F.

    2009-01-01

    Uranium mining and milling activities started operations in Brazil during the 80's. The first production Center was deployed in Pocos de Caldas (CIPC) State of Minas Gerais. The mine was exhausted in 1997, after has produced only 1200 t of U 3 O 8 . The second uranium plant began the operations in Caetite (URA), Bahia State, since 1999 and keeps operations until now with an annual U 3 O 8 production of up to 400 t. The company plans to double this mark in Caetite production center with the exploration of another uranium deposits and initiate underground operations of current open-pit mine. Simultaneously, they are seeking a license for a third plant in the State of Ceara that could produce the double of foreseen capacity in URA. This scenery drives to some issues related to the impact of uranium production on water resources of the respective watersheds. The CIPC plant is a closing mine site, which requires permanent treatment of the company due to the fact their sources of pollutants are subject to the occurrence of Acid Mine Drainage. The URA plant is located in a semi-arid region of Brazil. The extraction of uranium from the ore is achieved by means of a Heap-Leach process, which has low water demand supplied by a network of wells and from a dam, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. An overall assessment of these impacts in national level could produce some lessons that we must take advantage for the ongoing project of Santa Quiteria or even in future sites. (author)

  20. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Iraq

    International Nuclear Information System (INIS)

    1977-11-01

    Iraq consists of a lowland trough lying between asymmetrical and very different upland massifs to the east, north and west and continuing southeastwards to the Persian Gulf. The region is one of crustal weakness and subsidence with relatively young plastic sedimentary rocks engulfed in downwarped, ancient, rigid and highly resistant blocks. Exploration in the 1954-55 period found some minor radioactive anomalies and very low uranium contents in limestones and phosphates. The results of an aerial radiometric survey in 1973-74 are not known to IAEA. Iraq has no reported uranium resources but there are several favourable formations which warrant a detailed survey. In view of the size of the country and the small amount of systematic exploration carried out up to the present time, the Speculative Potential is considered to lie in the 1,000 to 10,000 tonnes uranium category. (author)

  2. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The long term sustainability of nuclear power will depend on, among several factors, an adequate supply of uranium resources that can be delivered to the marketplace at competitive prices. New exploration technologies and a better understanding of the genesis of uranium ores will be required to discover often deep-seated and increasingly hard to find uranium deposits. Exploration, mining and milling technologies should be environmentally benign, and site decommissioning plans should meet the requirements of increasingly stringent environmental regulations and societal expectations. The purpose of this symposium is to analyse uranium supply–demand scenarios and to present and discuss new developments in uranium geology, exploration, mining and processing, as well as in environmental requirements for uranium operations and site decommissioning. The presentations and discussions at URAM-2014 will: - Lead to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand; - Provide information on geological models, new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources; - Describe new production technologies that have the potential to more efficiently and sustainably develop new uranium resources; and - Document the environmental compatibility of uranium production and the overall effectiveness of progressive final decommissioning and, where required, remediation of production facilities.

  3. Methods for the estimation and economic evaluation of undiscovered uranium endowment and resources

    International Nuclear Information System (INIS)

    1992-01-01

    The present Instruction Manual was prepared as part of a programme of the International Atomic Energy Agency to supply the international uranium community with standard guides for a number of topics related to uranium resource assessment and supply. The quantitative estimation of undiscovered resources and endowments aims at supplying data on potential mineral resources; these data are needed to compare long term projections with one another and to assess the mineral supplies to be obtained from elsewhere. These objectives have relatively recently been supplemented by the concern of land managers and national policy planners to assess the potential of certain lands before the constitution of national parks and other areas reserved from mineral exploration and development. 88 refs, 28 figs, 33 tabs

  4. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Burundi

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Burundi. The IUREP Orientation Phase Mission to Burundi estimates that the Speculative Resources of that country fall within the range of 300 to more than 4 100 tonnes of uranium. The potential is rather evenly distributed throughout the Proterozoic of Burundi in various geological environments (unconformity, hydrothermal, fault controlled, etc.). The mission recommends that over a period of five years U.S. $ 3 to 4.5 million be spent on exploration in Burundi, with even spending on the various exploration techniques as e.g. prospecting, drilling trenching, geophysical surveys, analyses, etc. (author)

  5. Aeromagnetic data processing and application in the evaluation of uranium resource potential in China

    International Nuclear Information System (INIS)

    Wang Yuanzhi; Zhang Junwei; Feng Chunyuan

    2012-01-01

    The article introduces the main methods to deduce geological structures with aeromagnetic data, and summarizes the prediction elements of aeromagnetic characteristics for granite, volcanic, carbonaceous-siliceous-argillaceous rock and sandstone type uranium deposits. By analysing the relationship of aeromagnetic deduced geological structures and uranium mineralization, the prediction model of combined factors was summarized for each type uranium deposit. A case study in Taoshan-Zhuguang mineralization belt shows that the fault, plutons and volcanic structures deduced from areomagnetic information can judge the favorable mineralization environment and ore control structure. Therefore, the process and application of aeromagnetic data can play an important role in the evaluation of uranium resource potential and uranium exploration. (authors)

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sweden

    International Nuclear Information System (INIS)

    1977-11-01

    Sweden, covers an area of approx. 450 000 square kilometers. It has a population of 8 millions. With few exceptions in the northern part the access can be regarded as good. A dense network of motorroads and railroad exists. The results obtained by the exploration works combined with other available geo-information permit a separation of two principal uranium provinces in Sweden. The first one is confined to sediments of Upper Cambrian and Lower Ordovician which appears in Southern Sweden and along the border of the Caledonian mountain range in Central Sweden. The uranium occurrence are stratiform, of blackshale type which occurs in the Peltura zone of Upper Cambrian or they are associated to a phosphatite-bearing unit of Lower Ordovician overlying the Cambrian shale formation. The distribution of uranium in Upper Cambrian rocks is in general dependant on their lithology which itself is related to the paleography. This conditions explain relatively higher uranium content of the shale from Billigen.The potential resources of the province are estimated at about 1 million tonnes uranium. The second uranium province, called Arjeplog-Arvidsjaur, situated immediately south of the Arctic circle, comprises one deposit - Pleutajokk - and a group of more than twenty occurrences of similar characteristics and age (1 700 - 1 800 my.). The results of the past exploration have shown that uranium is present in different types of rocks. Because of the presence of uranium in many of the pegmatites the possibility of the formation of large low grade deposits should be tested. Favourable areas are those regions where the geological conditions are similar to the geology of the Grenville province in Canada or the Damara belt of SW-Africa. Special studies are recommended on this subject

  7. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  8. Uranium resources inventory on systematic prospection stage at Jumbang II Sector West Kalimantan

    International Nuclear Information System (INIS)

    Subiantoro, Lilik; Paimin; Suripto; Widito, P.; Marzuki, Anang

    2002-01-01

    Some uranium occurrences have been discovered as mineralized outcrops and soils at Jumbang II sector. The aim of this investigation is to find the mineralization characteristic, geometric and distribution and resources estimation. The investigation method is systematic topographic, geologic, and radiometric mapping and identification of uranium on the geological aspect. At Jumbang II have been identified four mineralization zones within total area 8.56 hectare. The mineralization zones consist of quartzite rock associations. The quartzite is characterized by the existence of some mineralized veins. The veins contain uraninite and secondary uranium mineral autunite and gummite, and it also contains monazite, tourmaline, biotite, feldspar, quartz, zircon, and some ore minerals. The ore minerals consist of molybdenite, pyrrhotite, magnetite, pyrite, hematite, chalcopyrite, galena, sphalerite and arsenopyrite. Uranium content of quartzite is about 28 ppm to 18,500 ppm U (A zone), 1,125.9 ppm U (B zone) and 515 ppm U (C and D zone). The lateral and vertical ore distributions are locally. The mineralization is veins type and is controlled by intersection WNW-ESE, NNE-EEW structure direction, which was vertical to sub vertical fractures. Resources potential within 80-m depth is 3,106.893 tons U metal

  9. Uranium, resources, production and demand including other nuclear fuel cycle data

    International Nuclear Information System (INIS)

    1975-12-01

    The uranium reserves exploitable at a cost below 15 dollars/lb U 3 O 8 , are 210,000 tonnes. While present uranium production capacities amount to 26,000 tonnes uranium per year, plans have been announced which would increase this capacity to 44,000 tonnes by 1978. Given an appropriate economic climate, annual capacities of 60,000 tonnes and 87,000 tonnes could be attained by 1980 and 1985, respectively, based on presently known reserves. However, in order to maintain or increase such a capacity beyond 1985, substantial additional resources would have to be identified. Present annual demand for natural uranium amounts to 18,000 tonnes and is expected to establish itself at 50,000 tonnes by 1980 and double this figure by 1985. Influences to increase this demand in the medium term could come from shortages in other fuel cycle capacities, i.e. enrichment (higher tails assays) and reprocessing (no uranium and plutonium recycle). However, the analysis of the near term uranium supply and demand situation does not necessarily indicate a prolongation of the current tight uranium market. Concerning the longer term, the experts believe that the steep increase in uranium demand foreseen in the eighties, according to present reactor programmes, with doubling times of the order of 6 to 7 years, will pose formidable problems for the uranium industry. For example, in order to provide reserves sufficient to support the required production rates, annual additions to reserves must almost triple within the next 15 years. Efforts to expand world-wide exploration levels to meet this challenge would be facilitated if a co-ordinated approach were adopted by the nuclear industry as a whole

  10. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  11. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  12. Are uranium reserves adequate?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Against a backdrop of growing concerns about global warming and geopolitical pressures on fossil energies, especially natural gas and oil, interest in nuclear power has revived considerably. Conscious of its addiction to oil and reeling from a series of gigantic blackouts, the United States, in the words of its president, must 'aggressively move forward with the construction of nuclear power plants'. Some European countries have approved new power plant construction (Finland and France), while the more reserved ones (Belgium, Germany and Sweden) have begun to show a change in attitude. Asia, meanwhile, is host to the planet's largest number of potential nuclear construction projects in this first half of the 21. century. All these signs point to a sharp rise in uranium consumption, the basic fuel for these plants. But are there enough resources to support a nuclear revival on a planetary scale? The publication of the Red Book on uranium in late May 2006 was an opportunity for Thierry Dujardin, Deputy Director of Science and Development at the OECD's Nuclear Energy Agency, to take stock of resources. He gives his opinion in this paper

  13. Latest data shows long-term security of uranium supply

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: According to Uranium 2009: Resources, Production and Demand just published by the OECD Nuclear En ergy Agency (NEA) and the International Atomic Energy Agency (IAEA), uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown but so too have costs of production. Worldwide exploration and mine development expenditures have more than doubled since the publication of the previous edition, Uranium 2007: Resources, Production and Demand. These expenditures have increased despite declining uranium market prices since mid- 2007. The uranium resources presented in this edition, reflecting the situation as of 1 January 2009, show that total identified resources amounted to 6 306 300 tU, an increase of about 15% compared to 2007, including those reported in the high-cost category (< USD 260/kgU or < USD 100/lbU O), reintroduced for the first time since the 1980s. This high-cost 3 8 category was used in the 2009 edition in response to the generally increased market prices for uranium in recent years, despite the decline since mid-2007, expectations of increasing demand as new nuclear power plants are being planned and built, and increased mining costs. Although total identified resources have increased overall, there has been a significant reduction in lower-cost resources owing to increased mining costs. At 2008 rates of consumption, total identified resources are sufficient for over 100 years of supply. The recognition by an increasing number of governments that nuclear power can produce competitively priced, baseload electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. According to

  14. BOOK REVIEW OPEN EDUCATIONAL RESOURCES: Policy, Costs and Transformation

    Directory of Open Access Journals (Sweden)

    Can GULER

    2016-10-01

    Full Text Available This book presents 15 case studies contributed by researchers and policy makers. The Open Educational Resources (OER implementations are expressed through different point of views. This book focused on three themes: policy, costs and transformation. Policy theme is related to the establishment of priorities for supporting the decisions made by an institution or organization. Costs theme explores the funding of OER, particularly in the sense of cost effectiveness. Transformation theme provides examples that demonstrate how OER can be used in ways that go beyond replication of current teaching and learning models. The editors in the Introduction elaborately describe these three themes.

  15. Uranium: a foreign resource N.L

    International Nuclear Information System (INIS)

    Venturini, V.G.

    1983-01-01

    The issue of the mining and export of Australian uranium is examined. Particular reference is made to the existence of a uranium cartel between 1970 and 1975 and the associated U.S. Westinghouse Antitrust suite. Problems associated with nuclear power and benefits to Australia associated with the mining of uranium are questioned. Changing government policy on the issue is discussed. Recommendations of the Ranger uranium environmental enquiry are noted

  16. Uranium - resources development and availability

    International Nuclear Information System (INIS)

    1983-01-01

    Australia possesses a major portion of the world's low cost uranium and it is confidently expected that further exploration will delineate yet more reserves. The level of such exploration and the rate of development of new production will remain critically dependent on world market developments. For the foreseeable future all development will be dedicated to supplying the export market. Australian government policies for uranium take account of both domestic and international concerns. With Australia, the policies act to protect the interests of the Aboriginal people affected by uranium production. In response to national interests and concerns, foreign investment in uranium production ventures is regulated in a manner which requires Australian control but allows a measure of foreign equity. Environmental concerns are recognized and projects may only be approved after comprehensive environmental protection procedures have been complied with. Without these policies public acceptability, which provides the foundations for long-term stability of the industry, would be prejudiced. On the world scene, Australia's safeguards policy serves to support international nuclear safeguards and, in particular, to honour its obligations under the Nuclear Non-Proliferation Treaty. Export policy requires that reasonable sales contract conditions apply and that fair negotiated market prices are obtained for Australia's uranium. Australia's recent re-emergence as a major producer and exporter of uranium is convincing testimony to the success of these policies. (author)

  17. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  18. Uranium and the guardians of the earth

    International Nuclear Information System (INIS)

    Schuhmann, H.

    1990-01-01

    The five authors of this book have compiled information on the manifold aspects of uranium mining, putting emphasis on the less frequently discussed aspects of the ecological hazards involved, and on the implications for the aboriginal populations in the different areas of uranium mining. The critical survey deals with the history of uranium mining, the current situation at the most important sites, and the social and human rights aspects. The book also presents statements by the aboriginal populations concerned. (DG) [de

  19. Gravity data processing and research in potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Liu Hu; Zhao Dan; Ke Dan; Li Bihong; Han Shaoyang

    2012-01-01

    Through data processing, anomaly extraction, geologic structure deduction from gravity in 39 uranium metallogenic zones and 29 prediction areas, the predicting factors such as tectonic units, faults, scope and depth of rocks, scope of basins and strata structure were provided for the evaluation of uranium resources potential. Gravity field features of uranium metallogenic environment were summarized for hydrothermal type uranium deposits (granite, volcanic and carbonate-siliceous-argillaceous type) as regional gravity transition from high to the low field or the region near the low field, and the key metallogenic factors as granite rocks and volcanic basins in the low gravity field. It was found that Large-scale sandstone type uranium mineralization basins are located in the high regional gravity field, provenance areas are in the low field, and the edge and inner uplift areas usually located in the high field of the residual gravity. Faults related to different type uranium mineralization occur as the gradient zones, boundaries, a string of bead anomalies and striped gravity anomalies in the gravity field. (authors)

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Venezuela

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Venezuela. The IUREP Orientation Phase mission to Venezuela estimates that the Speculative Resources of that country fall within the range 2,000 to 42,000 tonnes uranium.- The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the Guayana Shield. Other potentially favorable geologic environments include Cretaceous phosphorite beds, continental sandstone and granitic rocks. The mission recommends that approximately US $18 million be spent on exploration in Venezuela over the next five years. The majority of this expenditure would be for surface surveys utilizing geologic studies, radiometric and geochemical surveys and some drilling for geologic information. Additional drilling would be required later to substantiate preliminary findings. (author)

  1. Methodology for uranium resource estimates and reliability

    International Nuclear Information System (INIS)

    Blanchfield, D.M.

    1980-01-01

    The NURE uranium assessment method has evolved from a small group of geologists estimating resources on a few lease blocks, to a national survey involving an interdisciplinary system consisting of the following: (1) geology and geologic analogs; (2) engineering and cost modeling; (3) mathematics and probability theory, psychology and elicitation of subjective judgments; and (4) computerized calculations, computer graphics, and data base management. The evolution has been spurred primarily by two objectives; (1) quantification of uncertainty, and (2) elimination of simplifying assumptions. This has resulted in a tremendous data-gathering effort and the involvement of hundreds of technical experts, many in uranium geology, but many from other fields as well. The rationality of the methods is still largely based on the concept of an analog and the observation that the results are reasonable. The reliability, or repeatability, of the assessments is reasonably guaranteed by the series of peer and superior technical reviews which has been formalized under the current methodology. The optimism or pessimism of individual geologists who make the initial assessments is tempered by the review process, resulting in a series of assessments which are a consistent, unbiased reflection of the facts. Despite the many improvements over past methods, several objectives for future development remain, primarily to reduce subjectively in utilizing factual information in the estimation of endowment, and to improve the recognition of cost uncertainties in the assessment of economic potential. The 1980 NURE assessment methodology will undoubtly be improved, but the reader is reminded that resource estimates are and always will be a forecast for the future

  2. Analysis on uranium resource situations and metallogenic potential of Heyuan mineralization belt of Guangdong province

    International Nuclear Information System (INIS)

    Chen Zhuhai; Zheng Mingliang; Song Shizhu; Liang Yewu; Zhao Wei

    2008-01-01

    Heyuan mineralization belt is a structure-magmatic activities belt which is charcterized by strong plastic deformation and shearing. The squeeze (overthrust) structure is formed early. Later stretch produced slide shovel-shaped normal fault which control the red basin and uranium mineralization. Comprehensive study shows that this area is of favorable uranium metallogenic condition due to the rich uranium source and higher degree of geology work, it is a target for the new round resources exploration. (authors)

  3. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Turkey

    International Nuclear Information System (INIS)

    1977-08-01

    Turkey has an area of 296 185 sq mi or 767 120 square kilometers. The geology is dominated lay Tertiary and post-Tertiary rocks which are very widespread but extensive outcrops of Mesozoic rocks also occur. Paleozoic rocks, mainly gneisses, mica schists and quartzites occur in the ancient massifs, principally the Istranca massif in Thrace, the Merideres massif in western Anatolia and the Karrshir massif in central Anatolia. Prospecting for uranium began in Turkey in 1953 and the Atomic Energy Raw Materials Division of the Maden Tetkikive Arama Enstitusu (M.T.A.) was founded in 1956. By 1962 a total of 78% of the whole country had been covered by serial radiometric reconnaissance prospecting. Uranium was discovered at Kasar in western Anatolia in 1961 and several hundred tons of reserves estimated two years later. Uranium prospecting was largely recessed from 1963 to 1967. IAEA/UNDP assistance was provided in 1962-63 and 1965 and between 1974 and 1977 in a detailed exploration programme in the Kasar area. In the whole country nearly 600 anomalies and occurrences had been identified by 1963. Several occurrences principally in Western Anatolia had been assigned a small reserve. A recent official estimate places the total national reserve at 3150 tonnes uranium in the less than 30% category of reasonably assured resources. A speculative Potential of between 30,000 and 50,000 tonnes uranium is considered to be reasonable. (author)

  5. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  6. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Cameroon. Draft

    International Nuclear Information System (INIS)

    Trey, Michel de; Leney, George W.

    1983-05-01

    The purpose of the International Uranium Resource Evaluation Project (IUREP) missions to host nations is to: R eview the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional resources, and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned. Guidance in the achievement of these goals is provided through a check list of desired relevant information on: general background, the potential role of nuclear energy, and organizations involved, information on the mining industry, technical manpower employed or available, available maps, aerial photographs, and publications, national geological survey and organizations involved in uranium, private organizations involved in uranium exploration and mining, results of previous exploration, known uranium occurrences, plans for further work, legal and administrative requirements for exploration and logistical information on facilities available. The economy of CAMEROON is sound and continues to expand with an annual growth rates of 5-6%. Emphasis is placed on private investment with government participation in major development projects. The overall investment climate is good. Minerals exploration is carried out under nonexclusive Prospecting License and exclusive Exploration License that may later be converted to a Mining Lease or Mining Concession. Many of the conditions must be negotiated. Uranium is classified as a strategic mineral, and may be subject to special review. There is no defined policy on uranium development. Two government organizations are concerned with geology and mining. The INSTITUT DE RECHERCHES GEOLOGIQUES ET MINIERES (IRGM) conducts programs of geologic mapping and research, mineralogy, hydrology, and alternate energy sources. The DEPARTMENT OF MINES AND GEOLOGY (DMG) is responsible for all minerals exploration and mining. It includes a

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Panama

    International Nuclear Information System (INIS)

    1977-08-01

    About 20 percent of Panama has been covered by airborne radiometric surveys, largely in the Azuero-Petaquilia area. Essentially no ground examinations have been made. About one third of the country remains unmapped. Most of the rest has been examined only in rapid reconnaissance largely by the United Nations and oil companies. Detailed mapping has been confined to the Canal Zone. No uranium deposits or prospects of economic interest are known in Panama. There appears to be no information available on present exploration activities for uranium. Panama has no specific legislation relating to nuclear energy. However, all mineral deposits belong to the state, except for salt and similar materials, and are governed by the mineral resources code. There appears to be only one remote possibility for uranium mineralization in Panama, namely, sandstone-type deposits. Marginal marine and fluvial sediments, such as host sandstone-type deposits elsewhere, are most abundant 1n the lower Cenozoic parts of the Azuero and possibly Bocas del Toro basins and are probably absent or poorly developed in the Darien and Central basin. Rocks with even moderate background uranium concentrations to be leached and deposited in such sediments are confined to the silicic and alkaline Intrusive rocks of the La Yeguada Formation 1n western Panama and possibly the Rio Guayabo stock in the Sierra de Maje of eastern Panama. Only the La Yeguada Formation is extensive enough and near enough to a potential sedimentary ore host to be important. Uranium concentrations have not been measured in this unit but its silicic composition, relatively young age (with respect to other volcanic rocks in Panama) and high ash content suggest that it may have relatively high Teachable uranium content. The best areas for exploration for La Yeguada-derived sandstone-type uranium deposits would be in the Pese formation between Santiago and Chitre in the Azuero basin. Possibly favourable sandstone type exploration ground

  9. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    International Nuclear Information System (INIS)

    Samet, J.; Gilliland, F.D.

    1998-01-01

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors

  10. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: The Netherlands

    International Nuclear Information System (INIS)

    1978-01-01

    The Netherlands is part of the lowlands of Western Europe formed by negative crustal movements that have been offset by sedimentation. This specific area stretching from western Belgium into north-western Germany forms part of an epicontinental area that has been relatively stable since the end of the Hercynian orogeny. In Holland the subsidence has generally been small through- out the Mesozonic and Cenozoic though interrupted by short periods of erosion and non-subsidence. Thus the general geology of the Netherlands is dominated by the fact that throughout the Tertiary and Quaternary what now comprises the Netherlands formed part of a subsiding basin. Most of the surface geology of the country is dominated by f luvio-glacial shallow marine and lacoustine deposits. Prospecting for radioactive minerals in the Netherlands has been very limited. Some work has been carried out by the Geological Survey and by private consultants but this was very preliminary. To-date no uranium reserves or resources have been identified in the Netherlands. One small uranium occurrence has been recorded in Zeeland near Walcheren where some small uranium concentrations were found in association with phosphatic nodules. Apart from very limited targets in the Cretaceous and small phosphatic uranium associations there are no apparent uranium exploration targets in the Netherlands. On this basis we would, at this time, place the uranium potential of the Netherlands in Group I of the IUREP classification

  12. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  13. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  14. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sikkim

    International Nuclear Information System (INIS)

    1977-11-01

    Sikkim is a country in the eastern Himalayas and is bound on the west by Nepal, on the north by Tibet, on the east by Bhutan and on the south by India. Precambrian Darjeeling gneiss forms the rim of the amphitheatre while schists of Late Precambrian to Lower Paleozoic rocks form tee habital interior. A small outcrop of carboniferous to Permain methomorphic rocks is preserved in the Tista Basin as well in a thin outcrop trust upon fluvitile beds of Sivalik which is mostly of Pliestocene age. Imbricate thrusts have stacked the rocks in a vast heap where reverse metamorphism is common. Ni information is available concerning uranium occurrences and resources as well as past and present explorations. The uranium potential of Sikkim is almost zero

  16. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  17. Formation and types of uranium deposits, uranium resources

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1975-01-01

    To begin with, the formation and origin of uranium deposits is described, and uranium deposits are classified into four basic categories. Of these, those that are of economic interest are described in detail with regard to their characteristic geological features, and their geographic distribution in the western world is outlined. The major facts and data regarding the geological and geochronological classification of these deposits and their size are given in tables and easy-to-interpret diagrams. (RB) [de

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Peru. August - October 1981

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Michie, Uisdean McL.

    1981-01-01

    The IUREP Orientation Phase Mission to Peru believes that the Speculative Resources of that country fall between 6,000 and 11,000 tonnes uranium. There has been no uranium production in Peru and there are no official estimates of uranium resources. Past exploration in Peru (dating from about 1952) has indicated a paucity of valid uranium occurrences and radioactive anomalies. Only recently (1980) have anomalous areas been identified, (Macusani-Picotani). The identified Speculative Resources are mainly in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Geologically, there are direct parallels between these resources and deposits of the Los Frailes areas of neighbouring Bolivia. Other minor Speculative Resources may be present in calcretes developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert of southern Peru but no positive indications have been recognised. Hercynian sub-volcanic granites in the eastern cordillera of southern Peru may have some associated Speculative Resources both intra and extra granitic. No Speculative Potential could be identified in Permo-Triassic or Tertiary post tectonic continental sediments anywhere in Peru. Such potential may exist but further reconnaissance of the continental late Tertiary basins, with positive indications would be required before inclusion of potential in this category. Recent discoveries in the volcanogenic environment of southern Peru have been by carborne, helicopter borne and on on-foot reconnaissance of isolated areas. It is recommended that there be a more systematic, integrated study of the entire volcanic district assisted by volcanic petrographic examination. Assessment of the known occurrences requires immediate subsurface study by drilling and exploration audits to assess their continuity, grade variation and thickness. This phase will be significantly more expensive than previous exploration. Non-core drilling should supplement

  19. Uranium extraction technology

    International Nuclear Information System (INIS)

    1993-01-01

    In 1983 the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) and the IAEA jointly published a book on Uranium Extraction Technology. A primary objective of this report was to document the significant technological developments that took place during the 1970s. The purpose of this present publication is to update and expand the original book. It includes background information about the principle of the unit operations used in uranium ore processing and summarizes the current state of the art. The publication also seeks to preserve the technology and the operating 'know-how' developed over the past ten years. This publication is one of a series of Technical Reports on uranium ore processing that have been prepared by the Division of Nuclear Fuel Cycle and Waste Management at the IAEA. A complete list of these reports is included as an addendum. Refs, figs and tabs

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Kingdom

    International Nuclear Information System (INIS)

    1977-10-01

    Although uranium prospecting was commenced in the United Kingdom (area 244,813 km) at the end of the last century and was resumed just after the Second World War, it does not seem, for various reasons, despite the level of competence of its specialists and the level of instrumentation available, that the country has been adequately prospected for uranium. The small reserves discovered to date, some 7400t U for all the official NEA/lAEA categories, probably do not reflect the true uranium potential of the United Kingdom. However, they do indicate without doubt that the resources remaining to be discovered are so located that detection will be difficult. The most promising areas of investigation in our opinion are the Old Red Sandstones of the Devonian period on the one hand and the districts where the uraniferous black shales of the Cambro-Ordovician and Namurian have suffered perturbations which may have led to immobilization of their uranium content (in particular, granitizations). All the considerations put forward in this analysis lead us to place the United Kingdom in category 4 of the classification adopted for IUREP. (author)

  1. ORSERG resource book. Operational reactor safety engineering and review group. Final report, March 1992

    International Nuclear Information System (INIS)

    1992-03-01

    EPRI has prepared this resource book to help utilities with their Self-Assessment Programs at nuclear power plants. Self-assessments are reviews performed by nuclear power plant utilities to monitor plant performance status and adequacy, identify trends in operational activities important to safety, and assess the impact of these trends on plant safety. Activities performed as self-assessments include reviews and evaluations of plant performance and abnormal events, technical evaluations of plant activities to identify potential problem areas, and reviews of other sources of plant design and operating experience for applicability to safety. This resource book is based on information obtained from utilities and includes examples of activities and methods that have proven effective. The resource book includes a summary of NRC requirements, guidelines for self-assessment program planning, descriptions and examples of investigative techniques, and key references that can be consulted for additional information. It can serve as a training guide for plant staff members who are assigned to self-assessment activities. (author)

  2. Human Resource Development for Uranium Production Cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Concluding Remarks & Suggestions: • HRD will be one of the major challenges in the expanding nuclear power program in countries like China and India. • China and India get uranium raw material from domestic mines and international market. In addition, China has overseas uranium property. India is also exploring the possibility of overseas Joint Venture and uranium properties. For uranium production cycle there is a need for trained geologist, mining engineers, chemical and mechanical engineers. • There is a need for introducing specialization course on “uranium production cycle” at post graduate levels in government and private universities. Overseas Utilities and private firms in India engaged in nuclear power and fuel cycle activities may like to sponsor MTech students with assurance of employment after the successful completion of the course. • The IAEA may consider to extend Technical Assistance to universities in HRD in nuclear power and fuel cycle in general and uranium production cycle in particular - IAEA workshops, with participation of international experts, on uranium geology, mining, milling and safety and best practices in uranium production cycle will be of great help. • The IAEA – UPSAT could play an important role in HRD in uranium production cycle

  3. International symposium on uranium raw material for the nuclear fuel cycle: Exploration, mining, production, supply and demand, economics and environmental issues (URAM-2009). Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    The International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009) addressed all aspects of the uranium fuel cycle, from the availability of raw materials to the long-term sustainability of nuclear power. The revival of the uranium industry in recent years has caused a dramatic increase in uranium exploration and mining activities in several countries. URAM-2009 was intended to bring together scientists, exploration and mining geologists, engineers, operators, regulators and fuel cycle specialists to exchange information and discuss updated research and current issues in uranium geology and deposits, exploration, mining and processing, production economics, and environmental and legal issues. Contributed papers covered uranium markets and economics (including supply and demand); social licensing in the uranium production cycle; uranium exploration (including uranium geology and deposits); uranium mining and processing; environmental and regulatory issues; human resources development. There was a poster session throughout the symposium, as well as an exhibition of topical photographs. A workshop on recent developments in Technical Cooperation Projects relevant to the Uranium Production Cycle area was also organized. On the last day of the symposium, there was an experts' Panel Discussion. The presentations and discussions at URAM-2009 (a) led to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand, (b) provided information on new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources, (c) described new production technology having the potential to more efficiently and economically exploit new uranium resources; (d) documented the environmental compatibility of uranium production and the overall effectiveness of the final

  4. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  5. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  6. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Jordan

    International Nuclear Information System (INIS)

    1977-08-01

    Jordanian geology is dominated by the Great Rift Valley System. Most of the country is covered by Cretaceous and Eocene sediments, largely sandstones and limestones. These include phosphorates and bituminous limestones in the Upper Cretaceous, South of the Dead Sea, Mesozoic and Paleozoic rocks overlie exposed granitic Pre Cambrian basement rocks carrying many minor intrusives . Phosphates provide the main mineral export of Jordan. The Natural Resources Authority (Geological Survey and Bureau of Mines) initiated a survey in 1972 of the distribution of uranium on the phosphorite horizon. In 1974 the Survey calculated that the uranium content of the phosphate areas surveyed up to that time was 5 million metric tonnes U 3 O 8 . The average U 3 O 8 content is approximately 0.02% U 3 O 8 . The exploitation of such resources would be as a byproduct of the phosphate industry and dependent on the rate of phosphate production and the capacity of triple super-phosphate plants, none of which exist at the present time. In the southern area in Paleozoic and Pre Cambrian areas there are some hopes of conventional type deposits being found but the potential appears to be small. (author)

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Rwanda

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Rwanda. The IUREP Orientation Phase Mission to Rwanda estimates that the Speculative Resources of that country fall within the range of 500 to 5 000 tonnes of uranium. The majority of this potential is expected to be located in the Precambrian Ruzizian, especially in conjunction with tectonized pegmatoidal remobilizations of metamorphic sediments of western Rwanda. Other favourable geological environments include lamprophyric dikes and post tectonic granites of central Rwanda. The Mission recommends that over a period of five years approximately US$4.2 million be spent on exploration in Rwanda. The majority of this would be spent on airborne and ground geophysical surveys ($1.5 million) and exploration drilling ($1 million). Prospecting, trenching and tunneling and analytical work would require the remainder of the $4.2 million ($1.7 million). (author)

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Madagascar. September-October 1981

    International Nuclear Information System (INIS)

    Meyer, John H.; Brinck, Johan W.

    1981-01-01

    This study, resulting from the IUREP Orientation Mission to Madagascar, includes the reported information on infrastructure, mining regulations and conditions made available to the Mission. Within the structure of the centrally planned economic system, uranium exploration and mining is considered the exclusive activity of OMNIS, an organization founded by the State for that purpose (Office Militaire National pour les Industries Strategiques). Madagascar has a long history of prospection and small-scale exploitation of uranium (thorium and radium). Some of this activity dates back to 1909, culminating in significant production of both uranium and thorium (in excess of 5900 tonnes of uranothorianite) by the CEA and private contractors in the Fort Dauphin area from 1955 to 1968. Past exploration and development work in a number of areas, notably by the CEA, OMNIS and the IAEA/UNDP, is reviewed and the uranium resources and mineral indications reported. The areas rated at present as the more important and which continue to be investigated (by OMNIS, in conjunction with IAEA/UNDP projects) in the order of priority are: the Fort Dauphin area, the Karroo formation and the Neogene lacustrine basin at Antsirabe. The Mission estimates that Madagascar has a moderate potential for undiscovered resources; it is estimated that such speculative resources could lie within the range of 4000 - 38000 tonnes U. In addition there are areas with as yet untested environments and with no known occurrences which may be favourable but which will require prospection. Modifications to existing programmes and new programmes are suggested. Policy alternatives are reviewed

  10. Estimating long-term uranium resource availability and discovery requirements. A Canadian case study

    International Nuclear Information System (INIS)

    Martin, H.L.; Azis, A.; Williams, R.M.

    1979-01-01

    Well-founded estimates of the rate at which a country's resources might be made available are a prime requisite for energy planners and policy makers at the national level. To meet this need, a method is discussed that can aid in the analysis of future supply patterns of uranium and other metals. Known sources are first appraised, on a mine-by-mine basis, in relation to projected domestic needs and expectable export levels. The gap between (a) production from current and anticipated mines, and (b) production levels needed to meet both domestic needs and export opportunities, would have to be met by new sources. Using as measuring sticks the resources and production capabilities of typical uranium deposits, a measure can be obtained of the required timing and magnitude of discovery needs. The new discoveries, when developed into mines, would need to be sufficient to meet not only any shortfalls in production capability, but also any special reserve requirements as stipulated, for example, under Canada's uranium export guidelines. Since the method can be followed simply and quickly, it can serve as a valuable tool for long-term supply assessments of any mineral commodity from a nation's mines. (author)

  11. Assessment of uranium deposit types and resources - A worldwide perspective. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The Technical Committee Meeting on Recent Development in Uranium Resources, Production and Demand was held in Vienna from 10 to 13 June 1997. The meeting, held in co-operation with the OECD Nuclear Energy Agency, was successful in bringing together 41 specialists representing 22 Member States and one non-governmental organization (Uranium Institute). A total of 23 papers were presented that report historical reviews and recent developments in the uranium related activities in their respective countries. Each of the papers was indexed separately.

  12. Assessment of uranium deposit types and resources - A worldwide perspective. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-12-01

    The Technical Committee Meeting on Recent Development in Uranium Resources, Production and Demand was held in Vienna from 10 to 13 June 1997. The meeting, held in co-operation with the OECD Nuclear Energy Agency, was successful in bringing together 41 specialists representing 22 Member States and one non-governmental organization (Uranium Institute). A total of 23 papers were presented that report historical reviews and recent developments in the uranium related activities in their respective countries. Each of the papers was indexed separately

  13. Introducing English language a resource book for students

    CERN Document Server

    Mullany, Louise

    2015-01-01

    Routledge English Language Introductions cover core areas of language study and are one-stop resources for students. Assuming no prior knowledge, books in the series offer an accessible overview of the subject, with activities, study questions, sample analyses, commentaries and key readings – all in the same volume. The innovative and flexible ‘two-dimensional’ structure is built around four sections – introduction, development, exploration and extension – which offer self-contained stages for study. Each topic can also be read across these sections, enabling the reader to build gradually on the knowledge gained. Introducing English Language: is the foundational book in the Routledge English Language Introductions series, providing an accessible introduction to the English language contains newly expanded coverage of morphology, updated and revised exercises, and an extended Further Reading section comprehensively covers key disciplines of linguistics such as historical linguistics, s...

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Portugal

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Portugal. The IUREP Orientation Phase mission to Portugal estimates that the Speculative Resources of that country fall within the range 20,000 to 80,000 tonnes uranium. The majority of this potential is expected to be located in intergranitic vein deposits and in pre-Ordovician schists, but other favourable geological environments include episyenites and Meso-Cainozoic continental sediments. The mission recommends that approximately US$25 million be spent on exploration in Portugal over the next 10 years. The majority of this ($18 million) would be spent on drilling, with a further $7 million on surface surveys and airborne radiometric surveys. It is the opinion of the IUREP Orientation Phase Mission that the considerable funding required for the outlined programme would most suitably be realized by inviting national or foreign commercial organisations to participate in the exploration effort under a partnership or shared production arrangements. (author)

  15. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Peru

    International Nuclear Information System (INIS)

    1984-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (TUREP) Mission to Peru. The IUREP Orientation Phase Mission to Peru estimates that the Speculative Resources of that country fall within the range of 6 000 to 11 000 tonnes uranium. The majority of this potential is expected to be located in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Other favourable geological environments include calcretes, developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert in southern Peru, and Hercynian subvolcanic granites in the eastern Cordillera of southern Peru. The Mission recommends that over a period of five years approximately U.S. $10 million be spent on exploration in Peru. The majority of this would be spent on drilling ($5 million) and tunnelling ($2 million) with an additional $3 million on surface and airborne radiometric surveys. (author)

  16. Glances on uranium. Tome 2. Exploration, production

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1997-01-01

    This book is an homage to all participants of uranium prospecting and mining exploitation who have contributed to satisfy the nuclear energy needs during the last 50 years. The first chapter describes the economical, administrative and environmental constraints of uranium mining projects. The second chapter describes the different steps of the exploration (permits, inventory, mineralisation, quality, resource estimation, quantifying), the direct and indirect exploratory techniques and methods (radiometry, geochemistry, drillings and well logging, mapping, tele-detection, geophysical surveys..) and the exploration costs. The third chapter deals with the legal, administrative, technical, socio-economical and financial aspects which must be taken into account in the risk evaluation of a mining project. Chapter 4 concerns the start up of the project while the development and production methods are detailed in chapter 5 (opencast and underground mining, in-situ lixiviation, ore processing, chemical extraction etc.). The last chapter is devoted to the environmental aspects of uranium mining: legal aspects, nuisances, dusts, contamination, the case of in-situ lixiviation, the rehabilitation of sites. (J.S.)

  17. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  18. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  19. Using PHP to Parse eBook Resources from Drupal 6 to Populate a Mobile Web Page

    Directory of Open Access Journals (Sweden)

    Junior Tidal

    2012-10-01

    Full Text Available The Ursula C. Schwerin library needed to create a page for its mobile website devoted to subscribed eBooks. These resources, however, were only available through the main desktop website. These resources were organized using the Drupal 6 content management system with contributed and core modules. It was necessary to create a solution to retrieve the eBook databases from the Drupal installation to a separate mobile site.

  20. Uranium and environment in Kazakstan

    International Nuclear Information System (INIS)

    Fyodorov, G.; Bayadilov, E.; Zhelnov, V.; Akhmetov, M.; Abakumov, A.

    1997-01-01

    Kazakstan's data on uranium as a state report has been included for the first time in the Red Book. Therefore the report contains two large themes presented in Suggested Topics for Papers: Country report, based on the 1995 NEA/IAEA Red Book Questionnaire and environmental impact regulations. Kazakstan is considered as one of the world leaders on uranium supply. In Kazakstan there are many well known types of deposits but the main one is the sandstone-rollfront type. That type is represented by the group of deposits of the Syr-Darya uranium ore province. Deposits of that type include that main part of uranium ore of the Republic of Kazakstan and supply almost all of its uranium mining. At the large three enterprises the uranium is extracted by underground leaching. The mining method of uranium extraction is stopped. Because of the poor development of nuclear energy, Kazakstan's need for uranium is not very high. Presence of a large amount of cheap and technological uranium ores allow the Republic to export uranium. There are plans to increase uranium mining and perhaps to establish new mining facilities including joint-ventures. More than 50 uranium deposits are known in Kazakstan. During prospecting and exploitation of these deposits a large amount of rad wastes in the form of ore dumps and tailings were generated. They have a substantial influence on the environment. Moreover, near the sandstone-rollfront type uranium deposits the large amount of underground water has been contaminated by radionuclides. Special investigation of this phenomenon is necessary. In Kazakstan there are the rad waste disposal conception and contaminated earth recultivation regulations. At present ''The Rad Wastes Management Law'' is submitted for approval. (author). 2 figs

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Mexico

    International Nuclear Information System (INIS)

    1977-07-01

    Reserves of uranium are located in the north eastern part of Mexico, primarily in the states of Tamaulipas and Chihuahua. Most of the remainder of Mexico's reserves are near the Tamaulipas-Neuvo Leon state border in the Tertiary Frio Formation, where they apparently occur in the types of uranium deposits found in Texas, U.S.A. There are two deposits, La Coma and Buenavista, but nothing has been published on dimensions of the ore bodies. Forty-five miles northeast of Hermosillo, in Sonora state is the Los Amoles district where uranium is found associated with gold and other metals in low-grade deposits on the margins of a Cretaceous batholith. Another occurrence is reported in the mining district of Placer de Guadelupe and Puerto del Aire, about 40-50 km northeast of Chihuahua City, in the state of Chihuahua. Reserves of U 3 O 8 which were published in January 1977 by Nuclear Exchange Corporation of Menlo Park, California, are listed. The government of Mexico has not estimated potential resources. It should be noted that much of Mexico appears favourable for uranium, and only 10 percent has been explored. According to NUEXCO (1977), efforts to find uranium are being increased in an attempt to supply Mexico's nuclear reactor requirements through 1990. Activity is reported to be centered in Tamaulipas and Chihuahua states and to a lesser extent in Nueva Leon, Sonora, Coahuila, and Baja California. Major effort will continue to be placed in Chihuahua state to supply the Penna Bianca mill. Correspondence between favorable geological settings for uranium and the geologic regions of Mexico is reported. Mexico is a country with considerable areas that appear promising for discovery of sandstone, vein, and tuff-related deposits. On the other hand, its potential for Precambrian conglomerate and unconformity-related deposits is limited. Considering these geologic factors, as well as the relatively limited amount of exploration done to date, a guesstimate of speculative

  2. Australia's uranium - greenhouse friendly fuel for an energy hungry world: a case study into the strategic importance of Australia's uranium resources for the inquiry into developing Australia's non-fossil fuel energy industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-15

    The terms of reference for the case study were to inquire into and report on the strategic importance of Australia's uranium resources. The Committee was asked to give particular attention to the: global demand for Australia's uranium resources and associated supply issues; potential implications for global greenhouse emission reductions from the further development and export of Australia's uranium resources; and the current regulatory environment of the uranium mining sector. The Committee indicated in its letters inviting submissions that it would also welcome comments in relation to six additional issues, relating to: whole of life cycle waste management; adequacy of social impact assessment, consultation and approval processes with traditional owners; health risks to workers and to the public from exposure to radiation; adequacy of regulation of uranium mining by the Commonwealth; the extent of federal subsidies and other mechanisms to facilitate uranium mining; and the effectiveness of safeguards regimes in addressing proliferation. These matters are addressed in the Committee's report, which consists of 12 chapters. The contents, findings and recommendations of each chapter are summarised as follows. The Committee's conclusions and recommendations are also summarised in a key messages section at the beginning of each chapter and in the conclusions section at the end of each chapter.

  3. Australia's uranium - greenhouse friendly fuel for an energy hungry world: a case study into the strategic importance of Australia's uranium resources for the inquiry into developing Australia's non-fossil fuel energy industry

    International Nuclear Information System (INIS)

    2006-11-01

    The terms of reference for the case study were to inquire into and report on the strategic importance of Australia's uranium resources. The Committee was asked to give particular attention to the: global demand for Australia's uranium resources and associated supply issues; potential implications for global greenhouse emission reductions from the further development and export of Australia's uranium resources; and the current regulatory environment of the uranium mining sector. The Committee indicated in its letters inviting submissions that it would also welcome comments in relation to six additional issues, relating to: whole of life cycle waste management; adequacy of social impact assessment, consultation and approval processes with traditional owners; health risks to workers and to the public from exposure to radiation; adequacy of regulation of uranium mining by the Commonwealth; the extent of federal subsidies and other mechanisms to facilitate uranium mining; and the effectiveness of safeguards regimes in addressing proliferation. These matters are addressed in the Committee's report, which consists of 12 chapters. The contents, findings and recommendations of each chapter are summarised as follows. The Committee's conclusions and recommendations are also summarised in a key messages section at the beginning of each chapter and in the conclusions section at the end of each chapter

  4. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  5. Uranium in Niger; L'uranium au Niger

    Energy Technology Data Exchange (ETDEWEB)

    Gabelmann, E

    1978-03-15

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities. [French] Le document presente la politique de l'Etat dans le cadre de la mise en valeur des ressources d'uranium, les societes minieres existantes et leurs productions, les projets d'exploitation d'uranium et les retombees economiques liees aux activites uraniferes et connexes.

  6. National Uranium Resource Evaluation, Scranton Quadrangle, Pennsylvania, New York, and New Jersey

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Indelicato, G.J.; Penley, H.M.

    1980-11-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Scranton Quadrangle, Pennsylvania, New York, and New Jersey, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric, hydrogeochemical and stream sediment reconnaissance, and emanometry surveys. Results of the investigations indicate four environments favorable for uranium deposits: In the Precambrian metamorphic terrain of the Reading Prong, magmatic-hydrothermal and anatectic deposits may occur in the northwestern massif; contact metasomatic deposits may occur in a portion of the southeastern massif. The alluvial-fan environment at the base of the Upper Devonian Catskill Formation appears favorable for deposits in peneconcordant channel controlled sandstones. Seven environments are considered unfavorable for uranium deposits: the southeastern massif of the Reading Prong, exclusive of that portion denoted as a favorable contact metasomatic environment; the lower Paleozoic sedimentary units; the Beemerville nepheline syenite complex; the Upper Devonian Catskill Formation, exclusive of the favorable basal alluvial-fan facies; Mississippian and Pennsylvanian units; and peat bogs. Two environments were not evaluated: the Spechty Kopf Formation, because of paucity of exposure and lack of sufficient data; and the Newark Basin, because of cultural density and inadequate subsurface information

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bolivia

    International Nuclear Information System (INIS)

    1977-08-01

    Bolivia has an area of 1,098,580 square kilometers. Its capital is La Paz. The western part of the country is dominated by two ranges of the Andes Mountains, the Cordillera Occidental on the vest flank of the high plateau (Altiplano) and the Cordillera Real (or Oriental) on the east flank. The northern Andes average 5,486 meters in elevation; the southern Andes are not as lofty. The Altiplano is 3,658 to A,267 meters high and 129 km. in average width; it is the largest basin of inland drainage in South America and contains the renowned Lake Titicaca on the Peruvian-Bolivian border. The eastern tropical lowlands or pampas (Oriente) comprise about two-thirds of the country, with rain forest in the northern portion. An intermediate zone of valleys and basins lies between the eastern Andes and Oriente. Bolivia differs from other Andean countries, like Chile, Peru and Ecuador, in having large areas of Preeambrian schists, gneisses, migmatites and granites. These crop out in the eastern part of the country. Parts of these rocks contain banded iron formations (i.e., in the Muttin region) and are probably early Precambrian in age. Little systematic exploration for uranium was undertaken in Bolivia until the late 1960's. In 1967, 1968 and 1969 technical assistance was requested from, and provided by, the IAEA. This work led to evaluation of radioactive anomalies in veins of northeast Bolivia and in sandstones in the extreme southern part of the country. Although no uranium reserves are now credited to Bolivia, the geologic possibilities for several kinds of uranium deposits coupled with the relatively limited work done to date suggest that uranium orebodies will be discovered. It is estimated that the potential resources of Bolivia are in the range of 10,000 to 100,000 tonnes uranium

  8. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Thailand

    International Nuclear Information System (INIS)

    1985-01-01

    The IURBP Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1 500 to 38 500 tonnes U. Geological environments which are considered by the Mission to be favourable for uranium occurrences include the following: sandstones of Jurassic to Triassic age; Tertiary sedimentary basins (northern Thailand); Tertiary sedimentary basins (southern Thailand); associated with fluorite deposits; granitic rocks; black shales and graphitic slates of the Palaeozoic; associated with sedimentary phosphate deposits; and associated with monazite sands. Physical conditions in Thailand, including a wet tropical climate, dense forest growth and rugged terrain in some areas and relative inaccessibility, make exploration difficult and costly. There is currently no ready accessibility to detailed topographic and geological maps and other basic data. This lack of availability is a severe constraint to systematic exploration. The lack of skilled personnel experienced in uranium studies and the low level of technical support is a serious hindrance to exploration in Thailand. (author)

  10. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Turkey. September to November 1980

    International Nuclear Information System (INIS)

    Ziehr, H.; Komura, A.

    1985-02-01

    The IUREP Orientation Phase Mission to Turkey estimates the Speculative Resources of the country to lie between 21 000 and 55 000 tonnes uranium. Past exploration in Turkey, dating from 1953, has indicated a very high number of uranium occurrences and radioactive anomalies, but ore deposits of significant size and grade have not been found. Present reserves amount to 4 600 tonnes uranium which can be allocated to approximately 15 sandstone type deposits in Neogene continental sediments. Several hundreds of other occurrences and radioactive anomalies exist where ore reserves have not been delineated. The uranium occurrences and radioactive anomalies can be divided according to host rock into (a) crystalline massif and (b) Tertiary continental sediment. The greatest geological potential for further resources is estimated to exist in the above mentioned two geological terrains. The most favourable geological potential exists in Neogene continental sedimentary basins near the crystalline massifs. Because surface exploration in the known favourable areas such as the Koepruebasi Basin has been so systematic, extensive, and successful, it is improbable that additional surface work will have much effect in increasing the number of new radioactive anomalies or uranium occurrences detected at the surface in these areas. Surface survey work in these areas should be mainly designed to assist the understanding of structures at depth. Surface reconnaissance survey work is, however, required in other parts of the above mentioned two geological terrains in this country. Before starting such a reconnaissance survey in new areas, the Mission suggests that a careful and extensive library study be conducted in close co-operation with sedimentologists, petrologists, and remote sensing specialists. The Mission suggests that in the medium term, 8 to 10 years, some 85 - 110 million U.S. Dollars be spent on airborne and ground surveys, including geological, radiometric, geochemical, and

  12. NDA technology for uranium resource evaluation. Progress report July 1-December 31, 1979

    International Nuclear Information System (INIS)

    Evans, M.L.

    1980-08-01

    This report describes work performed during the time period from July 1, 1979 to December 31, 1979, on the contract for Nondestructive Nuclear Analysis (NDA) Technology for Uranium Resource Evaluation in Group Q-1. Calculational effort was focused on improving the accuracy with which detector response function maps can be generated for subsequent enfolding with ONETRAN angular flux data. Experimental effort was highlighted by a field test of the prototype photoneutron logging probe at the Grand Junction DOE calibration facility. The probe demonstrated adequate durability in the field and sufficient sensitivity to uranium to function at competitive logging speeds

  13. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  14. Energy crisis and uranium energy resources

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1975-01-01

    Problems of ensuring a supply of nuclear power with fuel are reviewed. It is probable that by the year 2000 fuel requirements for nuclear power will be determined by the heat variant of its development since the fraction of fast breeders will then be very insignificant. In connection with the energy process, in western countries there has arisen the economic possibility of using more expensive uranium (more than $22 per kg U 3 O 8 ). Now there is the point of view that, in the new post-crisis conditions, nuclear power plants with light-water reactors will be competitive. It is expected that the energy crisis will give additional impetus to development of nuclear power. In some countries work is being done on extraction of uranium from sea water. In this case, in order for uranium supplies to meet nuclear energy needs for 8, 10, or 12 years, new supplies of uranium must be sought every year. For each kilogram of U 3 O 8 , supplies of uranium will cost $11-17.6 more. Annual inflation will move the recovery costs into the higher cost category. There is good reason to consider that a significant increase in the cost of nuclear power plants and a sharp rise in credit will lead to a more concrete prediction of the total nuclear power in 2000 A.D. of 2700-3200 million kW. With exhaustion of cheap supplies, uranium will be classified by politico-economic considerations. In this case the presentation concerning the competitiveness of nuclear power and conventional energy sources may change

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Indonesia

    International Nuclear Information System (INIS)

    1977-10-01

    Indonesia is a country of south east Asia comprising a large island group extending east-west for over 3000 miles. The geology of Indonesia is fairly well known but is extremely complicated. Successive mountain movements took place around an ancient crustal area. The oldest, of Permian-Triassic age formed northeast Sumatra, northern Java and western Kalimantan. This was followed by the Sumatra orogenesis and finally in Cretaceous and Tertiary times the southern half of Java and the islands as far as New Guinea were formed. Geological studies tend to indicate that the most favourable uranium areas are likely to be in West Sumatra and West Kalimantan. Exploration by the Directorate of Survey and Geology of the National Atomic Energy Agency has been carried out on a small scale since 1961. Exploration concession have been granted to French, German and Japanese organisations. No uranium reserve or resource figures have ever been stated but small occurrences and radioactive anomalies have been found in West and South Sumatra, West and Central Kalimantan and in West Irian. Although the geology of some areas appears to be favourable, little success has attended exploration efforts to date and thus the Speculative Potential is noted as between 1,000 and 10,000 tonnes uranium. (author)

  16. Optimum utilisation of the uranium resource

    International Nuclear Information System (INIS)

    Ion, S. E.; Wilson, P.D.

    1998-01-01

    The nuclear industry faces many challenges, notably to maximise safety, secure an adequate energy supply, manage wastes satisfactorily and achieve political acceptability. One way forward is to optimise together the various interdependent stages of the fuel cycle - the now familiar 'holistic approach'. Many of the issues will demand large R and D expenditure, most effectively met through international collaboration. Sustainable development requires optimum utilisation of energy potential, to which the most accessible key is recycling uranium and the plutonium bred from it. Realising anything like this full potential requires fast-neutron reactors, and therefore BNFL continues to sustain the UK involvement in their international development. Meanwhile, current R and D programmes must aim to make the nuclear option more competitive against fossil resources, while maintaining and developing the necessary skills for more advanced technologies The paper outlines the strategies being pursued and highlights BNFL 's programmes. (author)

  17. Depleted uranium hexafluoride: Waste or resource?

    International Nuclear Information System (INIS)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S.; Bradley, C.; Murray, A.

    1995-07-01

    The US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF 6 ). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO 2 for use as mixed oxide duel, (2) conversion to UO 2 to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U 3 O 8 as an option for long-term storage is discussed

  18. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  19. Special Issue: Book Reviews. Resources for Career Management, Counseling, Training and Development.

    Science.gov (United States)

    Horvath, Clara, Ed.; And Others

    1995-01-01

    This special issue includes reviews of 32 books on the following topics: management, human resources, and organizational development; career counseling, guidance, and assessment; job search; resumes; careers in specific fields; careers for special populations; career transitions; and finding balance. (SK)

  20. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  1. Uranium and nuclear energy: 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Since the last Symposium of the Uranium Institute in 1989 several major world events have occurred. First there has been an energy glut characterized by low and fairly stable oil prices. Secondly there have been important political developments in Eastern Europe. There are twenty-six papers included in this book; all are indexed separately. The discussions following each session are included in the book but not indexed. The keynote address considers the prospects and challenges for nuclear power. There are three papers on the factors affecting electricity demand and supply, three on the market for uranium, papers on Canadian and Australian uranium policies, five papers on recycling, four on the evolving attitudes to nuclear power especially in the United Kingdom and Japan, three papers on the economics of nuclear power, two on regulatory developments and three on future investment in nuclear power in the USSR, Hungary and Ontario. As well as a symposium summary and list of participants there are two annexes, the first a list of nuclear power plants worldwide, the second a list of uranium production facilities. (UK)

  2. Toward Sustainable Communities: A Resource Book for Municipal and Local Governments.

    Science.gov (United States)

    Roseland, Mark

    This book is intended as a resource for elected officials, municipal staff, and citizens who would like to apply the concept of sustainable development in their communities through an ecosystems approach to human settlements management. The subcomponents of human community life and its impact on the environment are explored. Included are tested,…

  3. The e-book as a pedagogical resource

    Directory of Open Access Journals (Sweden)

    Åsa Forsberg

    2013-12-01

    Full Text Available This roundtable proposes to present and discuss a project about the e-book as a pedagogical resource. The project will run from Spring 2013 until December 2013 and is a collaboration project between Center for Educational Development (CED, Lund University, and Lund University Libraries (LUB. It will be part of a larger collaboration project involving the universities in Southern Sweden. New possibilities in the digital learning environments The importance of digital texts is growing. A rapidly increasing number of e-books are made available by publishers and the large majority of scientific journals are published in fulltext. There are many advantages with digital texts: • They are immediately available independently of time and space, in computers and mobile devices • They are searchable • Created in a correct format they are available also for people with reading difficulties • An e-book can be integrated with othjer meda, such as sound clips, video clips etc • They are relatively easy to revise and update Many teachers at Lund University produce study material for their courses, such as course packs, tutorials, instructions and other types of texts. This material is distributed to the students in either print or digital format. The digital formats are mainly pdf-files and word-files. It is important to give the teachers access also to more advanced tools for producing course literature in digital form. Most interesting are tools making it possible to integrate other media (i.e. video and sound clips with text. A toolbox for production of course material in digital form The project will explore the possibilities to facilitate the production of e-books at Lund University. It will consist of an inventory of the teachers' requirements and expectations, an inventory of the production process including pilot studies of e-book production and an inventory of the need for support and training for teachers producing e-books. It will result in

  4. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  5. Depleted uranium hexafluoride: Waste or resource?

    Energy Technology Data Exchange (ETDEWEB)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Italy

    International Nuclear Information System (INIS)

    1977-10-01

    The Italian Republic comprises a 1200 - Km - long peninsula ex- tending from southern Europe into the Mediterranean Sea, and a number of adjacent islands, among which the principals are Sicily and Sardinia. The total area is in excess of 300,000 Sq.Km, the islands account for some 50, 000 Sq.Km. From a physiographic and morphologic point of view, Italy mainly consists of the Alpine region and the Po valley to the North and of the Appennine range and small Coastal plains to the Centre and South. Plains occupied only 20% of the total area, hills and mountains, up to 4,810 m of elevation, contribute almost equally to the remaining 80%. The most promising uranium mineralizations have been found in the Bergamasc Alps, near the small town of Novazza. Pitchblende and minor sphalerite (formation temperature, 80 deg. - 100 deg. C) occur disseminated in volcanics of permian age. The host rocks at the Novazza uranium deposit, consist of an acid ignimbrite with cineritic texture. The rocks have been affected by metasomatism which brought abundant neo-formation minerals such as silica, sericite, carbonates and minor adularia, albite and muscovite. The reasonably assured resources of the Novazza deposit have been estimated to be 1,200 ton of U having a grade of 900 p.p.m. U. Estimated additional resources are 1,000 ton U. Production is scheduled to start in 1980

  7. Planning for a major expansion of the olympic dam copper/uranium resource in South Australia

    International Nuclear Information System (INIS)

    Higgins, R. J.

    2006-01-01

    Full text: Full text: The polymetallic Olympic Dam deposit in northern South Australia contains the world's largest known economic uranium resource. The current resource estimate is 3,970 million tones at 0.4 kg/t U308. Uranium is a co-product of an existing operation that also produces copper, gold and silver. Production began in 1998. Ore mined in 2006 is expected to be close to 10 million tones to produce 4,500 tonnes of uranium oxide and 220,000 tonnes of copper cathode. BHP Billiton is undertaking a pre-feasibility study into expanding annual production capacity to about 15,000 tonnes of uranium and 500,000 tonnes copper. Subject to successful completion of the pre-feasibility study and a final feasibility study, construction of the expansion could begin by early 2009, with the expanded production capacity being commissioned in 2013. The resource estimate has been significantly increased by drilling of the so-far undeveloped southern section of the orebody. Current planning indicates that this section could be mined by open pit. Ore is at depth and extends from 350 metres to about 1000 metres below surface. The existing operations facilities at Olympic Dam comprise an underground mine, and a mineral processing plant and associated infrastructure which would be expanded to support expanded mining. Major items of infrastructure could include a new powerline, water pipeline and associated coastal desalination plant, a rail link to Olympic Dam from the existing national network and further development of the Roxby Downs township (current population 4,000). The operation is regulated by an Indenture Agreement with the South Australian Government. To enable the expansion to proceed, the Indenture Agreement will be renegotiated. The operation is also regulated by the Federal Government. An Environmental Impact Statement is being developed to secure the necessary State and Federal approvals. A land access agreement is being negotiated with indigenous groups. Plans for

  8. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  9. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  10. Antecedents of historical evolution of the uranium resources in the Cuyo region, between 1951 and 1968

    International Nuclear Information System (INIS)

    Vergara Bai, A.A.

    1992-01-01

    The present article pretends to summarize the initial stage of the development of national uranium resources - focusing the labor done by the Escuela Superior de Ingenieria en Combustible of the Universidad Nacional de Cuyo - between the years 1951 and 1955 - feeling that it is necessary to describe the situations that were originated during the development of the uranium's mineral investigation. This was started by the Escuela Superior de Ingenieria en Combustible of U.N. de Cuyo, which facilitated the connection with CNEA, that had been created in 1950. This leaded to the economical help from CNEA until 1955, for the realization and execution of the programmed works. The national antecedents are described, taking into account the existence of deposits in this country. The historical evolution of the exloration of uranium in Cuyo is divided in three periods, which are described in detail in this work. First and foremost, the period that goes from 1951 to 1955 (U.N. de Cuyo and CNEA); then, the period that goes from 1956 to 1961 (CNEA) where the achievements obtained determined the new modern structures done by the CNEA in order to continue with the development of the uranium resources of the country. After this, the period that goes from 1961 to 1968 (activities and successes of the West Delegation) is pointed out. Finally, the evolution of the factories of uranium mineral treatment, i n the period between 1952 and 1990, is also described in this article. (Author) [es

  11. Bioremediation/Biorecovery of uranium from aquatic resource/waste: the Cyano-Deino story

    International Nuclear Information System (INIS)

    Apte, Shree Kumar

    2015-01-01

    Terrestrial sources of uranium are getting depleted fast and may be exhausted in the next few decades. This has triggered a search for alternate or secondary resources for this precious metal. Nearly 4.5 billion tons of uranium on our planet resides in seawater, albeit at very low concentrations of 3 ppb. Recovering uranium from such low concentrations is a major challenge. Two marine cyanobacteria, the unicellular Synechococcus elongatus and the filamentous Anabaena torulosa, were found to be capable of rapidly sequestering uranyl carbonate (the predominant uranyl species at the sea-water pH of 7.8) from aqueous solutions, including simulated sea-water. While Synechococcus strain adsorbed the metal as carbonato complexes on cell surface ligands, A. torulosa trapped it in novel surface-associated polyphosphate bodies. The uranium binding potential of cyanobacterial biomass was comparable to, if not better than, the currently in use polyamidoxime resin. The bound uranium could be desorbed easily and the biomass reused a few times. The method has eminently higher application potential in uranium-contaminated terrestrial waters, where the metal concentration is several times higher. Low concentrations (<1 to few mM) of uranium are also found in acidic/alkaline nuclear waste and arise from metal extraction or during reprocessing of fuel. Removal of uranium from such solutions is very desirable for safer disposal of such waste. Biological agents to be employed in such situations also need to be tolerant to and stable in high radiation environments, unless dead cells can be used. To address such bioremediation, the extremely radio-resistant microbe Deinococcus radiodurans was genetically engineered to express either a non-specific acid phosphatase PhoN or a highly active novel alkaline phosphatase PhoK. Apart from the need for high expression of desired protein, such engineering is also fraught with problems of stability, localization and activity of the expressed

  12. Office of Codes and Standards resource book. Section 1, Building energy codes and standards

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.

    1995-01-01

    The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide: A discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stakeholders in the building energy codes and standards arena. The Resource Book is considered an evolving document and will be updated occasionally. Users are requested to submit additional data (e.g., more current, widely accepted, and/or documented data) and suggested changes to the address listed below. Please provide sources for all data provided.

  13. The ways of harmonization of uranium resources accounting systems on a global scale

    International Nuclear Information System (INIS)

    Naumov, S.S.; Shumilin, M.V.

    1998-01-01

    Resource classification systems used today in different countries make reference to the same principals: geological variability, commercial importance and level of preparedness for production. However, some countries with mining industries and established traditions use different classifications that are difficult to harmonize. To assist in developing a common international classification four issues are proposed for discussion: 1) existence of production facilities for producing resources; 2) need for low production cost categories compatible with current market prices; 3) specifying the degree of accuracy for various categories of resources and 4) in situ versus recoverable resource estimates. Based on these concepts revisions are proposed to the IAEA uranium classification system. Examples are also given of resource classifications for the Streltzovskoe deposit, Krasnokamensk. (author)

  14. Demonstrations of video processing of image data for uranium resource assessments

    International Nuclear Information System (INIS)

    Marrs, R.W.; King, J.K.

    1978-01-01

    Video processing of LANDSAT imagery was performed for nine areas in the western United States to demonstrate the applicability of such analyses for regional uranium resource assessment. The results of these tests, in areas of diverse geology, topography, and vegetation, were mixed. The best success was achieved in arid areas because vegetation cover is extremely limiting in any analysis dealing primarily with rocks and soils. Surface alteration patterns of large areal extent, involving transformation or redistribution of iron oxides, and reflectance contrasts were the only type of alteration consistently detected by video processing of LANDSAT imagery. Alteration often provided the only direct indication of mineralization. Other exploration guides, such as lithologic changes, can often be detected, even in heavily vegetated regions. Structural interpretation of the imagery proved far more successful than spectral analyses as an indicator of regions of possible uranium enrichment

  15. Ablation - breakthrough technology to reduce uranium mining cost and increase resources

    International Nuclear Information System (INIS)

    Scriven, D.

    2014-01-01

    Ablation Technologies, LLC has developed and patented a revolutionary mining technology termed “ablation”. Ablation is a process using only mechanical forces to upgrade sandstone uranium ores. Uranium bearing sandstone orebodies are formed from a uranium enriched solution flowing through an aquifer until it reached some type of a “red/ox” zone forcing the uranium and other heavy metals to come out of solution. The precipitate forms a thin coating on the sand grains and fills the interstitial space between the sand grains but does no penetrate the sand grains. The ablation process knocks the precipitate off the sand grains using the forces of abrasion, elastic compression and rebounding, much like a mud coated tennis ball will sheds the mud when bounced off the ground, and to some extent, sonic waves. This produces a product which collectively is exactly the same as the ore going in but with all the individual components separated. This allows for disgressionary separation, the most important of which is screening. The uranium and heavy metals report to the finer fractions of the material, typically less than 250 mesh. The larger fractions contain less than five percent of the uranium but 90 to 95 percent of the mass. The advantages of making an enriched ore are numerous: • Reduce haulage costs from 90 to 95 percent. • Reduce milling costs by reducing material handling costs, acid consumption and tailings disposal costs. • In addition to reducing overall mining and milling costs, the overall recovery of the recourse is increased because the ablation process is so inexpensive, if the material has to be mined it will be ablated and screened. This basically means ore control is significantly reduced, cutoff grade goes to practically zero and overall resource recovery is significantly increased. • Environmentally, the two major advantages are reduced tailings requirements at the mill site and cleaner waste dumps at the mine site. This paper will show

  16. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four Department of Energy laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  17. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-07-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnasissance program is conducted by four Department of Energy Laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. Each laboratory was assigned a geographic region of the United States. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  18. The new uranium mining boom. Challenge and lessons learned

    International Nuclear Information System (INIS)

    Merkel, Broder; Schipek, Mandy

    2011-01-01

    The book presents the results from the Uranium Mining and Hydrogeology Conference (UMH VI) held in September 2011, in Freiberg, Germany. The following subjects are dealt with in depth: uranium mining, phosphate mining and uranium recovery. Cleaning up technologies for water and soil are also discussed at length. Analystics and sensors for uranium and radon and modelling round up this comprehensive volume. (orig.)

  19. Canadian resources of uranium and thorium

    International Nuclear Information System (INIS)

    Griffith, J.W.; Roscoe, S.M.

    1964-01-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U 3 O 8 produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U 3 O 8 valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  20. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    concentration in peat bogs, deposits combined with marine phosphates, with coal and lignite, with black shales, with carbonate rocks, deposits in Precambrian quartz pebble conglomerates, basal-type deposits, deposits in sandstones (tabular, roll-type and tectono-lithologic deposits), breccia chimney filling deposits, deposits in metamorphic rocks, metasomatic deposits, deposits in intrusive rocks, deposits associated with hematite breccia complexes, deposits in granitic rocks, deposits in volcanic rocks, deposits in proterozoic discordances (Athabasca basin, Pine Creek geo-syncline); 4 - French uranium bearing areas and deposits: history of the French uranium mining industry, geological characteristics of French deposits (black shales, sandstones, granites), abroad success of French mining companies (Africa, North America, South America, Australia, Asia); 5 - exploration and exploitation; 6 - uranium economy: perspectives of uranium demand, present day production status, secondary resources, possible resources, market balances, prices and trends, future availability and nuclear perspectives. (J.S.)

  1. Report from the Uranium Supply Committee

    International Nuclear Information System (INIS)

    1980-12-01

    Based on studies of world uranium supply made by NEA, IAEA and other national and international bodies the Danish Uranium Supply Committee has examined the uranium supply situation. The Committee concludes that there will be no lack of natural uranium in a period until year 2025 provided that more advanced and uranium economic reactors will be effiective from the beginning of the 21th century. However it will be necessary to discover new resources and to use low-grade uranium resources. Through long term contracts with the users the uranium producers should be urged to continue their production. The Committee recommends that uranium prospecting in Greenland continues in order to get a through knowledge of Greenlandic resources. The establishment of further reprocessing capacity should be speeded up, whereas the Committee do not foresee any shortages with regard to enrichment, conversion, and fuel element production. (BP)

  2. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  3. Uranium industry seminar: proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The eleventh annual Uranium Industry Seminar, sponsored by the Grand Junction Area Office of the US Department of Energy (DOE), was held in Grand Junction, Colorado, on October 21 and 22, 1981. There were 491 registered attendees as compared to 700 attending the previous year. The attendees were largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. Papers presented at the seminar dealt with uranium policies, exploration, resources, supply, enrichment, and market conditions. There also were papers on the National Uranium Resource Evaluation Program and international activities. Thirteen papers included in this report have been abstracted and indexed

  4. Breccia-pipe uranium mining in northern Arizona; estimate of resources and assessment of historical effects

    Science.gov (United States)

    Bills, Donald J.; Brown, Kristin M.; Alpine, Andrea E.; Otton, James K.; Van Gosen, Bradley S.; Hinck, Jo Ellen; Tillman, Fred D.

    2011-01-01

    About 1 million acres of Federal land in the Grand Canyon region of Arizona were temporarily withdrawn from new mining claims in July 2009 by the Secretary of the Interior because of concern that increased uranium mining could have negative impacts on the land, water, people, and wildlife. During a 2-year interval, a Federal team led by the Bureau of Land Management is evaluating the effects of withdrawing these lands for extended periods. As part of this team, the U.S. Geological Survey (USGS) conducted a series of short-term studies to examine the historical effects of breccia-pipe uranium mining in the region. The USGS studies provide estimates of uranium resources affected by the possible land withdrawal, examine the effects of previous breccia-pipe mining, summarize water-chemistry data for streams and springs, and investigate potential biological pathways of exposure to uranium and associated contaminants. This fact sheet summarizes results through December 2009 and outlines further research needs.

  5. Energy from the west: energy resource development systems report. Volume IV: uranium. Final report, 1975-1978

    International Nuclear Information System (INIS)

    White, I.L.; Chartock, M.A.; Leonard, R.L.; Ballard, S.C.; Gilliland, M.

    1979-01-01

    This report describes the technologies likely to be used for development of uranium resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations

  6. Undiscovered Resource Modelling: Towards Applying a Systematic Approach to Uranium or How Much Uranium is Left and Where Might It Be Found?

    International Nuclear Information System (INIS)

    Fairclough, Martin; Katona, Laz

    2014-01-01

    Uranium Resource Modelling: Why do we want to plan for it? Purely from a supply-demand perspective: 1) Current supplies (at mid-range demand scenario) only enough until 2035 (likely to increase due to reactor shut down/stockpiling); 2) Not all uranium will be brought into production; 3) Long lead in times (particularly) for U mines; 4) Projections to 2060 (beyond IR) e.g IAEA TECDOC). From a socio-economic perspective: 1) Need for financial analysis; 2) Need for comparison with other land uses; 3) Need for comparison with other tracts of land; 4) Need for consideration of economic/environmental consequences of possible development; 5) Security of supply!!!

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Argentina

    International Nuclear Information System (INIS)

    1977-08-01

    intruded by acidic rocks. The High Cordiilera, an area of 200,000 square kilometers in northwestern Argentina contains sedimentary, metamorphic, and igneous rocks that could be favorable although the difficult topography is a restrictive influence. The distribution of uranium mineralization in various sediments and other rock types over large areas of Argentina is suggestive of widespread favorability for uranium-ore formation. Inasmuch as uranium reserves plus potential are already estimated at close to 80,000 tons U 3 O 8 , and exploration has not been exhaustively conducted, ultimate resource potential might realistically be expected to fall in the 100,000 to 500,000 ton U 3 O 8 range

  8. Canadian resources of uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J W; Roscoe, S M [Dept. of Mines and Technical Surveys, Ottawa, Ontario (Canada)

    1964-07-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U{sub 3}O{sub 8} produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U{sub 3}O{sub 8} valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  9. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  10. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  11. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  12. National uranium resource evaluation program. Hydrogeochemical and stream sediment reconnaissance basic data for Oklahoma City NTMS Quadrangle, Oklahoma. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 812 groundwater samples and 847 stream sediment samples. Statistical and areal distributions of uranium and other possibly uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on the results from groundwater sampling, the most promising formations for potential uranium mineralization in the quadrangle are the Permian Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog Creek, Chickasha, Duncan, and Cedar Hills Formations. These units are characterized by relatively high average concentrations of uranium, conductivity, arsenic, calcium, lithium, molybdenum, and sulfate. In addition, groundwaters from the Pennsylvanian Oscar Formation are characterized by values above the 85th percentile for uranium, conductivity, the uranium/sulfate ratio, arsenic, and vanadium. Results of stream sediment sampling indicate that the most promising formations for potential uranium mineralization include the same Permian Formation as indicated by groundwater sampling (Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog-Creek, Chickasha, Duncan, and Cedar Hill Formations) in an area where these formations crop out north of the North Canadian River. Stream sediment samples from this area are characterized by concentrations above the 85th percentile for uranium, thorium, arsenic, lithium, manganese, and vanadium

  13. Moving to world's best uranium address

    International Nuclear Information System (INIS)

    Noakes, Frank

    2006-01-01

    Most exploration dollars spent in South Australia are focused on exploiting uranium. This is for good reason as South Australia is the world's best address for uranium. Pressure to cut CO 2 emissions and the ballistic growth of the Chinese and Indian economies has heightened expectations that the worldwide use of uranium for power generation will mushroom beyond its current 17% market share. The recent Australia-China deal only seems to confirm this; hence uranium's growing popularity among miners and explorers. Such is the attractiveness of uranium-related floats, when Toro Energy sought $18m in March it was swamped with more than three times share application volume. In the north west, Southern Gold and Hindmarsh Resources are expectantly drilling for commercial uranium deposits all around the acreage that hosts the Challenger gold mine in the Gawler Craton. The first exploration drilling for uranium in quaternary-age river channels will take place in South Australia's far north in May. Red Metal says while older and deeper tertiary river channels in the area that host the Beverley uranium mine were explored for uranium, the younger near-surface channel has not had a single hole drilled for uranium. This is despite the area being one of the 'hottest radiogenic terrains in South Australia'. The company will target calcrete-style uranium mineralisation similar to the Yerrlirrie deposit in Western Australia (52,000t U308). Tasman Resources will start drilling to test seven uranium targets within 30km of Olympic Dam, the world's largest known uranium deposit, later this year. Tasman also holds tenements adjoining the Warrior uranium deposit near Tarcoola that contains known radiometric anomalies within the 40km-long Wynbring paleochannels. They are the fourth largest uranium explorer in South Australia. Alliance Resources and its JV partner Quasar Resources are exploring the Beverley 4 Mile uranium prospect at Arkaroola. Quasar is an affiliate of Heathgate Resources

  14. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  15. Book review: Natural resources in Afghanistan: Geographic and geologic perspectives on centuries of conflict

    Science.gov (United States)

    Doebrich, Jeff L.

    2015-01-01

    This book is the outcome of four decades of work in Afghanistan by the author, John (Jack) Shroder. His travels and research throughout Afghanistan and his understanding of its place in regional and world history provide the foundation for this comprehensive 572-page reference. The book describes the interrelated nature of Afghanistan’s physical and political landscape over time and the role resources have, and have not, played in Afghanistan’s past and could play in its future.

  16. Uranium Resources Inventory at Jumbang III West Kalimantan Systematic Prospection

    International Nuclear Information System (INIS)

    Soetopo, B; Wusana Y; Paimin; Sudjiman, FX

    1998-01-01

    Systematic prospection at jumbang III sector, west kalimantan has been carried out for identifying characteristic occurrence of the U mineralization and inventorying U resources potential area. The investigation has been based on U indication discovered in the form of a radiometric anomaly outcrop as high as 9000c/s. The possibility the U occurrence potential at the investigated may be resulted from granitic magma intrusion which produced an allogeneic type of uranium controlled by tectonic force. The method of the investigation includes systematic geological mapping and the result of the investigation shows that the lithology at the area is metamorphic rocks, intruded by biotite granite and dyke biotite adamelite and kersantite. Geological structure is NE-SW N-S and ESE- WNW strike slip faults. The uranium mineralization includes uraninite associated with magnetite, ilmenite, pyrite, pyrhotite, molybdenite, chalcopyrite, rutile, tourmaline, and quarts by magmatic hydrothermal process of allogeneic type U. The total U content of rock area is 7,57-4197,67 ppm U potential of the estimation result is 187.920 ton reserve and 25.3812 ton metallic U

  17. Linear Collider Physics Resource Book for Snowmass 2001, 2 Higgs and Supersymmetry Studies

    CERN Document Server

    Abe, T.; Asner, David Mark; Baer, H.; Bagger, Jonathan A.; Balazs, Csaba; Baltay, C.; Barker, T.; Barklow, T.; Barron, J.; Baur, Ulrich J.; Beach, R.; Bellwied, R.; Bigi, Ikaros I.Y.; Blochinger, C.; Boege, S.; Bolton, T.; Bower, G.; Brau, James E.; Breidenbach, Martin; Brodsky, Stanley J.; Burke, David L.; Burrows, Philip N.; Butler, Joel N.; Chakraborty, Dhiman; Cheng, Hsin-Chia; Chertok, Maxwell Benjamin; Choi, Seong-Youl; Cinabro, David; Corcella, Gennaro; Cordero, R.K.; Danielson, N.; Davoudiasl, Hooman; Dawson, S.; Denner, Ansgar; Derwent, P.; Diaz, Marco Aurelio; Dima, M.; Dittmaier, Stefan; Dixit, M.; Dixon, Lance J.; Dobrescu, Bogdan A.; Doncheski, M.A.; Duckwitz, M.; Dunn, J.; Early, J.; Erler, Jens; Feng, Jonathan L.; Ferretti, C.; Fisk, H.Eugene; Fraas, H.; Freitas, A.; Frey, R.; Gerdes, David W.; Gibbons, L.; Godbole, R.; Godfrey, S.; Goodman, E.; Gopalakrishna, Shrihari; Graf, N.; Grannis, Paul D.; Gronberg, Jeffrey Baton; Gunion, John F.; Haber, Howard E.; Han, Tao; Hawkings, Richard; Hearty, Christopher; Heinemeyer, Sven; Hertzbach, Stanley S.; Heusch, Clemens A.; Hewett, JoAnne L.; Hikasa, K.; Hiller, G.; Hoang, Andre H.; Hollebeek, Robert; Iwasaki, M.; Jacobsen, Robert Gibbs; Jaros, John Alan; Juste, A.; Kadyk, John A.; Kalinowski, J.; Kalyniak, P.; Kamon, Teruki; Karlen, Dean; Keller, L; Koltick, D.; Kribs, Graham D.; Kronfeld, Andreas Samuel; Leike, A.; Logan, Heather E.; Lykken, Joseph D.; Macesanu, Cosmin; Magill, Stephen R.; Marciano, William Joseph; Markiewicz, Thomas W.; Martin, S.; Maruyama, T.; Matchev, Konstantin Tzvetanov; Monig, Klaus; Montgomery, Hugh E.; Moortgat-Pick, Gudrid A.; Moreau, G.; Mrenna, Stephen; Murakami, Brandon; Murayama, Hitoshi; Nauenberg, Uriel; Neal, H.; Newman, B.; Nojiri, Mihoko M.; Orr, Lynne H.; Paige, F.; Para, A.; Pathak, S.; Peskin, Michael E.; Plehn, Tilman; Porter, F.; Potter, C.; Prescott, C.; Rainwater, David Landry; Raubenheimer, Tor O.; Repond, J.; Riles, Keith; Rizzo, Thomas Gerard; Ronan, Michael T.; Rosenberg, L.; Rosner, Jonathan L.; Roth, M.; Rowson, Peter C.; Schumm, Bruce Andrew; Seppala, L.; Seryi, Andrei; Siegrist, J.; Sinev, N.; Skulina, K.; Sterner, K.L.; Stewart, I.; Su, S.; Tata, Xerxes Ramyar; Telnov, Valery I.; Teubner, Thomas; Tkaczyk, S.; Turcot, Andre S.; van Bibber, Karl A.; Van Kooten, Rick J.; Vega, R.; Wackeroth, Doreen; Wagner, D.; Waite, Anthony P.; Walkowiak, Wolfgang; Weiglein, Georg; Wells, James Daniel; Wester, William Carl, III; Williams, B.; Wilson, G.; Wilson, R.; Winn, D.; Woods, M.; Wudka, J.; Yakovlev, Oleg I.; Yamamoto, H.; Yang, Hai Jun

    2001-01-01

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 2 reviews the possible experiments on Higgs bosons and supersymmetric particles that can be done at a linear collider.

  18. Uranium issues and policies: an overview

    International Nuclear Information System (INIS)

    Patterson, J.A.

    1979-01-01

    US policy is to reestablish the viability of nuclear energy and to expand the useful energy derived from uranium. A comprehensive assessment of US uranium resources is a key part of this effort. This assessment should lead to resolution of issues regarding adequacy of US uranium resources and production capability to meet long-term need in an economic manner. DOE programs on ore-reserve estimation, resource appraisal (particularly NURE), and production capability analysis are responsive to these information needs, as well as concerns regarding uranium demand, market growth, uranium prices, and foreign supply and demand. The cooperation of industry, particularly in providing basic information needed for DOE studies, is a vital element of this activity

  19. Resource impact evaluation of in-situ uranium groundwater restoration

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Rohlich, G.A.

    1981-11-01

    The purpose of this study was to determine the impact of restoration on the groundwater following in-situ uranium solution mining in South Texas. Restoration is necessary in order to reduce the amounts of undesired chemical constituents left in solution after mining operations have ceased, and thus return the groundwater to a quality consistent with pre-mining use and potential use. Various restoration strategies have been proposed and are discussed. Of interest are the hydrologic, environmental, social, and economic impacts of these restoration alternatives. Much of the discussion concerning groundwater restoration is based on the use of an ammonium carbonate-bicarbonate leach solution in the mining process. This has been the principal leach solution used during the early period of mining in South Texas. Recently, because of apparent difficulties in restoring ammonium to proposed or required levels, many of the companies have changed to the use of other leach solutions. Because little is known about restoration with these other leach solutions they have not been specifically addressed in this report. Likewise, we have not addressed the question of the fate of heavy metals. Following a summary of the development of South Texas in-situ mining in Chapter Two, Chapter Three describes the surface and groundwater resources of the uranium mining district. Chapter Four addresses the economics of water use, and Chapter Five is concerned with regulation of the in-situ uranium industry in Texas. A discussion of groundwater restoration alternatives and impacts is presented in Chapter Six. Chapter Seven contains a summary and a discussion, and conclusions derived from this study. Two case histories are presented in Appendices A and B

  20. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  1. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  2. Uranium in South Africa: 1985

    International Nuclear Information System (INIS)

    1986-03-01

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique, locally developed uranium enrichment process will enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R100 million was spent on exploration during 1985. This was spent primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the reasonably assured resources (RAR) and estimated additional resources - category I (EAR-I) catogories were 483 300 t U. Production during 1985 was 4880 t U. Although a production peaking at over 1200 t U/a is theoretically attainable, it is considered, from market projections, that a production ceilling of 10 000 t U/a would be more realistic

  3. Dynamic evolution of shear - extensional tectonics in South China and uranium resource exploration strategic analysis

    International Nuclear Information System (INIS)

    Fang Shiyi; Tao Zhijun; Han Qiming

    2012-01-01

    A variety of multi- types, multi-level, multi-era shear - extensional tectonics in south China is developed, the main form of shear-extensional tectonics, and developmental characteristics and metallogenic geodynamic evolution is discovered, and thus uranium resource exploration strategic analysis is conducted

  4. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  5. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  6. Uranium and the fast reactor

    International Nuclear Information System (INIS)

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  7. Recent developments in uranium resources and production with emphasis on in situ leach mining. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-06-01

    An important role of the International Atomic Energy Agency is establishing contacts between Member States in order to foster the exchange of scientific and technical information on uranium production technologies. In situ leach (ISL) mining is defined as, the extraction of uranium from the host sandstone by chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable leach solution into the ore zone below the water table; oxidizing, complexing, and mobilizing the uranium; recovering the pregnant solutions through production wells; and, finally, pumping the uranium bearing solution to the surface for further processing. As compared with conventional mining, in situ leach is recognized as having economic and environmental advantages when properly employed by knowledgeable specialists to extract uranium from suitable sandstone type deposits. Despite its limited applicability to specific types of uranium deposits, in recent years ISL uranium mining has been producing 15 to 21 per cent of world output. In 2002, ISL production was achieved in Australia, China, Kazakhstan, the United States of America and Uzbekistan. Its importance is expected to increase with new projects in Australia, China, Kazakhstan and the Russian Federation. The Technical Meeting on Recent Development in Uranium Resources and Production with Special Emphasis on In Situ Leach Mining, was held in Beijing from 18 to 20 September 2002, followed by the visit of the Yili ISL mine, Xinjiang Autonomous Region, China, from 21 to 23 September 2002. The meeting, held in cooperation with the Bureau of Geology, China National Nuclear Cooperation, was successful in bringing together 59 specialists representing 18 member states and one international organization (OECD/Nuclear Energy Agency). The papers describe a wide variety of activities related to the theme of the meeting. Subjects such as geology, resources evaluation, licensing, and mine restoration were

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Denmark (Greenland)

    International Nuclear Information System (INIS)

    1977-11-01

    The report deals almost exclusively with Greenland. A major omission is any broad description of the geology of the island. One which can be recommended is 'A survey of the economic geology of Greenland' by B.J. Nielsen published by the Geological Survey of Greenland. Nielsen has also published several articles on the uranium occurrences in Greenland, some of which are noted in the references. A review of the geology is necessary in order to determine how the known occurrences fit into the pattern of uranium mineralisation in the North Atlantic regions and Canada, and to suggest further potential by analogy with these regions. Maps are significantly also lacking and three suitable examples are attached. Additions to the general map would be the areas examined and the extent of airborne radiometry. A further major omission is a definition of the meaning of potential resources, especially as 250,000 tonnes are claimed for the lujavrites at present and a future potential of 500,000 tonnes. I presume that this is the contained uranium which can be calculated as being present in the rock units, rather than any estimate of the amount of uranium which could be recovered economically. The figures for RAH and EAR at Kvanefjeld could conveniently be updated (Nov. 77) to RAH 15,750 t U, EAR 10,000 t U, TOTAL 25,750 t U. As these alkalic rocks are confined to the Garder province of the Ketilidian mobile belt some more definite indication of similar uraniferous types could be made from the excellent published maps and lead to more realistic estimates using the NURE formulae

  9. Hydrogeochemical and stream sediment reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) 1973-1984. Technical history

    International Nuclear Information System (INIS)

    1985-01-01

    The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) generated a database of interest to scientists and other professional personnel in the academic, business, industrial, and governmental communities. NURE was a program of the Department of Energy Grand Junction Office (GJO) to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. The HSSR program provided for the collection of water and sediment samples located on the 1 0 x 2 0 National Topographic Map Series (NTMS) quadrangle grid across the conterminous United States and Alaska and the analysis of these samples for uranium as well as for a number of additional elements. Although the initial purpose of the program was to provide information regarding uranium resources, the information recorded about other elements and general field or site characteristics has made this database potentially valuable for describing the geochemistry of a location and addressing other issues such as water quality. The purpose of this Technical History is to summarize in one report those aspects of the HSSR program that are likely to be important in helping users assess the database and make informed judgements about its application to specific research questions. The history begins with an overview of the NURE Program and its components. Following a general description of the goals, objectives, and key features of the HSSR program, the implementation of the program at each of the four federal laboratories is presented in four separate chapters. These typically cover such topics as sample collection, sample analysis, and data management. 80 refs., 5 figs., 9 tabs

  10. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts

    International Nuclear Information System (INIS)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-01

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  11. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  12. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  14. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992 - May 31, 1993

    International Nuclear Information System (INIS)

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens

  15. Uranium in Canada 1994 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1994-11-01

    A summary of results of the annual assessment conducted by the Uranium Resource Appraisal Group of Natural Resources Canada. The appraisal group's mandate includes auditing the measured, indicated and inferred resources contained in Canadian uranium deposits mineable under current technological conditions in given price ranges and assessing the levels of Canadian uranium production that could by supported by these deposits. The group also relates known resources to domestic uranium requirements and export commitments. 2 tabs., 7 figs

  16. Uranium evaluation and mining techniques

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA/NEA/IANEC international symposium, Buenos Aires, Argentina, 1-5 October 1979. The symposium was attended by 162 participants from 35 countries and five international organizations, with 35 observers also registered. Twenty-nine papers and two informal discussions were presented in seven sessions. Planning nuclear power programmes is fraught with a very wide range of uncertainties, some of which are the uncertainties associated with rising costs and ever-lengthening lead times, the uncertainties of the rate of growth of nuclear energy, the uncertainties caused by anti-nuclear activities, and the uncertainties of uranium resources and availability of uranium supplies. Present known resources, not all of which may actually become uranium supply before the year 2025, are slightly less than 5 million tonnes uranium. Even if all these resources could be produced, production rates from them would drop seriously in the mid-1990s. It is, therefore, most important that the uncertainty of uranium resources and availability of supply be dealt with promptly. In this respect many countries of the world have begun national programmes either to determine their uranium potential, or to explore for uranium deposits. The symposium held in Buenos Aires at the invitation of the Government of Argentina sought to provide these countries with a state-of-the-art report on the various methods of uranium resource evaluation. Developments and improvements in both new and old techniques of mineral assessment proliferate. Notable among the 'newer' methods are geostatistical estimation of ore reserves, a sophisticated method which, although still under development, has gained wide recognition. In the domain of objective measurements and sample-based estimation procedures, the older classical methods also yield acceptable estimates when properly used. But uranium ore reserves are always inadequate for long-range planning, seldom exceeding a few years' demand. An

  17. Application for assistance to United Nations rotating fund for the study of natural resources, for uranium prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    This memoranda is a United Nations petition about natural resources study which allow the uranium prospecting. These areas will be studied on sedentary, anomalous and crystal land as well as radiometric rises

  18. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  19. Uranium and thorium occurrences in New Mexico: distribution, geology, production, and resources, with selected bibliography. Open-file report OF-183

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1983-09-01

    Over 1300 uranium and thorium occurrences are found in over 100 formational units in all but two counties, in all 1- by 2-degree topographic quadrangles, and in all four geographic provinces in New Mexico. Uranium production in New Mexico has surpassed yearly production from all other states since 1956. Over 200 mines in 18 counties in New Mexico have produced 163,010 tons (147,880 metric tons) of U 3 O 8 from 1948 to 1982, 40% of the total uranium production in the United States. More than 99% of this production has come from sedimentary rocks in the San Juan Basin area in northwestern New Mexico; 96% has come from the Morrison Formation alone. All of the uranium reserves and the majority of the potential uranium resources in New Mexico are in the Grants uranium district. About 112,500 tons (102,058 metric tons) of $30 per pound of U 3 O 8 reserves are in the San Juan Basin, about 55% of the total $30 reserves in the United States. Thorium reserves and resources in New Mexico have not been adequately evaluated and are unknown. Over 1300 uranium and thorium occurrences are described in this report, about 400 of these have been examined in the field by the author. The occurrence descriptions include information on location, commodities, production, development, geology, and classification. Over 1000 citations are included in the bibliography and referenced in the occurrence descriptions. Production statistics for uranium mines that operated from 1948 to 1970 are also included. Mines that operated after 1970 are classified into production categories. 43 figures, 9 tables

  20. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  1. Les liaisons dangereuses: resource surveillance, uranium diplomacy and secret French-American collaboration in 1950s Morocco.

    Science.gov (United States)

    Adamson, Matthew

    2016-03-01

    This study explores the origins and consequences of a unique, secret, French-American collaboration to prospect for uranium in 1950s Morocco. This collaboration permitted mediation between the United States and France. The appearance of France in an American-supported project for raw nuclear materials signalled American willingness to accept a new nuclear global order in which the French assumed a new, higher position as regional nuclear ally as opposed to suspicious rival. This collaboration also permitted France and the United States to agree tacitly to the same geopolitical status for the French Moroccan Protectorate, a status under dispute both in Morocco and outside it. The secret scientific effort reassured the French that, whatever the Americans might say publicly, they stood behind the maintenance of French hegemony in the centuries-old kingdom. But Moroccan independence proved impossible to deny. With its foreseeable arrival, the collaboration went from seductive to dangerous, and the priority of American and French geologists shifted from finding a major uranium lode to making sure that nothing was readily available to whatever post-independence interests might prove most powerful. Ultimately, the Kingdom of Morocco took a page out of the French book, using uranium exploration to assert sovereignty over a different disputed territory, its de facto colony of the Western Sahara.

  2. Book selling and e-books in Sweden

    Directory of Open Access Journals (Sweden)

    Elena Maceviciute

    2015-07-01

    Full Text Available This paper addresses the issue of the understanding of the book-selling situation as Swedish booksellers see it. It pursues the answers to the following questions: 1. What are the perceptions of Swedish booksellers of the impact of e-books on their business? 2. What drivers are important for Swedish booksellers for adopting and developing e-book sales through their own sales channels? 3. What do they perceive as barriers to e-book selling through their own channels? The authors have employed the analysis of the secondary statistical data and a survey of Swedish booksellers to answer their questions. The results of the investigation have shown that the Swedish booksellers do not feel their bookshops, or business in general, are threatened by e-books. The opinions on e-books do not differ between the few selling e-books and others who do not offer this product. The reasons for selling e-books are well-functioning routines and personal interest in the product. The reasons for not selling the books are the lack of demand and technical resources as well as contractual agreements with e-book publishers or vendors. So, technical resources for e-book sales, routines, and contracts with publishers are the main premises for this activity. The biggest barriers to e-book sales are: a the price as one can see not only in the answers of the booksellers, but also in the drop of sales obviously related to the rise of prices during 2014; b lack of demand from customers who do not enquire about e-books in bookshops. This leads to the belief that e-books will be sold mostly online either directly from publishers and authors or through online booksellers. However, an equal number of booksellers believe that physical bookshops will be selling printed books and e-books in the future. The future of e-books seems to be quite secure and non-threatening to printed books from the point of view of booksellers. The growth of e-book sales is quite slow and the respondents

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Uganda. Draft. November 1982 - January 1983

    International Nuclear Information System (INIS)

    Trey, Michel de; Levich, Robert A.

    1983-02-01

    At present, there are no reasonably assured resources of uranium in Uganda in any price category. Speculative resources are restricted to 2,400 metric tons of uranium in an apatite deposit, which in the past has been actively mined for phosphate. The possible recovery of this uranium is dependent upon a number of economic and technological conditions which have never been thoroughly studied. Although the geology of Uganda holds some interesting possibilities for hosting uranium deposits, the studies conducted between 1949 and 1979 were limited to known radioactive occurrences and anomalies in limited areas which had little economic significance. Vast areas, less known and less accessible were completely ignored. Uranium exploration must therefore be started again in a systematic manner using modern methods. The current economic situation in Uganda is so critical that International technical and financial assistance is vitally needed to help rehabilitate the Geological Survey and Mines Department. Uganda currently can offer only very restricted services. The transportation system is quite deficient: the railway does not presently cross the frontier with Kenya, and all equipment and goods must be transported from Mombasa by road. Housing is in very short supply, and many basic commodities are often unobtainable. Any organization or private company which begins an exploration program in Uganda must plan to import essentially all the equipment and supplies it shall require. It shall also have to construct offices and staff housing, and import and stockpile fuel and staple goods, so as not to be at the mercy of the (at times) inadequate local supplies. It shall most probably also have to provide basic local and imported food to its Ugandan staff and should plan to pay much higher local salaries than is customary. Lastly, it will have to provide its own fleet of trucks and organize its own transport system. (author)

  4. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  5. Uranium geology and chemistry, programme and book of abstracts

    International Nuclear Information System (INIS)

    Patrice Bruneton; Cathelineau, Michel; Richard, Antonin; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Beaufort, D.; Patrier, P.; Goncalves, Philippe; Trap, Pierre; Van Lichtervelde, Marieke; Jeanneret, Pauline; Marquer, Didier; Feybesse, Jean-Louis; Paquette, Jean-Louis; Mercadier, Julien; Annesley, Irvine R.; Austmann, Christine L.; Creighton, Steve; Eglinger, Aurelien; Vanderhaeghe, Olivier; Andre-Mayer, Anne-Sylvie; Cuney, Michel; Goncalves, Philippe; Durand, Cyril; Feybesse, Jean-Louis; Zeyen, Hermann; Beres, Jan; Pessel, Marc; Gaffet, Stephane; Rousset, Dominique; Senechal, Guy; Dargent, Maxime; Dubessy, Jean; Caumon, Marie-Camille; Trung, Chinh-Nguyen; Richard, Antonin; Montel, Jean-Marc; Peiffert, Chantal; Leborgne, Romain; Seydoux-Guillaume, Anne-Magali; Montel, J.M.; Bingen, B.; Bosse, V.; De Parseval, Ph.; Janots, Emilie; Wirth, Richard; Reiller, Pascal E.; Marang, Laura; Jouvin, Delphine; Benedetti, Marc F.; Clavier, N.; Costin, D.T.; Mesbah, A.; Dacheux, N.; Poinssot, C.; Raimbault, Louis; Mercadier, Julien; Cuney, Michel; Moncoffre, Nathalie; Marchand, Benoit; Perrat-Mabillon, Angela; Gine, A.; Saint-Bezar, B.; Benedicto, A.; Wattinne, A.; Andre, G.; Bonnetti, Christophe; Bourlange, Sylvain; Malartre, Fabrice; Benedicto, Antonio; Liu, Xiaodong; Cretaz, F.; Szenknect, S.; Descostes, M.; Dacheux, N.; Othmane, Guillaume; Allard, Thierry; Menguy, Nicolas; Vercouter, Thomas; Morin, Guillaume; Esteve, Imene; Calas, Georges; Fayek, Mostafa; Barbarand, Jocelyn; Drot, Romuald; Grare, Alexis; Reyx, Jean; Pagel, Maurice; Brouand, Marc; Zakari, Aziz; Bidaud, Adrien; Toe, Wilfried; Milesi, Jean-Pierre; Carrouee, Simon; Moyen, Jean-Francois; Schmitt, Jean-Michel; Brouand, Marc; Bouzid, Majda; Langlais, Valerie; Hocquet, Sebastien; Munara, A.; Boulvais, P.; Carpentier, C.; Ajjabou, Leila; Ledru, Patrick; Fiet, Nicolas; Hocquet, Sebastien; Royer, Jean-Jacques; Fiet, N.; Oppeneau, T.; Berestnev, N.; Merembayev, T.; Parize, Olivier; Aouami, I.; Nedjari, A.; Mahaman, T.; Sanguinetti, H.; Uri, Freddy; Beaufort, Daniel; Riegler, Thomas; Lescuyer, Jean-Luc; Wollenberg, Peter; Dardel, Jacques; Bourgeois, Damien; Maynadie, Jerome; Meyer, Daniel; Courtaud, B.; Auger, F.; Thiry, J.; Fakhi, S.; Fait, E.; Outayad, R.; Mouflih, M.; Voque Romero, I.; Manjon, Guillermo; Ben Mansour, M.; Bouih, A.; Nourreddine, A.; El Hadi, H.; Mokhtari, Hamid; Gourgiotis, Alkiviadis; Bassot, Sylvain; Simonucci, Caroline; Diez, Olivier; Mifsud, Aurelie; Martin-Garin, Arnaud; Coppin, Frederic; Dejeant, Adrien; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael; Wattine-Morice, Aurelia; Belieres, Michel; Ben Simon, Rose; Schmitt, Jean-Michel; Thiry, Medard; Megneng, Melissa; Orberger, Beate; Hofmann, Axel; Wirth, Richard; Dumas, Paule; Sandt, Christophe; Hicks, Nigel; Tudryn, Alina; Tartese, Romain; Boulvais, Philippe; Poujol, Marc

    2011-11-01

    This meeting of the French Geological Society (SGF) was organized with the joint contribution of Areva, CNRS-INSU, PACEN, GUTEC, IDES, and Paris-Sud University. This document gathers the abstracts of the following 40 presentations: 1 - Uranium deposits of 'Intrusive'-type; 2 - U deposits beneath discordance: analogy with F-Ba-Pb-Zn(Ag) 'Basin Hosted'-type deposits?; 3 - Clays and related minerals as guides for uranium deposits prospecting: status of recent advances; 4 - Hudsonian Uranium mineralizations in the Western part of the Trans-Hudsonian orogen (Saskatchewan, Canada): a source for the formation of discordance-type deposits?; 5 - U-Th elements mobilization during the Panafrican metamorphism: implication on the formation of Cu-Co-(U) deposits, Solwezi dome, NW Zambia; 6 - Fractures network characterization by seismic and electrical anisotropy; 7 - study of uranyl speciation by Raman spectroscopy in chlorinated solutions (LiCl = 0.5 to 15 M) up to 350 deg. C. Metallogenic consequences and perspectives; 8 - Experimental weathering of natural monazite in the conditions of formation of Oklo and discordance-type uranium deposits; 9 - Disturbance of the U-Th-Pb chronometers during the low temperature weathering of monazite: synergy between irradiation damages and dissolution-precipitation; 10 - U(VI) interaction with humic substances: speciation and application to independent data; 11 - Preparation and characterization of Th 1-x U x SiO 4 solid solutions: towards the understanding of coffinite formation?; 12 - A new geochemical tool for the study of U deposits: the anions in uraninite; 13 - Tectonics in the Unegt basin (E-Gobi, Mongolia): deformation stripes, hydrocarbons migration and U mineralizations; 14 - Study of U sources in the Erlian Basin (China); 15 Thermodynamic data acquisition for uranyl phosphates and vanadates: from synthetic analogues to natural samples; 16 - U speciation in Nopal I opals: geochemical consequences for the end of the deposit genesis

  6. Estimation of uranium resources by life-cycle or discovery-rate models: a critique

    International Nuclear Information System (INIS)

    Harris, D.P.

    1976-10-01

    This report was motivated primarily by M. A. Lieberman's ''United States Uranium Resources: An Analysis of Historical Data'' (Science, April 30). His conclusion that only 87,000 tons of U 3 O 8 resources recoverable at a forward cost of $8/lb remain to be discovered is criticized. It is shown that there is no theoretical basis for selecting the exponential or any other function for the discovery rate. Some of the economic (productivity, inflation) and data issues involved in the analysis of undiscovered, recoverable U 3 O 8 resources on discovery rates of $8 reserves are discussed. The problem of the ratio of undiscovered $30 resources to undiscovered $8 resources is considered. It is concluded that: all methods for the estimation of unknown resources must employ a model of some form of the endowment-exploration-production complex, but every model is a simplification of the real world, and every estimate is intrinsically uncertain. The life-cycle model is useless for the appraisal of undiscovered, recoverable U 3 O 8 , and the discovery rate model underestimates these resources

  7. Uranium resource assessment through statistical analysis of exploration geochemical and other data. Final report

    International Nuclear Information System (INIS)

    Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.

    1981-02-01

    We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. We have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies

  8. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  9. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  10. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  11. Uranium Research in Senegal

    International Nuclear Information System (INIS)

    Kanouté, Mamadou

    2015-01-01

    The work of mining companies have so far not proved economic uranium resources, but they have nevertheless contributed greatly to a better understanding of the geology, particularly in Eastern Senegal, on the upper Precambrian basin including which equivalents exist throughout West Africa (the uranium belt of Zaire) prospected by CEA-COGEMA teams. The researches carried out in Senegal, but also in Guinea and Mali helped establish a detailed map and understand the course of geological history. With new exploration techniques and data of airborne geophysical (radiometric) provided by the Mining Sector Support Programme (PASMI 9th EDF 9 ACP SE 09), AREVA, at the end of the first period validity of the exploration permit increased significantly, the resources. Prospects are favorable to a doubling of resources; objective of a uranium mine in Senegal. Synergies are possible and desirable with joint exploitation of uranium deposits located in Mali, near the border with Senegal.

  12. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Israel

    International Nuclear Information System (INIS)

    1977-12-01

    The geology of Israel is relatively simple. Most of the country is underlain by sedimentary rocks of Secondary and Tertiary age. As far as the IAEA is aware no systematic exploration has been done for conventional type uranium deposits. Israel has no uranium deposits, and no high or low-grade uranium ores. However, there are uranium 'sources' which are mainly phosphate rock.Proven phosphate reserves in Israel are estimated at about 220 million tons in five different locations. The average uranium concentration is between 100 and 170 ppm. This makes the uranium content in the proven phosphate reserves of Israel to be about 25,000 tons. Together with the possibility of additional discoveries and on the assumption that the economic conditions for the production of both phosphate and uranium become favourable the Speculative Potential is placed in the 10,000 to 50,000 tonnes uranium category. (author)

  14. Uranium demand. An exploration challenge

    Energy Technology Data Exchange (ETDEWEB)

    Roux, A J.A.

    1976-10-01

    The estimated world resources of uranium as well as the estimated consumption of uranium over the next 25 years are briefly discussed. Attention is also given to the prospecting for uranium in South Africa and elsewhere in the world.

  15. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  16. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  17. Uranium as Raw Material for Nuclear Energy

    International Nuclear Information System (INIS)

    Lelek, V.

    2006-01-01

    There is lot of information bringing our attention to the problem of limited raw material resources. Fortunately uranium for nuclear energy is very concentrated source and that is why its transport brings no problems and could be realized from anywhere. Second question is if overall resources are available for current nuclear energy development. Data documenting reasons for nowadays price growth are presenting and it is clearly shown that the most probable explanation is that there is gap in new uranium mines preparation and the lot of smaller mines were closed in the period of low uranium prices. Conclusion is that there is at least for the first half of this century even for thermal reactors enough uranium. Situation could be changed if there will massive production of liquid fuel using hydrogen, produced through nuclear heating. Public information about former military uranium resources are also included. Contemporary about one half of US nuclear power-stations is using high enriched uranium diluted with natural uranium - it is expected to continue this way up to 2012. Uranium is complicated market (Authors)

  18. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  19. Analysis of uranium supply to 2050

    International Nuclear Information System (INIS)

    2001-05-01

    The central theme of this report is to assess the adequacy of uranium resources to meet future requirements based on a range of opinions as to the future of nuclear power. The report discusses three demand cases that project uranium requirements from 2000 to 2050. The report also reviews the supply sources that are expected to be available to meet reactor uranium demand through to 2050. Supply is divided into two broad categories: secondary and primary supply. The report also assesses the adequacy of uranium resources to satisfy market based production requirements

  20. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  1. Teacher Resource Book for Population Pressure in Indonesia, Problems of Industrialization in Eurasia, Power Blocs in Eurasia. Man on the Earth Series.

    Science.gov (United States)

    Gunn, Angus

    This teacher's resource book is a guide to three intermediate texts about Eurasia entitled Population Pressure in Indonesia, Problems of Industrialization in Eurasia, and Power Blocs in Eurasia. The texts are part of the series, Man on the Earth, which probes broad-based issues confronting mankind. The resource book distinguishes 18 major concepts…

  2. Uranium in South Africa: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique locally developed uranium enrichment process wil enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R300 million was spend on exploration during 1987. This was spend primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the RAR and EAR-I categories were 536 500 t u. Production during 1987 was 3963 t u. Although a production peaking at over 1100 t U/a is theoretically attainable, it is considered, from market projections, that a production ceiling of 10 000 t U/a would be more realistic

  3. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  4. The life cycle of the Book of the Dead as a Digital Humanities resource

    Directory of Open Access Journals (Sweden)

    Ulrike Henny

    2017-11-01

    Full Text Available This contribution tracks and analyzes the life cycle of the Book of the Dead as a digital project and a rather complex research resource. It gives an account of how the digital archive “Das altägyptische Totenbuch – Ein digitales Textzeugenarchiv” was constructed in the context of the digitization efforts of the Academy for Science of North Rhine-Westphalia. From the beginning, the design of the archive has factored in a life of the digital archive beyond its funding period and has sighted to create a sustainable information resource. The main issues to be discussed here are what experiences have been made with sustainability, use and reuse of the Book of the Dead archive since the official end of the project in December 2012, with a focus on conceptual, technical and organizational aspects. The lessons learned can be of interest for future undertakings in the creation of XML and web-based digital platforms in Digital Classics and beyond. In a nutshell, they are: (a the importance of wary technological choices in an initial phase cannot be underestimated, (b the application and presentation layers of a digital resource, if present, are an essential part of it, (c a certain degree of commitment from the research community and funding bodies alike is indispensable for maintaining a web-based complex Digital Humanities resource.

  5. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  6. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  7. Search for uranium: a perspective

    International Nuclear Information System (INIS)

    Grutt, E.W. Jr.

    1975-01-01

    The history of uranium mining in the USA is reviewed. It is postulated that some two million tons of U 3 O 8 will be needed to provide fuel for US nuclear power plants through the year 2000. World resources of U ores are reviewed. The functions of the ERDA National Uranium Resources Evaluation Program (NURE), including aerial surveying, in relation to the assessment of potential uranium reserves in the USA are discussed. The scope of ERDA research and development programs are briefly reviewed. (U.S.)

  8. Industrial types of uranium deposits in Kazakhstan

    International Nuclear Information System (INIS)

    Fyodorov, G.V.

    2001-01-01

    The main industrial uranium deposits of Kazakhstan that can be commercially mined, are located in two ore regions and are represented by two types of the uranium deposits. The first region is named Chu-Syrdarya (75.6% of total resources of Kazakhstan) and is located in the South of Kazakhstan and this one is the largest in the world among the regions of the deposits connected with the bed oxidation zone, localized in the permeable sediments and amenable for in-situ leach mining. The second region is named Kokshetau (16% of total resources) and is located in the North of Kazakhstan at the north edge of Kazak Shield and is characterized by the vein-stockwork type of deposit. Other industrial deposits (8.4% of total resources) are grouped in two regions that have been determined and are retained as reserves for economical and ecological reasons. These are: Pricaspian region with the organic phosphate type of uranium deposits; and Ili-Balkhash region with mainly the coal-uranium type. There are 44 industrial uranium deposits with resources ranging from 1000 t to 100000 t U and more in each of them, in all, in Kazakhstan. Seven of them are completely mined now. Total uranium resources in Kazakhstan are determined at 1670000 t U. (author)

  9. Ground for concern. Australia's uranium and human survival. [Australia

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, M

    1977-01-01

    The book contains a number of articles which propose that Australia should not mine and export its uranium in order to influence the nuclear establishment against uncontrollable proliferation. Topics covered include: uranium mining in Australia, reactor safety, nuclear wastes, nuclear weapons proliferation, nuclear theft and the politics of the nuclear industry.

  10. Uranium supply analysis: Evolution of concepts

    International Nuclear Information System (INIS)

    Williams, R.M.

    1998-01-01

    Considerable effort has been expended during the last 15 years to develop improved methods of analysing current and future mineral supply, with the objectives of providing illustrations of mineral supply possibilities that are more meaningful and easily understood. Significant contributions toward these objectives have been made in the course of studies on world uranium supply, which took place in the 1970s prompted by concern about the future availability of mineral fuels. The Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development (OECD), and the International Atomic Energy Agency (IAEA) have played a key role in these efforts, through their biennial assessments of world uranium supply. There has been a pronounced shift in emphasis in the NEA/IAEA assessments away from resource estimates by themselves as a measure of supply, because of a growing awareness that, in isolation, resource estimates cannot provide a truly meaningful illustration of uranium availability. Indeed, resource estimates taken out of context can lead to false conclusions about resource adequacy. Successive NEA/IAEA studies have made increasing use of projections of production capability that show the possible availability of uranium from different categories of resources and production centres over specified time-frames. It is believed that such supply scenarios provide a much more meaningful illustration of uranium availability for both short and long-term planning purposes. As part of the effort to introduce such an approach to NEA/IAEA uranium supply analyses, the IAEA has prepared a manual which provides general guidelines for preparing projections of production capability. It is hoped that these efforts will contribute to a better understanding of the constraints on uranium supply and to the wider acceptance of projections of production capability as measures of resource adequacy. (author)

  11. Uranium industry seminar

    International Nuclear Information System (INIS)

    1980-01-01

    The tenth annual Uranium Industry Seminar, sponsored by the US Department of Energy's (DOE) Grand Junction Office, was held in Grand Junction, Colorado, on October 22 and 23, 1980. There were 700 registered attendees as compared to 833 attending the previous year. The attendees were drawn largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. There were 14 papers presented at the seminar by speakers from the Department of Energy, US Geological Survey, and Bendix Field Engineering Corporation which is the on-site prime contractor for DOE's Grand Junction Office. The topics the papers dealt with were uranium policies, exploration, respources, supply, enrichment, and market conditions. There also were papers describing the National Uranium Resource Evaluation program and international activities. All 14 papers in this Proceedings have been abstracted and indexed

  12. Uranium resources

    International Nuclear Information System (INIS)

    Gangloff, A.

    1978-01-01

    It is first indicated how to evaluate the mining resources as a function of the cost of production and the degree of certainty in the knowledge of the deposit. A table is given of the world resources (at the beginning 1977) and resources and reserves are compared. There is a concordance between requirements and possible production until 1990. The case of France is examined: known reserves, present and future prospection, present production (In 1978 2200 T of U metal will be produced from 3 French processing plants), production coming from Cogema. A total production of 2000 T in 1980 and 10.000 in 1985 is expected [fr

  13. Uranium exploration in India: present status and future strategies

    International Nuclear Information System (INIS)

    Maithani, P.B.

    2011-01-01

    Exploration for Uranium in India dates back to 1949, where surveys to locate atomic minerals were initiated in the well established Copper Thrust Belt (CTB) of Singhbhum, in the present day Jharkhand state. Based on the limited understanding on uranium geology, the thrust zones of Singhbhum which were popularly known for hosting Copper mineralization were targeted presuming sympathetic relation between Copper and Uranium. Exploration for uranium over the past six decades has resulted in identifying eleven major uranium deposits distributed in varied geological environs all over the country. Apart from conventional uranium mineralization, non-conventional resources like phosphorite, black shale etc. have immense potential. Even though their uranium grades will be of lower order, their uranium content will be huge due to their extensive size. In addition to intensifying uranium exploration in potential geological domains, AMD also plans to tap the non-conventional resources which will add substantially to the resource base

  14. Current status and prospects of uranium geology developments of foreign in-situ leachable sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Wang Zhengbang

    2002-01-01

    Firstly, with emphasis on in-situ leachable sandstone-type uranium deposits, the prospecting history of uranium deposits worldwide and its scientific research development are generally reviewed in four steps, and their basic historical experience is also summarized. Secondly, based on the detailed description of current development status of uranium geology of foreign in-situ leachable sandstone-type uranium deposits the important strategic position of sandstone-type uranium deposits in overall uranium resources all-over-the-world and its classification, spatial-temporal distribution and regulation, and metallogenic condition of sandstone-type uranium deposits are analysed thoroughly in five aspects: techtonics, paleo-climate, hydrogeology, sedimentary facies and lithology, as well as uranium sources: Afterwards, evaluation principles of three type of hyper-genic, epigenetic infiltrated sandstone-type uranium deposits are summarized. Based on sandstone-type uranium deposits located two important countries: the United States and Russia, the current development status of prospecting technology for in-situ leachable sandstone-type uranium deposits in foreign countries is outlined. Finally, according to the prospects of supply-demand development of global uranium resources, the author points out seriously that Chinese uranium geology is faced with a severe challenge, and proposes directly four strategic measures that should be taken

  15. Challenges in the front end of the uranium fuel cycle

    International Nuclear Information System (INIS)

    Seitz, Ken

    2010-01-01

    The long-term fundamentals for nuclear remain strong. Climate change and clean air concerns remain high on the agenda of national energy policies, as both developing and developed economies pursue a strategy of energy diversity and energy security. A global industry of 435 reactors is expected to grow to more than 639 reactors within the next 20 years with the potential for even more rapid expansion. This nuclear generating capacity relies on an international fuel cycle that can ensure stable and secure supply for decades to come. As the first step in the fuel cycle, the uranium industry has received various price signals over the past 5 decades, from the birth of an industry with strong demand and stock pile building and the associated robust pricing and new production stimulation, to an industry in decline and a period marked by liquidation of large inventories, to the recent resurgence of nuclear and the associated uranium price signals. In many ways, understanding the current uranium environment and the outlook for the industry requires some understanding of these phases of nuclear. The global nuclear fleet today needs about 65,000 tonnes of uranium per year to meet reactor feed requirements. Primary production meets about two thirds of this requirement while the remainder is drawn from secondary supply. Secondary supply can essentially be described as stockpiles of previously produced uranium. However, secondary supplies are finite and more primary production will be needed. From a long-term perspective, there is no question that there are sufficient uranium resources to support the nuclear industry for many years to come. The IAEA's 'Red Book' estimates that more than 5 million tonnes of known resources could potentially be developed at today's prices. This is enough to supply the global reactor fleet for almost 80 years at current usage rates. Recently higher uranium prices have resulted in some production increases although the rate of growth has been held

  16. Uranium in Canada: 1984 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1985-09-01

    The success of uranium exploration efforts in Canada has continued, resulting in an overall increase in domestic uranium resource estimates for the principal resource categories. In 1984, Canada's five primary uranium producers employed some 5,800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. In 1984 the resource estimates were (in tonnes U recoverable): measured - 54 000; indicated - 233 000; inferred - 264 000. Canada's projected annual primary uranium production capability will stabilize at some 12 000 tU through the remainder of the 1980s. Should market conditions warrant, additional production centres could be developed to raise production capability to a level of 15 000 tU by the latter half of the 1990s. Prognosticated resources exploitable at uranium prices of $300/kg U or less are estimated to amount to 292 000 tU. Speculative resources of interest at prices of $300/kg U or less, in areas assessed during 1984, are thought to total approximately one million tU. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 and $35 million, respectively. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85 per cent of which was in Saskatchewan. Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors in Canada that are either in operation now or committed or expected to be in-service by 1995. Over the longer term, there is significant potential for discovering additional uranium resources in Canada

  17. Conceptual design on uranium recovery plant from seawater

    International Nuclear Information System (INIS)

    Kato, Toshiaki; Okugawa, Katsumi; Sugihara, Yutaka; Matsumura, Tsuyoshi

    1999-01-01

    Uranium containing in seawater is extremely low concentration, which is about 3 mg (3 ppb) per 1 ton of seawater. Recently, a report on development of a more effective collector of uranium in seawater (a radiation graft polymerization product of amidoxime onto polyethylene fiber) was issued by Japan Atomic Energy Research Institute. In this paper, an outline design of a uranium recovery plant from seawater was conducted on a base of the collector. As a result of cost estimation, the collection cost of seawater uranium using this method was much higher than that of uranium mine on land and described in the Red Book for mineral uranium cost. In order to make the seawater uranium cost comparable to the on-land uranium cost, it is necessary to establish comprehensive efforts in future technical development, such as development in absorption property of uranium with the collector, resolution method using less HCl, and so forth. (G.K.)

  18. National Uranium Resource Evaluation Program: the Hydrogeochemical Stream Sediment Reconnaissance Program at LLNL

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1980-08-01

    From early 1975 to mid 1979, Lawrence Livermore National Laboratory (LLNL) participated in the Hydrogeochemical Stream Sediment Reconnaissance (HSSR), part of the National Uranium Resource Evaluation (NURE) program sponsored by the Department of Energy (DOE). The Laboratory was initially responsible for collecting, analyzing, and evaluating sediment and water samples from approximately 200,000 sites in seven western states. Eventually, however, the NURE program redefined its sampling priorities, objectives, schedules, and budgets, with the increasingly obvious result that LLNL objectives and methodologies were not compatible with those of the NURE program office, and the LLNL geochemical studies were not relevant to the program goal. The LLNL portion of the HSSR program was consequently terminated, and all work was suspended by June 1979. Of the 38,000 sites sampled, 30,000 were analyzed by instrumental neutron activation analyses (INAA), delayed neutron counting (DNC), optical emission spectroscopy (OES), and automated chloride-sulfate analyses (SC). Data from about 13,000 sites have been formally reported. From each site, analyses were published of about 30 of the 60 elements observed. Uranium mineralization has been identified at several places which were previously not recognized as potential uranium source areas, and a number of other geochemical anomalies were discovered

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: France

    International Nuclear Information System (INIS)

    1977-09-01

    France, with an area of 550,000 km 2 , has been prospecting its territory for uranium for more than 30 years. The proven uranium reserves in all the ore categories defined by the NEA/lAEA are estimated at around 120,000 tU, of which 25,000 tU have already been mined. About 70% of these reserves are associated with granites, while the bulk of the remainder is located in Permian sediments and the last in Paleogene sediments. The prospecting effort has not been distributed equally over French territory. More than half of it - recent orogens and large basins - have been little or very little prospected. On the other hand, the Hercynian massifs and their Upper Paleozoic mantle have been systematically prospected. Nevertheless, even within the latter there is still room for further exploration: extensions of already known mineralizations both laterally and vertically, conventional mineralizations deep down or under a mantle, types of mineralizations not investigated previously (those associated with acid or intermediate vulcanism, peribatholithic shales, alkaline complexes etc.). Of course, in the areas that have not been so well explored, because they appear less favourable, there are still some possibilities, namely, in the areas of recent orogens, mineralizations associated with antemesozoic cores (same types as above) or directly associated with orogenesis (slightly to moderately metamorphic sandstone-phyllitic formations, certain sedimentary formations etc.). As for the large basins, they are capable of containing mineralizations associated with some of their formations (Paleogene of the Basin of Aquitaine etc), but they may also cover workable uranium deposits. It is possible that, in the not to distant future access may be gained to such ores in particular cases. On this basis it does not seem unreasonable to reckon with the discovering of new resources of an order of magnitude between half and the same as those already found. (author)

  20. Statistical data of the uranium industry

    International Nuclear Information System (INIS)

    1976-01-01

    Historical facts and figures of the uranium industry through 1975 are compiled. Areas covered are ore and concentrate purchases; uranium resources; distribution of $10, $15, and $30 reserves; drilling statistics; uranium exploration expenditures; land holdings for uranium mining and exploration; employment; commercial U 3 O 8 sales and requirements; and processing mills

  1. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  2. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  3. Utilizing the geochemical data from the National Uranium Resource Evaluation (NURE) program: an evaluation of the Butte quadrangle, Montana

    International Nuclear Information System (INIS)

    Van Eeckhout, E.M.

    1980-12-01

    Some 1370 water and 1951 sediment samples were collected from 1994 locations in the Butte quadrangle, Montana, in 1976 and 1977 by the University of Montana for the Los Alamos Scientific Laboratory (LASL). The LASL analyzed the water samples for uranium and the sediment samples for uranium plus 42 additional elements. The data were then released to the Montana College of Mineral Science and Technology (MCMS and T), which was responsible for the evaluation of the uranium data. The data have subsequently been released by the LASL in an open-file report (Broxton, 1980). Statistical evaluations of the data were undertaken for uranium, copper, lead, zinc, manganese, gold, and silver. The uranium evaluations indicated certain areas in the western part of the quadrangle to be favorable for further investigation (particularly along the Rock Creek), as well as anomalous areas just north of Anaconda. The entire Boulder Batholith area had a high uranium background, but there didn't appear to be any particular site in this area that might be worth pursuing. The multielement evaluations confirmed the known base and precious metal provinces within the quadrangle. A methodology for evaluating data tapes from the National Uranium Resource Evaluation (NURE) program was developed and presented throughout this report. This methodology could be developed further to define areas worth exploring for commodities other than uranium

  4. World uranium supply and demand

    International Nuclear Information System (INIS)

    Patterson, J.A.

    1980-01-01

    The role of nuclear energy is under increasing scrutiny and uncertainty. None the less, there will be an increasing need for expansion of uranium supply to fuel committed reactors. Longer-term demand projections are very uncertain. Improved knowledge of the extent of world resources and their availability and economics is needed to support planning for reactor development, especially for breeder reactors, and for fuel-cycle development, especially enrichment, and reprocessing and recycle of uranium and plutonium. Efforts to date to estimate world uranium resources have been very useful but have largely reflected the state of available knowledge for the lower cost resources in regions that have received considerable exploration efforts. The IUREP evaluation of world resources provides an initial speculative estimate of world resources, including areas not previously appraised. Projections of long-range supply from the estimated resources suggest that the high-growth nuclear cases using once-through cycle may not be supportable for very long. However, additional effort is needed to appraise and report more completely and consistently on world resources, the production levels attainable from these resources, and the economic and price characteristics of such production. (author)

  5. The uranium supply strategy of China

    International Nuclear Information System (INIS)

    Gao, S.

    2014-01-01

    Currently there are 28 units of nuclear power plants (NPPs) under construction in China. Most of these plants will be put into operation sequentially in a couple years. The paper will present the operational and construction status of NPPs in China. As the reactor fleet increases, the requirement for uranium will also substantially increase. Due to declining air quality, as atmospheric pollution spreads rapidly from northern parts to southern parts of China, the option to develop nuclear power has become the highest priority. Uranium demand will be the key to support the expanded nuclear power in the future. Current and future requirements of uranium and the envisaged supply strategy will be discussed. Domestic production is seen as one of the channels to meet the increased requirement. As the uranium price remain low, there will be limited the expansion of domestic production in the short term. The exploration of economic resources is being promoted. Decreasing production costs is mandated in operations due to low uranium prices at present. Development of overseas uranium resources is another channel to supply for the NPPs. Through acquisition of uranium mining projects, advanced uranium projects and exploration projects, China can meet the requirement of NPPs in the long-term. Joint venture partnership is also flexible option for developing uranium resources overseas. Purchasing uranium in the market is the third option. Complementing the supply by domestic production and overseas development, purchase of uranium product in the market is a simple and easy option. Advantages and disadvantages of these three channels and how these can be combined into an integrated strategy of supply and the proprotionate weightage of each channel for the potential future supply of uranium to the NNP fleet will be discussed. (author)

  6. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Oman

    International Nuclear Information System (INIS)

    1977-11-01

    The geology of Oman is unlikely to lie favourable for uranium occurrence being mainly of marine sedimentary origin. No exploration for uranium has been reported or is planned. The Speculative Potential is placed in the category of less than 1000 tonnes uranium. (author)

  8. Summarizing of new techniques in uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Wang Delin; Zhang Fei; Su Yanru; Zeng Yijun; Meng Jin

    2010-01-01

    According to character of national resources and uranium mining and metallurgical science and technology members research achievements, new techniques in ten scientific research area of in-situ leaching, heap leaching, multi-metal comprehensive recovery, bio-metallurgy etc. for 10 years is introduced in this paper. The level of innovation ability is shown by technical index, resources recovery and reduction capital cost etc. datum. The application bound of natural uranium resource is enlarged and production ability of national uranium is increased. It is put forward renovation and development ideas for uranium mining and metallurgy. (authors)

  9. Uranium supply and demand. Proceedings of an international symposium held by the Uranium Institute in London, June 15-17, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J [ed.

    1976-01-01

    The symposium received and discussed papers on uranium production in South Africa, Australia, North America and other countries (excluding USSR, Eastern Europe and China) with substantial uranium resources, and on uranium demand. All aspects of the subject were covered, including the historical development of the uranium mining and production industry in the different countries, resources, forecasts of supply and demand, costs, prices, economics, and government policies in relation both to the control of production and to the development of nuclear power program.

  10. Case study of forecasting uranium supply and demand

    International Nuclear Information System (INIS)

    Noritake, Kazumitsu

    1992-01-01

    PNC collects and analyzes information about uranium market trend, world uranium supply and demand, and world uranium resources potential in order to establish the strategy of uranium exploration. This paper outlines the results obtained to forecast uranium supply and demand. Our forecast indicates that 8,500 tU, accounting for one-sixth of the demand in the year 2001, must be met by uranium produced by mines to be newly developed. After 2019, demand cannot be met by the 123 mines currently in operation or expected to have gone into production by this year. The projected shortage must therefore be covered by uranium to be newly discovered. To preclude this occurrence, uranium exploration will have to be steadily continued in order to ensure future new uranium resources, to alleviate anxiety about future supply, and to prevent sharp price hikes. (author)

  11. Security of supply of uranium as nuclear fuel

    International Nuclear Information System (INIS)

    Guzman Gomez-Selles, L.

    2011-01-01

    When we talk about Sustainability related to nuclear fuel, the first concern that comes to our mind is about the possibility of having guarantees on the uranium supply for a sufficient period of time. In this paper we are going to analyze the last Reserves data published by the OCD's Red Book and also how the Reserve concept in fully linked to the uranium price. Additionally, it is demonstrated how the uranium Security of supply is guaranteed for, at least, the next 100 years. finally, some comments are made regarding other sources of nuclear fuel as it is the uranium coming from the phosphates or the thorium. (Author)

  12. Development of Uranium Mining by ISL in Kazakhstan

    International Nuclear Information System (INIS)

    Demekhov, Yuriy; Gorbatenko, Olga

    2014-01-01

    In the second half of the 60s, feasibility of Uranium production from low-grade ores by in-situ leaching (ISL) was proved. This radically changed the situation in the raw material base in Kazakhstan. Rapid development of uranium mining by ISL in Kazakhstan caused by factor of availability of large sandstone type uranium deposits. Kazakhstan continuously carries out exploration and prospecting to expand the resource base of uranium. In 2011 and 2012 uranium resources increased by more than 110 thousand tU and 40690 tU was mined. Resource growth is 2.5 times higher than the depleting. Since 2012 Kazatomprom is prospecting for new uranium sandstone deposits in southern Kazakhstan by efforts of Volkovgeologia and at their own expense. The program lasts until 2030. Prior to 2015, allocated more than 20 mils. U.S. dollars in prospecting works. In near future the discovery of new deposits is expected.

  13. Adapting to e-books

    CERN Document Server

    Miller, William

    2013-01-01

    Electronic books are now having a major impact on library collections. This book provides models for acquisitions policies and reports on several surveys of faculty and librarian attitudes toward e-books. It discusses issues in acquiring cataloguing and collection development regarding this important new library resource.Its subject matter deals with the different types of e-books, statistical data available for e-book usage, the development of e-book collections, learning environments, integrating e-books into local catalogues, acquisitions and usage monitoring of e-books.Thi

  14. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    Underhill, D.H.

    2002-01-01

    Even with a modest forecast of nuclear power growth for the next 25 years, it is expected that the world uranium requirements will increase. This analysis indicates uranium mine production will continue to be the primary supply of requirements through 2020. Secondary supplies, such as low enriched uranium blended from highly enriched uranium, reprocessing of spent fuel would have to make-up the remaining balance, although the contribution of US and Russian strategic stockpiles is not well known at this time. (author)

  15. The Kintyre uranium project

    International Nuclear Information System (INIS)

    Larson, B.

    1997-01-01

    The Kintyre Uranium Project is being developed by Canning Resources Pty Ltd, a subsidiary of Rio Tinto (formerly CRA). The work on the project includes the planning and management of a number of background environmental studies. The company has also commissioned studies by external consultants into process technologies, mining strategies and techniques for extracting the uranium ore from the waste rock. In addition, Canning Resources has made a detailed assessment of the worldwide market potential for Australian uranium in the late 1990s and into the 21st century. The most significant factor affecting the future of this project is the current product price. This price is insufficient to justify the necessary investment to bring this project into production

  16. Ranger uranium environmental enquiry

    International Nuclear Information System (INIS)

    1976-07-01

    The submission is divided into three sections. Section A considers the international implications of the development of uranium resources including economic and resource aspects and environmental and social aspects. Section B outlines the government's position on export controls over uranium and its effect on the introduction of nuclear power in Australia. Section C describes the licensing and regulatory functions that would be needed to monitor the environmental and health aspects of the Ranger project. (R.L.)

  17. Overseas uranium exploration by PNC

    International Nuclear Information System (INIS)

    Nagashima, Reiji; Iida, Yoshimasa; Shigeta, Naotaka; Takahashi, Osamu; Yamagishi, Akiko; Miyada, Hatsuho; Kobayashi, Takao

    1998-01-01

    Japan entirely depends on overseas countries for uranium resources for its nuclear electric power generation due to the lack of domestic resources. In order to secure a steady supply of natural uranium, Japanese government has implemented a long-term procurement policy through purchase contracts by private sectors, subsidizing private sectors' exploration and initial stage exploration outside the reach of private sectors' activity by PNC (Power Reactor and Nuclear Fuel Development Corporation). The subsequent long slump in the price of uranium, however, led most of Japanese private sectors to discontinue their exploration activity. Upon this situation, PNC has pursued a little more advanced stage exploration in addition to basic research and initial stage exploration and has improved its exploration techniques to enable the discovery of deep-seated uranium ore deposits. As the result, PNC has acquired significant uranium exploration tenements and interests similar to those owned by major uranium companies such as Cameco and Cogema. PNC has also contributed to discovery of new uranium deposits. In this report, the history of PNC's activities and its role in the long-term uranium procurement policy are reviewed and it is also described about the outcome thorough its activities and future exploration trend and the tasks. (author)

  18. Research on uranium resource models. Part IV. Logic: a computer graphics program to construct integrated logic circuits for genetic-geologic models. Progress report

    International Nuclear Information System (INIS)

    Scott, W.A.; Turner, R.M.; McCammon, R.B.

    1981-01-01

    Integrated logic circuits were described as a means of formally representing genetic-geologic models for estimating undiscovered uranium resources. The logic circuits are logical combinations of selected geologic characteristics judged to be associated with particular types of uranium deposits. Each combination takes on a value which corresponds to the combined presence, absence, or don't know states of the selected characteristic within a specified geographic cell. Within each cell, the output of the logic circuit is taken as a measure of the favorability of occurrence of an undiscovered deposit of the type being considered. In this way, geological, geochemical, and geophysical data are incorporated explicitly into potential uranium resource estimates. The present report describes how integrated logic circuits are constructed by use of a computer graphics program. A user's guide is also included

  19. Foreword - Physicochemical and technological aspects of processing of uranium industry wastes in Tajikistan

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    During recent years, the attention of many researchers has turned to decontamination of the territories where radioactive substance extraction took place in the past. As of today, radioactive waste has not been utilized, but now they can be secondarily reprocessed, for the purpose of uranium extraction and waste utilization, since uranium prices are increasing. There is a lack of data in the literature on secondary reprocessing technologies of uranium industry wastes in Tajikistan. Each uranium tailing pile requires an individual secondary reprocessing waste technology, since they were formed as a result of different reprocessing methods (acid, soda leaching) and from different ore compositions. Their ph medium and storage conditions are different. This fact led the authors to publish the present edition of this book. The basic direction of the book is in developing manufacturing fundamentals of uranium industry waste reprocessing in Tajikistan, with specific attention on practical applications of technological investigation results. (author)

  20. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    Science.gov (United States)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.

  1. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  2. Status of uranium in Brazil

    International Nuclear Information System (INIS)

    Majdalani, S.A.; Tavares, A.M.

    2001-01-01

    Uranium exploration in Brazil was started in 1952 by the Brazilian National Research Council. This led to the discovery of the first uranium deposits in Pocos de Caldas and Jacobina. These activities was later continued by the National Energy Commission/Comissao Nacional de Energia Nuclear (CNEN), formed in 1962. The founding of NUCLEBRAS at the end of 1974 marked the increasing effort of the country's uranium exploration programme. At this time only the Pocos de Caldas deposit was known with measurable resources. Due to the reorganization of the Brazilian nuclear programme in 1988, all uranium exploration in the country was stopped. By then, eight areas with uranium reserves has been identified. Brazil uranium resources in the RAR category at ≤ $80/kg U cost range are estimated to be 162,000 tonnes U, out of which 56,100 tonnes are in the ≤ $40/kg U cost range. Additional resources in the EAR-I category and the cost range ≤ 80/kg U are in the order of 100,200 tonnes U. The first production of uranium in Brazil, at the Osamu Utsumi mine (Pocos de Caldas deposit), started in 1982. Because of escalated costs and reduced demand, this activity was put on stand-by status between 1990 and 1992. The mine was restarted in 1993, but was stopped again in October 1995. The cumulative production of the mine to 1996 was 1241 tonnes U. The Lagoa Real deposit is currently being prepared as a new producing mine. (author)

  3. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    International Nuclear Information System (INIS)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems

  4. Digitization of uranium deposit information in basin. A new strategy of ISL sandstone-type uranium deposits exploration

    International Nuclear Information System (INIS)

    Tan Chenglong

    2006-01-01

    The discovered ISL sandstone-type uranium deposits in the entire world are mostly blind deposits, many of them occur in bleak desert, gobi desert, and semi-hilly land area. Exploration methods for these deposits mainly depend on great and systematic drilling. There are many large-medium size Meso-Cenozoic sedimentary basins in northern China, and over twenty of them are thick overburden basins which are mostly the virgin land for ISL sandstone-type uranium deposit. Due to the comprehensive national power, geological background, uranium exploration ability, great and systematic drilling is not favorable for prospecting ISL sandstone-type uranium deposit in China. According to the exploration and prospecting experiences for mineral ore bodies at home and abroad, uranium information mapping based on geochemical survey of the basins is a new strategy for ISL sandstone-type uranium deposits. It is an economic, practical, fast and effective method, and has been manifested by the performing information digitization for oil and gas resources, gold mineral resources in China and the mapping of uranium information for whole Europe continent. (authors)

  5. Uranium in Canada: 1982 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1983-09-01

    Estimates of Canada's uranium resources for 1982 remained essentially unchanged from those of 1980. However, the economic conditions facing the industry have changed greatly during the past few years as production costs continued to rise without corresponding increases in uranium prices. As a result, a smaller portion of Canada's uranium resources is of current economic interest. Total resources amount to 573 000 tonnes of uranium. Just over 10% of this uranium will be required domestically during the next 30 years to fuel the more than 15 000 megawatts of nuclear power capacity now operating or committed for operation in Canada by 1993. In 1982 seven uranium producers in Canada, directly employing 4800 people, produced concentrates containing 8075 tonnes of uranium. Based on currently committed expansion plans, Canada's projected annual production capability could grow to some 12 000 tonnes of uranium by 1986. Canadian producers shipped 7643 tonnes of uranium valued at some $838 millon in 1982. As of January 1, 1983, outstanding uranium export commitments amounted to 60 000 tonnes or roughly 10% of the total Canadian uranium resources mentioned above. Japan has been Canada's most important single customer in the past decade, receiving about 34% of Canada's total exports since 1972. Most of the remaining exports have gone to the European Economic Community (33%), other countries in Western Europe (18%), and the United States (15%). Substantial efforts in uranium exploration that have been continued, especially in northern Saskatchewan, where two-thirds of the $71 million total exploration expenditures of 1982 were incurred. This continued effort has led to the discovery of a number of important deposits over the past few years which could be developed if market conditions improve. It is estimated that total Canadian production capability could reach 15 000 tonnes of uranium annually by the mid-1990s

  6. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  7. Reviews CD-ROM: Scientific American—The Amateur Scientist 3.0 Book: The New Resourceful Physics Teacher Equipment: DynaKar Book: The Fundamentals of Imaging Book: Teaching Secondary Physics Book: Novel Materials and Smart Applications Equipment: Cryptic disk Web Watch

    Science.gov (United States)

    2012-05-01

    WE RECOMMEND Scientific American—The Amateur Scientist 3.0 Article collection spans the decades DynaKar DynaKar drives dynamics experiments The Fundamentals of Imaging Author covers whole imaging spectrum Teaching Secondary Physics Effective teaching is all in the approach Novel Materials and Smart Applications/Novel materials sample pack Resources kit samples smart materials WORTH A LOOK Cryptic disk Metal disk spins life into discussions about energy, surfaces and kinetics HANDLE WITH CARE The New Resourceful Physics Teacher Book brings creativity to physics WEB WATCH Apps for tablets and smartphones can aid physics teaching

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Thailand. February-March 1981

    International Nuclear Information System (INIS)

    Inazumi, Satoru; Meyer, John H.

    1981-01-01

    The I.U.R.E.P. Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1,500 to 38,500 tonnes U. This range is higher than the previous assessment in Phase I because the Mission recognizes additional favourable geological environments. At the same time, the untested and therefore the unknown degree of mineralization in some of these environments is acknowledged. Past exploration, dating from 1977, has been mainly confined to ground surveys of a small mineralized area and to airborne gamma-ray surveys of two small test areas. Ground reconnaissance work and prospecting has recognized some mineralization in several different host rocks and environments. Geological environments considered by the Mission to be favourable for uranium occurrences include sandstone of Jurassic to Triassic age, tertiary sedimentary basins (northern Thailand), tertiary sedimentary basins (southern Thailand), associated with fluorite deposits, granitic rocks, black shales and graphitic slates of the Paleozoic, associated with sedimentary phosphate deposits and associated with monazite sands. It is recommended that exploration for uranium resources in Thailand should continue. Planners of future exploration programmes should take the following activities into consideration. Rapid extension of carborne surveys to cover, without excessive overburdening, all areas having sufficient road density. Airborne gamma-ray surveys should be carried out in certain selected areas. In the selection of such areas, the considerable higher cost factor attendant on this method of surveying dictates that airborne surveys should only be carried out where carborne surveys prove ineffective (lack of adequate road network.) and where the topography is sufficiently even to assure a low but safe clearance and meaningful results. In certain areas, including the Khorat Plateau and the Tertiary Basins in northern and southern Thailand, there is a need for widely spaced

  9. Are the kids alright? Review books and the internet as the most common study resources for the general surgery clerkship.

    Science.gov (United States)

    Taylor, Janice A; Shaw, Christiana M; Tan, Sanda A; Falcone, John L

    2018-01-01

    To define resources deemed most important to medical students on their general surgery clerkship, we evaluated their material utilization. A prospective study was conducted amongst third-year medical students using a 20-item survey. Descriptive statistics were performed on the demographics. Kruskal-Wallis and Mann-Whitney analyses were performed on the Likert responses (α = 0.05). Survey response was 69.2%. Use of review books and Internet was significantly higher compared to all other resources (p Internet source (39.1%). 56% never used textbooks. Analyses of surgery subject exam (NBME) results or intended specialty with resources used showed no statistical relationship (all p > 0.05). Resources used by students reflect access to high-yield material and increased Internet use. The Internet and review books were used more than the recommended textbook; NBME results were not affected. Understanding study habits and resource use will help guide curricular development and students' self-regulated learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Ore-processing technology and the uranium supply outlook

    International Nuclear Information System (INIS)

    James, H.E.; Simonsen, H.A.

    1978-01-01

    The subject is covered in sections, as follows: the resource base (uranium content of rocks, regional distribution of Western World uranium); ore types (distribution of Western World uranium, by ore types, response to ore-processing); constraints on expansion in traditional uranium areas (defined for this paper as the sandstone deposits of the U.S.A. and the quartz-pebble conglomerates of the Witwatersrand and Elliot Bay areas, all other deposits being referred to as new uranium areas). Sections then follow dealing in detail with the processing of deposits in U.S.A., South Africa, Canada, Niger, Australia, South West Africa, Greenland. More general sections follow on: shale, lignite and coal deposits, calcrete deposits. Finally, there are sections on: uranium as a by-product; uranium from very low-grade resources; constraints on expansion rate for production facilities. (U.K.)

  11. Uranium development in Nigeria

    International Nuclear Information System (INIS)

    Karniliyus, J.; Egieya, J.

    2014-01-01

    Nigeria uranium exploration started in 1973. Uranium was found in seven states of the country; Cross River, Adamawa, Taraba, Plateau, Bauchi, Kogi and Kano. Three government agencies were involved. At the end of the various exploration campaigns in 2001, the uranium reserve was estimated at about 200 t U. The Grade ranges from 0.63% - 0-9% at a vertical depth between 130 – 200 m. Currently, the Nigeria Atomic Energy Commission activated in 2006 is charged with the responsibility among others to prospect for and mine radioactive minerals. The main aim of this poster presentation is to review the development of uranium in Nigeria with a view to encourage local and international investors to develop and exploit these deposits. Nigeria is located on latitude 100 N and longitude 80 E surrounded in the north by Niger and Chad, in the east by Cameroun and in the west by the Benin Republic. Available data indicated the viability of mineral investment in the Nigerian uranium resources. With the current economic reforms and investment incentives in Nigeria, interested investors are highly welcome to take advantage of developing these mineral resources. (author)

  12. Some new tendencies in uranium exploration of Russia

    International Nuclear Information System (INIS)

    Chen Zuyi

    2005-01-01

    Russia is a country with abundant uranium resources. However, the uranium production in Russia can meet neither the recent nor the long term demands of nuclear power in the country. In addition, the market price of uranium product during the last two years has been going up continuously. The above facts force Russia to adjust its policy for the exploration and the development of uranium resources in the country, such as to strengthen the prospecting and exploration of the unconformity-related uranium deposit, to try to expand new target stratigraphic horizons of paleo-valley type sandstone-hosted uranium deposit and to discover new uranium-mineralized areas, to do economic-technical re-evaluation of previously explored uranium deposits, and to discover new ore-concentrated regions in known U-metallogenic belts. In order to guarantee the successful performance of the above policy, numerous scientific-technological measures have been taken including intensified research on regional metallogeny of uranium. Based on the above situation, the author proposes some corresponding suggestions for uranium prospecting and exploration in China in the future. (authors)

  13. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  14. Recent developments in uranium resources and supply. Proceedings of a technical committee meeting held in Vienna, 24-28 May 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In recent years substantial uncertainties regarding uranium supply have made it very difficult for both uranium producers and users to plan for the future. In 1992 uranium production met only about 63 percent of reactor requirements. This resulted in a very unstable supply/demand balance where inventory drawdown (supplemented by minor amounts of reprocessing) filled the 20,960 tonne shortfall. The IAEA convened this Technical Committee meeting to take advantage of the new opportunities to collect and analyse information related to the future supply and demand balance and to help reduce uncertainties regarding the relationship. The meeting was effective in bringing together experts from all regions to share, exchange and disseminate information regarding uranium related activities. This meeting on Recent Developments in Uranium Resources and Supply was held in Vienna from 24 to 26 May 1993. It was attended by 47 participants from 23 countries. Twenty-one papers were presented. Contributions from China, the Czech Republic, India, Kazakhstan, Mongolia, Romania and the Russian Federation represent new information in this field. Refs, figs and tabs.

  15. The Uranium Institute: the first ten years

    International Nuclear Information System (INIS)

    1985-01-01

    As noted in its Memorandum of Association, the Uranium Institute was founded: to promote the use of uranium for peaceful purposes; to conduct research into uranium requirements, uranium resources and uranium production; to consult for these purposes with governments and other bodies; and to provide a forum for the exchange of information on these matters. A brief account of Institute organisation and activities during the period 1975-1985 is given. (author)

  16. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    International Nuclear Information System (INIS)

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan

  17. Changes and events in uranium deposit development, exploration, resources, production and the world supply-demand relationship. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-09-01

    This report consists of the proceedings of the Technical Committee Meeting on Recent Changes and Events in Uranium Deposit Development, Exploration, Resources, Production and the World Supply/Demand Relationship, held in co-operation with the OECD Nuclear Energy Agency (OECD/NEA) in Kiev, Ukraine, from 22 to 26 May 1995. Some of the information from this meeting was also used in preparation of the 1995 edition of ''Uranium - Resources, Production and Demand'' a joint report by the OECD/NEA and the IAEA. At the Beginning of 1995 there were 432 nuclear power plants in operation with a combined electricity generating capacity of 340 GW(e). This represents nearly a 100% increase over the last decade. In 1995 over 2228 TW·h of electricity were generated, equivalent to about 17% of the world's total electricity. To achieve this, about 61,000 t U were required as nuclear fuel. For about a decade and a half uranium production and related activities have been decreasing because of declining uranium prices. For many participants in the nuclear industry there has been little interest in uranium supply because of the oversupplied market condition. The declining production led to the development of a supply and demand balance were production is currently meeting a little over 50% of reactor requirements and the excess inventory is being rapidly drawn down. This very unstable relationship has resulted in great uncertainty about the future supply or uranium. One of the objectives of this Technical Committee meeting was to bring together specialists in the field of uranium supply and demand to collect information on new developments. This helps provide a better understanding of the current situation, as well as providing information to plan for the future. Refs, figs, tabs

  18. National Uranium Resource Evaluation: Albuquerque Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Albuquerque 1 0 x 2 0 Quadrangle, New Mexico designated as favorable, in order of decreasing relative favorability, include: (1) the Westwater Canyon and Brushy Basin Members of the Morrison Formation; (2) the Todilto Limestone of Late Jurassic age; (3) the Dakota Sandstone of Early and Late Cretaceous age; (4) the Ojo Alamo Sandstone of Tertiary age on the eastern side of the San Juan Basin; (5) the Galisteo Formation of Tertiary age within the Hagan Basin, in the eastern part of the Albuquerque Quadrangle; and (6) the Menefee Formation of Late Cretaceous age in the eastern part of the San Juan Basin. Favorability of the Westwater Canyon and Brushy Basin is based on the presence of favorable facies and sandstone-to-shale ratios, the presence of large masses of detrital and humic organic matter in sandstone host rocks, low to moderate dip of host beds, high radioactivity of outcropping rocks, numerous uranium occurrences, and the presence of large subsurface uranium deposits. The Todilto Limestone is considered favorable because of the presence of numerous medium to small uranium deposits in association with intraformational folds and with detrital and humic organic matter. The Dakota Sandstone is considered favorable only in areas within the Grants mineral belt where Tertiary faulting has allowed movement of uranium-bearing groundwater from the underlying Morrison Formation into organic-rich sandstone in the basal part of the Dakota. The Menefee Formation is locally favorable in the area of La Ventana Mesa where the control for known uranium deposits is both structural and stratigraphic. The Ojo Alamo Sandstone and the Galisteo Formations are considered favorable because of favorable facies, the presence of organic matter and pyrite; and low- to medium-grade mineral occurrences

  19. An analytic uranium sources model

    International Nuclear Information System (INIS)

    Singer, C.E.

    2001-01-01

    This document presents a method for estimating uranium resources as a continuous function of extraction costs and describing the uncertainty in the resulting fit. The estimated functions provide convenient extrapolations of currently available data on uranium extraction cost and can be used to predict the effect of resource depletion on future uranium supply costs. As such, they are a useful input for economic models of the nuclear energy sector. The method described here pays careful attention to minimizing built-in biases in the fitting procedure and defines ways to describe the uncertainty in the resulting fits in order to render the procedure and its results useful to the widest possible variety of potential users. (author)

  20. Principles of modern uranium exploration

    International Nuclear Information System (INIS)

    King, J.W.

    1974-01-01

    The Athens Symposium followed the recommendations of a panel meeting in April 1970 on uranium exploration geology. It was attended by 220 participants representing 40 countries and two international organizations; 43 papers were presented. An overview of the supply challenge of uranium was given by Mr. Robert D. Nininger, of the USAEC, who acted as chairman of the Symposium. He outlined the major topics and problems to be discussed during the conference, with the aim of meeting this challenge: 'Uranium deposits in sandstone and quartz pebble conglomerates presently represent the preponderance of uranium resources. Yet there is a question whether geologic limitations on the occurrence of such deposits may preclude their discovery in numbers sufficient to meet the eventual resource needs. New types of deposits, low in grade but larger in size, representing the equivalent of the porphyry copper deposits, may supply the bulk of future resource additions. Further investigation is needed on the characteristics of such deposits and the means of their identification. Similarly, additional investigation is needed to determine whether limits on the more conventional deposits do, in fact, exist, and, if not, what advanced approaches to rapid identification of additional such deposits may be employed'

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Afghanistan

    International Nuclear Information System (INIS)

    1976-12-01

    Although Afghanistan has an extent of some 650,065 square kilometres, only a very small proportion of it has been surveyed for uranium, and that only at the preliminary reconnaissance stage. Earlier work by bi-lateral teams identified a number of small uranium anomalies and occurrences and more recently (1974-75) an IAEA geologist discovered evidence of uranium mineralisation in the Neogene - Lower Pleistocene continental sediments of the Jalalabad Basin to the east of Kabul. The I.A.E.A. expert outlined three areas totalling 20,000 km where systematic uranium exploration would be justified. Up to the present no positive programme has been agreed. On very tenuous evidence a Speculative Potential of 2000 tonnes U 3 O 8 is suggested for Afghanistan. (author)

  2. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    International Nuclear Information System (INIS)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2 0 Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium

  3. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  4. Social Licensing in uranium mining: Experiences from the IAEA review of planned Mukju River Uranium Project, Tanzania

    International Nuclear Information System (INIS)

    Schnell, Henry

    2014-01-01

    The IAEA Uranium Production Site Appraisal Team (UPSAT) programme is designed to assist Member States to enhance the operational performance and the occupational, public and environmental health and safety of uranium mining and processing facilities across all phases of the uranium production cycle. These include exploration, resource assessment, mining, processing, waste management, site management and remediation, and final closure.

  5. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Honduras

    International Nuclear Information System (INIS)

    1977-08-01

    In 1953, the U.S. Atomic Energy Commission, on invitation of the government of Honduras, conducted uranium reconnaissance in parts of the country. The survey consisted of scintillometric examination of all formations, veins, dikes, sills and contacts along more than 1,500 km of road. Additionally, 17 mines and prospects were examined, but in no location were uranium occurrences found. The largest and most consistently radioactive deposit noted was a body of volcanic ash at Santa Rosa de Copan, a sample of which assayed 15 ppm U 3 O 8 . A uranium prospect has been described from the Yatnala area in northwest Honduras. Uraninite and oxidation products occur in association with copper and mercury minerals in veinlets as well as disseminations in a Lower Cretaceous limestone conglomerate, the llama Formation. The llama Formation is the conglomeratic facies of the Atima (limestone) Formation, both of which are in the Yojoa Group. At the time of the U. N. development program survey in May, 1970, no uranium deposits were known in Honduras. Information is not available on current exploration in Honduras. The state owns most mineral deposits but may grant rights for exploration and exploitation of the subsoil. Mineral and surface titles are separate. Deposits of uranium and its salts, thorium and similar atomic energy substances are reserved to the state. Foreign citizens and companies, with some exceptions, may acquire mineral rights. Several groups of sediments might be of interest for uranium exploration. The Todos Santos redbeds and the El Plan Formation are both shallow marine and hence may contain marginal marine facies favorable for uranium. In the southern and central Cordillera, the Valle de Angeles sediments, particularly the sandstones, may be of interest. The contacts between Permian granites and schists (Paleozoic) may also warrant attention. Lacking further information on which to base a more optimistic outlook, it is estimated that the uranium potential of

  7. Australia's uranium export potential

    International Nuclear Information System (INIS)

    Mosher, D.V.

    1981-01-01

    During the period 1954-71 in Australia approximately 9000 MT of U 3 O 8 was produced from five separate localities. Of this, 7000 MT was exported to the United Kingdom and United States and the balance stockpiled by the Australian Atomic Energy Commission (AAEC). Australia's uranium ore reserves occur in eight deposits in three states and the Northern Territory. However, 83% of Australia's reserves are contained in four deposits in lower Proterozoic rocks in the East Alligator River region of the Northern Territory. The AAEC has calculated Australia's recoverable uranium reserves by eliminating estimated losses during the mining and milling of the ores. AAEC has estimated reasonably assured resources of 289,000 MT of uranium at a recovery cost of less than US$80 per kilogram uranium. The companies have collectively announced a larger ore reserve than the Australian Atomic Energy Commission. This difference is a result of the companies adopting different ore reserve categories. On August 25, 1977, the federal government announced that Australia would develop its uranium resources subject to stringent environmental controls, recognition of Aboriginal Land Rights, and international safeguards. Australian uranium production should gradually increase from 1981 onward, growing to 10,000 to 15,000 MT by 1985-86. Further increases in capacity may emerge during the second half of the 1980s when expansion plans are implemented. Exploration for uranium has not been intensive due to delays in developing the existing deposits. It is likely that present reserves can be substantially upgraded if more exploration is carried out. 6 figures, 3 tables

  8. Children's Ecology Books.

    Science.gov (United States)

    Lussenhop, Martha

    Selected for this listing of children's books are fiction and non-fiction books which add to an understanding of ecology, broadly considered here as the study of the interrelationships of organisms to each other and their environment. General ecology, natural resources, man and his environment, evolution and adaptation, appreciation, survival,…

  9. Development and prospect of china uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Que Weimin; Wang Haifeng; Niu Yuqing; Gu Wancheng; Zhang Feifeng

    2007-01-01

    The development of industry of uranium mining and metallurgy in China has been reviewed generally, emphasizing on investigation approaches and application levels of uranium mining technologies such as in-situ leaching, heap leaching, stope leaching: on the basis of analysis on status of uranium mining and metallurgy and problems existed, also considering the specific features of deposit resources, the development orientation of uranium mining and metallurgy in China is pointed out. The industry of China uranium mining and metallurgy is faced to new opportunity of development and challenge in 21st century, the only way to realize sustainable development of uranium mining and metallurgy and harmonious development between economy and environment is to develop new technology on mining, ore beneficiation and metallurgy, increase the utilization level of uranium resources, low down impact on environment caused by mining and metallurgy. (authors)

  10. Depleted uranium: an explosive dossier

    International Nuclear Information System (INIS)

    Barrillot, B.

    2001-01-01

    This book relates the history of depleted uranium, contemporaneous with the nuclear bomb history. Initially used in nuclear weapons and in experiments linked with nuclear weapons development, this material has been used also in civil industry, in particular in aeronautics. However, its properties made it interesting for military applications all along the 'cold war'. (J.S.)

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: People's Republic of China

    International Nuclear Information System (INIS)

    1977-10-01

    China with an area close to 10,000,000 sq km and a fifth of the world's population, has a history of mining and, in fact is quite self sufficient in most of it's needs for the more basic mineral products.However, there is a dearth of knowledge of its resources of uranium. One can however, make the assumption that geologically, there are probably several areas that contain the combination of favourable host rocks and source. The speculative potential of China is estimated to be in Category 5, 100,000 to 500,000 tonnes U. (author)

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bahrain

    International Nuclear Information System (INIS)

    1977-11-01

    Bahrain consists of limestone, sandstone and marl of Cretaceous and Tertiary ages. The potential for discoveries of uranium is very limited and thus the Speculative potential is placed in the category of less than 1000 tonnes uranium. (author)

  13. Teacher's Resource Book for Balloons and Gases. Grade 6. Revised. Anchorage School District Elementary Science Program.

    Science.gov (United States)

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the physical and chemical properties of gases. The unit begins with an investigation of acids and bases. Students then generate carbon dioxide, oxygen, and hydrogen, and investigate the properties of each. The unit culminates with an activity involving an unknown gas. Students conduct tests to…

  14. Uranium in phosphate rocks and future nuclear power fleets

    International Nuclear Information System (INIS)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2014-01-01

    According to almost all forward-looking studies, the world’s energy consumption will increase in the future decades, mostly because of the growing world population and the long-term development of emerging countries. The effort to contain global warming makes it hard to exclude nuclear energy from the global energy mix. Current light water reactors (LWR) burn fissile uranium (a natural, finite resource), whereas some future Generation IV reactors, as Sodium fast reactors (SFR), starting with an initial fissile load, will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in LWR. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. This paper discusses the correspondence between the resources and the nuclear power demand as estimated by various international organisations. Uranium is currently produced from conventional sources. The estimated quantities of uranium evolve over time in relation to their rate of extraction and the discovery of new deposits. Contrary to conventional resources, unconventional resources – because they are hardly used – also exist. These resources are more uncertain both in terms of their quantities and the feasibility of recovering them. Recovering uranium from seawater would guarantee a virtually infinite resource of nuclear fuel, but its technical and economic feasibility has yet to be demonstrated, and huge advances need to be achieved in this direction. According to different publications on phosphate reserves, the potential amount of uranium recoverable from phosphates can be estimated at around 4 MtU. Furthermore, the production of uranium as a by-product of phosphate is determined by the world production of

  15. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  16. E-Book Purchasing Best Practices for Academic Libraries

    OpenAIRE

    Simon, Jason C.

    2014-01-01

    The article provides a guideline for purchasing of electronic books (e-books) in relevance to academic libraries. Topics include advantages and disadvantages of different acquisition routes such as aggregators, access models and ownership of e-books, and access management systems such as catalogs and electronic resource management systems (ERMs). File formats of e-books, and licensing and copyright issues are discussed along with information on open-access digital resources.

  17. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  18. Subjective probability appraisal of uranium resources in the state of New Mexico

    International Nuclear Information System (INIS)

    Ellis, J.R.; Harris, D.P.; VanWie, N.H.

    1975-12-01

    This report presents an estimate of undiscovered uranium resources in New Mexico of 226,681,000 tons of material containing 455,480 tons U 3 O 8 . The basis for this estimate was a survey of expectations of 36 geologists, in terms of subjective probabilities of number of deposits, ore tonnage, and grade. Weighting of the geologists' estimates to derive a mean value used a self-appraisal index of their knowledge within the field. Detailed estimates are presented for the state, for each of 62 subdivisions (cells), and for an aggregation of eight cells encompassing the San Juan Basin, which is estimated to contain 92 percent of the undiscovered uranium resources in New Mexico. Ore-body attributes stated as probability distributions enabled the application of Monte Carlo methods to the analysis of the data. Sampling of estimates of material and contained U 3 O 8 which are provided as probability distributions indicates a 10 percent probability of there being at least 600,000 tons U 3 O 8 remaining undiscovered in deposits virtually certain to number between 500 and 565. An indicated probability of 99.5 percent that the ore grade is greater than 0.12 percent U 3 O 8 suggests that this survey may not provide reliable estimates of the abundance of material in very low-grade categories. Extrapolation to examine the potential for such deposits indicates more than 1,000,000 tons U 3 O 8 may be available down to a grade of 0.05 percent U 3 O 8 . Supplemental point estimates of ore depth and thickness allowed derivative estimates of cost of development, extraction, and milling. 80 percent of the U 3 O 8 is estimated to be available at a cost less than dollars 15/lb (1974) and about 98 percent at less than dollars 30/lb

  19. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  20. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    International Nuclear Information System (INIS)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1 0 x 2 0 NTMS quadrangle, key words, and exploration area

  1. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO 3 , NH 3 , SO 4 , and PO 4 . The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation

  2. Development of uranium industry in Romania

    International Nuclear Information System (INIS)

    Iuhas, Tiberiu

    2000-01-01

    The management of the uranium resources is performed in Romania by the National Uranium Company. The tasks to be done are: 1. management and protection of rare and radioactive metal ores in the exploitation areas; 2. mining, preparation, refining and trading the radioactive ores, as well as reprocessing the uranium stock from the uranium concentrate in the national reserve; 3. performing geologic and technologic studies in the exploitation areas; 4. performing studies and projects concerning the maintenance of the present facilities and unearthing new ores; 5. building industrial facilities; 6. carrying out technological transport; 7. importation-exportation operations; 8. performing micro-production activity in experimental research units; 9. personnel training; 10. medical assistance for the personnel; 11. environment protection. The company is organized as follows: 1.three branches for uranium ore mining, located at Suceava, Bihor and Banat; 2. one branch for geologic survey, located at Magurele; 3. one branch for uranium ore preparation and concentration and for refining uranium concentrates, located at Feldioara; 4. One group for mine conservation, closure and ecology, located at Bucuresti. The final product, sintered powder of UO 2 produced at Feldioara plant, was tested in 1994 by the Canadian partner and met successfully the required standards. The Feldioara plant was certified as supplier of raw material for CANDU nuclear fuel production and as such, Romania is the only authorized producer of CANDU nuclear fuel in Europe and the second in the world, after Canada. Maintaining the uranium production in Romania is justified by the existence of uranium ore resources, the declining of natural gas resources, lower costs per kWh for electric nuclear power as compared to fossil-fuel power production, the possibility for Romania to become an important supplier of CANDU nuclear fuel, the low environmental impact and high costs for total shutdown of activity, high

  3. Uranium resources and their implications for fission breeder and fusion hybrid development

    International Nuclear Information System (INIS)

    Max, C.E.

    1984-01-01

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity

  4. Reguibat calcrete uranium project, Mauritania: Beneficiation upgrades and rapid leaching. A new paradigm for “calcrete” uranium projects?

    International Nuclear Information System (INIS)

    Beeson, Bob; Clifford, Neil; Goodall, Will

    2014-01-01

    Future of the project: • Scoping Study completed in the next two weeks; • Moving into Feasibility Studies: – Measured and Indicated resources; – Detailed beneficiation testing; – Leach testing of uranium concentrates; – Water drilling; – Commence process for Exploitation Permit. • Decision to mine in 12-18 months subject to funding; • Target production early 2017; • Convert known anomalies to achieve a 100Mlb uranium resource

  5. Uranium as a nuclear fuel: availability, economy, sustainability

    International Nuclear Information System (INIS)

    2010-01-01

    In the context of the much cited nuclear renaissance, the presence of the resource uranium not only raises questions about availability, but also places the central demand for sustainability in the limelight. Consideration of economic and environmental aspects of uranium production, e.g. through mining, provides the basis for a possible assessment of this resource. In addition to the crucial question of resource availability, this conference will also discuss its economic aspects and environmental risks.

  6. NDA technology for uranium resource evaluation. Progress report, January 1-June 30, 1980

    International Nuclear Information System (INIS)

    Evans, M.L.

    1981-08-01

    This report describes work performed during the time period from January 1, 1980, to June 30, 1980, on the contract for Nondestructive Nuclear Analysis Technology for Uranium Resource Evaluation in the Safeguards Technology, International Safeguards, and Training Group, Q-1, at Los Alamos National Laboratory. The calculational effort was concentrated on the development of a generalized computer model to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields accurate high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma-ray and spectral gamma-ray logs. The experimental effort focused on the analytical chemistry assay of a series of crushed concrete samples ten from the Department of Energy (DOE) Grand Junction calibration models used to calibrate logging tools employing active neutron interrogation techniques. The results establish the levels of neutron poisons in the test pits. In addition, the outfitting of a Bendix Field Engineering Corporation/DOE logging truck for the field testing of the photoneutron probe is described, as is a sodium iodide passive gamma-ray probe used to verify the absence of obstructions in a borehole and to locate uranium-bearing ore zones

  7. The uranium market and its characteristics

    International Nuclear Information System (INIS)

    Langlois, J.-P.

    1978-01-01

    The subject is covered in sections, entitled as shown. Numerical data are indicated in parenthesis. General characteristics of the uranium market, (enrichment plant variables, fuel requirements of a 1000 MWe power plant); demand pattern (enrichment cost relationships), supply pattern; uranium price analysis, production cost (relationship between future uranium requirements and discovery rates necessary), market break-even cost (break-even uranium cost as a function of fossil fuel prices), market value (theoretical and actual supply - demand balance in uranium market, relationship between U 3 O 8 price and world production); geographic and economic distribution of producers and consumers (world resources of uranium, relationship between U 3 0 8 world production capacity and annual requirements in 1990). (U.K.)

  8. Australian uranium production and trade trends

    International Nuclear Information System (INIS)

    Armstrong, G.; Braddick, P.

    1994-01-01

    After overviewing the factors influencing the worldwide production and consumption of uranium, the authors review the world situation and assess the industry in Australia and the impact of Government policy on uranium mining. The conclusion is that Australia, with almost 30 per cent of the western world's uranium resources, including several of the highest grade and lowest cost deposits in the world, remains well placed to enjoy a substantial share of growth in the uranium market, should existing Government restrictions be lifted. 6 figs., 2 tabs

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Yemen Arab Republic

    International Nuclear Information System (INIS)

    1977-11-01

    The Yemen Arab Republic occupies a part of the southern Arabian Shield and has been subject to considerable faulting and movement. As far as is known no uranium exploration has ever been undertaken or is presently contemplated in the country. Uranium could occur in the Shield rocks and conditions are right for calcrete type uranium deposits. The Speculative Potential may be in category 2, i.e. between 1000 and 10,000 tonnes uranium. (author)

  10. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword

  11. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  12. An Australian view of the uranium market

    International Nuclear Information System (INIS)

    Lloyd, B.

    1978-01-01

    The subject is covered in sections, entitled as shown. Numerical data are indicated in parenthesis. Introduction (principal Australian uranium deposits, possible Australian production, estimates of world-wide uranium resources and production, estimates of world-wide uranium requirements); Australian marketing policy; commercial considerations; uncertainties affecting the industry, including unnecessary and undesirable government involvement, and supply and demand. (U.K.)

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Laos

    International Nuclear Information System (INIS)

    1977-11-01

    Laos is a land locked country containing about 3.5 million people living primarily at a subsistence level. Geologically, the country contains a few places that may be marginally favourable for uranium deposits. A uranium potential in the upper half of Category 1 is assigned. (author)

  14. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bangladesh

    International Nuclear Information System (INIS)

    1978-01-01

    With the exception of the exploration activities in relation with the Beach Sand Project along the eastern Bay of Bengal, no systematic exploration for uranium had been done before December 1976, when a radiometric survey was implemented by the IAEA. As a result of this survey high radioactivity up to 450 cps was detected in placer Tipam deposits, The background of the terrain made up by Tertiary sediments is 160 - 170 cps. An anomaly was found in Kalipur Chara area which coincides with concentration of heavy minerals derived from Tipam Sandstones. Another anomaly was found within a horizon of Tipam sandstone crossing Hari River. An isolated outcrop in the riverbed showed a count rate up to 4 times background. During the follow up work it was found that this steeply dipping mineralized band stretches (with interruptions) over a distance of at least 3km along a strike. Samples collected from three different spils showed concentration of uranium 50, 60 and 140 ppm. The mineralized bed varies in thickness from a few cm to 2 m. It consists of alternating altered and unaltered sandstone. Bangladesh and Australian experts have separated monazite, zircon, ilmenite, rutile and magnetite from local sands at Cox's Bazar, 96 km southeast of Dacca. Radioactive mineral content is around 3,1% and exploitation may be feasible. Concerning the present status of exploration the technical assistance mission of the IAEA in the field of uranium exploration in Bangladesh is continuing with the objective to evaluate uranium potential in Chittongong and Sylhet district. Concerning areas favourable for uranium first priority should be given to areas of Hari River and Kalipur Chara where radioactive anomalies were detected. In general the area covered by Tipam Sandstone appears to be favourable for uranium mineralization. The potential for new discoveries in Bangladesh appears to be not too bad. Speculative potential could be in the order of 1-10,000 tons uranium

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Spain

    International Nuclear Information System (INIS)

    1977-10-01

    Spain, with an area of 504 748 km''2, occupies a large part of the Iberian Peninsula. At present the country appears to have about 6300 t of reasonably assured uranium reserves and 8500 t of additional estimated reserves (all at less than $30/lb of U 3 O 8 ). Spain has devoted some $33 million to prospecting for uranium since the beginning of such work. Most of the reasonably assured reserves are located in ores impregnating Cambrian schists intersected by Hercynian granites (of so-called 'Iberian type'); a small amount, however, is found in veins in Hercynian granites of the Spanish Meseta. The additional estimated reserves are situated in the peripheral post-Hercynian continental basins of the Meseta. Apart from these classical ores, sub-ores have been identified in Silurian quartzites with low concentrations of uranium associated with refractory minerals, totalling more than 200,000 t of U (at concentrations of a few hundred ppm); there are likewise uranium-bearing Oligocene lignites in the Ebro Basin with some 140,000 t of U. These facts, and also the very wide distribution of uranium in space and time (from the Cambrian to the Miocene!) and the country's favourable geological characteristics, suggest that Spain ought in fact to have large reserves of uranium, a conclusion unfortunately belied by the paucity of the economic reserves identified so far. Two things must be borne in mind, however; firstly, Spain's financial outlay for uranium prospecting up till now represents only a quarter of what has been invested in France, for example, and, secondly, the nature of the mineralised bodies in Spain makes exploration difficult. In conclusion it seems that prospecting both of the Iberian-type deposits in the Meseta region and of the deposits associated with detrital sediments in the peripheral continental basins - especially blind mineralized bodies - should hold out excellent prospects for Spain. Consequently we propose that Spain should be placed at least in

  17. Elements beyond uranium

    International Nuclear Information System (INIS)

    Seaborg, G.T.; Loveland, W.D.

    1990-01-01

    This book is the 12th volume in a series on transuranium elements. Varied techniques for production of these elements, the methods used in the identification, and the exquisitely refined microchemical techniques required to deal wth samples sometimes involving only a few atoms are described in detail. The chapter on synthesis of the new elements is liberally laced with reminiscences of the proud progenitors as well as the criteria for the discovery of a new chemical element. The authors lament that the superheavy elements (elements in the region of atomic number 114) still elude detection even though their creation should be possible, and some, at least, should survive long enough to be detected. One chapter in the book is devoted to practical applictions of uranium, and the transuranic elements

  18. National Uranium Resource Evaluation Program. Hydrogeochemical and Stream Sediment Reconnaissance Basic Data Reports Computer Program Requests Manual

    International Nuclear Information System (INIS)

    1980-01-01

    This manual is intended to aid those who are unfamiliar with ordering computer output for verification and preparation of Uranium Resource Evaluation (URE) Project reconnaissance basic data reports. The manual is also intended to help standardize the procedures for preparing the reports. Each section describes a program or group of related programs. The sections are divided into three parts: Purpose, Request Forms, and Requested Information

  19. Foreign uranium supply. Final report

    International Nuclear Information System (INIS)

    McLeod, N.B.; Steyn, J.J.

    1978-04-01

    This report presents an assessment of the extent to which foreign uranium may be available to United States utilities in the short term (through 1980), the intermediate term (1981--1985), and the long term (1986--95). All free world foreign uranium producers and prospects are included, with particular emphasis on Australia, Canada, southern Africa, France, and French-speaking Africa. The assessment includes reserves, resources, exploration and prospects; firm and potential production capacity and prospects; national policies and relevant political and economic conditions; foreign uranium demand; etc. Conclusions are: Foreign supply capability is greater than foreign demand in the near term. The current availability of uncommitted future Australian production presents an unusual opportunity for establishing commercial relations with very substantial producers. Foreign uranium contracts represent an increase in diversity of supply and access to resources but have less assurance of supply than do domestic contracts. However, uncertainties can frequently be accommodated within an overall procurement program, thereby retaining the diversity and price advantages of foreign procurement. The practice of market pricing of contracts reduces the incentives for foreign contracting

  20. Library catalogues as resources for book history: case study of Novosel’s bookstore catalogue in Zagreb (1794 - 1825

    Directory of Open Access Journals (Sweden)

    Marijana Tomić

    2008-07-01

    analyzed external factors that influenced the bookstore business and offer. In order to make a more detailed analysis, we would have to get an insight into archive documents on printing house and bookstore businesses of the time. The analysis of the book catalogue language and genre has shown that at the turn of the 19 the century books in German prevailed in bookstores, which bears witness to the orientation of Northern Croatia towards German-speaking countries. The genre analysis has shown that there was a large number of books from the field of literature, economy and science, and fewer books on theology, which clearly indicated the influence of enlightenment. As bookstores at the turn of the 19th century were market-based to a large extent, their offer had to be based on the real needs of their readers. It is therefore justified to analyze bookstore catalogues as resources for book history, history of reading and history of culture in general. The analysis has shown that bookstore catalogues can also be used as a resource by literary historians, and we therefore propose different models of analyzing bookstore and printing business at the turn of the 19th century.Keywords : books, bookstores, bookstore catalogues, history of books, Zagreb, 18th century.